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Abstract

A Data Warehouse (DW) is a database that collects and stores data from multiple

remote and heterogeneous information sources. When a query is posed, it is eval-

uated locally, without accessing the original information sources. In this paper we

deal with the issue of designing a DW, in the context of the relational model, by

selecting a set of views to materialize in the DW.

First, we briey present a theoretical framework for the DW design problem,

which concerns the selection of a set of views that (a) �t in the space allocated to

the DW, (b) answer all the queries of interest, and (c) minimize the total query

evaluation and view maintenance cost. We then formalize the DW design problem

as a state space search problem by taking into account multiquery optimization

over the maintenance queries (i.e. queries that compute changes to the materialized

views) and the use of auxiliary views for reducing the view maintenance cost. Finally,

incremental algorithms and heuristics for pruning the search space are presented.

Key words: Data Warehousing; Materialize views; View maintenance; Data

warehouse design

1 Introduction

Data warehousing is an in-advance approach to the integration of data from
multiple, possibly very large, distributed, heterogeneous databases and other
information sources. In this approach, selected information from each source
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is extracted in advance, �ltered and transformed as needed, merged with rel-
evant information and loaded in a repository (Data Warehouse - DW). The
Data Warehousing approach presents some advantages over the traditional (on
demand or lazy) approach to the integration of multiple sources [34], which
explains the growing interest of the industry for it:

� The queries can be answered locally without accessing the original infor-
mation sources. Thus, high query performance can be obtained for complex
aggregation queries that are needed for in-depth analysis, decision support
and data mining.

� On-Line Analytical Processing (OLAP) is decoupled as much as possible
from On-Line Transaction Processing (OLTP). Therefore, the information
is highly available and there is no interference of OLAP with local processing
at the operational sources.

Data warehouse architecture: Figure 1 shows a typical DW architecture
[4]. The data at each layer is derived from the data of lower layers. At the lowest
layer there are the distributed operational data sources. The central layer is
the global or principal Data Warehouse. The upper layer contains the local

DWs or Data Marts. Data Marts contain highly aggregated data for extensive
analytical processing [13]. They are also probably less frequently updated than
global DWs. We view a DW as a set of materialized views (de�ned over the
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Fig. 1. DW architecture

data sources) [33] in the framework of the relational data model. Users address
their queries to the global DW or to the local DWs. These queries must be
evaluated locally, at each DW, without accessing the (remote) data of the
lower layer.

In this work we are going to address global DW design issues (Local DW
design encounters similar problems but queries and views are mainly group-
ing/aggregation queries). Thus, in the following, DW refers to the global DW.
We call the queries that are issued by the users against the DW simply queries.

DW view maintenance:When changes to the data in the lowest layer occur,
they must be propagated to the data of the higher level. Di�erent maintenance
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policies can be applied. Usually, a Data Warehouse is updated periodically.
Though, there are applications issuing queries to the Data Warehouse that
need current data. In this case an immediate [2,3] or a \on demand" deferred
update policy is adopted.

In order to update the materialized views of a DW, after a change to the
source relations, an incremental or a rematerialization strategy can be em-
ployed. An incremental strategy is based on incremental queries that use the
changes made to the source relations to compute changes that can be directly
applied to the materialized views [2,18,8,6]. A rematerialization strategy uses
the query corresponding to the materialized view (that is the view de�nition)
to recompute the view from the new state of the views of the lower layer. Thus,
in order to update the materialized views of the DW, in both cases, queries are
issued against the source relations. The DW evaluates theses queries by appro-
priately sending queries to the source relations and receiving the answers. It
then performs the updating of the materialized views. We call the queries that
are issued by the DW against the source relations, for maintenance reasons,
maintenance queries.

Example 1 Suppose that the views V1 = R 1A�C �C>c(S) 1D=E T and
V2 = R 1A>B S 1D�E T over the source relationsR(A;B); S(C;D); T (E;G),
are stored materialized at the DW, and that a transaction inserts the tuples
�T into the source relation T . Then in order to incrementally bring V1 and
V2 up-to-date, the maintenance queries �V1 = R 1A�C �C>c(S) 1D=E �T
and �V2 = R 1A>B S 1D�E �T need to be computed. 2

Multiquery optimization on maintenance queries: The changes taken
into account for maintaining the materialized views at the DWmay a�ect more
than one view. Then multiple maintenance queries de�ned over the source rela-
tions are issued for evaluation. These maintenance queries may contain subex-
pressions that are identical, equivalent, or more generally subexpressions such
that one can be computed from the other. We describe these subexpressions
by the generic term common subexpressions [7,14]. The techniques of multiple

query optimization [26,27] allow possibly non-optimal local query evaluation
plans to be combined into an optimal global plan, by detecting common subex-
pressions between queries.

Example 2 The maintenance queries �V1 and �V2 of the previous example
can be evaluated together if we exploit the fact that �V1 and �V2 can be
computed from the expression �E = R 1A�C S 1D�E �T . A global eval-
uation plan: (1) computes �E from the source relations R and S, and the
changes �T , and (2) computes �V1 and �V2 from �E (�V1 and �V2 can be
rewritten over �E as follows: �V1 = �C>c^D=E(�E) and �V2 = �A>C(�E)).
This global plan may be more e�cient to evaluate than evaluating �V1 and
�V2 separately. 2
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Using materialized views to reduce the maintenance cost of other

views: A global evaluation plan for some maintenance queries can be exe-
cuted more e�ciently if some intermediate subqueries are kept materialized
in the DW [21], or can be computed from views that are kept materialized in
the DW. It is worth noting that an optimal global evaluation plan without
materialized subqueries can be completely di�erent than the optimal global
evaluation plan when materialized views are used. The existence of these ma-
terialized views can greatly reduce the cost of evaluating maintenance queries.
Indeed, the computation of the corresponding subqueries is avoided or simpli-
�ed. Further, since DWs are typically distributed systems, access of the data
sources and expensive data transmissions are reduced. On the limit, no access
at all of the remote data sources is needed for updating a set of material-
ized views in response to changes to the data sources. These views are called
self-maintainable [9,19,1].

Example 3 In our running example, suppose that the view V = R 1A�C�2 S

is also kept materialized in the DW (for instance, in order to satisfy another
query). Then, step (1) of the optimal global evaluation plan can be modi�ed
to the (10) compute �E using the materialized view V (�E can be rewritten
using V as follows: �E = �A�C(V ) 1 �T ). This plan may be cheaper than
the previous one since: (a) No access at all of the (remote) source relations R
and S is needed, and (b) a join in the computation of �E is saved. 2

1.1 The Data Warehouse Design problem

In this paper we deal with the problem of selecting a set of views to materi-
alize in a DW. DWs are mostly used for OLAP and Decision Support. These
applications require high query performance. Selections of views though that
guarantee high query performance, may require also a signi�cant view main-
tenance cost. In fact, low query evaluation cost and low view maintenance
cost are conicting requirements. Low maintenance cost is desired because
otherwise frequent updating cannot be achieved and current data is a key re-
quirement for many DW applications. Further, if the view maintenance cost is
important, query answering may be delayed when a \at query time" deferred
maintenance policy is applied. Thus, we are looking here for sets of views that
minimize a combination of the query evaluation and the materialized view
maintenance cost (operational cost).

Another issue somehow orthogonal to minimizing the operational cost is the
space occupied by the materialized views. Clearly, the materialized views
should �t in the DW. Thus, their total size should not exceed the space
available at the DW. If the space occupied by a set of views having mini-
mal operational cost is smaller than the available space, the decision on the
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set of views to materialize is determined by the operational cost.

The problem: The DW design problem consists of selecting a set of views to
materialize in the DW such that:

(1) The materialized views �t in the space available at the DW.
(2) All the queries can be answered using this set of materialized views (with-

out accessing the remote source relations).
(3) The combination of the query evaluation cost and the view maintenance

cost (operational cost) of this set of views is minimal.

Di�erence from other approaches: Other formulations of the problem of
selecting views to materialize in a DW, in order to minimize the combined
query evaluation and view maintenance cost [10,35], do not require explic-
itly the queries to be computable from the materialized views. Trivially, this
requirement can be met by assuming that all the source relations necessary
for answering the queries are available locally for computation [10]. This can
be achieved by: (a) considering a centralized DW environment, or (b) consid-
ering a distributed environment where all the source relations are replicated
at the DW. Clearly, considering centralized DWs is a special instance of the
problem since DWs are typically built over distributed data sources. Repli-
cating the source relations entail an important waste of space and may not
even be possible because of space restrictions. Further, in this case, the view
maintenance cost is increased by the cost of applying to the replicated source
relations, every change performed to the source relations. These changes may
not even a�ect the result of any query addressed to the DW. The formulation
of the problem in [29] imposes the requirement on the computability of the
queries but it does not consider space restrictions. Moreover, the solution sug-
gested does not necessarily yield the optimal view selection when multiquery
optimization is performed over the maintenance queries.

Di�culty of the problem: With respect to other problems using views
that endeavor to optimize the query evaluation cost [31,5,12,11], or the view
maintenance cost [21,15], or both [22,10,35,29], the DW design problem, as
it is stated here, is harder since it has to deal with the following combined
di�culties:

� In a solution to the problem, all the queries need to be answered using

exclusively the materialized views. In other words, there is the additional
constraint that for every query, there must be a complete rewriting [16] over
the views.

� Selections of views that minimize the operational cost may not �t in the
available at the DW storage space. Furthermore, there might not even exist
a set of materialized views �tting in the available space over which all the
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queries can be completely rewritten.
� In constructing the optimal view set we should detect and exploit common
subexpressions: (a) between views (to reduce the operational cost and the
needed space), (b) between maintenance queries (to perform multiquery
optimization), and (c) between views and maintenance queries (to use views
in the maintenance process of other views).

� The DW operational cost is the combination of the query and view main-
tenance cost. These costs may be rivals: a selection of views to materialize
in the DW that minimize the query cost may result in an important view
maintenance cost and vice versa.

Generality of the problem: The DW design problem encompasses as a
special case other design problems with views recently addressed in the bibli-
ography [21,10,35,29]. Our method for solving the problem can be restricted
to apply to these cases.

1.2 Contribution and outline

In this paper we state formally the DW design problem and provide a method
for solving it for a certain class of relational queries and views. The approach
was �rst introduced in [29] and is extended here in order to take into account
space constraints, multiquery optimization over the maintenance queries and
the use of views in the maintenance process of other views. The former views
may be materialized in an ad-hoc way without being used for answering queries
in which case they are called auxiliary views. We consider a distributed envi-
ronment. Thus, the materialized views and the source data are not necessarily
stored in the same database. Based on a multiple view representation that
uses multiquery graphs we model the problem as a state space search prob-
lem. Every state is a multiquery graph of the views that are materialized in
the DW plus a complete rewriting of the queries over these views. A transi-
tion from one state to another transforms the multiquery graph and rewrites
completely the queries over the new view set. We prove that our search space
is guaranteed to contain a solution to the problem (if a solution exists) under
the assumption of a monotone cost model. Thus, our search space can serve
as a basis for developing optimization algorithms and heuristics. We develop
an exhaustive algorithm to search for the optimal state which incrementally
computes the operational cost when transiting from one state to another. We
also provide a greedy algorithm as well as heuristics to prune the search space.

The main contributions of the paper are thus the following:

� We set up a theoretical basis for the DW design problem.
� We provide a method for solving this problem by taking into account mul-
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tiquery optimization over the maintenance queries and the use of views in
the maintenance process of other views.

� The solution is constructive. Thus, we provide both a set of views to ma-
terialize in a DW and a complete rewriting of all the queries over it that
minimizes the operational cost.

� We design incremental algorithms and we suggest heuristics for pruning the
search space.

� The method is general in that it does not consider a centralized environment.
Further, it is not dependent on the way the query evaluation and view
maintenance cost is computed.

The rest of the paper is organized as follows. The next section contains related
work. In Section 3, we formally state the DW design problem and we provide
some intuition on how to deal with it. Section 4 de�nes states and transitions
It also determines the search space and shows that it contains a solution to the
problem. Incremental algorithms and heuristics are presented in Section 5. Fi-
nally, Section 6 contains concluding remarks and possible extension directions.
More details can be found in [30].

2 Related work

Design problems using views usually follow the following pattern: select a set
of views to materialize in order to optimize the query evaluation cost, or the
view maintenance cost or both, possibly in the presence of some constraints.

Papers [12,11,10] aim at optimizing the query evaluation cost: In [12], the
problem is addressed in the context of aggregations and multidimensional
analysis under a space constraint. This work is extended in [11], where greedy
algorithms are provided, in the same context, for selecting both views and
indexes. In [10], greedy algorithms are provided for queries represented as
AND/OR graphs. Works [21,15] aim at optimizing the view maintenance cost:
In [21], given a materialized SQL view, an exhaustive approach is presented
as well as heuristics for selecting additional views that optimize the total
view maintenance cost. [15] considers the same problem for select-join views
and indexes. It provides an A* algorithm as well as rules of thumb, under a
number of simplifying assumptions. Space considerations are also discussed.
Given a select-project-join view, [19] derives, using key and referential integrity
constraints, a set of auxiliary views other than the base relations that eliminate
the need to access the base relations when maintaining both the initial and
the auxiliary views (i.e. that makes the views altogether self-maintainable).

Works [22,35] aim at optimizing the combined query evaluation and view
maintenance cost: [22] provides an A* algorithm in the case where views are

7



seen as sets of pointer arrays under a space constraint. [35] considers the same
problem for materialized views but without space constraints. Further, the
maintenance cost model does not take into account multiquery optimization
over the maintenance queries or the use of materialized views when maintain-
ing other views. [10] provides a formalization of the problem of selecting a set
of views that minimizes the combined cost under a space constraint but it does
not provide any algorithm for solving the problem in the general case. This
approach considers a centralized DW environment where all the source rela-
tions are available locally for computation. Note that none of these approaches
require the queries to be answerable exclusively from the materialized views
as is the case in the present work. In [22,35,10] the materialized views are cho-
sen in a (preprocessed) global evaluation plan for the queries resulting from
a bottom-up merging of local plans. There might be though views in the set
of views that minimizes the combined cost that do not appear in this plan. In
the present paper we follow a method that decomposes and merges views in
a top-down way and we show that the optimal view set appears in our search
space. [29] follows an approach similar to the one we present here but it does
not take into consideration space constraints or multiquery optimization over
the maintenance queries.

Another relevant design problem is the caching problem: given a restricted
space (cache) where the results of previously evaluated queries are stored,
decide which queries to replace and which queries to admit in the cache in
order to optimize query response time [25,23,24].

3 De�nitions and formal statement of the problem

We consider that a non-empty set of queries Q is given, de�ned over a set
of source relations R. The DW contains a set of materialized views V over
R such that every query in Q can be rewritten completely over V. Thus, all
the queries in Q can be answered locally at the DW, without accessing the
source relations in R. Let Q be a query over R. By QV , we denote a complete
rewriting of Q over V. This notation is extended to sets of queries. Thus, we
write QV , for a set containing the queries in Q, rewritten over V. Given Q, a
DW con�guration C is a pair < V;QV >. Note that we do not distinguish in
the notation between view names, view de�nitions and view materializations
(and often, we use the word `view' for all of them).

Consider a DW con�guration < V;QV >. We call simple views those views
in V that appear in QV and auxiliary views the rest of the views in V. The
intuition behind this de�nition is the following: simple views in V are those
that are used for answering the queries in Q. The auxiliary views may be used
in reducing the maintenance cost of other simple or auxiliary views. Simple
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views may also be used in the same manner, but they have to appear in QV .

3.1 Cost models

The cost of evaluating a query QV 2 QV over the materialized views V is
denoted by E(QV ). Assessing the cost of di�erent evaluation plans, in order
to chose the cheapest one, is a standard technique in the process of query
evaluation optimization. Thus, any query optimizer [32] could be used to assess
the cost E(QV ) of the cheapest evaluation plan. With every query Q 2 Q, we
associate a weight fQ, indicating the relative frequency of issuing Q and its
relative importance, with respect to all the queries in Q. The evaluation cost

of QV is E(QV ) =
P
Q2Q f

QE(QV ).

In de�ning the maintenance cost of V one should take into consideration that
the maintenance cost of a view after a change to the source relations may be
di�erent if other materialized views are present in the DW. This is due to
the fact that (a) a change to the source relations may a�ect multiple views;
then multiquery optimization can be performed over the multiple maintenance
queries issued for maintaining these views, and (b) some views may be used
in order to maintain other views. The maintenance cost of V is thus de�ned
as follows.

We model the changes to the source relations propagated to the DW by trans-
action types. In the case of an incremental updating, as in [21], each trans-
action type determines the changed source relations, the types of the changes
(insertion, deletion, modi�cation) to each source relation and the size of each
change. In the case of a rematerialization strategy, each transaction type de-
termines only the changed relations. Thus, there is only a noti�cation about
the source relations that have changed. Let T be the set of all the transaction
types. The cost of maintaining the views in V a�ected by a transaction type
T , in the presence of the views in V, is denoted by M(V; T ).

The view maintenance cost should comprise: (a) the cost of transmitting data
(change di�erentials, query data and answer data etc.), (b) the cost of com-
puting view changes or new view states, and (c) the cost of applying changes
to the materialized views. In a distributed environment, the transmission cost
is predominant, while in a centralized one, the cost of computing and applying
changes primarily determines the maintenance cost of the materialized views.
Notice that there might be views inV that are not a�ected by any transaction
type.

With every transaction type T 2 T, we associate a weight fT , indicating the
relative frequency of the corresponding change propagation and its relative
importance, with respect to all the change propagations. The maintenance
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cost of V is M(V) =
P
T2T f

TM(V; T ).

The operational cost T (C) of a DW con�guration C =< V;QV > is T (C) =
E(QV )+cM(V). Parameter c; c � 0; is set by the DW designer and indicates
the importance of the view maintenance vs the query evaluation cost. A typical
value of c is 1. c < 1 privileges the query evaluation cost while c > 1 privileges
the view maintenance cost in the design of a DW. If the query evaluation cost
is more important, the DW designer has the choice to give c a value much
smaller than 1 in order to determine a view selection that has good query
performance, and conversely.

The storage space needed for materializing a view V is denoted by S(V ).
Then, the storage space needed for materializing the views in V is S(V) =
P
V 2V S(V ).

Our approach for dealing with the DW design problem is independent of the
way materialized view storage space, query evaluation and view maintenance
cost is assessed. The solutions suggested, though, do depend on the speci�c
cost model used.

3.2 The DW design problem

We state now the DW design problem as follows.

Input:

A set of source relations R.
A set of queries Q over R.
For every query Q 2 Q, its weight fQ.
A set of transaction types T over the source relations R.
For every transaction type T 2 T, its weight fT .
Functions, E for the query evaluation cost, M for the view maintenance cost,
and S for the materialized views space.
The space available in the DW for materialization t.
A parameter c.

Output:

A DW con�gurationC =< V;QV > such that S(V) � t and T (C) is minimal.

Note that this statement of the problem asks for both the set of views to
materialize in the DW and a complete rewriting of the queries over it.
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3.3 Dealing with the DW design problem

The approach we follow here to deal with the DW design problem consid-
ers �rst the DW con�guration < Q;QQ >. It produces then alternative view
selections for materialization by appropriately modifying views, decomposing
views, eliminating views, or generating auxiliary views, while guaranteeing the
answerability of the queries from the materialized views. It also produces a
complete rewriting of the queries over the modi�ed view sets. This procedure
takes into account the fact that multiquery optimization can be performed
over the maintenance queries and that views can be used in maintaining other
views. Each view set produced is examined, in order to measure the impact
of the modi�cation on the operational cost and on the space needed for ma-
terialization.

Appropriate modi�cation of a view results to simpler global evaluation plans
for the maintenance queries, and thus, it may reduce the view maintenance
cost. It increases though the query evaluation cost if this view is a simple one,
and the space needed for materialization.

Decomposing a simple view in two distinct subviews (splitting a view) in-
creases the query evaluation cost. The cost of computing changes to the views
is reduced since the maintenance queries needed for computing the changes
after a change to the source relations are simpler. Further, expensive data
transmission between the DW and the sources needed for evaluating the main-
tenance queries are also reduced. The impact on the space needed for materi-
alization depends on the selectivity of the joins.

Eliminating a simple view that can be computed from another view increases
the query evaluation cost. It reduces though always the view maintenance
cost. Indeed, no computation of the view changes, no data transmissions and
no application of the changes are needed for the eliminated view. The needed
space is also reduced.

Generating and materializing auxiliary views does not a�ect the query eval-
uation cost since these views are not used for answering the queries. As we
have already mentioned, if these views can help maintaining other views, then
(a) some of the answers to the maintenance queries can be obtained locally,
without accessing the (remote) source relations, and (b) some of the compu-
tations can be avoided. Obviously, there is a cost associated with the process
of maintaining the auxiliary materialized views. But, if this cost is less than
the reduction to the maintenance cost of the initially materialized views, it is
worth keeping the auxiliary views in the DW. Clearly, extra space is needed
for storage. We formalize the previous remarks in the next two sections.
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4 The search space

In this section, we model the DW design problem as a state space search
problem based on a multiquery graph representation of the views. We then
prove that under the assumption of a monotone cost model, our search space
is guaranteed to contain a solution to the problem (if such a solution exists).

4.1 The class of queries and views

We consider the class of relational queries and views that are equivalent to
relational expressions of the standard form �F (R1 � : : : � Rk). � denotes
the Cartesian product. The Ri's, i 2 [1; k] denote relations. Formula F is a
conjunction of comparisons of the form x op y+ c or x op c where op is one of
the comparison operators =; <; �; > and �, c is an integer valued constant,
and x; y are attributes. Conjuncts involving attributes from only one relation
are called selection predicates, while conjuncts involving attributes from two
relations are called join predicates. Attributes of every Ri are involved with
those of at least one other Rj in a predicate join in F . All the Ris are distinct
(no self-joins). Without loss of generality, we consider that attribute names in
di�erent relations are distinct. Any query in this class can be put in standard
form.

A formula involving 6=, disjunction and negation can be handled by elimi-
nating negations, replacing 6= by disjunctions of two strict inequalities, and
converting it into disjunctive normal form. Then each disjunct can be consid-
ered separately (though this conversion may cause the number of comparisons
to grow exponentially). In the following we consider F to be a conjunction of
comparisons as above.

A formula F is satis�ed by a substitution of its attributes by values from their
corresponding domain if the resulting formula evaluates to true. F is satis�able
if it is satis�ed by a substitution, and valid if it satis�ed by every substitution.
A predicate p implies a predicate p0 if p is more restrictive than p0. For instance,
x = y + 2 implies x � y + 3. It is easy to see that, implication between two
predicates that are not valid or unsatis�able entails that both of them involve
the same attributes. In general, a Boolean expression of predicates implies

another such expression, if every substitution that satis�es the �rst expression,
satis�es also the second. Two formulas are equivalent if they imply each other.
Implication is extended to sets of formulas by viewing them as conjunctions
of their formulas.

When atoms are allowed to contain 6=, the general problem of checking the sat-
is�ability of a Boolean expression of atoms or the implication of two Boolean
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expressions of atoms is NP-hard. When both expressions are conjunctions of
atoms that do not contain 6=, as in the class of queries we consider here,
checking implication and satis�ability is polynomial [20,1,28].

4.2 States

In order to de�ne states, we use the notion of the multiquery graph to represent
a set of views V. A multiquery graph allows the compact representation of
multiple views. Given a view V = �F (R1 � : : :�Rk), its query graph GV is a
multigraph de�ned as follows:

(1) The set of nodes of GV is the set of relations appearing in V .
(2) For every join predicate p in V involving attributes of the relations Ri

and Rj there is an edge between Ri and Rj labeled as V : p. Such an
edge is called join edge.

(3) For every selection predicate p in V involving attributes of the relation
Ri, there is a loop on Ri labeled as V : p. If V = Ri, there is a loop edge
on Ri labeled as V : T . The symbol T denotes here a valid formula. Both
these edges are called selection edges.

The multiquery graph GV of a set of views V, is the multigraph resulting by
the merging of the query graphs of all the views in V. In addition, views in
the multiquery graph can be marked. We represent marked views in GV by
preceding their names by a �. The usefulness of marking the views will be
explained later. Clearly, a multiquery graph GV contains all the information
about the views in V.

A state s is a pair < GV ;QV >. Thus, a state s is essentially the DW con�g-
uration C =< GV ;QV >. In a state s, we use the letter W to refer to simple
views, the letter Z to refer to auxiliary views while the letter V is used to
refer to both of them indiscreetly.

Example 4 Consider the source relation schemas R(A;B); S(C;D); T (E; F );
P (G;H) and U(K;L). Let V = fW1;W2;W3g be a set of views over these re-
lations, where the views W1, W2 and W3 are de�ned as follows:
W1 = R 1A�C �D>5(S) 1C<E+3 T 1F�G �H=7(P )
W2 = R 1A=C S 1C<E �E=F (T ) and
W3 = �L�D(S 1C=E T 1E>K U)
The corresponding multiquery graph GV is depicted on Figure 2. 2

With every state s, a cost is associated through the function cost(s). This is
the operational cost T (C) of the DW con�guration C. Also, a size is associate
through the function size(s). This is the space S(V) needed for materializing
the views in V.
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Fig. 2. The multiquery graph GV

4.3 Transitions

Transitions between states are de�ned through the following six state trans-

formation rules that can be applied to a state s =< GV ;QV >. Each state
transformation rule consists on two parts. The �rst part transforms the mul-
tiquery graph GV and in most cases introduces new view names in it. If this
transformation of GV a�ects a simple view, the second part transforms QV

by rewriting the queries in QV over the new view set. We present below the
state transformation rules in turn.

� Selection edge cut

If e is a selection edge on node R of an unmarked view in GV labeled as V : p,
where p 6= T , then:

1. GV transformation:

(a) If e is the unique edge of R in GV labeled by V , replace its label
by V1 : T , where V1 is a new view name (in this case, V1 represents
the source relation R). New view names should not already appear in
GV . They have to respect the convention on simple and auxiliary view
names. That is, if V is the simple view W , the new view name is W1,
and similarly for auxiliary views.

(b) Otherwise, remove e from GV and replace every occurrence of V in
GV by a new view name V1.

2. QV transformation:

If V is a simple view, replace any occurrence of V inQV , by the expression
�p(V1).

� Join edge cut

If e is a join edge of an unmarked view inGV labeled as V : p, and the removal
of e from the query graph GV of V does not divide GV into two disconnected
components, then:

1. GV transformation:

Remove e from GV , and replace every occurrence of V in GV by a new
view name V1. Note that the removal of e does not divide GV into two
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disconnected components if there are also other edges in GV between the
same nodes, or if GV is cyclic, and e is part of a cycle.

2. QV transformation:

If V is a simple view, replace any occurrence of V in QV by the expression
�p(V1).

� View split

If e is a join edge of an unmarked simple view in GV labeled as W : p, and the
removal of e from the query graph GW of W divide GW into two disconnected
components then:

1. GV transformation:

Remove e from GV and replace every occurrence of W in GV in the
one component of GW in GV by a new view name W1, and in the other
component by a new view name W2.

2. QV transformation:

Replace any occurrence of W in QV by the expression W1 1p W2.

� View augmentation

If the predicate p of an unmarked view V in GV implies a predicate p0 of a
di�erent simple view W in GV then:

1. GV transformation:

Replace V : p in GV by V : p0, and then replace any occurrence of V in
GV by a new view name V1.

2. QV transformation:

If V is a simple view, replace any occurrence of V in QV by the expression
�p0(V1).

� View elimination

If the simple view W1 and the unmarked simple view W in GV have the same
set of nodes and each predicate of W1 is implied by a predicate of W then:

1. GV transformation:

Remove all the edges labeled by W in GV .

2. QV transformation:

Replace any occurrence ofW in QV by �p1^:::^pn(W1), where p1; : : : ; pn are
the predicates of W1 that are not implied by a predicate of W . If there is
no such predicate, simply replace any occurrence of W in QV by W1.

� Auxiliary view generation

If R1; : : : ; Rk are some (but not all the) nodes of a view V in GV and the
subgraph of the query graph of V de�ned by these nodes is a connected graph
then:

1. GV transformation:

Mark the view V in GV . Let Z be a new auxiliary view name. For every
edge in GV on Ri or between Ri and Rj; i; j = 1; : : : k; labeled as V : p
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(or �V : p if the view V is marked) add an edge in GV between the same
nodes, labeled as Z : p. We say that auxiliary view Z is based on view V .

2. QV transformation:

The set QV is not modi�ed, i.e. the queries in QV are not rewritten over
a new view set.

Example 5 Consider the query set Q = fQ1; Q2; Q3g and the view set V =
fW1;W2;W3g of example 4.1 where each query Qi is de�ned as is de�ned
view Wi. Let Q

V
1 = W1, Q

V
2 = W2, and QV

3 = W3. Views W1;W2;W3 are
simple views (as their name indicates) since they appear in QV . We apply in
sequence state transformation rules to the state < GV ;QV >, and we depict
the resulting state.

In Figure 3(a) we show GV after the application of the selection edge cut
rule to the edge labeled as W1 : D > 5. Query Q1 is rewritten as follows:
QV

1 = �D>5(W4). Queries Q2 and Q3 are not a�ected by this transformation.
W4 is a new view name. New view names may be introduced in the multiquery
graph and in the rewritings of the query de�nitions during the application of
the transformation rules.

R

S

U

P

W2: C<E

W4: C<E+3

W4: F>=G
W3: C=E

W2: A=C

T

W2: E=F W4: K=7

W3: E>KW3: L<=D

R

S

U

P

W2: C<E

W4: C<E+3W4: A<=C

W5: C=E

W2: A=C

T

W2: E=F W4: K=7

W4: A<=C

W4: F>=G

W5: E>K

(a) (b)

Fig. 3. GV after an application of (a) the selection edge cut rule and (b) the join

edge cut rule

Figure 3(b) shows GV after the application of the join edge cut rule to the join
edge labeled as W3 : L � D. This transformation rule can be applied because
the join edge is part of a cycle in the query graph of view W3. The query Q3

is now rewritten as follows: QV
3 = �L�D(W5). The queries Q1 and Q2 are not

a�ected.

In Figure 4(a), the view split rule has been applied to the join edge labeled
as W4 : F � G of GV (W4 is a simple view). Only query Q1 is a�ected. Its
rewriting is: QV

1 = �D�5(W6 1F�G W7).

The simple views W2 and W6 are de�ned over the same set of nodes and the
predicates A � C and C < E + 3 of W6 (these are the only predicates of W6)
are implied by the predicates A = C and C < E of W2 respectively. Thus,
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R

S

U

P

W2: C<E

W6: C<E+3

W5: C=E

W2: A=C

T

W2: E=F W7: K=7

W5: E>K

R

S

U

P
W6: C<E+3W6: A<=C

W5: C=E

T

W7: K=7

W6: A<=C

W5: E>K

(a) (b)

Fig. 4.GV after an application of (a) the view split rule and (b) the view elimination

rule

we can apply the view elimination rule to W6 and W2, and eliminateW2 from
GV . The resulting multiquery graph is depicted on Figure 4(b). Only query
QV

2 is a�ected by this transformation. Since no predicate ofW2 is implied by a
predicate of W6, Q

V
2 is rewritten as follows: QV

2 = �A=C^C<E^E=F (W6). View
W6 appears now in the rewriting of both queries Q1 and Q2. Notice that no
new view name is introduced by this transformation.

Up to now, there are no auxiliary views inGV . The application of the auxiliary
view generation rule to nodes S and T of viewW5 generates the auxiliary view
Z1 depicted on Figure 5(a). Auxiliary views are represented by dashed lines on
the �gures. Note that view W5 is now marked. No query rewriting is needed
for this transformation.

R

S

U

P
W6: C<E+3 T

W7: K=7

W5: E>K

R

S

U

P
W6: C<E+3W6: A<=C

*W5: C=E

T

W7: K=7

W5: E>K

Z1: C=E Z2: C<E+3

*W5: C=E

W6: A<=C

(a) (b)

Fig. 5. GV after an application of (a) the auxiliary view generation rule and (b) the

view augmentation rule

The predicate C = E of view Z1 implies the predicate C < E + 3 of view
W6. By applying the view augmentation rule to these views we obtain the
multiquery graph of Figure 5(b). Note that the auxiliary view Z2 can be used
for maintaining both: view W5 and view W6. Since no simple view is modi�ed
by this transformation, the queries need not be rewritten. 2

Remarks. The view augmentation rule covers the case where multiquery
optimization over the maintenance queries is performed.
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If the condition of the view elimination rule is satis�ed, view W can be com-
puted from view W1. If in addition, each predicate of W1 is implied by a
predicate of W , views W and W1 are equivalent.

The auxiliary view generation rule applied to the nodes of a view V generates
an auxiliary view (potentially modi�ed afterwards) that may be used for main-
taining V (and maybe other simple or auxiliary views). Notice that auxiliary
views based on other auxiliary views can also be generated.

The usefulness of marking a view V inGV is to indicate that an auxiliary view
based on V is already present in GV . Thus, the application of a rule other
than the auxiliary view generation on V is prevented. The reason is that we
do not want to modify a view when an auxiliary view based on it has been
generated. The auxiliary view may not anymore be useful in maintaining the
initial view.

The view split rule cannot be applied to an auxiliary view Z because the two
separate auxiliary views that would have been resulted can be obtained by
applying twice the auxiliary view generation rule on Z. Similarly, the view
elimination rule cannot eliminate an auxiliary view, since an eliminated aux-
iliary view can simply not be generated.

By applying any of the six state transformation rules to a state s we obtain the
multiquery graph GV 0

of a set of views V0 over R and a complete rewriting
of Q over V0, i.e. a new state < GV 0

;QV 0

>. There is a transition T (s; s0)
from state s to state s0 i� s0 can be obtained by applying any of the six state
transformation rules to s.

4.4 Completeness of the state transformation rules

We start by providing some de�nitions. A query Q is satis�able if for some
instance of the base relations Q returns a non-empty set. Clearly, a query
Q = �F (R1� : : :�Rk) is satis�able if and only if F is a satis�able formula. In
the following we consider that the input to the problem queries are satis�able
queries. A query Q contains another query Q0 if the materialization of Q is
a superset of the materialization of Q0, for any instance of the base relations.
Two queries are equivalent if and only if they mutually contain each other.
Clearly, if Q = �F (R1 � : : : � Rk) and Q0 = �F 0(R1 � : : : � Rk), Q contains
Q0, if F is implied by F 0, and Q and Q0 are equivalent, if and only if F and
F 0 are equivalent.

De�nition 6 A satis�able formula F is in full form when: (a) if a predicate
p is implied by F , then there is a predicate in F that implies p, and (b) F is

18



not redundant in the sense that there is no predicate in F that is implied by
another predicate in F . A satis�able query Q = �F (R1 � : : : � Rk) is in full

form if F is in full form. 2

Example 7 Consider the attributes x; y and z. Let F1 = x � y^ y � z. F1 is
not in full form since the predicate x � z is implied by F1 and neither x � y

nor y � z implies x � z. Let also F2 = x � y ^ x � y + 2. F2 is not in full
form since the predicate x � y of F2 implies the predicate x � y + 2 of F2. In
contrast, the formula F = x � y ^ y � z ^ x � z is in full form, and it is also
equivalent to F1. 2

Intuitively, when a query is put in full form, all the signi�cant restrictions on
the involved base relations and between any two relations interrelated through
joins that can be derived by the query de�nition are explicitly indicated. A
formula can be equivalently put in full form in polynomial time. This can be
easily derived from results in [28].

A view V 0 is a subview of a view V if V can be rewritten (not necessarily
completely) using V 0. A view V 0 can be used in maintaining a view V if V can
be partially rewritten [16] using V 0. The following theorem is a completeness
statement for the state transformation rules.

Theorem 8 Let Q be a set of queries in full form, and C =< V;QV > be a

DW con�guration such that any auxiliary view inV can be used in maintaining

another view in V. Let also sub(V) be a set of subviews of the views in V that

contains all the views in V, and X be a set of complete rewritings of some

views in sub(V) over views in sub(V). Then, there is a state < GV 0

;QV 0

>

obtained by applying in sequence a �nite number of state transformation rules

to the state s0 =< GQ;QQ > such that:

(a) There is a set sub(V0) and a mapping f from sub(V) onto sub(V0) such

that 8V 2 sub(V); V contains f(V ).
(b) For every query QV 2 QV , query QV 0

involves exactly the images of the

views in QV with respect to f .

(c) For every complete rewriting in X of a view V over views V1; : : : ; Vn,

where V; V1; : : : ; Vn 2 sub(V), there is a complete rewriting of f(V ) over

f(V1); : : : ; f(Vn). 2

A proof can be found in [30]. Condition (c) of the previous theorem handles
multiquery optimization over the maintenance queries and the use of views
in maintaining other views. Consider for instance a global evaluation plan
[26] P for the recomputation of the views in V a�ected by a transaction type.
Suppose that all the nodes of P belong to sub(V) and that the computation of
all the nodes from its (their) child (children) node(s) are present as rewritings
in X. The leaf nodes of this plan are either source relations or materialized
views (simple or auxiliary). Through the function f we can map this plan to a
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global evaluation plan P 0 for the views in V0 a�ected by the same transaction
type such that, if a node n is computed from the nodes n1; : : : ; nk in P, f(n)
is computed from f(n1); : : : ; f(nk) in P

0. A similar mapping exists for a global
evaluation plan for maintenance queries that involve in addition source relation
di�erentials.

This theorem generalizes results in [29] where multiquery optimization on the
maintenance queries and the use of auxiliary views are not taken into account.

4.5 Search space de�nition

Consider now two states s =< GV ;QV > and s0 =< GV 0

;QV 0

>. Let r
be a one-to-one mapping from view names in GV onto view names in GV 0

.
Such a mapping is called view renaming from s to s0. r(GV ) denotes the
multiquery graph resulting by renaming the views in GV according to r, and
r(QV

i ); Q
V
i 2 Q

V , denotes the query rewriting resulting by renaming the views
in QV

i according to r. Then, s and s0 are equivalent if there is a view renaming
from s to s0 such that GV 0

= r(GV ), and QV 0

i is equivalent to r(QV
i ), for every

QV
i 2 Q

V .

We call initial state the state s =< GQ;QQ >. Viewing states as nodes and
transitions between them as directed edges, the search space is a directed graph
determined by the initial state and the states we can reach from it following
transitions in all possible ways. Equivalent states are represented in the search
space by the same node. Clearly the search space is a rooted at s0 directed
acyclic graph which in the general case is not merely a tree.

Consider two complete rewritings of views (or queries) V and V 0 de�ned ex-
actly over views V1; : : : ; Vn, such that V contains V 0, and Vi contains V

0
i ; i =

1; : : : ; n. A cost model is monotone if the cost of computing V 0 from V 0
1 ; : : : ; V

0
n

is not greater than the cost of computing V from V1; : : : ; Vn.

As a consequence of theorem 4.1 and under the assumption of a monotone
cost model, there is a path in the search space from the initial state to a state
that satis�es the space constraint and has minimal cost (if such a state exists).
Therefore, our search space can serve as a basis for developing optimization
algorithms and devising heuristics. This issue is addressed in the next section.

5 Incremental algorithms and heuristics

We present in this section an exhaustive incremental algorithm and a greedy
one and we suggest heuristics for pruning the search space. In this paper we are
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not concerned with implementation issues. Rather, we highlight a method for
designing a DW. Thus, the presentation of the algorithms emphasizes clarity
at the expense of e�ciency.

For obtaining the lowest maintenance cost when maintaining a view V using
another view V 0 that is de�ned over a �xed set of base relations, only one
such view V 0 is needed. All the other views de�ned over the same set of base
relations are useless. Thus, in the following, we consider that the de�nition
of a state and the auxiliary view generation rule are slightly modi�ed: the
multiquery graph GV in a state may also contain hyperedges (sets of nodes)
labeled by a view name in GV . Suppose that a view V in GV is de�ned
at least over the source relations R1; : : : ; Rk. A hyperedge fR1; : : : ; Rkg in
GV indicates that an auxiliary view over R1; : : : ; Rk, based on V , is already
generated. The auxiliary view generation rule cannot be applied to the nodes
R1; : : : ; Rk of view V if this hyperedge is present in GV . If this hyperedge is
not present in GV , this rule is applicable and its application entails also the
addition of a hyperedge fR1; : : : ; Rkg labeled by V to GV .

The cost and the size of a new state s0 can be computed incrementally along
a transition T (s; s0) from a state s to s0 [30]. The basic idea is that instead
of recomputing the cost and the size of s0 from scratch, we only compute
the changes incurred to the query evaluation and view maintenance cost, and
to the storage space of s, by the transformation corresponding to T (s; s0).
The following example shows how the query evaluation cost can be computed
incrementally.

Example 9 Consider a transition T (s; s0) from s =< GV ;QV > to
s0 =< GV 0

;QV 0

>. The state transformation corresponding to T (s; s0) mod-
i�es only one view V in GV (if any). Let QV

1 ; : : : ; Q
V
q be the queries in

QV de�ned using V . Then the increment to the query evaluation cost �E
=
P
i2[1;q] f

Qi(E(QV 0

i )� E(QV
i )). Clearly, if the state transformation corre-

sponding to T (s; s0) is an auxiliary view generation, then �E = 0. 2

Usually, the query rewritings and the transaction types a�ected by a transfor-
mation represent a small subset of QV and T respectively, while a transfor-
mation a�ects at most one view in GV . Thus, the incremental computation
provides a substantial improvement to the computation of the cost and the
size of the new state s0.

5.1 An exhaustive algorithm

The exhaustive algorithm considers the states in the search space starting
with the state s0 =< GQ;QQ >. When a state is considered all the children
states are produced (the state is expanded). A state s is stored along with its
cost, cost(s), and size, size(s), in the sets open and closed which are initially
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empty. States that have been expanded are stored in the set closed. States
for consideration are stored in the set open. When a state is produced, it is
checked against the states already stored in the sets open and closed. If it is
equivalent to a state in one of these sets, it is not further considered. Thus,
from all the equivalent states produced only one is expanded. Otherwise, its
cost and size are incrementally computed and it is stored in the set open. After
a state is expanded, it is moved from the set open to the set closed. When the
set open becomes empty, a state having minimal cost among all the states in
closed that satisfy the space constraint is returned.

Clearly the algorithm terminates and returns a state satisfying the space con-
straint and having minimal cost, when such a state exists. An exhaustive
algorithm can be very expensive for a big number of complex queries. Even
though the design of a DW is a procedure that is not meant to be done very
frequently, we also present below a greedy algorithm, and explore heuristics
that can be used to improve the performance of the algorithms.

5.2 An r-greedy algorithm

The r-greedy algorithm proceeds in two phases. In the �rst phase it endeavors
to �nd a state that satis�es the space constraint. Starting with the state s0, it
iteratively expands the states in the search space to a depth r. When a state
is expanded, if no state satisfying the space constraint is found among those
produced, the algorithm chooses for further consideration the one that has the
minimal space requirement. Otherwise, it proceeds to the second phase. If no
state satisfying the space constraint is found in the �rst phase, the algorithm
returns a fail. In the second phase, the algorithm endeavors to �nd a state that
has minimal cost. It starts with a state that satis�es the space constraint and
has minimal cost among those produced in the �rst phase. Then, it iteratively
expands the states in the search space to a depth r, by considering only states
satisfying the space constraint, and chooses one having minimal cost for fur-
ther consideration. The algorithm stops when the expansion of a state under
consideration does not produce any state satisfying the space constraint.

The basic outline of the algorithm is depicted in Figure 6. The use of the sets
open and closed is as in the exhaustive algorithm. The distance of two states
distance(s1; s) is the number of transitions between states s1 and s.

5.3 Heuristics

The number of states that can be produced from a given state by generating
and modifying auxiliary views can be very big. The heuristics below concern
exactly the generation and modi�cation of auxiliary views.

A two-phase application of the rules. The distinction of the views in sim-
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ple and auxiliary, entails a respective distinction of the state transformations:
simple view transformations are those that modify or eliminate a simple view.
These transformations modify also the query rewritings in QV . Transforma-
tions that do not modify or eliminate a simple view are called auxiliary view

transformations. These transformations modify or generate an auxiliary view
and do not modify the query rewritings. This distinction suggests for the fol-
lowing two-phase heuristic application of the rules: during the �rst phase, use
one of the algorithms to �nd a state s, starting from the state s0, by perform-
ing only simple view transformations. During the second phase, use one of
the algorithms to compute the �nal state starting from state s, by performing
only auxiliary view transformations.

This treatment allows in the �rst phase the computation of a set of simple
views that is needed for rewriting all the queries over it. The resulting DW
con�guration has the minimal operational cost that can be obtained with the
algorithm used, when auxiliary views are not employed to support the main-
tenance process of a view. The extra computational e�ort incurred by the
generation and modi�cation of auxiliary views in every intermediate state is
avoided. Once this set of simple views is �xed, the second phase generates and
modi�es auxiliary views in order to minimize the operational cost. Actually,
the second phase is a procedure for solving the problem of selecting a set of
auxiliary views to materialize, given a �xed set of views, such that the overall
maintenance cost is minimized [21]. Indeed, since the auxiliary view transfor-
mations do not modify the query rewritings, they do not modify the query
evaluation cost either. Thus the cost to be minimized in the second phase is
essentially the view maintenance cost. Of course, the absence of auxiliary view
transformations in the �rst phase can lead to �xing a set of simple views which
is di�erent (and less e�cient) than the one computed when all the transforma-
tions are operational. Note though that this heuristic does not prevent from
�nding a view set that �ts in the available space, if a solution to the problem
exists: no simple view transformation depends on auxiliary views, while the
auxiliary views consume extra space.

Example 10 Consider the queries Q1 = R 1A�B �C>c(S) 1C=D T and Q2 =
R 1A=B S 1C=E U over the source relations R(A; F ); S(B;C); T (D;G);
U(E;H). Suppose, for the needs of this simplifying example, that a remate-
rialization maintenance strategy is adopted, and that the cost of maintaining
the views a�ected by a transaction type is the recomputation cost of these
views. Let the cost of computing a query (view) be the number of joins in
it. Suppose also that there are only two transaction types T1 = fTg and
T2 = fUg, while the other source relations never change, and that there is no
restriction in the space available in the DW for view materialization. Further,
let fQ1 = fQ2 = 0:5, fT1 = 0:75, fT2 = 0:25, and c = 0:5.

The exhaustive algorithm, after examining the whole search space, returns
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as a solution the simple views W1 = R 1A�B �C>c(S) 1C=D T , and W2 =
R 1A=B S 1C=E U , and the auxiliary views Z1 = R 1A�B �C>c(S), and
Z2 = R 1A=B S. The rewriting of the queries over the simple views is QV

1 =
W1, and QV

2 = W2, while the simple views can be partially rewritten using
the auxiliary views as follows: W1 = Z1 1C=D T , and W2 = Z2 1C=E U .
This optimal solution can be obtained by applying twice the auxiliary view
generation rule, starting with the initial state. Its cost is 0,5.

If the heuristic is applied, the algorithm returns as a solution in the �rst
phase (without employing any auxiliary view transformation) the simple views
W1 = R 1A�B �C>c(S), W2 = T , and W3 = R 1A=B S 1C=E U . In the
second phase, by employing exclusively auxiliary view transformations on this
solution, it additionally returns the auxiliary view Z1 = R 1A=B S. The
rewriting of the queries over the simple views is QV

1 = W1 1C=D W2, and
QV

2 =W3, while simple viewW3 can be partially rewritten using auxiliary view
Z1 as previously: W3 = Z1 1C=E U . This solution is obtained by applying the
join edge cut rule on the initial state in the �rst phase, and the auxiliary view
generation rule on the resulting state in the second phase. The �nal solution
has cost 0.625 which is 25% worse than the optimal solution. 2

Guiding auxiliary view generation by frequent transaction types.

Not all the auxiliary views based on a view V are useful in maintaining V

after the propagation of the changes speci�ed by a transaction type. Given
a view V in a state, this heuristic allows, for every frequent transaction type
Ti that a�ects V , the generation only of the auxiliary views based on V that
contain all the relations of V not speci�ed in Ti, instead of all the relations of
V speci�ed in Ti. Frequent transaction types are considered because they are
expected to contribute more than the others to the view maintenance cost.

Example 11 Consider the setting of Example 10. Let frequent transaction
type be a transaction type Ti such that fTi � 0:5. Thus, only T1 is a frequent
transaction type. In the initial state only viewW1 = R 1A�B �C>c(S) 1C=D T

is a�ected by T1. No auxiliary view containing T in its de�nition can be used in
maintainingW1. Therefore, by applying this heuristic, only the auxiliary view
Z1 = R 1A�B �C>c(S) will be generated from the initial state. The generation
of other auxiliary views, as for instance the auxiliary views �C>c(S) 1C=D T

and �C>c(S) based on W1, and the auxiliary views S 1C=E U , and R 1A=B S

based on W2, is prevented. The cost of the solution obtained by applying this
heuristic to the exhaustive algorithm is again 25% worse than the optimal
solution. 2

Prohibiting transformations of the auxiliary views. This heuristic de-
activates the auxiliary view transformations join edge cut, selection edge cut
and view augmentation. In fact an auxiliary view, in the form it has when it is
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generated, can be used more e�ciently in maintaining the view on which it is
based: the corresponding maintenance query can be rewritten by joining the
auxiliary view with other views or relations, without applying any selection
condition on it. The usefulness of transforming an auxiliary view relies on the
possibility of using the transformed auxiliary view in maintaining other ma-
terialized views besides the view on which it is based. Thus, this pruning of
the search space is done at the expense of using an auxiliary view this way.

Example 12 In the setting of Example 10, suppose that the space available
for materialization is restricted and that no more than three views can be kept
materialized in the DW. Then, the exhaustive algorithm returns as an optimal
solution the simple views W1 = R 1A�B �C>c(S) 1C=D T , and W2 = R 1A=B
S 1C=E U , and the auxiliary view Z = R 1A�B S. Auxiliary view Z1 can be
used to maintain both simple views since they can be partially rewritten using
Z: W1 = �C>c(Z) 1C=D T and W2 = �A=B(Z) 1C=E U . This solution can be
obtained by applying the auxiliary view generation transformation to viewW1

of the initial state, and the selection edge cut auxiliary view transformation
to the resulting state. Auxiliary view Z can be used to maintain views W1

and W2 less e�ciently than the auxiliary views Z1 and Z2 of the optimal
solution of Example 10, as the partial rewritings of W1 and W2 using Z1 and
Z2 respectively indicate.

By applying this heuristic to the exhaustive algorithm, auxiliary views can be
generated but not modi�ed afterwards. Thus, the solution returned is W1, W2

and Z2. Auxiliary view Z2 can be used e�ciently in maintaining W1, while it
cannot be used in the maintenance process of W2. 2

Note that the heuristics above can by applied in combination thus increasing
further the pruning of the search space.

6 Conclusion and possible extensions

We have addressed the problem of selecting a set of views to materialize in a
DW that �ts in the space allocated for materialization, allows all the queries
of interest to be answered using exclusively these views, and minimizes the
combined query evaluation and view maintenance cost (DW design problem).
The problem is formalized as a state space search problem for a class of rela-
tional queries that takes into account both: multiquery optimization over the
maintenance queries and the use of (auxiliary) views in the computation of the
maintenance queries. A solution provides the optimal view set and a complete
rewriting of the queries over it. The approach is general and is not dependent
on the way query evaluation and view maintenance cost is assessed. We have
designed incremental algorithms and have presented heuristics to reduce the
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execution time of the algorithms. Experimental results on a restricted version
of the problem are presented in [17].

The approach can be easily extended to deal with projections. Projections can
be treated by keeping with each node of the multiquery graph the attributes
that are projected out in each view, labeled by the corresponding view name.
Then, an extension of the state transformation rules is needed that captures
the semantics of the projections. The design problem of Data Marts which
contain highly aggregated data also constitutes an important extension direc-
tion.

Real DWs need to use access structures for evaluating queries and maintenance
queries. Thus another extension direction comprises selecting both views and
indexes to materialize in a DW. The exploitation of integrity constraints in
the DW design process is also an issue that needs to be examined.

In this paper we have studied the static case of the DW design problem. DWs
though are entities that need to evolve in time. Dynamic interpretations of the
DW design problem involve the incremental design of a DW when di�erent
input parameters to the problem are modi�ed; this issue is also an interesting
extension to the presented work.
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begin

(0) compute cost(s0) and size(s0);

s1 = s0;

(1) open = fs1g; closed = ;;
while (open 6= ;)

consider a state s in open;

if distance(s1; s) < r then

for every transition T (s; s0)

if s0 62 open [ closed then

incrementally compute cost(s0) and size(s0);

open = open [ fs0g
endif

endfor

endif;

open = open� fsg; closed = closed [ fsg
endwhile;

if closed = ; then return \no solution" endif;

closed0 = the set of states s 2 closed s.t. size(s) � t;

if closed0 = ; then

s1 = a state s 2 closed having minimal size(s);

go to (1)

endif;

s2 = a state s 2 closed0 having minimal cost(s);

sg = s2;

(2) open = fs2g; closed = ;;
while (open 6= ;)

consider a state s in open;

if distance(s2; s) < r then

for every transition T (s; s0)

if s0 62 open [ closed then

incrementally compute cost(s0) and size(s0);

if size(s0) � t then open = open [ fs0g endif

endif

endfor

endif;

open = open� fsg; closed = closed [ fsg
endwhile;

if closed 6= ; then

s2 = a state s 2 closed having minimal cost(s);

if s2 � sg then sg = s2;

go to (2)

endif;

return sg
end.

Fig. 6. A greedy incremental algorithm
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