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Figure 1: Given a single image, our algorithm estimates the surface normal at each pixel. Notice how our algorithm not only

estimates the coarse structure but also captures fine local details. For example, on the left, the normals of the couch arm and

side table legs are estimated accurately (see zoomed version). On the right, the chair surface and legs and even the top of the

shopping bags are captured correctly. Normal legend: blue → X; green → Y; red → Z.

Abstract

In the past few years, convolutional neural nets (CNN)

have shown incredible promise for learning visual represen-

tations. In this paper, we use CNNs for the task of predict-

ing surface normals from a single image. But what is the

right architecture? We propose to build upon the decades

of hard work in 3D scene understanding to design a new

CNN architecture for the task of surface normal estimation.

We show that incorporating several constraints (man-made,

Manhattan world) and meaningful intermediate representa-

tions (room layout, edge labels) in the architecture leads to

state of the art performance on surface normal estimation.

We also show that our network is quite robust and show

state of the art results on other datasets as well without any

fine-tuning.

1. Introduction

The last two years in computer vision have generated

a lot of excitement: deep convolutional neural networks

(CNNs) have broken the barriers of performance on tasks

ranging from scene classification to object detection and

fine-grained categorization. For instance, on object detec-

tion, performance on the standard dataset has gone up from

a mAP of 33.7 to 58.5 in just two years. While CNNs have

shown tremendous success on semantic tasks such as detec-

tion and categorization, their performance on other vision

tasks such as 3D scene understanding and establishing cor-

respondence has been not as extensively studied.

We want to explore the effectiveness of CNNs on the

task of predicting surface orientation, or normals, from a

single image. One could treat this as a per-pixel regression

task and directly apply a CNN, for instance as was done

for depth prediction in [8]. However, decades of research

have shown that the output space of this task is governed

by powerful physical constraints and researchers have ex-

ploited these constraints from the very beginning of com-

puter vision [27] through the line-labeling era [17, 2, 19] all

the way to recent investigations [14, 24, 12, 30, 40, 10].

In this paper, we demonstrate how to incorporate insights

about 3D representation and reasoning into a deep learning

framework for surface normal prediction. While deep net-

works have been particularly successful for learning image

representations, we believe their design can benefit from

past research in 3D scene understanding. We achieve this

by developing CNNs that operate locally in a window as

well as globally on the whole image; these predict not just

surface normals, but also edges and cuboid room layout.

A final CNN considers these predictions as well as evi-

dence from vanishing points to yield a final prediction. Our

method obtains state-of-the-art performance in surface nor-

mal estimation and shows a substantial improvement over a

standard feed-forward architecture. Additionally, we show

that our physical constraints enable 4.6 percentage points of

our performance in the most strict evaluation metric. More

importantly, our networks provide a deeper understanding

of the scene in terms of not just surface normals, but also

room layout and edge labels (Figure 2).

2. Related Work

The topic of 3D understanding goes back to the be-

ginning of computer vision, starting from the first thesis,

Roberts’ Blocks World [27]. At the heart of this problem
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Figure 2: An overview of our approach to predicting surface normals of a scene from a single image. We separately learn

global and local processes and use a fusion network to fuse the contradictory beliefs into a final interpretation. Global

processes: our network predicts a coarse 20 × 20 structure and a vanishing-point-aligned box layout from a set of discrete

classes. Local processes: our network predicts a structured local patch from a part of the image and line-labeling classes:

convex-blue, concave-green, and occlusion-red. Fusion process: our network fuses the outputs of the two input networks,

the rectified coarse normals with vanishing points (VP) and images to produce substantially better results.

are two related questions: (1) What are the right primitives

for understanding? and (2) Given the local evidence, how

can one obtain a global 3D scene understanding?

The problem of discovering primitives goes back to the

early days of computer vision. The first primitives proposed

took the form of lines [27, 36] and volumetric primitives

such as geons [1], but these turned out to be too difficult to

detect in natural images. Recent work has focused on using

edges [25], super pixels [28] or segments [15] as primitives

for reasoning. Most recently, [9] instead argued that data

should determine the primitive instead of human intuition,

and introduced a structured patch-based primitive; similarly

[22] formulated the problem as per-pixel, using segments

only as the data dictated. Unfortunately, while all of these

local primitives work well on things like blinds, cabinets,

and tile floors, they tend to be stymied by local ambiguities

at less-textured regions.

In order to resolve ambiguities, most work turns to some

form of reasoning to do top-down prediction. Most re-

cent work is based on higher-order volumetric representa-

tions [14, 24, 30, 30] (e.g., the room should be an inside out

box) or reasoning over volumes [24, 29] (e.g., two volumes

should not intersect with each other) or edges [10] (e.g.,

via detected convex edges or occlusion boundaries) Typi-

cally, this representation is obtained via optimization over

a domain-specific model and helps smooth predictions and

resolve ambiguous areas, such as blank walls.

In this work, we address both threads. Instead of using

primitives on manually designed features such as HoG [4],

we use the data to derive a representation right from the pix-

els: inspired by the recent success of CNNs [23, 21] on the

tasks of object detection [11, 31], segmentation [38], depth

estimation [8], pose estimation [34], etc., we propose to

adapt CNNs to learn representations and primitives for 3D

scene understanding. Similarly, instead of hand-designing

an optimizable model to reason about ambiguities, we learn

a CNN to arbitrate between conflicting evidence. However,

rather than abandon the insights learned in past work, we

incorporate them into our design. In particular, we take into

account the importance of:

Fusing global and local. We build local and global net-

works that handle these two forms of evidence. We com-

bine their predictions with a fusion network that greatly

outperforms either alone. Our fusion network can be

viewed as a form of learned reasoning that replaces pre-

vious optimization-based attempts to reconcile evidence

[12, 24, 29, 10] from conflicting sources.

Human-centric constraints. Past work has shown that the

man-made nature of indoor scenes provides powerful con-

straints. For instance, it is common for there to be assumed

three orthogonal directions in the scene (the Manhattan-

world assumption [3]), as used in [14, 25, 24, 30, 29, 10,

39]. Similarly, it is common to assume that the scene is

an inside-out box [14, 24, 30, 29]. Inspired by these ap-

proaches, our global network predicts a box layout in ad-

dition to coarse geometry, and we provide the vanishing-

points to our fusion network. This enables the fusion net-

work to softly apply the Manhattan or box constraint as the

data dictates (e.g., on walls and floors but not chairs), and

our results show that this leads to improved predictions.

Local structure. Another theme that has emerged both in

the past [33, 17, 2, 19] and recently [16, 20, 10] is the rea-

soning between surface normals and the edges in the im-

ages. Inspired by these local constraints, we incorporate
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Figure 3: The architecture of our global network. Given an 55×55 image as input, it is passed though 4 convolutional layers.

On the top of the last convolutional layer, the neurons are fully connected to two separate outputs: (i) global scene surface

normals and (ii) room layouts.

them in learning of the local network and as an input in

the fusion network. We demonstrate that the inclusion of

predicted convex, concave and occlusion edges improve the

performance over the simple feed-forward network.

A preliminary version of this work appeared on Arxiv

[37]. At the same time, [7] introduced a stacked CNN

model for surface normal estimation. Our contributions are

complementary to [7] and combining both should provide

further improvement.

3. Overview

This paper aims to combine the knowledge gleaned over

the past decade in single-image 3D prediction with the

representation-learning power of convolutional neural net-

works. Our overall objective is to frame the single-image

3D problem so that the structure we know is captured and

convolutional networks can do what they do best – learn

strong mappings from visual data to labels.

Following the lessons we described, we build a network

with the following architecture (illustrated in Figure 2). We

start with two networks: a global network that takes the

whole image as input and predicts a coarse global interpre-

tation (Section 4.2); and a local network that acts on local

patches in a sliding-window fashion and maps them to lo-

cal orientation (Section 4.3). Because the global and lo-

cal processes have complementary errors, we combine their

output with a fusion network that consolidates their predic-

tions (Section 4.5). Each input network obtains strong per-

formance by themselves, but by combining them, we obtain

substantially better results, both quantitatively and qualita-

tively.

In addition to performing global/local fusion, we inject

global human-centric constraints (including room layout,

vanishing point) and local surface/edge constraints into the

framework by introducing additional tasks. Our global net-

work predicts room layout as well, and our local network

predicts an edge label. Integrating these extra tasks leads to

a more robust final network. We evaluate our approach in

Section 5 and analyze what aspect of our designs gives what

types of performance increases.

4. Method

We now describe each of the components of our method.

For each, we describe their inputs, outputs, the intermediate

layers, and the loss function they minimize.

4.1. Output: Regression as Classification

The outputs for the global and local networks are: sur-

face normal for each pixel, room layout and edge labels.

The edge label (convex, concave, occluding, no-edge) is a

discrete output space and can be formulated as a classifica-

tion problem. However, both surface normal and room lay-

out are structured continuous output spaces (note a surface

normal is on the unit sphere). Following past work such as

[22], we reduce these problems to a classification problem.

Surface Normal: We use the surface normal triangular

coding technique from Ladicky et al. [22] to turn normal

regression into a classification problem. Specifically, we

first learn a codebook with k-means and a Delaunay trian-

gulation cover is constructed over the words. Given this

codebook and triangulation, a normal can be re-written as

a weighted combination of the codewords in whose trian-

gle it lies. At training-time, we learn a softmax classifier

on the codewords. At test-time, we predict a distribution

over codewords; this is turned into a normal by finding the

triangle in the triangulation with maximum total probabil-

ity, and using the relative probabilities within that triangle

as weights for reconstructing the normal.

Room Layout: Room layout is continuous structured out-

put space. We reformulate the problem as classification by

learning a codebook over box layouts. The codewords are

learned with k-medoids clustering over 6000 room layouts;

each codeword is a category for classification.

4.2. Global Network

The goal of this network is to capture the coarse struc-

ture, enabling the interpretation of ambiguous portions of

the image which cannot be decoded by local evidence alone.

Input: Whole image rescaled to 55× 55× 3.

Output: Given the whole image as an input, we produce

two complementary global interpretations as outputs: (i) a

structural estimation of surface normals for the image and
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Figure 4: Our local network. (a) Given a full image, we perform sliding window on it and extract 55 × 55 image content

as input. By forward propagation, the network produces the local surface normals and convex/concave/occlusion edge labels

for the middle 13 × 13 image patch; (b) After sliding window, we obtain the surface normals and edge labels for the whole

image. We plot the edge labels on the output of Structured Edges [6]. The colors blue, green and red represent the convex,

concave and occlusion edge labels, respectively.

(ii) a cuboidal approximation of the image as introduced by

[14] and used in [24, 30], among others. For surface normal

estimation, the output layer is Mt×Mt×Kt where Mt×Mt

is the size of output image for surface normals and Kt is

the number of classes uses in codebook. For room layout,

we use simple classification over 300 categories. We use

Mt = 20,Kt = 20.

Architecture: The global global network includes four

convolutional layers; these layers are shared by the two

tasks (surface normal and room layout estimation). The out-

put of the neurons in the fourth convolutional layers are then

fully connected to the two labels. To simplify the descrip-

tion, we denote the convolutional layer as C(k, s), which

indicates the there are k kernels, each having the size of

s × s. During convolution, we set all the strides to 1. We

also denote the local response normalization layer as LRN ,

and the max-pooling layer as MP . The stride for pooling

is 2 and we set the pooling operator size as 3 × 3. Then

the network architecture for the convolutional layers can be

described as: C(64, 5) → MP → LRN → C(192, 3) →
MP → LRN → C(384, 3) → C(256, 3). For surface

normal estimation, neurons in the fourth convolutional lay-

ers are fully connected to the output space of Mt×Mt×Kt,

which is 20× 20× 20 = 8000. For the room layout estima-

tion, we connect the same set of neurons to the Kl = 300
labels. The architecture of the network is shown in Figure 3.

Loss function: We treat both tasks as classification prob-

lems. For the room layout classification, we simply employ

the softmax regression to define the loss.

For surface normal estimation, we denote Fi(I) as a Kt-

class classification output for ith pixel on surface normal

output map. We also apply softmax regression to optimize

the function Fi(I). Then the loss for the structural outputs

of surface normals can be represented as,

L(I, Y ) = −

M⇥MX

i=1

KX

k=1

( (yi = k) logFi,k(I)), (1)

where Fi,k(I) represents the probability that the ith pixel

should have the normal defined by the kth codeword,

(yi = k) is the indicator function, Y = {yi} are the

groundtruth labels for the surface normals, M = Mt and

K = Kt.

During training, we learn the networks with these two

losses simultaneously. As we have structural outputs for

surface normals and only one prediction for the room lay-

out, we need to balance the learning rate for both losses. If

σ denotes the learning rate for surface normal estimation,

we set the learning rate for layout estimation to 50σ.

4.3. Local Network

The goal of this network is to capture local evidence at

a higher resolution that might be missed by the global net-

work. We take a sliding window approach where we extract

features in a window and predict the image properties in

the center of the window. This type of model has been ap-

plied successfully for generating local image interpretations

in the form of normals [9, 22] and semantic edges [6].

Input: Given an image with size 195 × 260, we perform

sliding window on it with a window of size 55 × 55 and

stride of 13 (defined to match our output size).

Output: The local network produces two types of outputs:

(i) surface normals and (ii) an edge label. Each local sliding

window predicts the surface normal for Mb ×Mb pixels at

the center of the window. We use Mb = 13. As Figure 4

illustrates, our network takes a smaller part of the image as

input and predicts the surface normals in the middle of the

patch, thus predicting the local normals from local texture

and its context. We use Kb = 40 codewords to define the

output space. We use a larger number of codewords since

we expect local network to capture finer details. For the

edges, we use the classic categories of convex, concave, oc-

clusion or not an edge. Note we just predict one edge label

for 13 × 13 pixels. For visualization purposes, we project

these edge labels onto the output of Structured Edges [6].

Architecture: The architecture of the local network in-

cludes 4 convolutional layers and 2 sets of fully connected

layers. The convolutional layers are shared by the two tasks,

and we use the same parameter settings mentioned in the

global network. At the end of the convolutional layers, we
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Figure 5: Top regions for the 4th convolutional layer units in global and local networks. The receptive field for the neurons

in the 4th layer is 31× 31. We use red bounding boxes to represent the regions with top responses for different units. (a) The

neurons from the global network tend to capture the structure information in the global scene; (b) The neurons from the local

network respond to local texture and edges.

stack two separate fully connected layers with 4096 neu-

rons, each of which corresponds to a task. For local surface

normal estimation, the output size is Mb × Mb × Kb =
13× 13× 40 = 6760; for edge labels, there are 4 outputs.

Loss Function: Both tasks are defined as classification. For

edge label estimation, we apply softmax regression to define

the loss. For the local surface normal estimation we apply

the loss defined in Eq.1 by setting M = Mb and K = Kb.

Similar to the coarse network, we optimize these two tasks

jointly during training, and the learning rate for local sur-

face normals and edge label estimation are σ and 50σ, re-

spectively.

4.4. Visualization

We now attempt to analyze what the global and local net-

works learn. Figure 5 shows the top 5 activations for the

units in the fourth convolutional layer of (a) global network

and (b) local network. Note that these two networks share

the same structure in the convolutional layers, and the size

of receptive fields of the unit is 31×31. We select represen-

tative samples for illustration. For the global network, the

units capture high-level structures such as the side of beds,

hallways and paintings on walls. For the local network, the

units respond to local texture and edges.

4.5. Fusion Network

The goal of this network is to fuse the results of the two

earlier networks and refine their results. Each approach has

complementary failure modes and by fusing the two net-

works, we show that better results can be obtained than ei-

ther by themselves. Additionally, both coarse and local net-

works treat every pixel independently; our fusion network

can also be thought of applying a form of learned reasoning

akin to [26, 35] on our outputs.

Input: As input to this fusion network, we concatenate out-

puts of the global and local networks with the input image.

The concatenation process is as follows:

• Global Coarse Output: The output of global network

is 20 × 20 with 20 classes. We decode the output to

a 3-dimensional continuous surface normal map and

upscale it to 195× 260× 3.

• Layout: We select the room layout corresponding to

the label with highest probability. The layout is a 3-

channel feature map representing the surface normals

in the layout. We resize it to 195× 260× 3.

• Local Surface Normals: The output of local network

in the sliding window format is 195× 260× 3.

• Edge Labels: We obtain the 4 probabilities of edge la-

bels per window. As the probabilities sum to 1, we do

not pass the no-edge output to the fusion network. We

upsample this three dimension vector to size 13×13×3
for each window and obtain 195× 260× 3 inputs.

• Vanishing Point-Aligned Coarse Output: We adjust

our global output’s interpretation to match vanishing

points estimated by [14], yielding another feature rep-

resentation with the same size.

In addition to 15 channels described above, we also con-

catenate the original image and therefore our final input to

the deep network is 195× 260× 18.

Output: The fusion network is also applied in a sliding

window scheme on the 195 × 260 image. By taking the

inputs with size of 55×55, we estimate the surface normals

of the Mb ×Mb center patch via the fusion network. Note

that we use the same output window size Mb = 13 as in the

local network, and the output space is defined by Kb = 40
codewords.

Architecture: The architecture of this network is 4 con-

volutional layers and 2 fully connected layers. The con-

volutional layers share the same parameter settings as the

global and local networks. The last convolutional layer are
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Figure 6: Qualitative results of surface normal estimation using our complete architecture. Input images are shown on the

left, ground truth surface normals from Kinect are shown in middle and the predicted surface normals are shown on right.

Our network not only captures the coarse layout of the room but also preserves the fine details. Notice that fine details like

the top of couches and the legs of table are captured by our algorithm.

fully connected to 4096 neurons, which in turn lead to the

13 × 13 × 40 outputs representing the surface normals. At

testing time, we apply the fusion network on the feature

maps with the stride of Mb.

Loss Function: At training time, we fix the parameters of

the global and local networks and obtain the feature maps

of the training data though them. The loss function is de-

fined as Eq.1 by setting M = Mb and K = Kb. To train

the network, we apply the stochastic gradient descent with

learning rate σ.

5. Experiments

We now describe our experiments. We adopt the proto-

cols introduced in [9] and used by state-of-the-art methods

on this task [9, 10, 22].

Dataset and Settings: We evaluate our method on the NYU

Depth v2 dataset [32]. However, to train our models we use

the corresponding raw video data for the training images.

We process the video data using the provided development

kit, but improve the normals with TV-denoising similar to

[22]. We use the official split with 249 scenes for training

and 215 scenes for testing. We extract 200K frames from

the 249 scenes for training and test on the 654 images from

the standard test set. We extract the room layout by fitting

an inside-out box from [14] to the estimated surface nor-

mals. The edge labels are estimated using the ground-truth

depth data in a procedure like [13].

During training, we fine-tune the network with stochastic

gradient descent with learning rate σ = 1.0 × 10�6. Note

that during joint tuning with the layouts and edges we set

the learning rate as 50σ for these losses. For training our

coarse networks, we augment our data by flipping, color

changes and random crops. For training the local and fusion

network, we rescale the training images to 195 × 260 and

randomly sample 400K patches with size 55×55 from them.

Evaluation Criteria: Following [9], we evaluate a per-

pixel error over the whole dataset, ignoring values that are

unknown due to missing depth data. We summarize this

population of per-pixel errors with statistics: the mean and

median, as well as percent-good-pixel (PGP) metrics, or

what fraction of the pixels are correct within a threshold

t (for t = 11.25, 22.5, 30). In the interest of easy compari-

son, we report results on the ground-truth provided by [22];

relative performance is similar on the ground-truth of [9]

and our denoised normals.

Baselines: Our primary baselines are the published state-

of-the-art in surface normal prediction [9, 10, 22]. Each is

state-of-the-art in at least one metric that we evaluate on.

Additionally, since there have been no published CNN re-

sults, we adapt the coarse network of the Eigen et al. [8] to

surface normals by using the negative dot-product as loss.

This coarse network nearly matches the full system’s per-

formance on depth, and as a single feed-forward CNN with

no intermediate representations or designed structures, it is

a good baseline.

5.1. Experimental Results

Qualitative: First, we demonstrate our qualitative results.

Figures 6 and 7 show the results of our complete architec-

ture. Notice how our results capture the fine details of the

input image. Unlike many past approaches, our algorithm

is able to estimate even the legs of the tables etc. Our al-

gorithm is able to even estimate how the surface normal

changes across the couch (last column, figure 6).

Quantitative: Table 1 compares the performance of our al-

gorithm against several baselines. As the results indicate,

our approach is significantly better than all the baselines in

all metrics. For many cases, our results show as much as

15% improvement over previously state of the art results.

For the sake of completeness, we also report results from

a contemporary Arxiv paper [7] which uses stacked CNNs.
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Figure 7: More qualitative results to show the performance of our algorithm. Again notice the details captured such as the

top of night-stands, the counters and even the legs of the chair are captured by our algorithm.

Input Ground Truth Coarse Network Local Network Fusion (Only Normals) Full Fusion 

Figure 8: Qualitative Ablative Analysis: The the global and local network estimation results have complementary failure

modes. By combining both normal outputs we obtain better results via fusion network. With more information feeding in,

the full fusion network reasons among them and improve the performance.

The performance on all metrics are comparable, although

we do not use any Imagenet [5] data for pretraining. At am-

biguous pixels, their approach tends to produce an averaged

and smooth output whereas our approach picks one of the

interpretations. Therefore, their mean error is lower and our

median error is lower.

Ablative Analysis: Next, we perform a comprehensive ab-

lative analysis to explore which component of the network

helps in improving performance. This ablative analysis

helps evaluate the hypothesis that designing networks based

on meaningful intermediate representations and constraints

can help improve the performance.

First, we discuss some qualitative results shown in Fig-

ure 8. As seen in the figure, the global network just cap-

tures the coarse structure of the room. For example, in the

top figure, it misses the vertical surface on the inner side of

the couch or it misses how the vertical orientations change

due to bookshelves between couches. On the other hand, a

Table 1: Results on NYU v2 for per-pixel surface normal

estimation, evaluated over valid pixels.

(Lower Better) (Higher Better)

Mean Median 11.25� 22.5� 30�

Our Network 26.9 14.8 42.0 61.2 68.2

Stacked CNN [7] 23.7 15.5 39.2 62.0 71.1

UNFOLD [10] 35.2 17.9 40.5 54.1 58.9

Discr. [22] 33.5 23.1 27.7 49.0 58.7

3DP (MW) [9] 36.3 19.2 39.2 52.9 57.8

3DP [9] 35.3 31.2 16.4 36.6 48.2

local network indeed captures those details. However, since

it only observes local patches, it completely misclassifies

the wall patches below the picture frame. Fusing the two

networks preserves the finer details (inner side of the couch

and changing vertical orientations of the wall), but still mis-
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Figure 9: Results on B3DO dataset[18]. We obtain state of the art performance by applying our model trained on the NYU

dataset without further fine-tuning on the B3DO dataset.

Table 2: Ablative Analysis

Mean Median 11.25� 22.5� 30�

Full 26.9 14.8 42.0 61.2 68.2

Full w/o Global 28.8 17.7 34.6 57.8 66.0

Fusion (+VP) 27.3 15.6 40.2 60.1 67.5

Fusion (+Edge) 27.8 16.4 37.5 59.4 67.4

Fusion (+Layout) 27.7 16.0 38.8 59.9 67.4

Fusion 27.9 16.6 37.4 59.2 67.1

Local 34.0 25.1 25.6 46.4 56.2

Global 30.9 20.8 31.4 52.3 60.5

Coarse CNN [8] 30.1 24.7 24.1 46.4 57.9

classifies a big patch on the wall near the picture frame.

However, once the network uses the edge labels (e.g., the

convex edge of the shelf and the missing edge on the wall)

to improve the boundaries.

Quantitatively, we compare all the components one by

one in Table 2. The fusion network, which combines

the raw images, surface normal predictions from the local

and global networks provides a significant boost in per-

formance. Furthermore, adding layout (+Layout), edges

(+Edge) and vanishing points (+VP) independently improve

the performance of the network. By combining all of them

together in the full fusion network, we obtain better results

in all metrics, and a 4.6% gain in the most strict metric.

We note that adding components accounts only for the

marginal gain of each component over the base system.

While it is easy to improve bad systems, it is difficult to

improve on a strong system like the fusion network: by it-

self, it would be state-of-the-art in most metrics. We there-

fore report fusing our constraints with just the local network

(Full w/o Global), which leads to a 9% gain across all PGP

metrics. This underscores the effectiveness and value of our

constraints. Finally, we note that our performance is signifi-

cantly better than our implementation of the coarse network

of Eigen et al. [8], a single feed-forward CNN.

Table 3: B3DO

Mean Median 11.25� 22.5� 30�

Full 34.5 20.1 36.7 52.4 59.2

3DP(MW) [9] 38.0 24.5 33.6 48.5 54.5

Hedau et al. [14] 43.5 30.0 32.8 45.0 50.0

Lee et al. [25] 41.9 28.4 32.7 45.7 50.8

5.2. Berkeley B3DO Dataset

To show our model can generalize well, we apply it di-

rectly on the B3DO [18] dataset. There is significant mis-

match in dataset bias between the two: NYU contains al-

most exclusively full scenes while the B3DO contains many

close-ups. Also, since B3DO contains many scenes with

down-facing views, unlike NYU, we rectify our results to

detected vanishing points to compensate. We report our re-

sults of our full fusion network in Table 3 and some some

qualitative results in Figure 9. Our method outperforms the

baselines from [9] by a substantial margin in all metrics.

6. Conclusion

We have presented a novel CNN-based approach for sur-

face normal estimation. By injecting insights into 3D repre-

sentation, our model achieves state of the art performance.

Qualitatively, our model works well and not only captures

the coarse scene structure but even captures fine details such

as table legs and curved surfaces of couches.

Acknowledgments: This work was partially supported by NSF IIS-

1320083, ONR MURI N000141010934, Bosch Young Faculty Fellowship

to AG and NDSEG fellowship to DF. This material is also based on re-

search partially sponsored by DARPA under agreement number FA8750-

14-2-0244. The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copyright nota-

tion thereon. The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily representing the offi-

cial policies or endorsements, either expressed or implied, of DARPA or

the U.S. Government. The authors thank NVIDIA for GPU donations.



References

[1] I. Biederman. Recognition-by-components: A theory of hu-

man image understanding. Psychological Review, 94:115–

147, 1987. 2

[2] M. Clowes. On seeing things. Artificial Intelligence, 2:79–

116, 1971. 1, 2

[3] J. Coughlan and A. Yuille. The Manhattan world assump-

tion: Regularities in scene statistics which enable bayesian

inference. In NIPS, 2000. 2

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 2

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 7

[6] P. Dollár and C. L. Zitnick. Structured forests for fast edge

detection. In ICCV, 2013. 4

[7] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. CoRR, abs/1411.4734, 2014. 3, 6, 7

[8] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. CoRR,

abs/1406.2283, 2014. 1, 2, 6, 8

[9] D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D

primitives for single image understanding. In ICCV, 2013.

2, 4, 6, 7, 8

[10] D. F. Fouhey, A. Gupta, and M. Hebert. Unfolding an indoor

origami world. In ECCV, 2014. 1, 2, 6, 7

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 2

[12] A. Gupta, A. Efros, and M. Hebert. Blocks world revis-

ited: Image understanding using qualitative geometry and

mechanics. In ECCV, 2010. 1, 2

[13] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization

and recognition of indoor scenes from RGB-D images. In

CVPR, 2013. 6

[14] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial

layout of cluttered rooms. In ICCV, 2009. 1, 2, 4, 5, 6, 8

[15] D. Hoiem, A. Efros, and M. Hebert. Geometric context from

a single image. In ICCV, 2005. 2

[16] D. Hoiem, A. Stein, A. Efros, and M. Hebert. Recovering

occlusion boundaries from a single image. In ICCV, 2007. 2

[17] D. Huffman. Impossible objects as nonsense sentences. Ma-

chine Intelligence, 8:475–492, 1971. 1, 2

[18] A. Janoch, S. Karayev, Y. Jia, J. Barron, M. Fritz, K. Saenko,

and T. Darrell. A category-level 3-d object dataset: Putting

the kinect to work. In Workshop on Consumer Depth Cam-

eras in Computer Vision (with ICCV), 2011. 8

[19] T. Kanade. A theory of origami world. Artificial Intelligence,

13(3), 1980. 1, 2

[20] K. Karsch, Z. Liao, J. Rock, J. T. Barron, and D. Hoiem.

Boundary cues for 3D object shape recovery. In CVPR, 2013.

2

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 2
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