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Abstract— In the last few decades we have witnessed an increase in CPU performance, which has been made possible thanks to the 

increase in the clock frequency and the increase in the number of transistors in the unit of space. In the last few years, however, we 

reached the limit for the clock and for the miniaturization of the transistor grid. Beyond this growth new problems arose such as the 

disposal of the produced heat and the minimum distance to be respected between elements for the electrical signals transfer. So the 

chip makers, to further increase the processing power of the processors, started to insert more cores on the same chip. The presence 

of several cores undoubtedly improves performance and improves consumption, but the ability to transfer data between cores and 

components remains limited by the number of pins of the cores themselves. Furthermore, it is necessary to manage the 

synchronization between cores during the access to common resources and all those multi-core architectures typical problems. This 

article provides a different approach to improve the computing capacity of the CPUs that is based on the extension of the binary 

system in a multi-value coding system or, commonly, called MVL. Although this direction has already been explored, the idea behind 

the study is in the representation of the generic function in the MVL domain. This representation has a link to the binary system and 

a surprisingly greater simplicity of the corresponding digital circuits (combinatorial and sequential). A different mathematical 

approach is thus provided for the realization of the multivalue logic gates. This could enable the use of different data encoding 

systems no longer linked to the voltage value of a signal but to other physical quantities as it happens at present, for example, in the 

world of telecommunications. 
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I. INTRODUCTION 

The chip makers have always looked to improve 

performance by trying to make increasingly powerful and 

faster CPUs by focusing on increasing the clock frequency 

and inserting a greater number of transistors in the unit of 

space. In recent decades, the number of CPU transistors 

followed the famous Moore law. Unfortunately, due to the 

level of miniaturization achieved, it was no longer possible 

to increase neighter the density of the transistors, nor the 

clock frequency (another factor that influences the 

computing power), because new problems arose, in addition 

to the ability to operate at inertial distances, linked to the 

signal transfer speed between components and also to the 

heat produced by the components overheating (see [1]). 

As the increase in the density of transistors on the surface 

had reached the limit, some have hypothesized to increase 

the number through the thickening of the die. However, 

having a greater thickness of the die can lead to a significant 

increase in costs, for this reason some studies have shown 

that the number of transistors can be increased by using a 

double layer of the die to form a crystal grid in whose nodes 

[transistors are located. This approach, duplicates the 

number of transistors and makes the die thicker [2]. 

However, the strategy adopted by the chipmakers has 

been to improve the computing power by constructing CPUs 

with multiple cores within the same chip, enabling 

processing parallelism. This approach undoubtedly improves 

performance but introduces new problems because that 

processing is distributed on the cores. These cores must be 

synchronized to access common resources or collaborate to a 

common goal. Moreover, the management of interrupts is 

more complex than a single-core. Finally, the limit of the 

transfer capacity of the cores cannot be exceeded, because it 

depends on the number of connections and the clock 

frequency. Power management also becomes a crucial factor 

when building high-performance architectures, as the articles 

[3], [4] and [5] demonstrates. 

In this article we will discuss a different approach based 

on the possibility of building a high performance computer 

architecture by making digital components that work 

intrinsically in multivalue logic (MVL). The need to build 

efficient machines that worked in MVL, with low 

consumption was considered in [6]. 
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A ternary computer hypothesis has been historically 

treated in [7] where the author observed that if the circuit 

complexity depended roughly on the product of the base size 

used (R) multiplied by the number of digits of the maximum 

representable number (N), the economically best basis was 

e=2,718. The article pointed out that if it were possible to 

build components that when increasing the representation 

base (R) size complexity and cost don’t grow, the best 

choice would be to adopt the largest possible base. 

The idea of designing circuits that work in MVL has 

recently been treated from the canonical point of view, using 

post-order algebras of degree greater than or equal to two, 

also in [8]. Some studies showed that the methods used in 

the Boolean algebra, such as the Quine Mc-Cluskey method 

shown in [9], are applicable. However, the idea that inspired 

this work is the scalability of the solution with respect to the 

chosen base, the simple realization of the circuits and the 

maintenance of a close relationship with the binary system. 

The ability to build any circuit in MVL will allow to build 

processors, memories and I/O devices able to operate, with 

the same number of connections, at a greater throughput 

compared to the binary case. The ternary logic was the first 

studied extension of the binary algebra ([10] and [11]), but 

also inspired the realization of processors working on the 

base 3 [12]. Also the quaternary logic, being power of two, 

inspired many research works ([13] and [14]). In the 

literature we also find valuable contributions on MVL as [15] 

and [16], also from the point of view of the verification of 

hardware circuits [17]. 

However, with the present work we will demonstrate how 

it is possible to define a reduced set of mathematical 

operators that are able to perform any function in the chosen 

domain independently from the base, similar to what 

happens for universal operators (NAND and NOR) in the 

case of Boolean algebra. The proposed idea is based on the 

use of one-digit arithmetic operations (multiplication and 

sum) together with the functions reported in the binary 

domain (the selectors). Multivalue operators will be 

described in Session II from the external point of view, as if 

they were black boxes, without considering the internal 

functionality or the modes of transferring the signals.  

Research and technological innovation will provide, in the 

near future, the best answers for the realization of these 

components. Session III is organized in two parts: the first 

concerns the process of creating an example of 

combinational circuit (half-adder); the second one is the 

construction of a memory element for MVL information. 

Section IV gives the conclusion and oulines the future 

research. 

II. MATERIAL AND METHOD 

Without losing generality we can consider the algebra in 

base 3 and then we can extend the operators to any domain 

with n-values. Although we have extended the discrete 

domain by a single value, for example a word of only 10 

digits passes from 1024 combinations in the binary number 

system to about 59k in the ternary one. 

A. Ternary algebra 

Consider a T domain consisting of the three values 

{0,1,2}. On this domain we can define unary functions F(I0): 

T→T, with I0∈T; binary functions F (I1, I0): T×T→T, with 

I0∈T, I1∈T; and, generically, functions with p operands 

F(Ip-1, Ip-2,...,I1, I0): T×...×T→T, with I0∈T,..., Ip-1∈T. 

So we can imagine a function like a black box that 

receives input values I0, I1,..., Ip-2, Ip-1 and returns an output U 

that represents the value assumed by the function at the 

inputs (combinatorial circuit). 

 

 

 

 

 

 

 
Fig. 1  Example of function as a black box 

 

With p inputs we have x=3
p
 combinations of the inputs 

that originate 3
x
 different functions. In a generic algebra with 

n values we will have x=n
p
 e n

x
 different functions. 

1) Unary functions: in the context of the n
n
 possible unary 

functions (27 in the ternary case) we consider n functions, 

which reduce the n-ario domain into the binary one. In 

particular we will call them selection functions, or selectors, 

and we will indicate them with the letter S. 

In an algebra with n values there are n selectors each one 

for any symbol of the domain. If c ∈  T the selection 

function Sc(I) answers the value 1 when in input (I) the value 

c is present and zero in the other cases. 

In the ternary case the functions S0, S1 and S2 are: 

TABLE I 

SELECTOR FUNCTIONS (N=3) 

I S1(I) S1(I) S2(I) 

0 1 0 0 

1 0 1 0 

2 0 0 1 

 

2) Binary functions: the functions with two values in the 

ternary domain are 3
9
 (19.683) and can be described by a 

quintuple of functions: the three selectors plus two functions 

(op1 e op2). Entering in the value table the input selectors (S0 , 

S1 and S2) and the main arithmetic functions: product, sum, 

minimum and maximum: 
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0 0 0 1 0 0 1 0 0 0 0 0 0 

1 0 1 1 0 0 0 1 0 0 1 0 1 

2 0 2 1 0 0 0 0 1 0 2 0 2 

3 1 0 0 1 0 1 0 0 0 1 1 1 

4 1 1 0 1 0 0 1 0 1 2 1 1 

5 1 2 0 1 0 0 0 1 2 0 1 2 

6 2 0 0 0 1 1 0 0 0 2 0 2 

7 2 1 0 0 1 0 1 0 2 0 1 2 

8 2 2 0 0 1 0 0 1 1 1 2 2 
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Any function F with two values in the ternary domain can 

be written as a linear combination of the selectors of the 

input variables in the following way: 

F = [ k0  op1 S0(I1) op1 S0(I0) ]   
 op2  

  [ k1 op1 S0(I1) op1 S1(I0) ] 

  op2 ...op2  

  [ km op1 S2(I1) op1 S2(I0) ]  

(1) 

 

We want to create a normal form that, similarly to the 

case of the min-term or max-term of Boolean algebra, 

considers groups of selectors of the input variables, 

modulated by the constant corresponding to the row, joined 

by an aggregation fuction . 

The properties required for the two operators op1 e op2 are: 

X op1 0 = 0  (2) 

X op1 1 = X  (3) 

X op2 0 = X  (4) 

Although there are various functions that satisfy the 

properties (2) and (3), restricting the field of interest to the 

four arithmetic operations above, a possible candidate for 

op1 that satisfies the properties (2) and (3) is the 

multiplication operation. 

TABLE III 

CANDIDATE FUNCTIONS FOR OP1 

I1 I0 max(I1,I0) I1+I0 min(I1,I0) I1 I0 op1 

0 0 0 0 0 0 0 

0 1 1 1 0 0 0 

0 2 2 2 0 0 0 

1 0 1 1 1 0 0 

1 1 1 2 1 1 1 

1 2 2 0 1 2 2 

2 0 2 2 0 0 0 

2 1 2 0 1 2 2 

2 2 2 1 2 1 X 

 

With regard to the second op2 operator, similarly to what 

was done for op1, various functions with the propriety (4) 

can be used; in our subset of interest: the arithmetic sum and 

the maximum. 

TABLE IV 

CANDIDATE FUNCTIONS FOR OP2 

I1 I0 max(I1,I0) I1+I0 min(I1,I0) I1 I0 op2 

0 0 0 0 0 0 0 

0 1 1 1 0 0 1 

0 2 2 2 0 0 2 

1 0 1 1 1 0 1 

1 1 1 2 1 1 X 

1 2 2 0 1 2 X 

2 0 2 2 0 0 2 

2 1 2 0 1 2 X 

2 2 2 1 2 1 X 

 

Summarizing, in the ternary number system we can 

represent any two-input function (F) using its description of 

the truth table. The method is similar to the binary case: we 

have to consider all possible combination of the input 

variables and for each of them consider the corrisponding 

value of the function. 

TABLE V 

TRUTH TABLE OF A GENERIC FUNCTION F  

i I1 I0 F 

0 0 0 k0 

1 0 1 k1 

2 0 2 k2 

3 1 0 k3 

4 1 1 k4 

5 1 2 k5 

6 2 0 k6 

7 2 1 k7 

8 2 2 k8 

 

we can write that F is calculated as the union of the nine 

exclusive and not overlaped cases: 

 

F =  k0S0(I1)S0(I0)+ k1S0(I1)S1(I0) + ... 

     + k8S2(I1)S2(I0) 

(5) 

 

that is: 

  

(6) 

where: 

• ki is the value assumed in the row corresponding to 

the number i, with ki∈{0,1,2}; 

• cj(i) is the j-th digit of the number i, represented in 

base n = 3, with j∈{0,1}: 

 

(7) 

TABLE VI 

VALUES OF COEFFICENTS C0 AND C1 

i c0(i) c1(i) 

0 0 0 

1 0 1 

2 0 2 

3 1 0 

4 1 1 

5 1 2 

6 2 0 

7 2 1 

8 2 2 
 

•  is the selector of the cj(i) value applied to 

the operand   with j∈{0,1}. 

The proof of the validity of the formula is simple: only 

one group of selectors can obtain the value 1 at a time, as 

only one configuration of the inputs is possible, being 

discrete. The other groups will get value 0. 

The group of selectors corresponding to the input 

configuration will be multiplied by the related value ki 

(property (1)) which, added to the others with null value 

groups (property (2)), will be returned as output (property 

(3)). 

B. N-ary algebra 

The interesting thing is that we can go further by 

generalizing the representation base (n) and describing with 
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the same method any function (F) with a predefined number 

of operands (p) within the set of n
x
 possibile functions, with 

x=n
p
. Also in this case we can write the table of values: 

 

TABLE VII 

TRUTH TABLE OF A GENERIC FUNCTION F IN GENERAL DOMINION 

in Ip-1 Ip-2 ... I1 I0 F 

0 0 0 0 0 0 k0 

1 0 0 0 0 1 k1 

2 0 0 0 0 2 k2 

. . . . . . . 

. . . . . . . 

n-1 0 0 0 0 n-1 kn-1 

n 0 0 0 1 0 kn 

n+1 0 0 0 1 1 kn+1 

. . . . . . . 

. . . . . . . 

np-1 n-1 n-1 n-1 n-1 n-1 kn
p

-1 

In a similar way to what has already been seen in the case 

n = 3, it is possible to represent F according to the inputs I0, 

I1, ...,Ip-1: 

 

(8) 

where: 

• ki is the value assumed in the line corresponding to 

the number i, with ki∈{0,1,...,n-1}; 

• cj(i) is the j-th digit of the number i, represented in 

the base n with j∈ {0,1, ..., p-1}; 

•  is the  value selector applied to the  

operand with j∈{0,1,...,p-1}. 

III. RESULT AND DISCUSSION 

A. The realization process of a combinational circuit in 

MVL 

In this section we will show the algorithm to design the 

multivalue circuit corresponding to a generic function in the 

multi-value domain. The proposed algorithm is based on 

four sequential steps: 

1) building the truth table that describes exhaustively the 

function to be implemented through all the possible 

combinations of the inputs (n
p
, logic with n values and 

function with p operands), 

2) for each non-zero element of the column that describes 

the function in the truth table, multiply the value for the row 

selector group, 

3) the function is given by the sum of the groups of terms 

identified in point 2). 

To simplifity the use of the algorithm, and in analogy with 

[8] in order to grasp the differences between different 

representation systems, we will implement the two-digit 

half-hadder circuit (I1 and I2) in base 4. 

Initially we can consider the circuit as a black box in 

which we have 2 inputs and 2 outputs: 

 

 

 

 

 
Fig. 2  Half-adder analyzed as a black box 

The behavior of the circuit is described exhaustively by the 

truth table, in this case with p = 2 inputs we will have 4
2
 = 

16 combinations (ie the numbers from 0 to 15, column i): 

TABLE VIII 

HALF-ADDER TRUTH TABLE 

i I1 I0 f1 f0 

0 0 0 0 0 

1 0 1 0 1 

2 0 2 0 2 

3 0 3 0 3 

4 1 0 0 1 

5 1 1 0 2 

6 1 2 0 3 

7 1 3 1 0 

8 2 0 0 2 

9 2 1 0 3 

10 2 2 1 0 

11 2 3 1 1 

12 3 0 0 3 

13 3 1 1 0 

14 3 2 1 1 

15 3 3 1 2 

According to the illustrated methodology, the output 

functions are: 

 

f1 =  1S1(I1)S3(I0)+ 1S2(I1)S2(I0) + 1S2(I1)S3(I0) + 

 1S3(I1)S1(I0) + 1S3(I1)S2(I0) + 1S3(I1)S3(I0) = 

    = S1(I1)S3(I0)+ S2(I1)S2(I0) + S2(I1)S3(I0) + 

 S3(I1)S1(I0) + S3(I1)S2(I0) + S3(I1)S3(I0) 

(9) 

 

f0 = 1S0(I1)S1(I0)+ 2S0(I1)S2(I0) + 3S0(I1)S3(I0) + 

 1S1(I1)S0(I0) +2S1(I1)S1(I0) +3S1(I1)S2(I0) + 

 2S2(I1)S0(I0) +3S2(I1)S1(I0) +1S2(I1)S3(I0) + 

 3S3(I1)S0(I0) +1S3(I1)S2(I0) +2S3(I1)S3(I0)  

(10) 

 

Transforming these expressions into the corrisponding 

digital circuits is a simple process, as happens in the binary 

case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3  MVL circuit that implements the function f1 
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Fig. 4  MVL circuit that implements the function f0 

 
The corresponding to f0 circuit will be implemented using 

the set of base functions explained but in this specific case, 

remembering the semantic of our operators, we can also 

calculate f0 as: 

B. Basic element for an MVL memory 

In this section, we present our design of a D flip-flop 

which is based on an extension of binary D flip-flop. In a D 

flip-flop the next state Q(t+1) is characterized by a function 

of both the current state Q(t) and the D data input. The next 

state Q(t+1) could be defined by: 

 

 (12) 

or 

 (13) 

these two equations can be transformed in a fuzzy domain by 

replacing the binary operators by fuzzy operators as shown 

in [20][6]. Using min-max type operation and fuzzy negation 

we can write the following transformation: 

 (14) 

 (15) 

The symbol  represents min operation and represents 

max operation. Because these equations do not transform D 

flip-flop to the fuzzy domain, the authors proposed a 

different equation. The proposed circuit, however, is not 

simple to realize, therefore starting from the assumption that 

normally to construct memory elements, a clock is used that 

allows to restrict the sampling interval of the input D. In this 

case the transfer function can be written through the 

operators we have defined in Session II: 

 (16) 

It can be understood easily that working with the flip-flop 

shown in Fig. 3, the value of the input D is posted to the 

output Q(t) when the CLK values is 1, otherwise (CLK=0) 

the circuit store the previous value: Q(t+1)=Q(t). 

The corresponding digital circuit will then be: 

 
Fig. 5  D-Type Flip-Flop with clock signal (CLK) 

 

Excitation table for this circuit is shown in Table IX. 

TABLE IX 

SIMULATION OF THE HALF-ADDER CIRCUIT 

t CLK D Q(t) Q(t+1) 

0 0 0 0 0 

1 1 0 0 0 

2 0 0 0 0 

3 1 0 0 0 

0 0 0 1 1 

1 1 0 1 0 

2 0 0 0 0 

3 1 0 0 0 

0 0 0 2 2 

1 1 0 2 0 

2 0 0 0 0 

3 1 0 0 0 

0 0 0 3 3 

1 1 0 3 0 

2 0 0 0 0 

3 1 0 0 0 

0 0 1 0 0 

1 1 1 0 1 

2 0 1 1 1 

3 1 1 1 1 

0 0 1 1 1 

1 1 1 1 1 

2 0 1 1 1 

3 1 1 1 1 

0 0 1 2 2 

1 1 1 2 1 

2 0 1 1 1 

3 1 1 1 1 

0 0 1 3 3 

1 1 1 3 1 

2 0 1 1 1 

3 1 1 1 1 

0 0 2 0 0 

1 1 2 0 2 
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2 0 2 2 2 

3 1 2 2 2 

0 0 2 1 1 

1 1 2 1 2 

2 0 2 2 2 

3 1 2 2 2 

0 0 2 2 2 

1 1 2 2 2 

2 0 2 2 2 

3 1 2 2 2 

0 0 2 3 3 

1 1 2 3 2 

2 0 2 2 2 

3 1 2 2 2 

0 0 3 0 0 

1 1 3 0 3 

2 0 3 3 3 

3 1 3 3 3 

0 0 3 1 1 

1 1 3 1 3 

2 0 3 3 3 

3 1 3 3 3 

0 0 3 2 2 

1 1 3 2 3 

2 0 3 3 3 

3 1 3 3 3 

0 0 3 3 3 

1 1 3 3 3 

2 0 3 3 3 

3 1 3 3 3 

 

To simulate the behavior of this flip-flop, we investigate 

our design using a simple java program. The table 1 has been 

calculated importing the CSV output file generated by the 

class JMAT into a spreadsheet application like MS Excel or 

OO Calc. 

TABLE X 

JAVA EXAMPLE CODE  FOR SIMULATE D-TYPE FLIP-FLOP CLOCKED 

package jmat; 

import java.io.IOException; 

import java.io.PrintWriter; 

public class JMAT { 

    final static int N = 4; // The domain dimension 

    public static void main(String[] args) throws IOException { 

        int saveQt; // used to save the state Q(t) 

        int CLK=0; // the square wave of the clock 

        PrintWriter writer = new PrintWriter("logging.csv", "UTF-8"); 

        //heading of CSV file 

        writer.println("t,CLK,D ,Q(t),Q(t+1)");  

        for (int D = 0; D < N; D++) { 

            for (int Qt = 0; Qt < N; Qt++) { 

 // save actual state Q(t)  

                saveQt = Qt; 

                for (int t = 0; t < N; t++) {// t stands for time 

                    CLK= t % 2; //the clock 

                    // writing the row inside the CSV file 

                    writer.println("" + t + "," + CLK + "," +D + "," +  

                                           Qt + "," + FlipFlopD (CLK, D, Qt)); 

                    Qt = FlipFlopD (CLK , D, Qt); //the next state for Q(t) 

                } 

                // resume original Q(t) 

                Qt = saveQt; 

            } 

        } 

        // Close writer 

        writer.close(); 

    } 

    public static int FlipFlopD (int CLK, int D, int Qt) { 

        // this function realize the flip-flop’s behaviour 

        int x1 = MULTgate(SELgate(1, CLK), D); 

        int x2 = MULTgate(SELgate(0, CLK), Qt); 

        Qt = SUMgate(x1, x2); 

        return Qt; 

    } 

    public static int SELgate(int S, int x) { 

        return (x == S ? 1 : 0); 

    } 

    public static int MULTgate(int x, int y) { 

        return (x * y) % N; 

    } 

    public static int SUMgate(int x, int y) { 

        return (x + y) % N; 

    } 

} 

 

As you can see, we have realized a simple method 

(SELgate()) that implements the 3 selectors and other 2 

methods (SUMgate() and MULTgate()) that implement the 

binary functions SUM and MULT. 

To simulate the operation of the sequential circuit we use 

grafted loops that allow you to vary D, Qt and the clock 

(CLK) in the set of possible values. We are interested in 

seeing the operation of the circuit both in the ability to keep 

the information stored when CLK=0, and to transfer D in the 

internal memory (Qt) if CLK=1. 

IV. CONCLUSION 

This article provides a different evolutionary line to 

improve the computing capacity of the CPUs that is based on 

the extension of the binary system in a multi-value coding 

system or, commonly, called MVL.  

Although this direction has already been explored, the 

idea behind the study is in the representation of the generic 

function in the MVL domain. This representation has a link 

to the binary system and a surprisingly greater simplicity of 

the corresponding digital circuits (combinatorial and 

sequential). A different mathematical approach is thus 

provided for the realization of the multivalue logic gates. 

This could enable the use of different data encoding systems 

no longer linked to the voltage value of a signal (as seen in 

[18]) but to other physical quantities as it happens at present, 

for example, in the world of telecommunications. 

The other important aspect is the scalability of the 

solution: this study illustrates a methodology that is 

independent of the basis of the adopted domain and could 

even be extended to fuzzy logic [8]. 
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The proposed solution is not opposed to multi-core 

architectures, since it describes how the internal operating 

logic of a future CPU could be and therefore nothing 

prevents the creation of multi-core architectures with MVL. 
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