

Vol.8 (2018) No. 4

ISSN: 2088-5334

Designing Digital Circuits in Multi-Valued Logic

Alessandro Simonetta
#
, Maria Cristina Paoletti

Department of Enterprise Engineering, University of Rome “Tor Vergata”, Via del Politecnico, 1, Rome, 00133, Italy

 E-mail: alessandro.simonetta@gmail.com

Abstract— In the last few decades we have witnessed an increase in CPU performance, which has been made possible thanks to the

increase in the clock frequency and the increase in the number of transistors in the unit of space. In the last few years, however, we

reached the limit for the clock and for the miniaturization of the transistor grid. Beyond this growth new problems arose such as the

disposal of the produced heat and the minimum distance to be respected between elements for the electrical signals transfer. So the

chip makers, to further increase the processing power of the processors, started to insert more cores on the same chip. The presence

of several cores undoubtedly improves performance and improves consumption, but the ability to transfer data between cores and

components remains limited by the number of pins of the cores themselves. Furthermore, it is necessary to manage the

synchronization between cores during the access to common resources and all those multi-core architectures typical problems. This

article provides a different approach to improve the computing capacity of the CPUs that is based on the extension of the binary

system in a multi-value coding system or, commonly, called MVL. Although this direction has already been explored, the idea behind

the study is in the representation of the generic function in the MVL domain. This representation has a link to the binary system and

a surprisingly greater simplicity of the corresponding digital circuits (combinatorial and sequential). A different mathematical

approach is thus provided for the realization of the multivalue logic gates. This could enable the use of different data encoding

systems no longer linked to the voltage value of a signal but to other physical quantities as it happens at present, for example, in the

world of telecommunications.

Keywords— multi-valued logic; circuit design; computer architecture; fuzzy system.

I. INTRODUCTION

The chip makers have always looked to improve

performance by trying to make increasingly powerful and

faster CPUs by focusing on increasing the clock frequency

and inserting a greater number of transistors in the unit of

space. In recent decades, the number of CPU transistors

followed the famous Moore law. Unfortunately, due to the

level of miniaturization achieved, it was no longer possible

to increase neighter the density of the transistors, nor the

clock frequency (another factor that influences the

computing power), because new problems arose, in addition

to the ability to operate at inertial distances, linked to the

signal transfer speed between components and also to the

heat produced by the components overheating (see [1]).

As the increase in the density of transistors on the surface

had reached the limit, some have hypothesized to increase

the number through the thickening of the die. However,

having a greater thickness of the die can lead to a significant

increase in costs, for this reason some studies have shown

that the number of transistors can be increased by using a

double layer of the die to form a crystal grid in whose nodes

[transistors are located. This approach, duplicates the

number of transistors and makes the die thicker [2].

However, the strategy adopted by the chipmakers has

been to improve the computing power by constructing CPUs

with multiple cores within the same chip, enabling

processing parallelism. This approach undoubtedly improves

performance but introduces new problems because that

processing is distributed on the cores. These cores must be

synchronized to access common resources or collaborate to a

common goal. Moreover, the management of interrupts is

more complex than a single-core. Finally, the limit of the

transfer capacity of the cores cannot be exceeded, because it

depends on the number of connections and the clock

frequency. Power management also becomes a crucial factor

when building high-performance architectures, as the articles

[3], [4] and [5] demonstrates.

In this article we will discuss a different approach based

on the possibility of building a high performance computer

architecture by making digital components that work

intrinsically in multivalue logic (MVL). The need to build

efficient machines that worked in MVL, with low

consumption was considered in [6].

1166

A ternary computer hypothesis has been historically

treated in [7] where the author observed that if the circuit

complexity depended roughly on the product of the base size

used (R) multiplied by the number of digits of the maximum

representable number (N), the economically best basis was

e=2,718. The article pointed out that if it were possible to

build components that when increasing the representation

base (R) size complexity and cost don’t grow, the best

choice would be to adopt the largest possible base.

The idea of designing circuits that work in MVL has

recently been treated from the canonical point of view, using

post-order algebras of degree greater than or equal to two,

also in [8]. Some studies showed that the methods used in

the Boolean algebra, such as the Quine Mc-Cluskey method

shown in [9], are applicable. However, the idea that inspired

this work is the scalability of the solution with respect to the

chosen base, the simple realization of the circuits and the

maintenance of a close relationship with the binary system.

The ability to build any circuit in MVL will allow to build

processors, memories and I/O devices able to operate, with

the same number of connections, at a greater throughput

compared to the binary case. The ternary logic was the first

studied extension of the binary algebra ([10] and [11]), but

also inspired the realization of processors working on the

base 3 [12]. Also the quaternary logic, being power of two,

inspired many research works ([13] and [14]). In the

literature we also find valuable contributions on MVL as [15]

and [16], also from the point of view of the verification of

hardware circuits [17].

However, with the present work we will demonstrate how

it is possible to define a reduced set of mathematical

operators that are able to perform any function in the chosen

domain independently from the base, similar to what

happens for universal operators (NAND and NOR) in the

case of Boolean algebra. The proposed idea is based on the

use of one-digit arithmetic operations (multiplication and

sum) together with the functions reported in the binary

domain (the selectors). Multivalue operators will be

described in Session II from the external point of view, as if

they were black boxes, without considering the internal

functionality or the modes of transferring the signals.

Research and technological innovation will provide, in the

near future, the best answers for the realization of these

components. Session III is organized in two parts: the first

concerns the process of creating an example of

combinational circuit (half-adder); the second one is the

construction of a memory element for MVL information.

Section IV gives the conclusion and oulines the future

research.

II. MATERIAL AND METHOD

Without losing generality we can consider the algebra in

base 3 and then we can extend the operators to any domain

with n-values. Although we have extended the discrete

domain by a single value, for example a word of only 10

digits passes from 1024 combinations in the binary number

system to about 59k in the ternary one.

A. Ternary algebra

Consider a T domain consisting of the three values

{0,1,2}. On this domain we can define unary functions F(I0):

T→T, with I0∈T; binary functions F (I1, I0): T×T→T, with

I0∈T, I1∈T; and, generically, functions with p operands

F(Ip-1, Ip-2,...,I1, I0): T×...×T→T, with I0∈T,..., Ip-1∈T.

So we can imagine a function like a black box that

receives input values I0, I1,..., Ip-2, Ip-1 and returns an output U

that represents the value assumed by the function at the

inputs (combinatorial circuit).

Fig. 1 Example of function as a black box

With p inputs we have x=3
p
 combinations of the inputs

that originate 3
x
 different functions. In a generic algebra with

n values we will have x=n
p
 e n

x
 different functions.

1) Unary functions: in the context of the n
n
 possible unary

functions (27 in the ternary case) we consider n functions,

which reduce the n-ario domain into the binary one. In

particular we will call them selection functions, or selectors,

and we will indicate them with the letter S.

In an algebra with n values there are n selectors each one

for any symbol of the domain. If c ∈ T the selection

function Sc(I) answers the value 1 when in input (I) the value

c is present and zero in the other cases.

In the ternary case the functions S0, S1 and S2 are:

TABLE I

SELECTOR FUNCTIONS (N=3)

I S1(I) S1(I) S2(I)

0 1 0 0

1 0 1 0

2 0 0 1

2) Binary functions: the functions with two values in the

ternary domain are 3
9
 (19.683) and can be described by a

quintuple of functions: the three selectors plus two functions

(op1 e op2). Entering in the value table the input selectors (S0 ,

S1 and S2) and the main arithmetic functions: product, sum,

minimum and maximum:

TABLE II

SOME BINARY FUNCTIONS (N=3)

i I1 I0

S
0
(I

1
)

S
1
(I

1
)

S
2
(I

1
)

S
0
(I

0
)

S
1
(I

0
)

S
2
(I

0
)

I 1
 I

0

I 1
+

I 0

m
in

 (
I 1

,I
0
)

m
a
x

 (
I 1

,
I 0

)

0 0 0 1 0 0 1 0 0 0 0 0 0

1 0 1 1 0 0 0 1 0 0 1 0 1

2 0 2 1 0 0 0 0 1 0 2 0 2

3 1 0 0 1 0 1 0 0 0 1 1 1

4 1 1 0 1 0 0 1 0 1 2 1 1

5 1 2 0 1 0 0 0 1 2 0 1 2

6 2 0 0 0 1 1 0 0 0 2 0 2

7 2 1 0 0 1 0 1 0 2 0 1 2

8 2 2 0 0 1 0 0 1 1 1 2 2

I
0

I
1

F U = F (I
0
, I

1
,…,I

p-1
)

I
p-1

1167

Any function F with two values in the ternary domain can

be written as a linear combination of the selectors of the

input variables in the following way:

F = [k0 op1 S0(I1) op1 S0(I0)]
 op2

 [k1 op1 S0(I1) op1 S1(I0)]

 op2 ...op2

 [km op1 S2(I1) op1 S2(I0)]

(1)

We want to create a normal form that, similarly to the

case of the min-term or max-term of Boolean algebra,

considers groups of selectors of the input variables,

modulated by the constant corresponding to the row, joined

by an aggregation fuction .

The properties required for the two operators op1 e op2 are:

X op1 0 = 0 (2)

X op1 1 = X (3)

X op2 0 = X (4)

Although there are various functions that satisfy the

properties (2) and (3), restricting the field of interest to the

four arithmetic operations above, a possible candidate for

op1 that satisfies the properties (2) and (3) is the

multiplication operation.

TABLE III

CANDIDATE FUNCTIONS FOR OP1

I1 I0 max(I1,I0) I1+I0 min(I1,I0) I1 I0 op1

0 0 0 0 0 0 0

0 1 1 1 0 0 0

0 2 2 2 0 0 0

1 0 1 1 1 0 0

1 1 1 2 1 1 1

1 2 2 0 1 2 2

2 0 2 2 0 0 0

2 1 2 0 1 2 2

2 2 2 1 2 1 X

With regard to the second op2 operator, similarly to what

was done for op1, various functions with the propriety (4)

can be used; in our subset of interest: the arithmetic sum and

the maximum.

TABLE IV

CANDIDATE FUNCTIONS FOR OP2

I1 I0 max(I1,I0) I1+I0 min(I1,I0) I1 I0 op2

0 0 0 0 0 0 0

0 1 1 1 0 0 1

0 2 2 2 0 0 2

1 0 1 1 1 0 1

1 1 1 2 1 1 X

1 2 2 0 1 2 X

2 0 2 2 0 0 2

2 1 2 0 1 2 X

2 2 2 1 2 1 X

Summarizing, in the ternary number system we can

represent any two-input function (F) using its description of

the truth table. The method is similar to the binary case: we

have to consider all possible combination of the input

variables and for each of them consider the corrisponding

value of the function.

TABLE V

TRUTH TABLE OF A GENERIC FUNCTION F

i I1 I0 F

0 0 0 k0

1 0 1 k1

2 0 2 k2

3 1 0 k3

4 1 1 k4

5 1 2 k5

6 2 0 k6

7 2 1 k7

8 2 2 k8

we can write that F is calculated as the union of the nine

exclusive and not overlaped cases:

F = k0S0(I1)S0(I0)+ k1S0(I1)S1(I0) + ...

 + k8S2(I1)S2(I0)

(5)

that is:

(6)

where:

• ki is the value assumed in the row corresponding to

the number i, with ki∈{0,1,2};

• cj(i) is the j-th digit of the number i, represented in

base n = 3, with j∈{0,1}:

(7)

TABLE VI

VALUES OF COEFFICENTS C0 AND C1

i c0(i) c1(i)

0 0 0

1 0 1

2 0 2

3 1 0

4 1 1

5 1 2

6 2 0

7 2 1

8 2 2

• is the selector of the cj(i) value applied to

the operand with j∈{0,1}.

The proof of the validity of the formula is simple: only

one group of selectors can obtain the value 1 at a time, as

only one configuration of the inputs is possible, being

discrete. The other groups will get value 0.

The group of selectors corresponding to the input

configuration will be multiplied by the related value ki

(property (1)) which, added to the others with null value

groups (property (2)), will be returned as output (property

(3)).

B. N-ary algebra

The interesting thing is that we can go further by

generalizing the representation base (n) and describing with

1168

the same method any function (F) with a predefined number

of operands (p) within the set of n
x
 possibile functions, with

x=n
p
. Also in this case we can write the table of values:

TABLE VII

TRUTH TABLE OF A GENERIC FUNCTION F IN GENERAL DOMINION

in Ip-1 Ip-2 ... I1 I0 F

0 0 0 0 0 0 k0

1 0 0 0 0 1 k1

2 0 0 0 0 2 k2

.

.

n-1 0 0 0 0 n-1 kn-1

n 0 0 0 1 0 kn

n+1 0 0 0 1 1 kn+1

.

.

np-1 n-1 n-1 n-1 n-1 n-1 kn
p

-1

In a similar way to what has already been seen in the case

n = 3, it is possible to represent F according to the inputs I0,

I1, ...,Ip-1:

(8)

where:

• ki is the value assumed in the line corresponding to

the number i, with ki∈{0,1,...,n-1};

• cj(i) is the j-th digit of the number i, represented in

the base n with j∈ {0,1, ..., p-1};

• is the value selector applied to the

operand with j∈{0,1,...,p-1}.

III. RESULT AND DISCUSSION

A. The realization process of a combinational circuit in

MVL

In this section we will show the algorithm to design the

multivalue circuit corresponding to a generic function in the

multi-value domain. The proposed algorithm is based on

four sequential steps:

1) building the truth table that describes exhaustively the

function to be implemented through all the possible

combinations of the inputs (n
p
, logic with n values and

function with p operands),

2) for each non-zero element of the column that describes

the function in the truth table, multiply the value for the row

selector group,

3) the function is given by the sum of the groups of terms

identified in point 2).

To simplifity the use of the algorithm, and in analogy with

[8] in order to grasp the differences between different

representation systems, we will implement the two-digit

half-hadder circuit (I1 and I2) in base 4.

Initially we can consider the circuit as a black box in

which we have 2 inputs and 2 outputs:

Fig. 2 Half-adder analyzed as a black box

The behavior of the circuit is described exhaustively by the

truth table, in this case with p = 2 inputs we will have 4
2
 =

16 combinations (ie the numbers from 0 to 15, column i):

TABLE VIII

HALF-ADDER TRUTH TABLE

i I1 I0 f1 f0

0 0 0 0 0

1 0 1 0 1

2 0 2 0 2

3 0 3 0 3

4 1 0 0 1

5 1 1 0 2

6 1 2 0 3

7 1 3 1 0

8 2 0 0 2

9 2 1 0 3

10 2 2 1 0

11 2 3 1 1

12 3 0 0 3

13 3 1 1 0

14 3 2 1 1

15 3 3 1 2

According to the illustrated methodology, the output

functions are:

f1 = 1S1(I1)S3(I0)+ 1S2(I1)S2(I0) + 1S2(I1)S3(I0) +

 1S3(I1)S1(I0) + 1S3(I1)S2(I0) + 1S3(I1)S3(I0) =

 = S1(I1)S3(I0)+ S2(I1)S2(I0) + S2(I1)S3(I0) +

 S3(I1)S1(I0) + S3(I1)S2(I0) + S3(I1)S3(I0)

(9)

f0 = 1S0(I1)S1(I0)+ 2S0(I1)S2(I0) + 3S0(I1)S3(I0) +

 1S1(I1)S0(I0) +2S1(I1)S1(I0) +3S1(I1)S2(I0) +

 2S2(I1)S0(I0) +3S2(I1)S1(I0) +1S2(I1)S3(I0) +

 3S3(I1)S0(I0) +1S3(I1)S2(I0) +2S3(I1)S3(I0)

(10)

Transforming these expressions into the corrisponding

digital circuits is a simple process, as happens in the binary

case.

Fig. 3 MVL circuit that implements the function f1

I

0

I
1

HALF
ADDER

f
0

f
1

I
0
 I

1

+ f
1

2 1 1 3 3

S
1
(I

1
)S

3
(I

0
)

S
2
(I

1
)S

2
(I

0
)

S
2
(I

1
)S

3
(I

0
)

S
3
(I

1
)S

2
(I

0
)

S
3
(I

1
)S

3
(I

0
)

2

1169

Fig. 4 MVL circuit that implements the function f0

The corresponding to f0 circuit will be implemented using

the set of base functions explained but in this specific case,

remembering the semantic of our operators, we can also

calculate f0 as:

B. Basic element for an MVL memory

In this section, we present our design of a D flip-flop

which is based on an extension of binary D flip-flop. In a D

flip-flop the next state Q(t+1) is characterized by a function

of both the current state Q(t) and the D data input. The next

state Q(t+1) could be defined by:

 (12)

or

 (13)

these two equations can be transformed in a fuzzy domain by

replacing the binary operators by fuzzy operators as shown

in [20][6]. Using min-max type operation and fuzzy negation

we can write the following transformation:

 (14)

 (15)

The symbol represents min operation and represents

max operation. Because these equations do not transform D

flip-flop to the fuzzy domain, the authors proposed a

different equation. The proposed circuit, however, is not

simple to realize, therefore starting from the assumption that

normally to construct memory elements, a clock is used that

allows to restrict the sampling interval of the input D. In this

case the transfer function can be written through the

operators we have defined in Session II:

 (16)

It can be understood easily that working with the flip-flop

shown in Fig. 3, the value of the input D is posted to the

output Q(t) when the CLK values is 1, otherwise (CLK=0)

the circuit store the previous value: Q(t+1)=Q(t).

The corresponding digital circuit will then be:

Fig. 5 D-Type Flip-Flop with clock signal (CLK)

Excitation table for this circuit is shown in Table IX.

TABLE IX

SIMULATION OF THE HALF-ADDER CIRCUIT

t CLK D Q(t) Q(t+1)

0 0 0 0 0

1 1 0 0 0

2 0 0 0 0

3 1 0 0 0

0 0 0 1 1

1 1 0 1 0

2 0 0 0 0

3 1 0 0 0

0 0 0 2 2

1 1 0 2 0

2 0 0 0 0

3 1 0 0 0

0 0 0 3 3

1 1 0 3 0

2 0 0 0 0

3 1 0 0 0

0 0 1 0 0

1 1 1 0 1

2 0 1 1 1

3 1 1 1 1

0 0 1 1 1

1 1 1 1 1

2 0 1 1 1

3 1 1 1 1

0 0 1 2 2

1 1 1 2 1

2 0 1 1 1

3 1 1 1 1

0 0 1 3 3

1 1 1 3 1

2 0 1 1 1

3 1 1 1 1

0 0 2 0 0

1 1 2 0 2

f0 = I1+I0 (11)

I
1
 I

0
 2 3

2S
0
(I

1
)S

2
(I

0
)

3S
0
(I

1
)S

3
(I

0
)

S
1
(I

1
)S

0
(I

0
)

S
0
(I

1
)S

1
(I

0
)

3 1 0 2 1 0 3

2S
1
(I

1
)S

1
(I

0
)

3S
1
(I

1
)S

2
(I

0
)

2S
2
(I

1
)S

0
(I

0
)

3S
2
(I

1
)S

1
(I

0
)

S
2
(I

1
)S

3
(I

0
)

3S
3
(I

1
)S

0
(I

0
)

S
3
(I

1
)S

2
(I

0
)

2S
3
(I

1
)S

3
(I

0
)

2

f
0

+

+ Q(t)

D

CLK

1

0

1170

2 0 2 2 2

3 1 2 2 2

0 0 2 1 1

1 1 2 1 2

2 0 2 2 2

3 1 2 2 2

0 0 2 2 2

1 1 2 2 2

2 0 2 2 2

3 1 2 2 2

0 0 2 3 3

1 1 2 3 2

2 0 2 2 2

3 1 2 2 2

0 0 3 0 0

1 1 3 0 3

2 0 3 3 3

3 1 3 3 3

0 0 3 1 1

1 1 3 1 3

2 0 3 3 3

3 1 3 3 3

0 0 3 2 2

1 1 3 2 3

2 0 3 3 3

3 1 3 3 3

0 0 3 3 3

1 1 3 3 3

2 0 3 3 3

3 1 3 3 3

To simulate the behavior of this flip-flop, we investigate

our design using a simple java program. The table 1 has been

calculated importing the CSV output file generated by the

class JMAT into a spreadsheet application like MS Excel or

OO Calc.

TABLE X

JAVA EXAMPLE CODE FOR SIMULATE D-TYPE FLIP-FLOP CLOCKED

package jmat;

import java.io.IOException;

import java.io.PrintWriter;

public class JMAT {

 final static int N = 4; // The domain dimension

 public static void main(String[] args) throws IOException {

 int saveQt; // used to save the state Q(t)

 int CLK=0; // the square wave of the clock

 PrintWriter writer = new PrintWriter("logging.csv", "UTF-8");

 //heading of CSV file

 writer.println("t,CLK,D ,Q(t),Q(t+1)");

 for (int D = 0; D < N; D++) {

 for (int Qt = 0; Qt < N; Qt++) {

 // save actual state Q(t)

 saveQt = Qt;

 for (int t = 0; t < N; t++) {// t stands for time

 CLK= t % 2; //the clock

 // writing the row inside the CSV file

 writer.println("" + t + "," + CLK + "," +D + "," +

 Qt + "," + FlipFlopD (CLK, D, Qt));

 Qt = FlipFlopD (CLK , D, Qt); //the next state for Q(t)

 }

 // resume original Q(t)

 Qt = saveQt;

 }

 }

 // Close writer

 writer.close();

 }

 public static int FlipFlopD (int CLK, int D, int Qt) {

 // this function realize the flip-flop’s behaviour

 int x1 = MULTgate(SELgate(1, CLK), D);

 int x2 = MULTgate(SELgate(0, CLK), Qt);

 Qt = SUMgate(x1, x2);

 return Qt;

 }

 public static int SELgate(int S, int x) {

 return (x == S ? 1 : 0);

 }

 public static int MULTgate(int x, int y) {

 return (x * y) % N;

 }

 public static int SUMgate(int x, int y) {

 return (x + y) % N;

 }

}

As you can see, we have realized a simple method

(SELgate()) that implements the 3 selectors and other 2

methods (SUMgate() and MULTgate()) that implement the

binary functions SUM and MULT.

To simulate the operation of the sequential circuit we use

grafted loops that allow you to vary D, Qt and the clock

(CLK) in the set of possible values. We are interested in

seeing the operation of the circuit both in the ability to keep

the information stored when CLK=0, and to transfer D in the

internal memory (Qt) if CLK=1.

IV. CONCLUSION

This article provides a different evolutionary line to

improve the computing capacity of the CPUs that is based on

the extension of the binary system in a multi-value coding

system or, commonly, called MVL.

Although this direction has already been explored, the

idea behind the study is in the representation of the generic

function in the MVL domain. This representation has a link

to the binary system and a surprisingly greater simplicity of

the corresponding digital circuits (combinatorial and

sequential). A different mathematical approach is thus

provided for the realization of the multivalue logic gates.

This could enable the use of different data encoding systems

no longer linked to the voltage value of a signal (as seen in

[18]) but to other physical quantities as it happens at present,

for example, in the world of telecommunications.

The other important aspect is the scalability of the

solution: this study illustrates a methodology that is

independent of the basis of the adopted domain and could

even be extended to fuzzy logic [8].

1171

The proposed solution is not opposed to multi-core

architectures, since it describes how the internal operating

logic of a future CPU could be and therefore nothing

prevents the creation of multi-core architectures with MVL.

REFERENCES

[1] D. Etiemble, 45-year CPU Evolution: one law and two equations,

Second Workshop on Pioneering Processor Paradigms, Vienna,

February 2018,

[2] Haissam El-Aawar, Increasing the transistor count by constructiong

a two-layer crystal square on a single chip, International Journal of

Computer Science & Information Technology (IJCSIT) Vol 7, No 3,

June 2015

[3] X. Chen, Y. Wardi, S. Yalamanchili, Power regulation in high

performance multicore processors, Decision and Control (CDC)

2017 IEEE 56th Annual Conference on, pp. 2674-2679, 2017.

[4] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Silvestri, F.,

Spanò, S. Energy consumption saving in embedded microprocessors

using hardware accelerators, Telecommunication Computing

Electronics and Control (Telkomnika), 16 (3), pp. 1019-1026, 2018.

[5] Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Re, M., Lee, R.B.

Integration of butterfly and inverse butterfly nets in embedded

processors: Effects on power saving, Conference Record - Asilomar

Conference on Signals, Systems and Computers, art. no. 6489268, pp.

1457-1459, 2012

[6] Adib Kabir Chowdhury, Nikhil Raj and Ashutosh Kumar Singh.

Design of Low Power MAX Operator for Multi-Valued Logic System,

Procedia Computer Science, pages 428 – 433, 2015.

[7] W. Alexander, The ternary computer, Electronics and Power, pages

36-39. February 1964.

[8] Ben Choi and Kankana Shukla, Multi-Valued Logic Circuit Design

and Implementation, International Journal of Electronics and

Electrical Engineering Vol. 3, No. 4, August 2015.

[9] Prashant S. Wankhade, Gajanan Sarate. Minimization of Multiple

Value function using Quine Mc-Cluskey Technique. International

Journal of Computer Applications (0975 – 8887) Volume 143 – No.7,

June 2016.

[10] Israel Halpern and Michael Yoeli. Ternary arithmetic unit,

Proceedings of the Institution of Electrical Engineers, Volume 115,

Issue 10, October 1968

[11] Dhande A.P., Ingole V.T. and Ghiye V.R., Thernary Digital System:

Concepts and Applications, SM Online Publishers LLC, ISBN: 978-

0-9962745-0-0, October 2014.

[12] Satish Narkhede, Design and Implementation of an Efficient

Instruction Set for Ternary Processor, International Journal of

Computer Applications (0975 – 8887) Volume 83 – No.16,

December 2013.

[13] Nayan Kumar, Naware Deepti, S. Khurge and S.U.Bhandari, Review

of Quaternary Algebra & its Logic Circuits, International Conference

on Computing Communication Control and Automation, pages 969-

973, 2015.

[14] Ifat Jahangir, Dihan Md. Nuruddin Hasan, Shajid Islam, Nahian

Alam Siddique, Md. Mehedi Hasan. Development of a Novel

Quaternary Algebra with the Design of Some Useful Logic Blocks,

Proceedings of 2009 12th International Conference on Computer and

Information Technology (ICCIT 2009), Dhaka, Bangladesh, , pages

197 – 202, December 2009.

[15] Miller D.M. and Thornton M.A., Multiple Valued Logic: Concepts

and Representations, Digital Circuits and Systems, Vol. 2, No. 1 ,

Pages 1-127, 2007.

[16] L. P. Nascimento, “An Automated Tool for Analysis and Design of

MVL Digital Circuits”, in 14th Symposium on Integrated Circuits

and Systems Design, Pirenópolis-GO-Brazil, 2001.

[17] Amnon Rosenmann, A Multiple-Valued Logic Approach to the

Design and Verication of Hardware Circuits, Journal of Applied

Logic, Volume 15 Issue C, pages 69-93, May 2016

[18] B. Srinivasa Raghavan and V.S Kanchana Bhaaskaran, Design of

Novel Multiple Valued Logic (MVL) Circuits, International

Conference on Nextgen Electronic Technologies: Silicon to Software

(ICNETS2 2017) Chennai, India 23-25 March 2017.

1172

