
Designing Fault-Tolerant Component Based
Applications with a Model Driven Approach

Brahim Hamid, Ansgar Radermacher, Agnes Lanusse, Christophe Jouvray,
Sébastien Gérard, and François Terrier

CEA, LIST
Laboratoire d’Ingénierie dirigée par les modèles pour les Systèmes Embarqués

Boite 65, Gif sur Yvette, F-91191 France
{brahim.hamid,ansgar.radermacher,agnes.lanusse,

christophe.jouvray,sebastien.gerard,francois.terrier}@cea.fr

Abstract. The requirement for higher reliability and availability of systems is
continuously increasing even in domains not traditionally strongly involved in
such issues. Solutions are expected to be efficient, flexible, reusable on rapidly
evolving hardware and of course at low cost. Model driven approaches can be
very helpful for this purpose. In this paper, we propose a study associating model-
driven technology and component-based development. This work is illustrated
by the realization of a use case from aerospace industry that has fault-tolerance
requirements: a launch vehicle.

UML based modeling is used to capture application structure and related non-
functional requirements thanks to the profiles CCM (CORBA Component Model)
and QoS&FT (Quality of Service and Fault Tolerance). The application model
is enriched with infrastructure component dedicated to fault-tolerance. From this
model we generate CCM descriptor files which in turns are used to build boot-
code (static deployment) which instantiates, configures and connects components.
Within this process, component replication and FT properties are declaratively
specified at model level and are transparent for the component implementation.

Keywords: Connector, CORBA Component Model, Distributed applications,
Model-driven approach, Profile QoS+FT, Replication.

1 Introduction

A distributed system is a system which involves several computers, processors or
processes which cooperate in some way to do some task. However, such systems require
a specific treatment of faults. Faults may be hardware defects (link failures, crashes) or
software faults which prevent a system to continue functioning in a correct manner.

In such systems, solutions are expected to be efficient, flexible, reusable on rapidly
evolving hardware and of course at low cost. Model-driven engineering [19] provides a
very useful contribution for the design of fault-tolerant systems, since it bridges the gap
between design issues and implementation preoccupation. It helps the designer to con-
centrate on application structure and required behavior and permits to specify in a sepa-
rate way non-functional requirements such as Quality of Service and/or fault-tolerance

U. Brinkschulte, T. Givargis, and S. Russo (Eds.): SEUS 2008, LNCS 5287, pp. 9–20, 2008.
c© IFIP International Federation for Information Processing 2008



10 B. Hamid et al.

issues that are very important to guide the implementation process. The model(s) can
be analyzed at a very early stage in order to detect potential misconceptions; and then,
exploited by specific tools through several steps of model transformation and/or in-
terleaving with platform models in order to produce the application components and
configuration files.

In this paper, we propose a study associating model-driven approach and component-
based development to design distributed applications that has fault-tolerance require-
ments. We focus on the run-time support offered by the component framework,
notably the replication-aware interaction mechanism and additional system components
for fault-detection and reference management. To illustrate the power of our approach
we examine a test case from aerospace industry that has fault-tolerance requirements: a
launch vehicle.

UML based modeling is used to capture application structure and related non-
functional requirements thanks to two specialized extensions CCM (CORBA Compo-
nent Model) [13] and QoS&FT (Quality of Service and Fault Tolerance) OMG
profiles [15]. From this model we generate descriptor files (according to Deployment
and Configuration standard (DnC) [14]). These descriptors are in turn used to configure
a devoted infrastructure consisting of a container/component based architecture and to
load configured components. Within this process, component replication and FT prop-
erties are declaratively specified at model level and are transparent for the component
implementation.

The work is conducted in the context of a national project called “Usine Logicielle”1.
This project is three-folded : modeling, validation and infrastructure/middleware sup-
port along with configuration support.

The rest of the paper is organized as follows. In the next section we present the
model including the distributed computing systems, component model and the connec-
tor extension. In Section 3, we present briefly the proposed framework to implement
fault-tolerance mechanisms. Section 4 describes the proposed methodology to design
fault-tolerant distributed applications for component systems. We outline the profiles
used on model level and describe the code generation and platform configuration
process. In section 5 we review some related works. The last section summarizes and
gives an outlook of future work.

2 Background

In this section, we outline two different aspects: the assumptions about the underly-
ing computing system (mainly its network) and the component platform, namely the
CORBA Component Model extended with the connector paradigm.

2.1 Distributed Computing System Model

A distributed system is a set of processes (or processors) and communication links.
Processes communicate and synchronize by sending and receiving messages through

1 This work has been performed in the context of the Usine Logicielle project of the System@tic
Paris Région Cluster (http://www.usine-logicielle.org).



Designing Fault-Tolerant Component Based Applications 11

the links. The network topology is unspecified and each node communicates only with
its neighbors. Two processes are considered as neighbors if and only if there is a link
(channel) between them. We deal exclusively with connected topologies. A process
can fail by crashing, i.e. by permanently halting. A process can also produce wrong
computation results (e.g. due to spontaneous bit failures). Communication links are
assumed to be reliable. The system is improved by failure detector modules. After a
node fails, a dedicated protocol involving these modules notifies all neighbors of this
node about the failure.

Networks are asynchronous in the sense that processes operate at arbitrary rates and
messages transfer delay are unbounded, unpredictable but finite. We assume that mes-
sage order is preserved. To implement failure detection, the dedicated protocol use a
weak form of synchrony such as [1,6].

2.2 Fault-Tolerance Mechanisms

Fault-tolerance can be achieved by multiple mechanisms, for instance parity check-
ing on memory on a hardware level. In the scope of this paper, furthermore to use
fault detection functionality, we consider replication management. Obviously, replica-
tion relates to hardware as well as to software. With respect to hardware, it means that
processing resources (nodes) and network links are replicated. With respect to software
it denotes that the same component instance is deployed on multiple nodes. There are
different well known variants of how redundant components may work, they fall in
three main categories: all replicas can execute the same request and results are voted
("hot" or active with vote), only a single replica is active ("cold") or mixed policies
where replicas are active but only one, the master sends its result. Indeed, the actual
redundancy policy chosen for an application results from a compromise between pow-
erful redundancy mechanisms offering better reliability at a high cost in terms of price,
communication, size and weaker mechanisms in terms of recovery time but at lower
costs. These considerations are particularly important in the domain of embedded sys-
tems and have driven our will to promote flexible design and implementation of such
mechanisms.

In this experiment, the faults handled relate to hardware fault (node not responding)
detected by the Fault Detector component through liveliness control as described below,
and software error (no answer or wrong result from a replica detected by the voting
mechanism). If a software error is detected on the result coming from a replica, the
node on which this replica resides is desactivated and considered as faulty.

2.3 Connector Extension of the CORBA Component Model(CCM)

Our work is based on the CORBA Component Model (CCM) extended with the connec-
tor paradigm. A main advantage of this model is its separation of business code located
in the component from the non-functional or service code located within a container.

The CCM standard supports three different communication paradigms (port types):
synchronous method calls based on CORBA (provided/required interface), event pub-
lishing and reception and the recently added streaming. One drawback is that the imple-
mentation of such communication mechanisms is generally fixed, i.e. a CCM



12 B. Hamid et al.

implementation provides a single realization of the interactions between port types.
This is quite restrictive, in particular for embedded systems requiring:

1. Flexible interaction implementations
2. Additional communication models or variations of existing communication models

There is no way to model this in a suitable way within the standard CCM model.
The limitations of this standard have driven us to propose an extension named the

eC3M which introduces the concept of Connector in the context of Component/
Container paradigm. This permits the definition of specific interaction semantics and
to associate multiple implementations of a particular one when defining the deploy-
ment configuration. The connector extension to CCM has first been published in [18].
Here, we’ll have a short look at it with a focus on specific connectors supporting the
interaction with replicated components.

A connector has certain similarities with a component. It has a type definition con-
sisting of ports providing or requiring interfaces and an implementation chosen at de-
ployment time. The main difference is (1) its genericity – its interfaces are adapted to
the component using it and (2) it is a fragmented entity: since the connection between
a component and its connector is always a direct local call, each port of the connector
is co-located with the component it is connected with.

3 Our Infrastructure

We propose a simple infrastructure based on a set of non functional components. It has
similar elements as in FT-CORBA [11], but since these are realized as CCM compo-
nents they are independent of an ORB, in particular the connector extensions allows for
choosing different interaction implementations. The separation between components
and containers in CCM allows to keep fault-tolerance aspects out of the business code.
Only the container and the associated connector fragments (which can be seen as part
of the container) manage FT aspects.

3.1 Fault-Tolerance Framework

Here we show the set of non-functional (control) components used to support fault-
tolerance and the run-time support, notably the replication-aware interaction mecha-
nisms. To handle faults, we use the following control components:

1. A fault detector (FD): Each node is equipped with a fault detector to detect other
faulty nodes. These components communicate with each other to build the list of
faulty nodes. This component implements a fault detection protocol such as heart-
beat or interrogation. In our framework, we use the following: at periodic rate,
each fault detector (source node) performs broadcasting of aliveness requests to all
other nodes (destination nodes). A requested destination node answers (or not) the
source node. Thus, each fault detector node maintains the list of nodes and their
states (alive, not alive).



Designing Fault-Tolerant Component Based Applications 13

2. A fault tolerance manager (FTM): The fault tolerance manager component per-
forms reconfiguration to deal with detected faults [7]. It keeps tracks of ongoing
status of replicas and defines fault processing. Reconfiguration is defined as the
operation of transition from a source mode to a target mode when an event (faulty
node) occurs. This is to keep the number of valid replicas, i.e after each failure
occurrence, it checks that the number of valid replicas is higher than the minimum
number of replicas. That is, the FTM changes the configuration of the system to
satisfy the dependability requirements specified by the designer of the application
at the design level.

3. A replica manager (RM): The role of this component is to store references of all
replicated components (replicas) on a certain node. This component is not repli-
cated, but deployed on each node. It handles a list of references to replicated com-
ponents deployed in this node. It enables the creation /deletion replicas and their
deployment in the case of dynamic reconfiguration.

Instances of these control components are activated on each node. However, the fault
tolerance manager instance is in a leader mode on only one node, which may change
dynamically when a faulty node event occurs.

3.2 Replication at a Connector Level

In the context of fault tolerance, a connection with a replicated component should per-
form group communication, i.e. the transparent communication with a set of replicas.
Whereas this could be done with standard CCM and a specific CORBA implementa-
tion supporting group communication, it would be impossible to configure and con-
trol it (in case for instance of node failures) from standard CCM. As shown in the
Section 2.3, the communication system is abstracted at a connector level. Since it is
responsible for incoming and outgoing messages, it is an ideal place for the integration
of replication protocol. Therefore, the user code interacts transparently with a group of
replicas. Along with a replicated instance, the fragments of a connector are replicated
as well.

Currently, we implemented an active replication (“hot”) with vote mechanism as a
proof of concept. In this variant, all replicas of a component instance are active at a
given time and synchronize entries (optional) and results by a vote. We can separate the
realization of a connector supporting this replication style into two phases. In the first,
a unique request has to be distilled and sent to all replicas. In the second, the message
is received by all replicas of the destination component and these (optionally) have to
check that all got the same message.

Replicated components have a voter object in their container and a reference to this
object is automatically passed to the connector fragment. The voter object is part of
the run-time required for fault-tolerance. The code validates (acknowledgeRequests)
the parameters with the other replicas by means of the voter object, before it sends a
message to all replicas to the target object. The call of method acknowledgeRequest
blocks until the result has been confirmed. If the current replica is leader, it sends the
request to all replicas of the server fragment thanks to the replica manager instance in
that node. Moreover, the fault detector instance is invoked to avoid sending request to
the crashed node.



14 B. Hamid et al.

4 Designing Fault-Tolerant Distributed Applications (MDE
Approach)

As described above, a simple redundancy management system can be implemented
thanks to specific middleware components devoted to generic mechanisms such as fault-
detectors, voters and so on...and specialized services implemented into connectors.

Here we describe how a MDE approach can help developers design their application
and take full benefits of this infra-structure to build flexible efficient fault-tolerant com-
ponent based applications. We present the approach chosen and the tools developed to
support it.

Our laboratory LISE 2 has developed a tool that supports UML modeling (Papyrus
UML 3) based on the Eclipse environment. This tool suite provides a graphic UML
modeling editor and code generation components (Java, C, C++). The tool supports
also advanced UML profile management. We have developed additional plug-ins which
generate CCM descriptor files from a model containing component instances with fault-
tolerance requirements.

Our methodology is illustrated by means of a test case from aerospace industry that
has fault-tolerance requirements: a launch vehicle. For simplicity, many functions of
this test case have been omitted. Two components are identified:

– Calculation component (Calc) : this component makes some computations and
then invokes the display method provided by the interface of the (Display) :
component.

– Display component (Display) : it is responsible of displaying the result of the
computations done by the Calc components. It provides display method through
its interfaces to be used by the Calc components.

The sample application is described as follows: a calculation component is periodically
activated by a timer; the result of the calculation is passed to a display component. Here,
component Calc is replicated three times and we use an active with voting replication
style. For this application, dependability requirement is that it must tolerate one node
crash.

4.1 Application Modeling

Application modeling when dealing with component based approaches consists of de-
scribing components, their required and offered services and then define component
instances and finally how these instances are connected to form the final system.

The modeling basis is UML on which a variant of the profile for CORBA Compo-
nent Model (eC3M) is applied. The application is described in terms of components and
provided and required interfaces; profile properties permit to complete the description
so that complete IDL can be generated from the description. Assembly characteristics

2 Laboratory of Model Driven Engineering for Embedded Systems, which is part of the CEA
LIST.

3 http://papyrusuml.org



Designing Fault-Tolerant Component Based Applications 15

and deployment information are also provided through the eC3M profile with stereo-
types close to DnC concepts. From this information deployment plans can be generated
for regular applications.

To handle fault-tolerant requirements we apply a complementary profile named FT
profile which is composed of a subset of QoS&FT [15] and uses NFP (Non Functional
Properties) sub-profile of MARTE [16] (standard UML profile for Modeling and Analy-
sis of Real-Time Embedded systems). Stereotypes dedicated to fault-tolerance spec-
ify the fault-detection policy, replication management style, replica group management
style etc.. Fig.1 shows the structure of this profile. Black ended arrows denote concept
extension (stereotype FTInitialReplicationStyle is an extension of UML Class). White
ended arrows are standard UML generalization relations.

Once application components and interfaces have been defined, the system software
architecture is described thanks to the UML composite diagram used to specify an as-
sembly and hierarchical components. This diagram permits to determine what are the
constitutive parts of the system and how they are inter-connected. Fig.2 shows the com-
posite diagram corresponding to our sample application. The diagram indicates that the
application consists of one component calc, one component display and one component
timer. Connectors are defined between timer and calc, and calc and display. This is the
description of the system without infrastructure components.

Since we want to specify that redundancy is required we stereotype component calc
with FTActiveWithVotingReplicationStyle stereotype and we indicate that membership
policy is controlled by infrastructure and that initial number of replicas will be 3. In the
same manner we indicate that connectorType of the connector between calc and display
is ConnFTCORBA which means that a connector support for fault tolerance based on
CORBA should be used (see next section).

Fig. 1. The structure of the FT-Profile



16 B. Hamid et al.

Fig. 2. Applying fault-tolerance stereotypes

From this model we can configure the final application, install binary files, generate
appropriate connectors and configure specialized infrastructure services. This process
follows several steps and uses different transformation tools described in the next
section.

4.2 Code Generation

Code generation is intended to support CCM implementation steps. This requires to
generate : (1) CCM descriptor files from the model, (2) the code corresponding to a
CCM implementation.

The first point concerns generation of component descriptors, a platform description
and a deployment plan. A deployment plan contains information on the implementa-
tion and required artifacts (usually libraries), components instances, as well as alloca-
tion information (allocation of instances onto nodes), and connections between ports
of these instances. The second one concerns the parsing of the deployment plan by a
dedicated CCM implementation: microCCM. This framework is a tool set developed
jointly with Thales which prepares application deployment from the analysis of the de-
ployment plan. It produces a static deployment in which a bootloader file is generated
for each node. This file contains code that instantiates components as well as connector
fragments and performs the connections according to the deployment plan. Connector
fragments are generated when necessary (this step is needed, since connectors adapt
themselves to component interfaces, as shortly outlined in the previous section).



Designing Fault-Tolerant Component Based Applications 17

void FTCORBA_IDisplay_client::display (CORBA::Float value)
{

if (m_voter != NULL) {
// calculate hash of request (used to simplify comparisons).
Hash hash;
hash.add (m_voter->getRequestNr ());
hash.add (value);
m_voter->acknowledgeRequest (hash.get ());

}
if (amILeader ()) {

for (int i = 0; i<MAX_NR_OF_NODES; i++) {
if (myRM->isOnNode ("DISPLAY",i) && !myFD->is_faulty_node(i))

myRM->getObj ("DISPLAY",i)->display (value);
}

}
}

Fig. 3. Code of connector fragment associated with the node in which Calc component is
deployed

The following code (see Fig.3) gives a rough idea of the generated code contained
within a connector fragment. In this case, fragment that is responsible for sending a
result from the calculation component towards the display component.

4.3 Discussion

Overhead of connector fragments code : The following table provides an idea about
the overhead of the connector fragments at some node. The figures are obtained for a
prototype on a Linux PC. As said before, the bootloader file performs the instantiations
and configuration of components and connector fragments and the connections between
these. The connector fragments use a naming scheme that correspond to their name
followed by the interface to which they adapt to and followed finally by the port name
within the connector type. The overhead of a connector supporting fault-tolerance is
relatively small, in general it depends on the number of operations and their parameters.
The voter run-time adds about 11 Kb.

Efficiency, evolutivity, reusability : In order to use another replication style it suffices
to (1) adapt our infrastructure to deal with such a replication style, i.e. provide a con-
nector and (2) specify the use of this connector by means of a stereotype attribute of a
connection on model level (as shown in Fig.2). A re-generation of the descriptor files
and the connector generation will take this change automatically into account.

Thus, multiple deployment variants can be easily produced and tested (benchmarked)
and optimized to find a suitable solution.

5 Related Work

Some CORBA implementations provided proprietary fault tolerance mechanisms such
as OmniORB, Orbix and Orbacus. They are based on an embedded set of “contact



18 B. Hamid et al.

text data bss dec filename
13788 12 828 14628 gcc_linux_mico/obj/bootloader.o
372 4 1 377 gcc_linux_mico/obj/CCM_hooks.o
2936 4 1 2941 gcc_linux_mico/obj/CORBA_IFault_Detector_client.o
2339 4 1 2344 gcc_linux_mico/obj/CORBA_IFault_Detector_server.o
3245 4 1 3250 gcc_linux_mico/obj/FT_CORBA_IDisplay_client.o
1271 4 1 1276 runtime/FT/gcc_linux_mico/obj/ReferenceSet.o
11458 5 1 11464 runtime/FT/gcc_linux_mico/obj/Voter_impl.o

Fig. 4. Overhead of the connector fragments corresponding to the proposed implementation for a
prototype on a Linux PC

details" within an interoperable object reference (IOR). These solutions are vendor spe-
cific and not interoperable. Therefore, the OMG standardizes fault-tolerant mechanisms
(short FT-CORBA) [12] within the CORBA specification. The replication manager in-
terface is the core of the FT-CORBA infrastructure, inheriting from three interfaces that
deal with object groups, a generic factory and the fault-tolerance properties. The latter
is also referred to by the FT-profile outlined in this paper. A full implementation of the
FT-CORBA specification tends to be “big", therefore it is not implemented by many
ORBs, in particular not by ORBs that are tailored for small and medium embedded
systems.

AQuA (Adaptive Quality of service Availability, see[17] and [9]) is incompatible
with FTCORBA. Fault-tolerance is obtained by active or passive replication and re-
quires reliable group communication. It allows developers to specify the desired level
of dependability, through the configuration of the system according to the availabil-
ity of resources and the faults occurred. This system uses QoS contract as in Quality
Objects [20]. The group communication service is based on Ensemble [8].

The AFT-CCM (Adaptive Fault-Tolerance) model [5] is based on CCM and treats
fault-tolerance as a specific QoS requirement. For each component with fault-tolerance
requirements, an AFT manager is created. This seems to be quite costly, but enables
the modification of QoS parameters at run-time such as the replication coordinator im-
plementing the replication technique (one component for each replica). A prototype of
this system was built using OpenCCM (http://openccm.objectweb.org) running under
ORBacus. Only passive replication style was implemented since active replication style
requires group communication mechanisms that are not supported in the used ORB.
Another approach for CORBA components replication is studied in [10]. This approach
uses interceptor objects that accomplish replication management: each replicated com-
ponent is associated with an interceptor object. In the AFT-CCM, a generic connector is
used to avoid the implementation of a new interceptor object for each new component.

The MEAD (Middleware for Embedded Adaptive Dependability) group has
proposed a fault-tolerant CCM in cooperation with Raytheon. This extension uses addi-
tional descriptor files containing deployment rules and container descriptions that spec-
ify the fault-tolerance properties of the application. The link between components and



Designing Fault-Tolerant Component Based Applications 19

FT services (including fault monitoring, checkpoint (log) components) is done at the
container level. There is a separation between logical and physical assembly in CCM
process: for example, the number of replicas is logical and the placement is a physi-
cal concern. This deployment is achieved using an assembly manager/deployer that is
installed at each host. Both active and passive replication styles are supported by the
proposed extension using the extended virtual synchrony model [2]. This model guar-
antees that events are delivered in the same order at each node.

Different modeling approaches can be followed, several specialized description lan-
guages have been defined and are well adapted to describe system implementation
(AADL and its error annex [3,4]), EAST ADL which focuses particularly on the speci-
fication of allocation constraints, or some dedicated languages devoted to the develop-
ment of critical systems based on formal techniques and synchronous calculus (as in the
SCADE tool). But none of these approaches are well suited to the Container/Component
paradigm.

The main difference between the fault-tolerant CCM approaches above and our
approach is the focus on a specification based on UML and a standardized profile
(QoS+FT). Another difference is that we integrated the fault-tolerance mechanism into
a generic CCM extension. Note that our connectors replace interaction tailoring via
interceptors that are used by other approaches to enable transparent replication.

6 Summary and Future Work

We have shown that fault-tolerant applications can be generated directly from a specifi-
cation of the architecture (component assembly & deployment) in UML and component
descriptions as well as their implementation. The whole approach is largely based on
standards: UML with CCM as well as a fault-tolerance profile and the execution mid-
dleware based on CCM. The extension of the middleware renders it more flexible and
enables the transparent support for group communication. Unlike other approaches, the
connector extension of the middleware is not a specific extension for fault-tolerance –
fault tolerance is merely a good example of the enhanced flexibility that can be achieved
within this component approach. It is then possible to implement distributed applica-
tions onto heterogeneous platforms running under different operating systems and com-
munication stacks at low cost and with high implementation efficiency. The application
are currently runs on a PC using Linux and on a GR-XC3S-1500 LEON development
board using RTEMS OS (a Posix compliant). The latter is used to show that our ap-
proach may be used easily to design embedded systems.

The next steps are primarily a support for an automatic re-configuration of the ap-
plication, for instance the transition between a nominal and a reduced-functionality
mode. Re-configuration mechanisms in a non-FT context are already implemented by
the project partner Thales; and recently we propose a model driven approach to help
specify reconfigurability issues [7]. The challenges of the integration include for in-
stance the replication of the component performing the reconfiguration steps. Another
objective for the near future is to implement other replication styles than the active with
vote and to examine footprint and performance overheads in detail.



20 B. Hamid et al.

References

1. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed system. Journal
of the ACM 43(2), 225–267 (1996)

2. Dumitras, T., Srivastava, D., Narasimhan, P.: Architecting and implementing versatile de-
pendability. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable
Systems III. LNCS, vol. 3549, pp. 212–231. Springer, Heidelberg (2005)

3. Feiler, P., Rugina, A.: Dependability Modeling with the Architecture Analysis & Design
Language (AADL). Technical report, CMU/SEI-2007-TN-043 (2007)

4. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Language
(AADL): An Introduction. Technical report, CMU/SEI-2006-TN-011 (2006)

5. Fraga, J., Siqueira, F., Favarim, F.: Adaptive Fault-Tolerant Component Model. In: Ninth
IEEE international workshop on Object-Oriented Real-Time Dependable Systems (2003)

6. Hamid, B.: Distributed fault-tolerance techniques for local computations. Ph.D thesis, Uni-
versity of Bordeaux 1 (2007)

7. Hamid, B., Lanusse, A., Radermacher, A., Gérard, S.: Designing Reconfigurable Compo-
nent Systems with a Model Based Approach. In: Workshop on Adaptive and Reconfigurable
Embedded Systems, APRES (to appear, 2008)

8. Hayden, M.G.: The Ensemble System. Ph.D thesis, Cornell University (1998)
9. Kobusinska, A., Kobusinski, J., Szychowiak, M.: An Analysis of distributed platforms apply-

ing replication mechanisms. Technical Report Report RA-014, Poznan University of Tech-
nology (2001)

10. Lung, L.C., Favarim, F., Santos, G.T., Correia, M.: An Infrastructure for Adaptive Fault
Tolerance on FT-CORBA. In: ISORC 2006: Proceedings of the Ninth IEEE International
Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC
2006), Washington, DC, USA, 2006, pp. 504–511. IEEE Computer Society Press, Los
Alamitos (2006)

11. OMG. CORBA Core specification, Version 3.0.3. OMG Document formal/2004-03-12
(2004)

12. OMG. CORBA Core specification, Version 3.0.3. OMG Document formal/2004-03-12
(2004)

13. OMG. CORBA Component Model Specification, Version 4.0, 4. OMG Document
formal/2006-04-01 (2006)

14. OMG. Deployment and Configuration of Component Based Distributed Applications, v4.0.
OMG document ptc/2006-04-02 (2006)

15. OMG. UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
Mechanisms, 5. OMG Document formal/2006-05-02 (2006)

16. OMG. UML Profile for MARTE. OMG document ptc/07-08-04 (2007)
17. Ren, Y., Cukier, M., Sanders, W.H.: An adaptive algorithm for tolerating value faults and

crash failures. IEEE transaction on parallel an distributed systems 2, 173–192 (2001)
18. Robert, S., Radermacher, A., Seignole, V., Gérard, S., Watine, V., Terrier, F.: Enhancing inter-

action support in the corba component model. In: From Specification to Embedded Systems
Application

19. Schmidt, D.: Model-driven engineering. IEEE computer 39(2), 41–47 (2006)
20. Zinky, J.A., Bakken, D.E., Schantz, R.E.: Architectural support for quality of service for

CORBA objects. Theory and Practice of Object Systems 3(1) (1997)


	Designing Fault-Tolerant Component Based Applications with a Model Driven Approach
	Introduction
	Background
	Distributed Computing System Model
	Fault-Tolerance Mechanisms
	Connector Extension of the CORBA Component Model(CCM)

	Our Infrastructure
	Fault-Tolerance Framework
	Replication at a Connector Level

	Designing Fault-Tolerant Distributed Applications (MDE Approach)
	Application Modeling
	Code Generation
	Discussion

	Related Work
	Acknowledgment
	References


