
Designing Fault Tolerant Systems into SRAM-based
FPGAs

Fernanda Lima1,2 Luigi Carro1 Ricardo Reis1

1Universidade Federal do Rio Grande do Sul
PPGC – Instituto de Informática – DELET

Caixa Postal: 15064, Porto Alegre – RS – Brazil
+55 51 33 16 70 36

{fglima, carro, reis}@inf.ufrgs.br

2Universidade Estadual do Rio Grande do Sul

Engenharia de Sistemas Digitais
Estrada Santa Maria 2300, Guaíba – RS – Brazil

+55 51 491 40 42
fernanda-lima@uergs.edu.br

ABSTRACT
This paper discusses high level techniques for designing fault
tolerant systems in SRAM-based FPGAs, without modification in
the FPGA architecture. Triple Modular Redundancy (TMR) has
been successfully applied in FPGAs to mitigate transient faults,
which are likely to occur in space applications. However, TMR
comes with high area and power dissipation penalties. The new
technique proposed in this paper was specifically developed for
FPGAs to cope with transient faults in the user combinational and
sequential logic, while also reducing pin count, area and power
dissipation. The methodology was validated by fault injection
experiments in an emulation board. We present some fault
coverage results and a comparison with the TMR approach.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance

General Terms
Design, Performance, Reliability.

Keywords
Fault-tolerance, FPGA.

1. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) are increasingly

demanded by spacecraft electronic designers because of their high
flexibility in achieving multiple requirements such as high
performance, low NRE (Non-Recurring Engineering) cost and
fast turnaround time. In particular, SRAM-based FPGAs are very
valuable for remote missions because of the possibility of being
reprogrammed by the user as many times as necessary in a very
short period. As a result, SRAM-based FPGAs offer the
additional benefits of allowing in-orbit design changes, with the
aim of reducing the mission cost by correcting errors or
improving system performance after launch. SRAM-based FPGA

will be the focus of this work, more specifically the Virtex®
family [17] from Xilinx.

Transient faults, also called Single Event Upset (SEU), are
the major concern in space applications [3], with potentially
serious consequences for the spacecraft, including loss of
information, functional failure, or loss of control. SEU occurs
when a charged particle hits the silicon transferring enough
energy in order to provoke a bit flip in a memory cell or a
transient logic pulse in the combinational logic. SEU on devices
has become more frequent because of smaller transistor features
achieved by the continuous technology evolution. As a result, not
only space applications but also terrestrial applications that are
critical such as bank servers, telecommunication servers and
avionics are more and more considering the use of tolerant
techniques to assure reliability [11, 9].

SEU has a peculiar effect in FPGAs when a particle hits the
user’s combinational logic. In an ASIC, the effect of a particle
hitting either the combinational or the sequential logic is transient;
the only variation is the time duration of the fault. A fault in the
combinational logic is a transient logic pulse in a node that can
disappear according to the logic delay and topology. In other
words, this means that a transient fault in the combinational logic
may or may not be latched by a storage cell. Faults in the
sequential logic manifest themselves as bit flips, which will
remain in the storage cell until the next load. On the other hand,
in a SRAM-based FPGA, both the user’s combinational and
sequential logic are implemented by customizable logic cells, in
other words, SRAM cells. When an upset occurs in the
combinational logic, hitting either the logic or the routing, it has a
transient effect followed by a permanent effect, because the
SRAM cell that implements that logic or controls that routing has
flipped. This means that a transient upset in the combinational
logic in a FPGA will be latched by a storage cell, unless some
detection technique is used. When an upset occurs in the user
sequential logic, it has a transient effect, because the fault can be
corrected in the next load of the cell. Accordingly, the use of SEU
mitigation techniques for programmable architecture must take
into account these peculiarities.

In order to mitigate SEU in Virtex® family [17] FPGAs, the
Triple Modular Redundancy (TMR) with voting technique
combined with bitstream scrubbing has been applied [6]. TMR is
a suitable technique for SRAM-based FPGAs because of its full
hardware redundancy property in the combinational and
sequential logic. Previous results from bitstream fault injection
[10] and radiation ground testing presented in [5] showed that the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’03, June 2-6, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00.

650

38.2

650

use of TMR in Virtex FPGAs has confirmed the efficacy of the
TMR structure combined with scrubbing, to recover upsets in the
FPGA architecture. However, the TMR technique presents some
limitations, such as area overhead, three times more input and
output pins and, consequently, a significant increase in power
dissipation.

In this work we propose an innovative SEU tolerant
technique for SRAM-based FPGAs to cope with both problems
above described: power and pins overhead caused by TMR, and
the permanent effect of an upset in the user’s combinational logic.
This method combines duplication with comparison (DWC) and
concurrent error detection (CED) based on time redundancy to
detect permanent faults in the programmable matrix (SEUs in the
programmable elements). To the author’s knowledge, no
references were published about high level concurrent error
detection techniques for FPGAs that take into account the
permanent effect of a SEU in the user’s combinational logic,
except for the TMR approach.

This paper is organized as follows. Section II shows some
used SEU tolerant techniques applied to FPGAs and to ASICs.
Section III introduces the new technique that combines time and
hardware redundancy to reduce pin count penalties. Section IV
presents the evaluation results performed by fault injection
experiments developed using a prototype board, and a comparison
to the TMR approach. Conclusions and ongoing works are
discussed in section V.

2. PREVIOUS WORK
Several SEU mitigation techniques have been proposed in

the past years in order to avoid faults in digital circuits, including
those implemented in programmable logic. A SEU immune
circuit may be accomplished through a variety of mitigation
techniques based on redundancy. Redundancy is provided by
extra components (hardware redundancy), by extra execution time
or by different moment of storage (time redundancy), or by a
combination of both. An efficient SEU mitigation technique
should cope with transient faults occurring in the combinational
logic, and SEUs in the storage cells. In this way, transient faults
in the combinational logic will never be stored in the storage
cells, and bit flips in the storage cells will never occur or will be
immediately corrected. Each technique has some advantages and
drawbacks, and there is always a compromise between area,
performance, power and fault tolerance efficiency.

Time and hardware redundancy techniques are largely used
in ASIC [1, 2, 7]. They range from concurrent error detection
(CED) to correction mechanisms. The use of full time or full
hardware redundancy permits voting the correct value in the
presence of single upsets. In the case of time redundancy, the goal
is to take advantage of the transient pulse characteristic to
compare signals at different moments. The output of the
combinational logic is latched at three different moments, where
the clock edge of the second latch is shifted by the time delay d
and the clock of the third latch is shifted by the time delay 2d. A
voter chooses the correct value. The scheme is illustrated in figure
1a. The area overhead comes from the extra sample latches and
the performance penalty is measured by twice the duration of the
transient upset pulse.

A full hardware redundancy, the well known TMR approach,
can also be used to identify the correct value, as shown in figure
1b. Although it presents a larger area overhead compared to time
redundancy, since it triplicates all the combinational and
sequential logic, it does not have major performance penalties,
just the voter propagation time, and it does not need different
clock phases.

In the case of SRAM based FPGAs, the problem of finding
an efficient technique in terms of area, performance and power is
very challenging, because of the high complexity of the
architecture. As previously mentioned, when an upset occurs in
the user’s combinational logic implemented in a FPGA, it
provokes a very peculiar effect not commonly seen in ASICs. The
SEU behavior is characterized as a transient effect, followed by a
permanent effect. The upset can affect either the combinational
logic or the routing. The consequences of this type of effect, a
transient followed by a permanent fault, cannot be handled by the
standard fault tolerant solutions used in ASICs, such as Error
Detection and Correction Codes (EDAC), such as Hamming code,
or the standard TMR with a single voter, because a fault in the
encoder or decoder logic or in the voter would invalidate the
technique.

Special techniques should be developed to FPGAs able to
cope with this type of effect. The SEU mitigation technique used
nowadays to protect designs synthesized in the Virtex®
architecture is mostly based on TMR combined with scrubbing
[6]. The TMR mitigation scheme uses three identical logic
circuits (redundant block 0, redundant block 1 and redundant
block 2), synthesized in the FPGA, performing the same task in
tandem, with corresponding outputs being compared through a
majority vote circuit. The TMR technique for Virtex® is
presented in details in [6], and more examples are also presented
in [10, 4]. Figure 2 shows the TMR scheme.

The user’s flip-flop is replaced by a TMR structure
composed of three flip-flops, three voters and multiplexors that
are implemented using LUTs, one for each. The combinational
logic and input and output pins are also triplicated to avoid any
single point of failure inside the FPGA, as illustrated in figure 2.
In this way, any upset inside the matrix can be voted out by the
TMR structure assuring correct values in the output.

TMR is an attractive solution for FPGAs because it provides
a full hardware redundancy, including the user’s combinational
and sequential logic, the routing, and the I/O pads. However, it
comes with design penalties, because of its full hardware
redundancy, such as area, I/O pad limitations and power
dissipation. Although these overheads could be reduced by using
some SEU mitigation solutions such as hardened memory cells
[14, 16], EDAC techniques and standard TMR with single voter
[13], these solutions are costly because they require modifications
in the matrix architecture (NRE cost). Techniques to detect
permanent faults in FPGAs have been discussed previously in
[15]. However, the authors do not discuss the permanent effect of
a single upset in the user’s combinational logic, but physical
faults that cannot be corrected by reconfiguration. When a
physical fault occurs in the matrix, it is necessary to reconfigure
the design, avoiding the faulty CLBs in order to continue using
the part.

651

clk

clk+d

Module A

clk+2d

clk+2d+tp

MAJ

Sample ffs Sequential logic

MAJ

Combinational logic

Module A
(tr2)

MAJ

Sequential logic

clk

Module A
(tr2)

Module A
(tr2)

Combinational logic

(a) Full Time Redundancy (b) Full Hardware Redundancy

Figure 1. Examples of SET and SEU Correction schemes

tr0
MJA

tr1
MJA

tr2
MJA

clk

clk

clk

pad

pad

pad

Sequential logicCombinational logic

tr0

tr1

tr0

tr1

check0

check1

pad

pad

tr2
tr2

check2

pad

(a) User’s combinational and sequential logic (b) Output Pads

Figure 2. Triple Modular Redundancy for Xilinx FPGAs

In this paper, we present a new high level technique that
combines the time and hardware redundancy with some extra
features able to cope with the upset effects in FPGAs to reduce
the number of I/O pads and area overhead for the user’s
combinational logic. This method copes with the permanent effect
of a SEU in the programmable matrix. In addition, this proposed
method is also able to detect physical faults, which are permanent
faults that are not corrected by reconfiguration.

3. REDUCING PIN AND AREA
OVERHEAD BY USING TIME AND
HARDWARE REDUNDANCY

There are always some kinds of penalties to be paid when
designing fault tolerant systems. The penalties come from the
redundancy. Full hardware redundancy approach can produce
large area, pin and power overheads. Time redundancy can
provoke interruption of the system in the presence of faults and
performance penalties. In order to explore the design space, one
could wonder what would happen if some hardware redundancy
blocks are replaced by time redundancy.

Aiming to reduce the number of pins overhead of a full
hardware redundancy implementation (TMR), and at the same
time coping with permanent upset effects, we present a new
technique based on time and hardware redundancy to protect the
user’s combinational logic, where the double modular redundancy
with comparison (DWC) is combined with a time redundancy
upset detection machine, able to detect upsets and to identify the
correct value to allow continuous operation. The sequential logic
continues to be protected by TMR to avoid accumulation of faults
as previously described, since the scrubbing does not change the
content of a user’s memory cell.

The possibility of applying concurrent error detection based
on time redundancy combined with hardware redundancy
technique for FPGAs looks interesting for upset detection and
upset voting, but there are two problems to be solved. First, the
DWC technique can only be used to detect transient upsets, and
not transient upsets that become permanent, as in the case of
SRAM based FPGAs. Second, in the FPGA, it is not only
sufficient to detect an upset, but one also must be able to vote the
correct value in order to assure the correct output without
interruption to the operation.

The insertion of a CED block in each redundant module of
the duplication approach can help to identify which module is
faulty. Figure 3 presents the DWC approach able to perform
concurrent error detection (CED), called hot backup DWC-CED.
The important characteristic of this approach is that there is
always a correct value in the output of the scheme in the presence
of a single fault, because the mechanism is able to detect the
faulty module and to select the correct output of the two.

There are many methods to implement a CED, basically
based on time or hardware redundancy. It is apparent that
hardware redundancy is not the appropriate choice for CED,
because it would increase the area overhead, and in the end it
would be larger than the original TMR. Consequently, time
redundancy is the only way to detect a fault without area
overhead. The basic concept of time redundancy is the repetition
of computation in a way that allows the errors to be detected. The
problem of detecting faults in SRAM-based FPGAs is that
common time redundancy methods able to detect transient faults
are not applicable in this case, because an upset in the
programmable matrix has a permanent effect, changing the
construction of the user’s combinational logic. Consequently,
after the occurrence of an upset in the programmable matrix, the
upset will only disappear after a reconfiguration that can be

652

complete or partial. The upset can occur at any time, even the
propagation time, and it must be detected.

dr1

CED

dr0

CED

Sequential logic
Combinational logic

Permanent
fault detection

TMR

Figure 3. DWC combined with CED for the user’s

combinational logic

To allow redundancy to detect permanent faults, the repeated
computations are performed differently. During the first
computation at time t0, the operands are used directly in the
combinational block and the result is stored for further
comparison. During the second computation at time t0+d, the
operands are modified, prior to use, in such a way that errors
resulting from permanent faults in the combinational logic are
different in the first calculation than in the second and can be
detected when results are compared. These modifications are
seen as encode and decode processes. The scheme is presented in
figure 4.

Combinational
logic

Combinational
logic

encoder decoder

Time t=t0

Time t=t0+d clk

com
parator

error

output

Figure 4. Time redundancy for permanent fault detection

Many techniques to encode and decode were proposed in the
literature to detect permanent faults [8], such as bit-wise inversion
for stuck at fault problems, parity prediction for logic functions,
re-computing with shift operands (RESO) for faulty arithmetic
slices and re-computing with swapped operands (REWSO) for
faulty chips. This paper will show the first case study, a
multiplier. For this circuit, RESO technique can be successfully
used, as presented in [12].

The concurrent error detection method RESO uses the
principle of time redundancy where the coding function is the left
shift operation and the decoding function is the right shift
operation. Thus, in the first computation, the operands are
computed and stored in a register. At the second computation, the
operands are shifted k bits to the left, computed and the result is
shifted k bits to the right (2k bits, if a multiplier or divider). In the
proposed application, the operands are shifted by 1 bit. The result
of the second step is compared to the previous result stored in the
register. A mismatch indicates the presence of a permanent fault
in the module.

The combination of DWC technique and CED blocks
enables one to detect permanent faults provides a new high-level
SEU mitigation technique for FPGAs. In the scheme presented in
figure 4, two clock cycles are necessary to identify a permanent
fault in the combinational logic module. However, this extra time
does not occur at every clock operation in our approach. Using
DWC combined with CED for permanent faults, it is possible to
take advantage of the simple comparison at the output of the
duplication scheme to inform whether it is necessary to re-
compute the data for permanent fault detection. The re-
computation is needed only when a mismatch of the outputs
occurs.

If an output mismatch occurs, the output register will hold its
original value for one extra clock cycle, while the CED block
detects the permanent fault. After this, the output will receive the
data from the fault free module until the next reconfiguration
(fault correction). The important characteristic of this method is
that it does not incur performance penalty when the system is
operating free of faults or with a single fault. The method just
needs one clock cycle in hold operation to detect the faulty
module, and after that it will operate normally again without
performance penalties. The final clock period is the original clock
period plus the propagation delay of the output comparator, as
presented in figure 6. Sample registers (dr0 and dr1) are latched at
the rising clock edge and the user’s TMR registers are latched at
rising clock+d edge.

Figure 5 shows the scheme proposed for an arithmetic
module, in the present case study: a multiplier. There are two
multiplier modules: mult_dr0 and mult_dr1. There are
multiplexors at the output able to provide normal or shifted
operands. The computed output computed from the normal
operands is always stored in a sample register, one for each
module. Each output goes directly to the input of the user’s TMR
register. Module dr0 connects to register tr0 and module dr1
connects to register tr1. Register tr2 will receive the module that
does not have any fault. For default, the circuit starts passing the
module dr0. A comparator at the output of register dr0 and dr1
indicates an output mismatch (Hc). If Hc=0, no error is found and
the circuit will continue to operate normally. If Hc=1, an error is
characterized and the operands need to be re-computed using the
RESO method to detect which module has the permanent fault.
The detection takes one clock cycle. While the circuit performs
the detection, the user’s TMR register holds its previous value.
When the free faulty module is found, register tr2 receives the
output of this module and it will continue to receive this output
until the next chip reconfiguration (fault correction).

Let’s consider two different fault situations. In one, the fault
occurs in module dr0 (Mult_dr0), Hc indicates that there is an
output mismatch; Tc0 indicates that module dr0 is faulty and Tc1
indicates that dr1 is fault free. This analysis takes one clock cycle.
Consequently, the permanent fault detection block selects dr1 for
the tr2 input. Note that the value stored in the user’s TMR register
is held for one cycle while the scheme identifies the free faulty
module. In the second case, a fault occurs in the module dr1
(Mult_dr1), similarly to the previous example, Hc indicates that
there is an output mismatch; Tc0 indicates that module dr0 is fault
free and Tc1 indicates that dr1 is faulty. The permanent fault
detection block selects dr0 for the tr2 input.

653

dr0 shifted

01 10ST0 ST0

DA
DA shifted

DB
DB shifted

dr1 shifted

01 10ST1 ST1

=

Hc

=

Tc0

=

Tc1

Mult_dr0 Mult_dr1

tr0 tr1 tr2

MAJ MAJ MAJ

permanent
fault detection

dr0 dr1

Hc Tc0 Tc1

dr0 dr1

DA
DA shifted

DB
DB shifted

ST
clk+d

clkclk

Figure 5. DWC-CED proposed scheme

Note that in both methods, TMR and the proposed technique,
the upsets in the user’s combinational logic are corrected by
scrubbing, while upsets in the user’s sequential logic are corrected
by the TMR scheme used in the CLB flip-flops. It is important to
notice that for upset correction the scrubbing is performed
continuously, to assure that only one upset has occurred between
two reconfigurations in the design. Some constraints must be
observed for the perfect functioning of the technique, same as
TMR: there must not be upsets in more than one redundant
module, including the state machine detection and voting circuit,
consequently it is important to use some assigned area constraints
to reduce the probability of short circuits between redundant
module dr0 and dr1. The scrubbing rate should be fast enough to
avoid accumulation of upsets in two different redundant blocks.

Upsets in the detection and voting circuit do not interfere in
the correct execution of the system, because the logic is already
triplicated. In addition, upsets in the latches of this logic are not
critical, as they are refreshed in each clock cycle. Assuming a
single upset per chip between scrubbing, if an upset alters the
correct voting, it does not matter, as far as there is no upset in
both redundant blocks. Upsets in the routing are also considered
in this approach as far as there is no fault in the routing that can
connect two signals from dr0 and dr1 modules. In order to assure
that faults in the routing will not short cut signals from dr0 and
dr1, it is necessary to use a dedicated placement for each module.

In the proposed method, the area reduced by the design
compared to the TMR is the area of one user’s combinational
logic module and the number of inputs that is reduced from 3
times to 2 times the original number. This technique can be used
as an additional option for the TMR technique for designing
reliable circuits in FPGAs with pads and power reduction.
Because the combinational circuit is just duplicated, inputs and
outputs can be duplicated instead of triplicated, as in the TMR

approach. However, it is important to notice that the TMR inputs
related to the user’s sequential logic used in the CLB flip-flops
are not changed as triple clocks, reset, etc.

In addition, the advantage of using this technique is not only
focused in reducing the pin count and the number of CLBs, but
also in other type of radiation effects such as total ionization dose
as this method has the important characteristic of detecting
permanent faults. So far, we have mentioned only SEUs that
happen in the SRAM programmable cells that are permanent until
the next reconfiguration. However, a circuit operating in the space
environment can suffer from total ionization dose and other
effects that can provoke permanent physical damages in the
circuit.

4. RESULTS
The proposed DWC-CED technique for permanent fault

detection was first validated by fault injection methodology in a
prototype board using emulation. The fault injection system
described in VHDL was specifically developed to test the
proposed technique. Results were emulated in an AFX-PQ249-
110 board using a XCV300 part. Some area comparisons between
the proposed approach and TMR were also performed using
Xilinx implementation tools. We use multipliers as case studies.

Fault injection in VHDL was used to characterize and
validate the technique. The fault injection system is able to
randomly choose the instant of insertion of the fault, the faulty
node and the redundant module (mult_dr0 or mult_dr1). There is
a reset fault signal that works as a scrubbing cleaning up the fault.
The circuit chosen for this first evaluation was an 8x8 bits
multiplier with a register in the output. In this way it was possible
to inject a set of faults in each user’s combinational nodes of the
example circuit (193 nodes in total) covering all time span of the
clock cycle and to emulate the scrubbing between faults. The
multiplier input vectors were also randomly generated. The faults
are injected in a SRAM cell located in the fault node and its effect
is permanent until the chip reconfiguration (scrubbing). Fault
injection results show the reliability of the presented method.

The fault coverage was exhaustively measured by exercising
all possible combination of vectors and faults inside the
multipliers. For an 8-bit multiplier, there are 216 (combination of
vectors) x 193 (nodes) x 2 (type of faults, stuck at 0 and stuck at
1) combinations of faults that where emulated in prototype board.
The data has been analyzed by Chipscope Software [18]. Final
results show that the implemented RESO method can detect and
corrected on the fly 99.97% of the faults within one clock cycle
delay before being captured by the register.

Table 1 presents area results of 8x8 and 16x16 bits
multipliers, implemented in the XCV300 FPGA using no fault
tolerance technique, TMR technique and the proposed technique
(DWC-CED for permanent faults). There are two versions of
multipliers: one is synthesized with a register at the output and the
other is pure combinational. Results show that according to the
size of the combinational logic block, it is possible to not only to
reduce the number of I/O pins but also area. Note that the 16x16
bits multiplier protected by TMR could not be synthesized in the
prototype board that uses a Virtex part with 240 I/O pins (196
available for the user); while the same multiplier, implemented by

654

the proposed technique could fit in the chip, and also occupying
less area.

Table 1. Evaluation of pin count and area of the DWC-
CED technique implemented in a XCV300-PQ240 part.

 No protection TMR DWC-CED
Multipliers (reg) 8x8 16x16 8x8 16x16 8x8 16x16

Total of I/O pads 34 66 108 204* 92 172
Number of 4-LUTs 159 741 584 2285 534 1791
Number of ffs 16 32 48 96 82 162
Multipliers (no reg) 8x8 16x16 8x8 16x16 8x8 16x16
Total of I/O pads 32 64 96 192 66 130
Number of 4-LUTs 156 711 551 2159 425 1442
Number of ffs 0 0 0 0 34 66

* I/O pins were out of range, the part XCV300-BG432 was used.
According to the user’s application requirements, the

designer will be able to choose between a full hardware
redundancy implementation (TMR) or a mixed solution, where
time redundancy is combined with hardware redundancy to
reduce pins and power dissipation in the interface. It is possible to
use DMR and time redundancy only in the interface of the FPGA,
in this way reducing pins. DMR and time redundancy can also be
used in the design to reduce not only number of I/O pads, but also
area for large combinational circuits as presented in table 1.

5. CONCLUSIONS
This work presented a new technique for upset detection and
voting that combines duplication with comparison (DWC) with
concurrent error detection (CED) based on time redundancy for
the user’s combinational logic in SRAM-based FPGAs. This
technique reduces the number of input and output pins of the
user’s combinational logic. In addition, it can also reduce area
when large combinational blocks are used. The proposed
approach was validated by fault injection experiment in a Virtex
prototype board using emulation. A large number of upsets were
randomly inserted in the user’s combinational logic nodes to
emulate faults in the logic. The fault injection procedure was
developed in VHDL and it represents the effect of a SEU in a
SRAM-based FPGA, where it has a transient effect followed by a
permanent effect. Experiments in 8x8 bits multiplier has shown
that 100% of the faults can be detected and all of them can be
voted on the fly before being captured by a CLB flip-flop.
Ongoing work includes performing additional fault injection
evaluation in more complex circuits such as larger multipliers,
filters and to study the applicability of this method for other cores
such as microprocessors.

6. REFERENCES
[1] Anghel, A., Alexandrescu, D., Nicolaidis, M., “Evaluation of

a Soft Error Tolerance Technique based on Time and/or
Hardware Redundancy,” Proc. of IEEE Integrated Circuits
and Systems Design (SBCCI), Sept. 2000, pp. 237-242.

[2] Anghel, L., Nicolaidis, M., “Cost Reduction and Evaluation
of a Temporary Faults Detecting Technique,” Proc. 2000
Design Automation and Test in Europe Conference (DATE
00), ACM Press, New York, 2000, pp. 591-598.

[3] Barth, J., “Radiation Environment”, IEEE NSREC Short
Course, July, 1997.

[4] Caffrey, M., Graham, P., Johnson, E., Wirthlin, M., “Single
Event Upsets in SRAM FPGAs”, Proc. of Military and
Aerospace Applications of Programmable Logic Devices
(MAPLD), Sept. 2002.

[5] Carmichael, C., Fuller, E., Fabula, J., Lima, F., “Proton
Testing of SEU Mitigation Methods for the Virtex FPGA”,
Proc. of Military and Aerospace Applications of
Programmable Logic Devices MAPLD, 2001.

[6] Carmichael, C.,“Triple Module Redundancy Design
Techniques for Virtex Series FPGA”, Xilinx Application
Notes 197, v1.0, Mar. 2001.

[7] Dupont, D., Nicolaidis, M., Rohr, P., “Embedded
Robustness IPs for Transient-Error-Free ICs”, IEEE Design
and Test of Computers, May-June, 2002, pp. 56-70.

[8] Johnson, B.W., Aylor, J. H., Hana, H., “Efficient Use of
Time and Hardware Redundancy for Concurrent Error
Detection in a 32-bit VLSI Adder,” IEEE Journal of Solid-
State-Circuits, pp. 208-215, Feb. 1988.

[9] Johnston., A., “Scaling and Technology Issues for Soft Error
Rates”, 4th Annual Research Conference on Reliability,
Stanford University, Oct. 2000.

[10] Lima, F., Carmichael, C., Fabula, J., Padovani, R., Reis, R.,
“A Fault Injection Analysis of Virtex® FPGA TMR Design
Methodology”, Proc. of Radiation and its Effects on
Components and Systems (RADECS), Sept. 2001.

[11] Normand, E., “Single Event Upset at Ground Level”, IEEE
Transactions on Nuclear Science, VOL. 43, NO. 6, Dec.
1996.

[12] Patel, J., Fung, L., “Multiplier and Divider Arrays with
Concurrent Error Detection”, Proceedings of FTCS-25, Vol.
3, 1996.

[13] Peterson, W. W., Error-correcting codes. Ed. 2.ed.
Cambridge : The mit Press, 1980. 560 p. ISBN 0262160390.

[14] Rocket, L. R., “A design based on proven concepts of an
SEU-immune CMOS configuration data cell for
reprogrammable FPGAs”, Microelectronics Journal, VOL.
32, 2001, pp. 99-111.

[15] Shu-Yi, Y., McCluskey, E., “Permanent Fault Repair for
FPGAs with Limited Redundant Area”, IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems,
2001.

[16] Velazco, R., Bessot, D., Duzellir, S., Ecoffet, R., Koga, R.,
“Two Memory Cells Suitable for the Design of SEU-
Tolerant VLSI Circuits”, IEEE Transactions on Nuclear
Science, VOL. 41, NO. 6, Dec. 1994.

[17] Xilinx Inc. Virtex™ 2.5 V Field Programmable Gate Arrays,
Xilinx Datasheet DS003, v2.4, Oct. 2000.

[18] XILINX, Inc. Chipscope Software and ILA Cores User
Manual, Xilinx User Manual, 0401884 (v2.0) Dec., 2000

655

