
Designing Fault Tolerant Systems into SRAM-based 
FPGAs 

Fernanda Lima1,2 Luigi Carro1 Ricardo Reis1

1Universidade Federal do Rio Grande do Sul 
PPGC – Instituto de Informática – DELET 

Caixa Postal: 15064,  Porto Alegre – RS – Brazil 
+55 51 33 16 70 36 

{fglima, carro, reis}@inf.ufrgs.br 
 

2Universidade Estadual do Rio Grande do Sul 

Engenharia de Sistemas Digitais 
Estrada Santa Maria 2300, Guaíba – RS – Brazil  

+55 51 491 40 42 
fernanda-lima@uergs.edu.br 

 

ABSTRACT 
This paper discusses high level techniques for designing fault 
tolerant systems in SRAM-based FPGAs, without modification in 
the FPGA architecture. Triple Modular Redundancy (TMR) has 
been   successfully applied in FPGAs to mitigate transient faults, 
which are likely to occur in space applications. However, TMR 
comes with high area and power dissipation penalties. The new 
technique proposed in this paper was specifically developed for 
FPGAs to cope with transient faults in the user combinational and 
sequential logic, while also reducing pin count, area and power 
dissipation. The methodology was validated by fault injection 
experiments in an emulation board. We present some fault 
coverage results and a comparison with the TMR approach.    

Categories and Subject Descriptors 
B.8.1 [Performance and Reliability]: Reliability, Testing, and 
Fault-Tolerance 

General Terms 
Design, Performance, Reliability. 

Keywords 
Fault-tolerance, FPGA. 

1. INTRODUCTION 
Field Programmable Gate Arrays (FPGAs) are increasingly 

demanded by spacecraft electronic designers because of their high 
flexibility in achieving multiple requirements such as high 
performance, low NRE (Non-Recurring Engineering) cost and 
fast turnaround time. In particular, SRAM-based FPGAs are very 
valuable for remote missions because of the possibility of being 
reprogrammed by the user as many times as necessary in a very 
short period. As a result, SRAM-based FPGAs offer the 
additional benefits of allowing in-orbit design changes, with the 
aim of reducing the mission cost by correcting errors or 
improving system performance after launch.  SRAM-based FPGA 

will be the focus of this work, more specifically the Virtex® 
family [17] from Xilinx. 

Transient faults, also called Single Event Upset (SEU), are 
the major concern in space applications [3], with potentially 
serious consequences for the spacecraft, including loss of 
information, functional failure, or loss of control. SEU occurs 
when a charged particle hits the silicon transferring enough 
energy in order to provoke a bit flip in a memory cell or a 
transient logic pulse in the combinational logic. SEU on devices 
has become more frequent because of smaller transistor features 
achieved by the continuous technology evolution. As a result, not 
only space applications but also terrestrial applications that are 
critical such as bank servers, telecommunication servers and 
avionics are more and more considering the use of tolerant 
techniques to assure reliability [11, 9]. 

SEU has a peculiar effect in FPGAs when a particle hits the 
user’s combinational logic. In an ASIC, the effect of a particle 
hitting either the combinational or the sequential logic is transient; 
the only variation is the time duration of the fault.  A fault in the 
combinational logic is a transient logic pulse in a node that can 
disappear according to the logic delay and topology. In other 
words, this means that a transient fault in the combinational logic 
may or may not be latched by a storage cell. Faults in the 
sequential logic manifest themselves as bit flips, which will 
remain in the storage cell until the next load. On the other hand, 
in a SRAM-based FPGA, both the user’s combinational and 
sequential logic are implemented by customizable logic cells, in 
other words, SRAM cells. When an upset occurs in the 
combinational logic, hitting either the logic or the routing, it has a 
transient effect followed by a permanent effect, because the 
SRAM cell that implements that logic or controls that routing has 
flipped. This means that a transient upset in the combinational 
logic in a FPGA will be latched by a storage cell, unless some 
detection technique is used. When an upset occurs in the user 
sequential logic, it has a transient effect, because the fault can be 
corrected in the next load of the cell. Accordingly, the use of SEU 
mitigation techniques for programmable architecture must take 
into account these peculiarities. 

In order to mitigate SEU in Virtex® family [17] FPGAs, the 
Triple Modular Redundancy (TMR) with voting technique 
combined with bitstream scrubbing has been applied [6]. TMR is 
a suitable technique for SRAM-based FPGAs because of its full 
hardware redundancy property in the combinational and 
sequential logic. Previous results from bitstream fault injection 
[10] and radiation ground testing presented in [5] showed that the 
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use of TMR in Virtex FPGAs has confirmed the efficacy of the 
TMR structure combined with scrubbing, to recover upsets in the 
FPGA architecture. However, the TMR technique presents some 
limitations, such as area overhead, three times more input and 
output pins and, consequently, a significant increase in power 
dissipation.   

In this work we propose an innovative SEU tolerant 
technique for SRAM-based FPGAs to cope with both problems 
above described: power and pins overhead caused by TMR, and 
the permanent effect of an upset in the user’s combinational logic. 
This method combines duplication with comparison (DWC) and 
concurrent error detection (CED) based on time redundancy to 
detect permanent faults in the programmable matrix (SEUs in the 
programmable elements). To the author’s knowledge, no 
references were published about high level concurrent error 
detection techniques for FPGAs that take into account the 
permanent effect of a SEU in the user’s combinational logic, 
except for the TMR approach.  

This paper is organized as follows. Section II shows some 
used SEU tolerant techniques applied to FPGAs and to ASICs.  
Section III introduces the new technique that combines time and 
hardware redundancy to reduce pin count penalties. Section IV 
presents the evaluation results performed by fault injection 
experiments developed using a prototype board, and a comparison 
to the TMR approach. Conclusions and ongoing works are 
discussed in section V.  

2. PREVIOUS WORK 
Several SEU mitigation techniques have been proposed in 

the past years in order to avoid faults in digital circuits, including 
those implemented in programmable logic. A SEU immune 
circuit may be accomplished through a variety of mitigation 
techniques based on redundancy. Redundancy is provided by 
extra components (hardware redundancy), by extra execution time 
or by different moment of storage (time redundancy), or by a 
combination of both.  An efficient SEU mitigation technique 
should cope with transient faults occurring in the combinational 
logic, and SEUs in the storage cells. In this way, transient faults 
in the combinational logic will never be stored in the storage 
cells, and bit flips in the storage cells will never occur or will be 
immediately corrected. Each technique has some advantages and 
drawbacks, and there is always a compromise between area, 
performance, power and fault tolerance efficiency. 

Time and hardware redundancy techniques are largely used 
in ASIC [1, 2, 7]. They range from concurrent error detection 
(CED) to correction mechanisms. The use of full time or full 
hardware redundancy permits voting the correct value in the 
presence of single upsets. In the case of time redundancy, the goal 
is to take advantage of the transient pulse characteristic to 
compare signals at different moments. The output of the 
combinational logic is latched at three different moments, where 
the clock edge of the second latch is shifted by the time delay d 
and the clock of the third latch is shifted by the time delay 2d. A 
voter chooses the correct value. The scheme is illustrated in figure 
1a. The area overhead comes from the extra sample latches and 
the performance penalty is measured by twice the duration of the 
transient upset pulse. 

A full hardware redundancy, the well known TMR approach, 
can also be used to identify the correct value, as shown in figure 
1b. Although it presents a larger area overhead compared to time 
redundancy, since it triplicates all the combinational and 
sequential logic, it does not have major performance penalties, 
just the voter propagation time, and it does not need different 
clock phases. 

In the case of SRAM based FPGAs, the problem of finding 
an efficient technique in terms of area, performance and power is 
very challenging, because of the high complexity of the 
architecture. As previously mentioned, when an upset occurs in 
the user’s combinational logic implemented in a FPGA, it 
provokes a very peculiar effect not commonly seen in ASICs. The 
SEU behavior is characterized as a transient effect, followed by a 
permanent effect. The upset can affect either the combinational 
logic or the routing. The consequences of this type of effect, a 
transient followed by a permanent fault, cannot be handled by the 
standard fault tolerant solutions used in ASICs, such as Error 
Detection and Correction Codes (EDAC), such as Hamming code, 
or the standard TMR with a single voter, because a fault in the 
encoder or decoder logic or in the voter would invalidate the 
technique. 

Special techniques should be developed to FPGAs able to 
cope with this type of effect.  The SEU mitigation technique used 
nowadays to protect designs synthesized in the Virtex® 
architecture is mostly based on TMR combined with scrubbing 
[6]. The TMR mitigation scheme uses three identical logic 
circuits (redundant block 0, redundant block 1 and redundant 
block 2), synthesized in the FPGA, performing the same task in 
tandem, with corresponding outputs being compared through a 
majority vote circuit. The TMR technique for Virtex® is 
presented in details in [6], and more examples are also presented 
in [10, 4]. Figure 2 shows the TMR scheme. 

The user’s flip-flop is replaced by a TMR structure 
composed of three flip-flops, three voters and multiplexors that 
are implemented using LUTs, one for each. The combinational 
logic and input and output pins are also triplicated to avoid any 
single point of failure inside the FPGA, as illustrated in figure 2. 
In this way, any upset inside the matrix can be voted out by the 
TMR structure assuring correct values in the output. 

TMR is an attractive solution for FPGAs because it provides 
a full hardware redundancy, including the user’s combinational 
and sequential logic, the routing, and the I/O pads. However, it 
comes with design penalties, because of its full hardware 
redundancy, such as area, I/O pad limitations and power 
dissipation. Although these overheads could be reduced by using 
some SEU mitigation solutions such as hardened memory cells 
[14, 16], EDAC techniques and standard TMR with single voter 
[13], these solutions are costly because they require modifications 
in the matrix architecture (NRE cost). Techniques to detect 
permanent faults in FPGAs have been discussed previously in 
[15]. However, the authors do not discuss the permanent effect of 
a single upset in the user’s combinational logic, but physical 
faults that cannot be corrected by reconfiguration.  When a 
physical fault occurs in the matrix, it is necessary to reconfigure 
the design, avoiding the faulty CLBs in order to continue using 
the part. 
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Figure 2. Triple Modular Redundancy for Xilinx FPGAs 

In this paper, we present a new high level technique that 
combines the time and hardware redundancy with some extra 
features able to cope with the upset effects in FPGAs to reduce 
the number of I/O pads and area overhead for the user’s 
combinational logic. This method copes with the permanent effect 
of a SEU in the programmable matrix. In addition, this proposed 
method is also able to detect physical faults, which are permanent 
faults that are not corrected by reconfiguration. 

3. REDUCING PIN AND AREA 
OVERHEAD BY USING TIME AND 
HARDWARE REDUNDANCY  

There are always some kinds of penalties to be paid when 
designing fault tolerant systems. The penalties come from the 
redundancy. Full hardware redundancy approach can produce 
large area, pin and power overheads. Time redundancy can 
provoke interruption of the system in the presence of faults and 
performance penalties. In order to explore the design space, one 
could wonder what would happen if some hardware redundancy 
blocks are replaced by time redundancy.  

Aiming to reduce the number of pins overhead of a full 
hardware redundancy implementation (TMR), and at the same 
time coping with permanent upset effects, we present a new 
technique based on time and hardware redundancy to protect the 
user’s combinational logic, where the double modular redundancy 
with comparison (DWC) is combined with a time redundancy 
upset detection machine, able to detect upsets and to identify the 
correct value to allow continuous operation. The sequential logic 
continues to be protected by TMR to avoid accumulation of faults 
as previously described, since the scrubbing does not change the 
content of a user’s memory cell.  

The possibility of applying concurrent error detection based 
on time redundancy combined with hardware redundancy 
technique for FPGAs looks interesting for upset detection and 
upset voting, but there are two problems to be solved. First, the 
DWC technique can only be used to detect transient upsets, and 
not transient upsets that become permanent, as in the case of 
SRAM based FPGAs. Second, in the FPGA, it is not only 
sufficient to detect an upset, but one also must be able to vote the 
correct value in order to assure the correct output without 
interruption to the operation.   

The insertion of a CED block in each redundant module of 
the duplication approach can help to identify which module is 
faulty. Figure 3 presents the DWC approach able to perform 
concurrent error detection (CED), called hot backup DWC-CED. 
The important characteristic of this approach is that there is 
always a correct value in the output of the scheme in the presence 
of a single fault, because the mechanism is able to detect the 
faulty module and to select the correct output of the two. 

There are many methods to implement a CED, basically 
based on time or hardware redundancy. It is apparent that 
hardware redundancy is not the appropriate choice for CED, 
because it would increase the area overhead, and in the end it 
would be larger than the original TMR. Consequently, time 
redundancy is the only way to detect a fault without area 
overhead. The basic concept of time redundancy is the repetition 
of computation in a way that allows the errors to be detected. The 
problem of detecting faults in SRAM-based FPGAs is that 
common time redundancy methods able to detect transient faults 
are not applicable in this case, because an upset in the 
programmable matrix has a permanent effect, changing the 
construction of the user’s combinational logic. Consequently, 
after the occurrence of an upset in the programmable matrix, the 
upset will only disappear after a reconfiguration that can be 

652



complete or partial. The upset can occur at any time, even the 
propagation time, and it must be detected. 
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Figure 3. DWC combined with CED for the user’s 

combinational logic 

To allow redundancy to detect permanent faults, the repeated 
computations are performed differently. During the first 
computation at time t0, the operands are used directly in the 
combinational block and the result is stored for further 
comparison. During the second computation at time t0+d, the 
operands are modified, prior to use, in such a way that errors 
resulting from permanent faults in the combinational logic are 
different in the first calculation than in the second and can be 
detected when results are compared.  These modifications are 
seen as encode and decode processes. The scheme is presented in 
figure 4.  
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Figure 4. Time redundancy for permanent fault detection 

Many techniques to encode and decode were proposed in the 
literature to detect permanent faults [8], such as bit-wise inversion 
for stuck at fault problems, parity prediction for logic functions, 
re-computing with shift operands (RESO) for faulty arithmetic 
slices and re-computing with swapped operands (REWSO) for 
faulty chips. This paper will show the first case study, a 
multiplier. For this circuit, RESO technique can be successfully 
used, as presented in [12]. 

The concurrent error detection method RESO uses the 
principle of time redundancy where the coding function is the left 
shift operation and the decoding function is the right shift 
operation. Thus, in the first computation, the operands are 
computed and stored in a register. At the second computation, the 
operands are shifted k bits to the left, computed and the result is 
shifted k bits to the right (2k bits, if a multiplier or divider). In the 
proposed application, the operands are shifted by 1 bit. The result 
of the second step is compared to the previous result stored in the 
register. A mismatch indicates the presence of a permanent fault 
in the module. 

The combination of DWC technique and CED blocks 
enables one to detect permanent faults provides a new high-level 
SEU mitigation technique for FPGAs. In the scheme presented in 
figure 4, two clock cycles are necessary to identify a permanent 
fault in the combinational logic module. However, this extra time 
does not occur at every clock operation in our approach. Using 
DWC combined with CED for permanent faults, it is possible to 
take advantage of the simple comparison at the output of the 
duplication scheme to inform whether it is necessary to re-
compute the data for permanent fault detection. The re-
computation is needed only when a mismatch of the outputs 
occurs.    

If an output mismatch occurs, the output register will hold its 
original value for one extra clock cycle, while the CED block 
detects the permanent fault. After this, the output will receive the 
data from the fault free module until the next reconfiguration 
(fault correction). The important characteristic of this method is 
that it does not incur performance penalty when the system is 
operating free of faults or with a single fault. The method just 
needs one clock cycle in hold operation to detect the faulty 
module, and after that it will operate normally again without 
performance penalties. The final clock period is the original clock 
period plus the propagation delay of the output comparator, as 
presented in figure 6. Sample registers (dr0 and dr1) are latched at 
the rising clock edge and the user’s TMR registers are latched at 
rising clock+d edge.  

Figure 5 shows the scheme proposed for an arithmetic 
module, in the present case study: a multiplier. There are two 
multiplier modules: mult_dr0 and mult_dr1. There are 
multiplexors at the output able to provide normal or shifted 
operands. The computed output computed from the normal 
operands is always stored in a sample register, one for each 
module. Each output goes directly to the input of the user’s TMR 
register. Module dr0 connects to register tr0 and module dr1 
connects to register tr1. Register tr2 will receive the module that 
does not have any fault. For default, the circuit starts passing the 
module dr0. A comparator at the output of register dr0 and dr1 
indicates an output mismatch (Hc). If Hc=0, no error is found and 
the circuit will continue to operate normally.  If Hc=1, an error is 
characterized and the operands need to be re-computed using the 
RESO method to detect which module has the permanent fault. 
The detection takes one clock cycle. While the circuit performs 
the detection, the user’s TMR register holds its previous value. 
When the free faulty module is found, register tr2 receives the 
output of this module and it will continue to receive this output 
until the next chip reconfiguration (fault correction). 

Let’s consider two different fault situations. In one, the fault 
occurs in module dr0 (Mult_dr0), Hc indicates that there is an 
output mismatch; Tc0 indicates that module dr0 is faulty and Tc1 
indicates that dr1 is fault free. This analysis takes one clock cycle. 
Consequently, the permanent fault detection block selects dr1 for 
the tr2 input. Note that the value stored in the user’s TMR register 
is held for one cycle while the scheme identifies the free faulty 
module. In the second case, a fault occurs in the module dr1 
(Mult_dr1), similarly to the previous example, Hc indicates that 
there is an output mismatch; Tc0 indicates that module dr0 is fault 
free and Tc1 indicates that dr1 is faulty. The permanent fault 
detection block selects dr0 for the tr2 input. 
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Figure 5. DWC-CED proposed scheme 

Note that in both methods, TMR and the proposed technique, 
the upsets in the user’s combinational logic are corrected by 
scrubbing, while upsets in the user’s sequential logic are corrected 
by the TMR scheme used in the CLB flip-flops. It is important to 
notice that for upset correction the scrubbing is performed 
continuously, to assure that only one upset has occurred between 
two reconfigurations in the design. Some constraints must be 
observed for the perfect functioning of the technique, same as 
TMR: there must not be upsets in more than one redundant 
module, including the state machine detection and voting circuit, 
consequently it is important to use some assigned area constraints 
to reduce the probability of short circuits between redundant 
module dr0 and dr1. The scrubbing rate should be fast enough to 
avoid accumulation of upsets in two different redundant blocks. 

Upsets in the detection and voting circuit do not interfere in 
the correct execution of the system, because the logic is already 
triplicated. In addition, upsets in the latches of this logic are not 
critical, as they are refreshed in each clock cycle.  Assuming a 
single upset per chip between scrubbing, if an upset alters the 
correct voting, it does not matter, as far as there is no upset in 
both redundant blocks. Upsets in the routing are also considered 
in this approach as far as there is no fault in the routing that can 
connect two signals from dr0 and dr1 modules. In order to assure 
that faults in the routing will not short cut signals from dr0 and 
dr1, it is necessary to use a dedicated placement for each module. 

In the proposed method, the area reduced by the design 
compared to the TMR is the area of one user’s combinational 
logic module and the number of inputs that is reduced from 3 
times to 2 times the original number. This technique can be used 
as an additional option for the TMR technique for designing 
reliable circuits in FPGAs with pads and power reduction. 
Because the combinational circuit is just duplicated, inputs and 
outputs can be duplicated instead of triplicated, as in the TMR 

approach. However, it is important to notice that the TMR inputs 
related to the user’s sequential logic used in the CLB flip-flops 
are not changed as triple clocks, reset, etc.  

In addition, the advantage of using this technique is not only 
focused in reducing the pin count and the number of CLBs, but 
also in other type of radiation effects such as total ionization dose 
as this method has the important characteristic of detecting 
permanent faults. So far, we have mentioned only SEUs that 
happen in the SRAM programmable cells that are permanent until 
the next reconfiguration. However, a circuit operating in the space 
environment can suffer from total ionization dose and other 
effects that can provoke permanent physical damages in the 
circuit. 

4. RESULTS 
The proposed DWC-CED technique for permanent fault 

detection was first validated by fault injection methodology in a 
prototype board using emulation. The fault injection system 
described in VHDL was specifically developed to test the 
proposed technique. Results were emulated in an AFX-PQ249-
110 board using a XCV300 part. Some area comparisons between 
the proposed approach and TMR were also performed using 
Xilinx implementation tools. We use multipliers as case studies.  

Fault injection in VHDL was used to characterize and 
validate the technique. The fault injection system is able to 
randomly choose the instant of insertion of the fault, the faulty 
node and the redundant module (mult_dr0 or mult_dr1). There is 
a reset fault signal that works as a scrubbing cleaning up the fault. 
The circuit chosen for this first evaluation was an 8x8 bits 
multiplier with a register in the output. In this way it was possible 
to inject a set of faults in each user’s combinational nodes of the 
example circuit (193 nodes in total) covering all time span of the 
clock cycle and to emulate the scrubbing between faults. The 
multiplier input vectors were also randomly generated. The faults 
are injected in a SRAM cell located in the fault node and its effect 
is permanent until the chip reconfiguration (scrubbing). Fault 
injection results show the reliability of the presented method.  

The fault coverage was exhaustively measured by exercising 
all possible combination of vectors and faults inside the 
multipliers. For an 8-bit multiplier, there are 216 (combination of 
vectors) x 193 (nodes) x 2 (type of faults, stuck at 0 and stuck at 
1) combinations of faults that where emulated in prototype board. 
The data has been analyzed by Chipscope Software [18]. Final 
results show that the implemented RESO method can detect and 
corrected on the fly 99.97% of the faults within one clock cycle 
delay before being captured by the register. 

Table 1 presents area results of 8x8 and 16x16 bits 
multipliers, implemented in the XCV300 FPGA using no fault 
tolerance technique, TMR technique and the proposed technique 
(DWC-CED for permanent faults). There are two versions of 
multipliers: one is synthesized with a register at the output and the 
other is pure combinational. Results show that according to the 
size of the combinational logic block, it is possible to not only to 
reduce the number of I/O pins but also area. Note that the 16x16 
bits multiplier protected by TMR could not be synthesized in the 
prototype board that uses a Virtex part with 240 I/O pins (196 
available for the user); while the same multiplier, implemented by 
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the proposed technique could fit in the chip, and also occupying 
less area.  

Table 1. Evaluation of pin count and area of the DWC-
CED technique implemented in a XCV300-PQ240 part. 

 No protection TMR DWC-CED 
Multipliers (reg) 8x8  16x16 8x8 16x16 8x8  16x16 

Total of I/O pads 34 66 108 204* 92 172 
Number of 4-LUTs 159 741 584 2285 534  1791 
Number of ffs 16 32 48 96 82 162 
Multipliers (no reg) 8x8  16x16 8x8 16x16 8x8  16x16 
Total of I/O pads 32 64 96 192 66 130 
Number of 4-LUTs 156 711 551 2159 425  1442  
Number of ffs 0 0 0 0 34 66 

* I/O pins were out of range, the part XCV300-BG432 was used. 
According to the user’s application requirements, the 

designer will be able to choose between a full hardware 
redundancy implementation (TMR) or a mixed solution, where 
time redundancy is combined with hardware redundancy to 
reduce pins and power dissipation in the interface. It is possible to 
use DMR and time redundancy only in the interface of the FPGA, 
in this way reducing pins. DMR and time redundancy can also be 
used in the design to reduce not only number of I/O pads, but also 
area for large combinational circuits as presented in table 1. 

5. CONCLUSIONS 
This work presented a new technique for upset detection and 
voting that combines duplication with comparison (DWC) with 
concurrent error detection (CED) based on time redundancy for 
the user’s combinational logic in SRAM-based FPGAs. This 
technique reduces the number of input and output pins of the 
user’s combinational logic. In addition, it can also reduce area 
when large combinational blocks are used.  The proposed 
approach was validated by fault injection experiment in a Virtex 
prototype board using emulation. A large number of upsets were 
randomly inserted in the user’s combinational logic nodes to 
emulate faults in the logic. The fault injection procedure was 
developed in VHDL and it represents the effect of a SEU in a 
SRAM-based FPGA, where it has a transient effect followed by a 
permanent effect. Experiments in 8x8 bits multiplier has shown 
that 100% of the faults can be detected and all of them can be 
voted on the fly before being captured by a CLB flip-flop. 
Ongoing work includes performing additional fault injection 
evaluation in more complex circuits such as larger multipliers, 
filters and to study the applicability of this method for other cores 
such as microprocessors.  
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