Online Supplement for

Designing Fee Tables for Retail Delivery Services by Third-party Logistics Providers

by

Anantaram Balakrishnan

McCombs School of Business University of Texas at Austin, Austin, TX anantb@utexas.edu

Harihara Prasad Natarajan

School of Business Administration University of Miami, Coral Gables, FL hari@miami.edu

Validity of inequalities

Proof of Proposition 1 (*cumulative range width forcing constraints*)

Constraint (19) is valid: If the [FTD] solution does not select a range k that spans intervals j_1 through j and ends at interval j, then $\sum_{j' \le j_1} X_{j',j}^k = 0$, and constraint (19) follows from the non-negativity of the range selection variables. If $\sum_{j' \le j_1} X_{j',j}^k = 1$, then the width of range k is at least $(d_j - d_{j_i-1})$. In this case, the [FTD] must choose a range k + 1 beginning with interval j + 1 (to satisfy range contiguity constraints (3)) and have a width of at least $(d_j - d_{j_i-1})$ (from the increasing range width constraints (13));

consequently, the solution must select an ending interval j_3 for range k + 1 such that $(d_{j_3} - d_j) \ge (d_j - d_{j_1-1})$, implying (19).

The proof of the validity of constraints (20) follows a similar logic.

Proof of Proposition 3 (block-based variable lower bound constraints)

Constraint (22) *is valid*: Suppose the [*FTD*] solution selects some ending interval $j' \ge j$ for the distance range that includes interval j (from (2) and (3), we know that interval j must belong to exactly one of the *K* distance ranges). Similarly, suppose weight interval $i' \ge i$ is the ending interval for a range that spans weight interval i. In this case, the fee lower bound constraints (9) and the range-to-fee linkage constraints (4) and (7)ensure that P_{ijt} must be at least as much as the highest lower bound $(l_{ij't})$ in the block containing cell <i, j>, and constraint (22) follows. A similar argument establishes constraint (23).

Proof of Proposition 4 (block-based variable upper bound constraints)

Constraint (25) is valid: Suppose the [*FTD*] solution selects some starting interval $j' \le j$ for the distance range that includes interval j. Similarly, suppose weight interval $i' \le i$ is the starting interval for a range that spans weight interval i. In this case, the fee upper bound constraints (9) and the range-to-fee linkage constraints (4) and (7) ensure that P_{ijt} is no more than the lowest upper bound $u_{ij't}$ of the block containing cell <i, j> and constraint (25) follows. A similar argument establishes constraint (26).

Proof of Proposition 5 (fee difference forcing constraints)

Constraint (27) *is valid*: Consider an [*FTD*] solution that includes both distance interval *j* and *j* + 1 in the same distance range. In this case, $\sum_{k,j_1 \leq j} X_{j_1,j}^k = 0$ and constraints (27) follow from the range-to-fee linkage constraints in [*FTD*]. If not and if the solution chooses weight range Z_{i_1,i_2}^h to span weight interval *i* (i.e., $i_1 \leq i \leq i_2$), then the RHS evaluates to $(u_{i_1,j+l,t} - l_{i_2,j,t})$ which is valid because cells $(i_1, j+1), (i_2, j), (i, j),$ and (i, j+1) belong to the same fee block. Similarly, starting from the weight ranges and then integrating the distance range selections, we can show the validity of constraint (28).

Proof of Proposition 6 (block selection forcing constraints)

Constraint (29) *is valid*: If the intervals j_1 and j_2 belong to *different* distance ranges, the RHS of constraint (29) is zero and the constraint follows from the non-negativity of the weight range selection variables. If j_1 and j_2 belong to the same range, then the RHS of the constraint is one. Consider all of the eligible weight ranges that span weight interval *i*. The weight range selection constraints (5) and (6) ensure that the sum of all the weight ranges that span any interval *i* is one. If the solution selects $i_1 \le i \le i_2$ with $u_{i_1,j_1,i} < l_{i_2,j_2,i}$ for any *t*, then the fee value for the block containing cell <i, j> cannot simultaneously satisfy its lower and upper bounds. Therefore, the LHS of constraint (29) must be one in this case. We can establish the validity of constraint (30) following a similar argument.

Variable elimination rules

Proof of Proposition 2 (variable elimination rules)

First range. The first range must start with the first interval, therefore $j_1 = 1$. Next, the width of the first range must be the least of the range widths and as a result must be less than or equal to the average range width $(\frac{d_N}{K})$ of the subsequent K - 1 ranges that span a distance of $(d_N - d_{j_2})$. Finally, because each of the remaining K - 1 ranges must occupy at least one interval, $j_2 + (K - 1)$ must be less than or equal to N. *Middle range*. Because k - 1 ranges must have been completed with each occupying at least one interval, we know that $j_1 \ge k$. Analogously, the K - k ranges that follow range k must each cover at least one interval. Therefore, $j_2 + (K - k)$ must be less than or equal to N and part (b) follows. To see part (c), consider a distance range selection X_{j_1,j_2}^k that implies a width of $d_{j_2} - d_{j_{j-1}}$ for range k. In this case, the previous ranges, each with a width no greater than that of range k, can have a an average width of at most $\frac{d_{h-1}}{k-1}$, which range k's width must exceed and (c) follows. Next, each following range must have a width of at least $d_{j_2} - d_{j_{j-1}}$. Therefore, the average width $\frac{d_N - d_{j_2}}{K-k}$ of the K - k ranges that follow k must be greater than or equal to range k's width and (d) follows.

Last range. The last range must include the last interval N, therefore $j_2 = N$. Next, the previous K - 1 ranges must include at least one interval each; consequently, $j_1 \ge K$. Finally, the width $(d_N - d_{j_k})$ of the

last range must be at least as much as the average width $\frac{d_{j_1-1}}{K-1}$ of the previous K-1 ranges and (c) follows.