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Validity of inequalities 

Proof of Proposition 1 (cumulative range width forcing constraints) 
Constraint (19) is valid: If the [FTD] solution does not select a range k that spans intervals j1 through j 
and ends at interval j, then
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range selection variables.  If 
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1 1j jd d  .  In this case, 

the [FTD] must choose a range k + 1 beginning with interval j + 1 (to satisfy range contiguity constraints 
(3)) and have a width of at least  

1 1j jd d  (from the increasing range width constraints (13)); 

consequently, the solution must select an ending interval j3 for range k + 1 such that 
3 1 1( ) ( )j j j jd d d d    , 

implying (19). 
The proof of the validity of constraints (20) follows a similar logic. ■  
 
Proof of Proposition 3 (block-based variable lower bound constraints) 
Constraint (22) is valid: Suppose the [FTD] solution selects some ending interval j' ≥ j for the distance 
range that includes interval j (from (2) and (3), we know that interval j must belong to exactly one of the 
K distance ranges).  Similarly, suppose weight interval i' ≥ i is the ending interval for a range that spans 
weight interval i.  In this case, the fee lower bound constraints (9) and the range-to-fee linkage constraints 
(4) and (7)ensure that Pijt must be at least as much as the highest lower bound (li'j't) in the block containing 
cell <i, j>,and constraint (22) follows.  A similar argument establishes constraint (23). ■ 
 
Proof of Proposition 4 (block-based variable upper bound constraints) 
Constraint (25) is valid: Suppose the [FTD] solution selects some starting interval j' ≤ j for the distance 
range that includes interval j.  Similarly, suppose weight interval i' ≤ i is the starting interval for a range 
that spans weight interval i.  In this case, the fee upper bound constraints  (9) and the range-to-fee linkage 
constraints (4) and (7) ensure that Pijt is no more than the lowest upper bound ui'j't of the block containing 
cell <i, j> and constraint  (25) follows.  A similar argument establishes constraint (26).  ■ 
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Proof of Proposition 5 (fee difference forcing constraints) 
Constraint (27) is valid: Consider an [FTD] solution that includes both distance interval j and j + 1 in the 
same distance range.  In this case, 
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  and constraints (27) follow from the range-to-fee 

linkage constraints in [FTD].  If not and if the solution chooses weight range 
1 2,
h
i iZ  to span weight interval i 

(i.e., i1 ≤ i ≤ i2), then the RHS evaluates to 
1 2, 1, , ,( )i j t i j tu l   which is valid because cells (i1, j+1), (i2, j), (i, j), 

and (i, j+1) belong to the same fee block.  Similarly, starting from the weight ranges and then integrating 
the distance range selections, we can show the validity of constraint (28).  ■ 
 
Proof of Proposition 6 (block selection forcing constraints) 
Constraint (29) is valid: If the intervals j1 and j2 belong to different distance ranges, the RHS of constraint 
(29) is zero and the constraint follows from the non-negativity of the weight range selection variables.  If 
j1 and j2 belong to the same range, then the RHS of the constraint is one.  Consider all of the eligible 
weight ranges that span weight interval i.  The weight range selection constraints (5) and (6) ensure that 
the sum of all the weight ranges that span any interval i is one.  If the solution selects i1 ≤ i ≤ i2 with 

1 1 2 2, , , ,i j t i j tu l  for any t, then the fee value for the block containing cell <i, j> cannot simultaneously satisfy 

its lower and upper bounds.  Therefore, the LHS of constraint (29) must be one in this case.  We can 
establish the validity of constraint (30) following a similar argument. ■ 

 

Variable elimination rules 

Proof of Proposition 2 (variable elimination rules) 
First range.  The first range must start with the first interval, therefore j1 = 1.  Next, the width of the first 
range must be the least of the range widths and as a result must be less than or equal to the average range 
width ( Nd

K ) of the subsequent K – 1 ranges that span a distance of 
2

( )N jd d .  Finally, because each of the 

remaining K – 1 ranges must occupy at least one interval, j2 + (K – 1) must be less than or equal to N. 
Middle range.  Because k – 1 ranges must have been completed with each occupying at least one interval, 
we know that j1 ≥ k.  Analogously, the K – k ranges that follow range k must each cover at least one 
interval.  Therefore, j2 + (K – k) must be less than or equal to N and part (b) follows.  To see part (c), 
consider a distance range selection 
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2 1 1j jd d    for range k.  In this case, the 

previous ranges, each with a width no greater than that of range k, can have a an average width of at most 
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 , which range k’s width must exceed and (c) follows.  Next, each following range must have a width 

of at least
2 1 1j jd d  .  Therefore, the average width 2N jd d

K k


  of the K – k ranges that follow k must be greater 

than or equal to range k’s width and (d) follows. 
Last range.  The last range must include the last interval N, therefore j2 = N.  Next, the previous K – 1 
ranges must include at least one interval each; consequently, j1 ≥ K.  Finally, the width (

1N jd d ) of the 

last range must be at least as much as the average width 11
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  of the previous K – 1 ranges and (c) follows. 

 

 


