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Summary. When it is impractical to perform the experimental runs of a fractional factorial design
in a completely random order, restrictions on the randomization can be imposed. The resulting
design is said to have a split-plot, or nested, error structure. Similarly to fractional factorials, frac-
tional factorial split-plot designs can be ranked by using the aberration criterion.Techniques that
generate the required designs systematically presuppose unreplicated settings of the whole-
plot factors. We use a cheese-making experiment to demonstrate the practical relevance of
designs with replicated settings of these factors. We create such designs by splitting the whole
plots according to one or more subplot effects.We develop a systematic method to generate the
required designs and we use the method to create a table of designs that is likely to be useful
in practice.

Keywords: Bi-randomization; Blocking; Minimum aberration; Resolution; Restricted
randomization

1. Introduction

Two-level fractional factorial (FF) designs are often used to screen a large number of factors in
industrial settings. By varying each of the factors over the selected levels and performing exper-
imental trials or runs, experimenters can construct simple models that describe the process
sufficiently adequately to determine which of the factors are influential. Interest in FF designs
dates as far back as Yates (1937), Fisher (1942) and Finney (1943).
In some cases, for reasons involving cost, the nature of the process or the experimental venue,

it may be impractical to perform experimental runs in a completely randomorder. Thus, wemay
want to impose restrictions on the randomization. Such restrictions could also be imposed to
increase the precision of effect estimates for certain identified factors. The result is what is typi-
cally termed a split-plot structure and in this setting these designs are usually referred to as frac-
tional factorial split-plot (FFSP) designs (Kempthorne (1952), page 318; Box and Jones (1992)).
To aid practitioners, Addelman (1964) presented a catalogue of 36 two-level FFSP designs.

These are constructed by confounding interactions between subplot factors with whole plots.
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Addelman called this technique ‘split-plot confounding’. In his approach, a blocked design for
the subplot factors ismergedwith adesign forwhole-plot factors.However, the bestwayofmerg-
ing the respective subdesigns, and indeed the choice of these subdesigns, is not made explicit.
Bisgaard (2000) presented rules to calculate the defining relation in a split-plot design from the
defining relation of the respective subdesigns and the subplot effects confounded with whole
plots. The choice of the subdesigns and the confounded effects is, again, left open. Schoen (1999),
also dealing with split-plot confounding, gave more explicit guidelines for these practical issues.
None of the attempts by the aforementioned researchers suggest a systematic approach and

thus there is no guarantee that a design which is constructed by their methods is optimal in any
sense. A connection with optimality according to the aberration criterion (Fries and Hunter,
1980) was given by Huang et al. (1998) and Bingham and Sitter (1999, 2001). They also gave
algorithms to create minimum aberration (MA) FFSP designs. Loosely speaking, anMAFFSP
design collects as much information as possible about the process given the fractionation that
is used at the whole-plot level and the subplot level of the design (a more formal definition will
be given in what follows). Like FF experiments, one often selects the smallest MA FFSP design
that meets the experimental goals. However, unlike FF designs, FFSP designs have two sources
of error which are used to assess the significance of the effects. Thus, there are important issues
of estimation, precision and the identification of which factors are important that affect the
selection of a design and are unique to the split-plot situation. These issues are also considered
in the area of response surface methodology. We refer to Letsinger et al. (1996) and Goos and
Vandebroek (2001). Note that Letsinger et al. (1996) used the heading of bi-randomization to
refer to the nested error structure.
Despite the recent developments in FFSP designs, many practical issues await a solution.

One of these occurs when the existing techniques for creating designs require too many subplots
per whole plot, or too few whole plots. Indeed, the algorithms of Bingham and Sitter (1999) or
Huang et al. (1998) always give designs with unreplicated, and possibly fractional, subdesigns
for the whole-plot factors. This implies a limitation in the number of whole plots. Given the
total number of subplots in a design, the limitation could result in a number of subplots per
whole plot that is physically impossible to attain. Further, the analysis becomes quite difficult
when there are just a fewwhole plots. Thus, we sometimes prefer designs with replicated settings
of the whole-plot factors.
In this paper, we present a systematic method to split the whole plots of an FFSP design,

resulting in a decrease in the whole-plot size and an increase in the number of whole plots. The
algorithm of Bingham and Sitter (1999) is then extended to obtainMAFFSP designs with repli-
catedwhole plots.We should note that implicit in this paper is the assumption that all factors are
of equal interest. In some cases this is not so. For example, in robust parameter experiments the
control factor by noise factor interactions are of increased interest. In such cases the aberration
criterion as defined here needs to be altered depending on the specific experimental situation
and goals (seeWu andHamada (2000), chapter 10, Zhu (2000) and Bingham and Sitter (2003)).
In the next section, we shall discuss an example from the cheese-making industry and use it to

introduce the notation that is required for describing FFSP designs. In Section 3, we discuss the
splitting method and we present a table of useful designs. Section 4 gives an algorithm for the
systematic creation of the designs required. Section 5 presents a few related theoretical results.
We conclude with a brief discussion.

2. A cheese-making example

Consider the following example from the food production industry. In a cheese-making factory,
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there were problems with some quality characteristics of the cheeses being produced. The pro-
duction of cheeses consists of two stages. First, milk is processed into a batch of curds. These
curds are then processed into the resulting cheese.
Discussion between food technologists revealed nine factors that might be contributing to

the problems of quality; k1 =2 of these factors, denoted A and B, affected the treatment of the
milk in the first stage, whereas the remaining k2 =7 factors, denoted p, q, r, s, t, u and v, were
related to processing conditions to generate the curds from which the cheeses are made. It was
decided that a designed experiment should be run to investigate the effects of these factors on
the resulting quality of the cheeses being produced.
Each of the k1+k2 =9 factors were to be investigated at two levels. For confidentiality, details

on the factors themselves are omitted and the levels of the factors are referred to as the ‘+’ and
‘−’ levels for each factor. Because of the high cost of experimentation, it was impossible to
make cheeses at all the 29=512 possible factor level settings. There was sufficient budget in this
industrial setting for producing a total of 32 curds. To reduce the run size of the experiment one
could elect to perform a 2k−p FF design.
As milk in a single tank gives rise to several batches of curds, and as there are factors oper-

ating on the contents of a storage tank and on processing into curds, this was clearly an ideal
situation to run a split-plot experiment, i.e. to treat the milk in a tank under a randomly selected
setting of the factors A and B, termed whole-plot factors, and then to apply different randomly
selected settings of factors p–v, termed subplot factors, to produce a batch of curds.
In such a scenario, the factors affecting the treatment of the milk, whole-plot factors A

and B, when considered alone form a completely randomized design. In contrast, the second-
stage processing factors p–v when considered separately form a randomized block design. To
construct the design we assign p1 whole-plot factors and p2 subplot factors to interactions
involving the remaining factors, where p=p1 +p2. The design matrix for this experimental
set-up is identical to a 2k−p FF design, where k = k1 + k2 and p=p1 +p2, and is thus called
a 2k1+k2−.p1+p2/ FFSP design. Although an FFSP design matrix corresponds to an FF design
matrix, the randomization of the experiment is different.
The choice of factor level settings to be performed is determined by thep fractional generators.

For example, suppose that we chose to run the above experiment as a 22+7−.0+4/ design. To do
this, we must assign no whole-plot factors and four subplot factors to interactions involving the
remaining factors. A possible assignment of these factors is s=ABq, t =Apq, u=ABpr and
v=Aqr. In this case, the settings of factor s for each run are determined by the level combina-
tions of factors A, B and q, for example. Letting I be a column of +s, the fractional generators
for this design areABqs,Apqt,ABpru andAqrv, i.e. the words containing only one of the added
factors s, t, u and v. These four generators imply 11 other relations to form the defining contrast
subgroup,

I =ABqs=Apqt =Aqrv=Bpst =Brsv=prtv=pqrsu=qstuv=Arstu

=Apsuv=Bqrtu=Bpquv=ABpru=ABtuv=ABpqrstv: .1/

In this example, there is no fractionation of the whole-plot factors and thus all words in the
defining contrast subgroup contain subplot factors. In general, the whole-plot factors might be
fractionated. If so, the defining contrast subgroup would contain some words with only whole-
plot factors. In this paper, we shall restrict ourselves primarily to a discussion of cases with no
whole-plot fractionation, as this would be the most likely situation for replicated whole plots.
Words of different length in the defining contrast subgroup have different implications.Words

with only three factors cause main effects to be aliased with two-factor interactions. Similarly,
length 4 words alias main effects with three-factor interactions and two-factor interactions with
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two-factor interactions, whereas words of length 5 alias main effects with four-factor interac-
tions and two-factor interactions with three-factor interactions, and so on. In many situations,
empirical evidence suggests that interactions involving three or more factors are negligible. We
shall assume this to be so for the remainder of the paper. If there are only words of length 5 and
higher in the defining contrast subgroup, then all main effects and two-factor interactions are
aliased with negligible effects. Consequently, if we assume that all interactions involving three
or more factors are negligible, then the run size of the experiment may be reduced without any
loss of information on the main effects and two-factor interactions. In conclusion, designs with
as few short words as possible are preferred.
Let Ai.D/ denote the number of words of length i in the defining contrast subgroup of design

D and let

W = .A3.D/,A4.D/,A5.D/, . . . /

be the word length pattern of the design (words of length 1 or 2 imply designs which are not
useful). The resolution of a design is the length of the shortest word in the defining contrast
subgroup. So the above 22+7−.0+4/ FFSP design has resolution IV and word length pattern
W = .0, 6, 8, 0, 0, 1/:

Designs with larger resolution are typically said to be better than designs with smaller res-
olution. However, designs with equal resolution may have different word length patterns and
thereforewill not be the same.A refinement of the resolution criterion that distinguishes between
designs with equal resolution is the aberration criterion (Fries andHunter, 1980).When applied
to FFSP designs (Huang et al., 1998; Bingham and Sitter, 1999), the concept can be summarized
as follows.

Suppose that D1 and D2 are 2k1+k2−.p1+p2/ FFSP designs. If Ai.D1/=Ai.D2/ for i=3, . . . ,
r −1 and Ar.D1/ < Ar.D2/, we say that D1 has less aberration than D2. A design is said to
be MA if no other design has less aberration.

The aberration criterion provides a good general rule for comparing designs, particularly those
designs with equal resolution, if we wish to treat all factors and effects of the same order equally.
Ifwe have particular interest in a subset of effects, then someother ranking of designs is advisable
(see Bingham and Sitter (2003), where they consider robust parameter design).
The design in expression (1) is one of three non-isomorphicMA22+7−.0+4/ FFSP designs that

were given in Bingham and Sitter (2001). Note that this FFSP design allows whole-plot factors
in the subplot fractional generators (Kempthorne (1952), page 318). However, the converse is
not allowable. If subplot factors appear in whole-plot generators the split-plot nature of the
design is destroyed. Generally, using whole-plot factors in the subplot fractional generators is
useful as it allows us to reduce the aberration. We should also note that in this case the MA
FFSP design matrix is the same as the MA 29−4 FF design matrix, i.e. it is possible in this case
to use the MA FF and to run it as a split plot with four whole-plot runs and eight subplot runs
within each whole plot. The method for obtaining MA FFSP designs in Huang et al. (1998)
involved taking the MA FF and attempting to split it for various split-plot situations. If this is
possible the resulting FFSP will be MA. This is not always possible as some MA FF designs
cannot be split in certain ways (Bingham and Sitter, 1999).
In the cheese-making experiment there are just two whole-plot factors and thus it is natural

to consider the above arrangement in four whole plots of eight subplots each. This is in fact
the recommendation if we obtain an MA design from Table 4 of Bingham and Sitter (2001).
Such a design was not used, however. Firstly, a single supply of milk cannot yield eight curds.
Secondly, even if this were possible, as we shall discuss in what follows, an unreplicated design
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with only four whole plots would give insufficient information (too few degrees of freedom) to
separate active whole-plot effects from inactive effects. This is because the whole-plot effects
must be evaluated separately from subplot effects, in view of the different standard errors that
are required for the evaluation. If the evaluation involves half-normal (or normal) plotting of
effects, separate plots are to be made for the respective sets of effects (Daniel, 1959; Box and
Jones, 1992; Bingham and Sitter, 2001). The problem that is encountered if there are few whole
plots is that a half-normal (or normal) plot has too few effects to be useful. Aminimum of seven
is highly recommended (Schoen, 1999). This would also be true of other more sophisticated
analysis methods (Schoen and Kaul, 2000; Loeppky and Sitter, 2002).
This reasoning leaves us with options for eight whole plots and for 16 whole plots respectively.

The latter, however, would require more time, because the batches of milk can only be handled
one after another. Thus, the eight-whole-plot option was settled on, in part for operational and
cost reasons and in part to ensure enough degrees of freedom at the whole-plot level of the
design to separate active from inactive whole-plot effects.

3. Splitting a 2k1Ck2�(0Cp2) fractional factorial split plot into 2k1Cr whole plots

The eventual design that was used for the cheese-making experiment was adapted ad hoc from
the MA 29−4 FF design (Chen et al., 1993) by using an approach that was similar to that of
Huang et al. (1998). The defining relation is identical to that given in expression (1). Thus, in
this case the MA FF can be run in 4=2k1 as well as in 8=2k1+1 whole plots.
To understand how this can be so, let us look carefully at the design matrix that was used

for the cheese-making experiment that is displayed in Table 1. The second to sixth columns are
the independent columns whose rows represent all 32 possible level settings of five two-level
factors. Factors A, B, p, q and r (termed basic factors) are assigned to these and then factors s,
t, u and v (termed added factors) are assigned to interactions between these columns obtained
through componentwise multiplication. This is what determines the aliasing relationships that
are implied by the defining contrast subgroup in expression (1).
If the experiment were to be run as a completely randomized FF design, then the second to

10th columns of Table 1 would represent the 32 level settings to be run and these would be run
in random order. If we wished to run the design as a split plot with four whole plots and eight
subplots, we would randomly choose one of the four possible settings of whole-plot factors A

and B, .−,−/, .−,+/, .+,−/ and .+,+/, fix this setting and keep it fixed while performing the
eight factor level settings of the subplot factors p–v indicated at that fixed setting of A and B.
If columns A and B are used to define the whole plots, then the AB-interaction column also

is at the whole-plot level of the randomization since if A and B are held fixed then AB is fixed.
In this design, the defining contrast subgroup in expression (1) implies the alias relation

AB=qs=Bpqt =Bqrv=Apst =Arsv=ABprtv=ABpqrsu

=ABqstuv=Brstu=Bpsuv=Aqrtu=Apquv=pru= tuv=pqrstv,

so that these interactions are all moved to the whole-plot level of the design. In this case, the
only effects of interest from this group are AB=qs.
One way to run the design matrix in Table 1 in 8=2k1+1 whole plots each containing four

subplot runs is to use the settings of A, B and the Apqr column to split the design, i.e. we
randomly choose one of the eight possible combinations of settings in these three columns, and
then, while holding this fixed, randomly perform the four runs so indicated. By so running the
experiment, effects A, B, Apqr, AB, pqr, ABpqr and Bpqr and all effects aliased with them
would all now be at the whole-plot level of the design. Of the effects of interest, this would
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Table 1. Cheese-making experimental design matrix

Settings A B p q r s t u v Apqr y

1 − − − − − − − + − + y1
2 + − − − − + + − + − y2
3 − + − − − + − − − + y3
4 + + − − − − + + + − y4
5 − − + − − − + − − − y5
6 + − + − − + − + + + y6
7 − + + − − + + + − − y7
8 + + + − − − − − + + y8
9 − − − + − + + + + − y9
10 + − − + − − − − − + y10
11 − + − + − − + − + − y11
12 + + − + − + − + − + y12
13 − − + + − + − − + + y13
14 + − + + − − + + − − y14
15 − + + + − − − + + + y15
16 + + + + − + + − − − y16
17 − − − − + − − − + − y17
18 + − − − + + + + − + y18
19 − + − − + + − + + − y19
20 + + − − + − + − − + y20
21 − − + − + − + + + + y21
22 + − + − + + − − − − y22
23 − + + − + + + − + + y23
24 + + + − + − − + − − y24
25 − − − + + + + − − + y25
26 + − − + + − − + + − y26
27 − + − + + − + + − + y27
28 + + − + + + − − + − y28
29 − − + + + + − + − − y29
30 + − + + + − + − + + y30
31 − + + + + − − − − − y31
32 + + + + + + + + + + y32

imply that A, B, AB =qs, pv= rt, qu and su would all be at the whole-plot level of the design.
However, since none of the subplot main effects p–v have moved, the design maintains the
desired split-plot structure.
The reason why an FF design could not be run in a desired split-plot mode revolves around

the aliasing structure that is implied in the defining contrast subgroup, or around the additional
effects that are chosen to define the whole plots. If AB would be aliased with a main effect,
the above design could not be run in four whole pots without raising that main effect to the
whole-plot level of randomization. Thus, the split-plot structure would be destroyed. This will
remain so even if the subplot factor is only aliased with a higher order whole-plot interaction
that has been assumed negligible. If we would choose A, B and ABp to define whole plots, then
main effect p would be raised to the whole-plot level, and the split-plot structure, again, would
be destroyed.
In the cheese-making experiment, there are eight subplot treatments for each of the four pos-

sible level settings for the whole-plot factors A and B. Because it was desirable to perform only
four of the eight subplot treatments with the whole-plot factors fixed, we must decide which
four subplot treatments to group together. This was done by using the Apqr-interaction, i.e. the
subplot treatments, for fixed whole-plot level settings, were divided into two groups based on
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the sign of the Apqr-interaction. This amounts to blocking the subplot treatments within each
fixed whole-plot level setting.
More formally, a splitting factor ρ can be used to assign subplot treatments into two groups

to be run together for fixed whole-plot level settings. In the previous example, the splitting gen-
erator I =Apqrρ can be crossed with an FFSP’s defining contrast subgroup, and those effects
that are aliased with whole-plot main effects, ρ, interactions involving only whole-plot factors
or interactions involving whole-plot main effects and ρ are moved to the whole-plot level of the
design.
In general, if we wish to split the subplot treatments, for each fixed whole-plot level setting,

into 2r groups, then r splitting factors are required. In this case, the splitting generators, which
are similar to blocking generators in blocked FF designs (for example, see Bisgaard (1994)
and Sitter et al. (1997)), have an associated defining contrast subgroup. The defining contrast
subgroup of the FFSP design is used to identify which effects are aliased. The combined defin-
ing contrast subgroup of the FFSP design and the splitting generators identifies which effects
are tested at the whole-plot and subplot levels respectively. In what follows, we shall introduce
and discuss a systematic method for using splitting factors to obtain MA FFSP designs with
more whole-plot runs than the number of possible whole-plot factor settings. Before doing so,
however, we use the method to generate some useful designs.
Table 2 lists MA 2k1+k2−.0+p2/ FFSP designs with 2k1+r whole-plot runs denoted k1:k2:r:p2

for 88 16-, 32- and 64-run cases of interest. Note that large FFSP designs are more commonly
used than large FF designs because the cost of the experiment is often driven primarily by the
number of whole plots and less so by the total number of runs (see Bingham and Sitter (2001) for
further discussion). We use a similar representation to that used by Bingham and Sitter (1999)
(see also Chen et al. (1993) and Sitter et al. (1997)). For each run size–number of whole-plot run
combination, we arrange the columns in Yates order as given in Table 3 with the independent
columns in bold italics. To illustrate, consider the cheese-making experiment which has k1 =2
whole-plot factors and k2 =7 subplot factors, and the experimenter wished to use a 32-run
design with eight whole plots and four subplots within each whole plot, i.e. a 22+7−.0+4/ FFSP
design in 22+1 whole plots: design 2:7:1:4 in Table 2. In this 32-run case (i.e. 32= 25) only the
first five rows of Table 3 are used. The first two rows are labelled by the whole-plot factors A

and B, whereas the third to fifth rows are labelled by the basic subplot factors p, q and r. From
entry 2:7:1:4 in Table 2, we see that the MA design assigns the splitting factor ρ to column 29
of Table 3 and added subplot factors s, t, u and v to columns 11, 13, 23 and 25 respectively.
Since column 29 has 1s in rows A, p, q and r, ρ= Apqr. Similarly, there are 1s in rows A, B

and q of column 11, so s=ABq, and so on with the other added factors. It follows that the MA
FFSP that is so obtained is exactly the design that was used in the cheese-making experiment.
For brevity, Table 2 is not comprehensive. We did not include designs which were equivalent in
terms of the MA but were still not isomorphic.
Addelman (1964) gave a catalogue of 36 designs. If we compare this catalogue with the 88

designs in Table 2 only two common cases are considered, both with 64 runs in 16 whole plots
and four subplots: designs 3.4.1.1 and 3.5.1.2.
In the second case (3.5.1.2), Addelman recommended the same design as in Table 2. In the

first case (3.4.1.1), Addelman’s design has defining contrast subgroup

I =ABCrs=ρpqr =ρABCpqs,

whereas the design that is given in Table 2 has defining contrast subgroup

I =ABCpqrs=ρABpq=ρCrs:
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Table 2. MA FFSP designs using splitting factors to create additional whole plots

Design† Splitting columns Subplot columns Word length pattern

16-run designs with 8 whole plots and 2 subplots
1.4.2.1 6 10 15 0 0 1
1.5.2.2 6 10 3 15 1 1 1
1.6.2.3 6 10 3 5 14 2 3 2
1.7.2.4 6 10 3 5 9 14 3 7 4 0 1
1.8.2.5 6 10 3 5 9 14 15 4 14 8 0 4 1
2.3.1.1 12 7 0 1
2.4.1.2 12 7 11 0 3
2.5.1.3 12 5 6 11 2 3 2
2.6.1.4 12 5 6 9 10 4 5 4 2
2.7.1.5 12 5 6 7 9 10 6 10 8 4 2 1
2.8.1.6 12 5 6 7 9 10 11 8 18 16 8 8 5

32-run designs with 8 whole plots and 4 subplots
1.5.2.1 10 18 31 0 0 0 1
1.6.2.2 10 18 15 30 0 1 2
1.7.2.3 10 18 13 23 30 0 3 4
1.8.2.4 10 18 15 21 27 28 0 6 8 0 0 1
1.9.2.5 10 18 13 14 23 28 29 0 10 16 0 0 5
1.10.2.6 10 18 13 14 21 22 26 31 0 25 0 27 0 10 0 1
1.11.2.7 10 18 13 14 21 22 26 28 31 0 38 0 52 0 33 0 4
1.12.2.8 10 18 7 13 14 21 22 26 28 31 0 55 0 96 0 87 0 16 0 1
1.13.2.9 6 24 3 5 9 14 15 17 22 26 28 5 55 45 96 106 87 82 16 17 1 1
1.14.2.10 6 24 3 5 9 14 15 17 22 23 26 28 6 77 62 168 188 203 188 56 62 7 6
2.4.1.1 20 31 0 0 0 1
2.5.1.2 20 25 30 0 1 2
2.6.1.3 20 15 21 27 0 3 4
2.7.1.4 20 15 21 22 27 0 6 8 0 0 1
2.8.1.5 20 7 11 19 29 30 0 10 16 0 0 5
2.9.1.6 20 7 13 19 21 22 26 0 25 0 27 0 10 0 1
2.10.1.7 20 11 13 19 21 22 25 26 0 38 0 52 0 33 0 4
2.11.1.8 28 7 11 13 14 19 21 22 25 0 55 0 96 0 87 0 16 0 1
2.12.1.9 28 7 11 13 14 19 21 22 25 26 0 77 0 168 0 203 0 56 0 7
2.13.1.10 28 5 6 11 12 15 19 20 23 25 26 6 77 62 168 188 203 188 56 62 7 6

32-run designs with 16 whole-plots and 2 subplots
1.5.3.1 3 5 9 31 0 0 0 1
1.6.3.2 3 5 9 7 27 0 1 2
1.7.3.3 6 10 18 14 22 27 0 3 4
1.8.3.4 6 10 18 14 22 27 29 0 6 8 0 0 1
1.9.3.5 13 14 21 7 11 19 29 30 0 10 16 0 0 5
1.10.3.6 3 5 9 7 11 13 19 21 25 0 25 0 27 0 10 0 1
1.11.3.7 15 23 27 7 11 13 14 19 21 25 0 38 0 52 0 33 0 4
1.12.3.8 15 23 27 7 11 13 14 19 21 22 25 0 55 0 96 0 87 0 16 0 1
1.13.3.9 15 23 27 7 13 14 19 22 25 26 30 31 0 77 0 168 0 203 0 56 0 7
1.14.3.10 6 10 18 9 14 15 17 22 23 26 27 28 29 6 77 62 168 188 203188 56 62 7 6
2.4.2.1 12 20 31 0 0 0 1
2.5.2.2 12 20 11 29 0 1 2
2.6.2.3 12 20 11 19 29 0 3 4
2.7.2.4 12 22 7 11 19 29 0 6 8 0 0 1

(continued)
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Table 2 (continued )

Design† Splitting columns Subplot columns Word length pattern

2.8.2.5 12 20 7 11 19 29 30 0 10 16 0 0 5
2.9.2.6 12 20 7 11 19 29 30 31 2 14 22 8 6 9 2
2.10.2.7 12 20 5 7 9 10 18 19 31 4 20 32 22 20 19 8 2
2.11.2.8 12 20 5 6 9 10 17 18 28 31 6 29 46 46 50 41 26 10 0 1
2.12.2.9 12 20 5 6 9 10 17 18 19 30 31 8 42 64 85 112 85 64 42 8 0 0 1
2.13.2.10 12 24 5 6 7 9 11 17 18 29 30 31 10 60 90 141 212 193 164 98 34 18 2 1
3.3.1.1 24 15 0 0 1
3.4.1.2 24 11 23 0 1 2
3.5.1.3 24 11 13 23 0 3 4
3.6.1.4 24 11 13 14 23 0 7 7 0 0 0 1
3.7.1.5 24 11 13 14 19 21 0 16 0 12 0 3
3.8.1.6 24 11 13 14 19 21 22 0 26 0 24 0 13
3.9.1.7 24 9 10 12 15 19 21 22 3 26 22 24 28 13 10 0 1
3.10.1.8 24 9 10 13 15 19 20 21 22 6 28 51 42 42 51 28 6 0 0 1
3.11.1.9 24 9 10 12 15 17 18 21 22 23 9 37 73 84 94 103 70 28 9 3 1
3.12.1.10 24 9 10 11 12 15 17 18 21 22 23 12 51 102 144 192 207 164 96 36 13 6

64-run designs with 16 whole plots and 4 subplots
1.6.3.1 6 10 48 63 0 0 0 0 1
1.7.3.2 6 10 48 15 51 0 0 2 1
1.8.3.3 6 10 18 14 27 54 0 1 4 2
1.9.3.4 6 10 18 14 23 43 54 0 2 8 4 0 1
1.10.3.5 6 10 18 14 22 27 39 58 0 4 14 8 0 3 2
1.11.3.6 6 10 18 14 22 27 39 58 61 0 6 24 16 0 9 8
1.12.3.7 6 10 48 15 23 25 38 42 52 56 0 14 28 24 24 17 12 8
1.13.3.8 40 54 58 15 29 35 38 42 49 52 56 0 22 40 36 56 49 24 20 8
1.14.3.9 40 54 58 15 29 35 38 42 49 52 56 63 0 30 60 60 105 105 60 60 30 0 0 0 1
2.5.2.1 28 44 63 0 0 0 0 1
2.6.2.2 44 52 15 51 0 0 2 1
2.7.2.3 12 56 7 27 45 0 1 4 2
2.8.2.4 28 56 7 27 43 53 0 2 8 4 0 1
2.9.2.5 24 36 7 11 29 45 51 0 4 14 8 0 3 2
2.10.2.6 20 36 15 28 44 53 54 59 0 6 24 16 0 9 8
2.11.2.7 12 20 19 29 30 35 44 52 59 0 14 28 24 24 17 12 8
2.12.2.8 52 56 7 11 19 30 37 41 49 60 0 22 40 36 56 49 24 20 8
2.13.2.9 52 56 7 11 19 30 37 41 49 60 63 0 30 60 60 105 105 60 60 30 0 0 0 1
3.4.1.1 27 63 0 0 0 0 1
3.5.1.2 61 15 45 0 0 2 1
3.6.1.3 52 27 45 56 0 1 4 2
3.7.1.4 48 27 29 46 56 0 2 8 4 0 1
3.8.1.5 54 11 13 23 39 57 0 4 14 8 0 3 2
3.9.1.6 48 11 13 23 39 57 62 0 6 24 16 0 9 8
3.10.1.7 24 11 13 19 21 42 54 60 0 14 28 24 24 17 12 8
3.11.1.8 56 23 25 26 28 39 41 42 44 0 22 40 36 56 49 24 20 8
3.12.1.9 48 23 25 26 28 39 41 42 44 63 0 30 60 60 105 105 60 60 30 0 0 0 1

†a:b:c:d denotes a design with a whole-plot factors, b subplot factors, c splitting factors and d subplot fractional
generators.
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Table 3. Matrix for 16-, 32- and 64-run designs†

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

†The independent columns are in bold italics and numbered 1, 2, 4, 8, 16 and 32. The 16-run designs use the first
four rows, the 32-run designs use the first five rows and the 64-run designs use all six rows.

It is clear from the first word of each design that the design in Table 2 has smaller aberration.
However, ifwe truly believe that three-factor interactions are negligible and canbe ignored,Add-
elman’s design canbe viewedas being superior in this case.To see this, note that bothdesigns have
resolution greater than 5 and thus have all main effects and two-factor interactions estimable
assuming that three-factor interactions and higher are negligible. Addelman’s design has only
one subplot two-factor interaction at the whole-plot level, whereas the design in Table 2 has two.
This illustrates thatno single criterion, includingMA, is thebest for every experimental situation.
As a final point, note that the splitting columns in Table 2 form a group. By this virtue, they

could also be used to block the whole plots of the corresponding designs. However, this would
result in a loss of degrees of freedom for thewhole-plot effects. Also, as the blocking is performed
according to effects involving subplot basic factors, losing these effects could be unattractive.
Clearly, further study is required to develop this issue more comprehensively.

4. A systematic method for generating designs

In this section we describe the proposed systematic method in detail for the general situation
where the experimenter desires more whole plots than the number of whole-plot factor level
combinations, 2k1 , i.e. where it is desirable to replicate the whole-plot settings.

4.1. The procedure
It turns out that we can construct such designs by using a very simple method in combination
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with the algorithm of Bingham and Sitter (1999), which efficiently finds all non-isomorphic
FFSP designs given a particular split and fractionation, 2k1+k2−.p1+p2/. We state the method as
it would be applied to the situation where we wish to find the MA 2k1+k2−.0+p2/ FFSP design
run in 2k1+r whole plots, denoted 2k1+[k2+r]−.0+[p2+r]/, with the r emphasizing that the r splitting
factors are initially treated as additional subplot factors.

Step 1: let ρ1, :::,ρr be splitting factors that are used for construction but which will have no
factors assigned to them when running the experiment.
Step 2: use the algorithm of Bingham and Sitter (1999) to obtain the set of non-isomorphic
2k1+[k2+r]−.0+[p2+r]/ FFSP designs. Do this by treating the r splitting factors as if they were
additional subplot factors at this point. In this setting, two designs are isomorphic if one
can be obtained from the other by relabelling between whole-plot factors, between subplot
factors and between splitting factors.
Step 3: remove designs which do not have the correct split-plot structure by eliminating all
designs with at least one word in the defining contrast subgroup that contains only one sub-
plot factor and all designs containing words with only splitting factors. The term subplot
factor does not include the splitting factors here.
Step 4: reduce the defining contrast subgroups to reflect the fact that the splitting factors
only indicate the randomization structure and are not true factors by eliminating all words
containing splitting factors from the defining contrast subgroup of the remaining set of non-
isomorphic designs and choosing those with least aberration.

When actually running the experimentwe treat the splitting factor columns aswhole-plot factors
for the purposes of randomization only.
This procedure is general and applies to designs with one or more splitting generators. To

elaborate on the need to avoid words with only splitting factors, consider the case where r =2,
i.e. there are two splitting generators. Suppose that ρ1 =pq and ρ2 =pr, or equivalently I =
pqρ1 =prρ2. These relationships imply a third (I =qrρ1ρ2) and thus the splitting generators
have an associated defining contrast subgroup of their own. If we wanted to add a third splitting
generator, we could not select I =qrρ3 because this would imply that ρ3=ρ2ρ1 and the desired
split would not occur.

4.2. A simple illustrating example
Suppose that we wish to run a 21+3−.0+1/ FFSP in four whole-plot runs. We let A denote the
whole-plot factor,p, q and r the subplot factors and ρ the splitting factor and use the search table
algorithm of Bingham and Sitter (1999) to obtain the four non-isomorphic 21+[3+1]−.0+[1+1]/ =
21+4−.0+2/ FFSP designs (i.e. steps 1 and 2): design D1,

I =Apr =Aqρ=pqrρ;

design D2,

I =Apr =pqρ=Aqrρ;

design D3,

I =pqr =Apρ=Aqrρ;

design D4,

I =Apqr =Apρ=qrρ:
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Table 4. MA 21C3�.0C1/ FFSP run in four whole plots

Whole-plot Subplot run A=pr ρ=pq Aρ=qr q Aq p=Ar r =Ap
run

1 1 − − + − + + −
2 − − + + − − +

2 1 + − − − − + +
2 + − − + + − −

3 1 − + − − + − +
2 − + − + − + −

4 1 + + + − − − −
2 + + + + + + +

Designs D2, D3 and D4 would be considered isomorphic if p, q, r and ρ were treated equally.
This illustrates the point that was made in step 2 that isomorphism is assessed by relabelling
within the three types of factors, whole plot, subplot and splitting. So designs D2, D3 and D4
differ in the placement of the splitting factor ρ. The ρ-column splits each subplot into two. Since
ρ is not a real factor, when considering aberration and resolution words containing ρ do not
count. However, ρ identifies which effects are moved to the whole-plot level of the design. So,
any effect which is aliased with ρ or with an interaction involving whole-plot factors and/or ρ
are tested against whole-plot error. This is the reason for step 3 in the method. We must remove
any design with defining contrast subgroup having a word with only a single subplot factor.
We see that designs D1, D3 and D4 all fall into this category. For example, in D1,q = Aρ and
thus q does not vary if the levels of factor A and splitting factor ρ are held fixed, i.e. q is moved
to the whole-plot level of the design. Thus, the MA FFSP design under the stated restrictions
is D2.
Consider design D2 carefully. It is an eight-run design which is run in four whole plots as

depicted in Table 4. In Table 4, we have kept only main effects, two-factor interactions and
the splitting factor. We see that the splitting factor ρ is used together with A to determine the
whole-plot structure. We can also see that pr, pq and qr are all at the whole-plot level of the
design, since they are aliased with A, ρ and Aρ respectively.

4.3. The cheese-making experiment revisited
Now let us reconsider the cheese-making experiment by applying the algorithm to this situa-
tion. To do so, we run the algorithm of Bingham and Sitter (1999) on the case 22+[7+1]−.0+[4+1]/

to obtain all non-isomorphic designs with the extended definition of isomorphism in steps 2
and 3. Ranking the non-isomorphic split FFSP designs in terms of the aberration of the frac-
tional factorial portion of the design yielded seven non-isomorphic MA designs. The designs
are listed in Table 5. Indeed, the seven designs can be viewed as splitting the whole-plot runs for
two of the three MA 22+7−.0+4/ designs in Bingham and Sitter (2001). In the next section we
shall demonstrate that the third design cannot be split and thus was discarded in step 3 of the
algorithm.
Consider the extended aberration criterion of Bingham and Sitter (2000) which ranks designs

with fewer subplot-by-subplot two-factor interactions at thewhole-plot level as better. The num-
bers of these two-factor interactions associated with the designs in Table 5 vary in conjunction
with the fractional generators; they do not vary with the splitting generators that are used for
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Table 5. MA 22C7�.0C4/ FFSP run in eight whole plots

Fractional generators Split generator Number of subplot 2-factor
interactions with whole-plot error

ABqs, Apqt, ABpru, Aqrv Apqrρ 5
ABqs, Apqt, ABpru, Aqrv Bpqrρ 5
ABqs, Apqt, ABpru, Aqrv ABpqrρ 5
ABqs, Apqt, ABpru, Aqrv pqrρ 5
ABps, ABqt, ABru, Apqrv pqρ 9
ABps, ABqt, ABru, Apqrv Apqρ 9
ABps, ABqt, ABru, Apqrv ABpqρ 9

each of the two fractional generators. By choosing the first design in Table 5, the experimenters
used an MA design with the fewest two-factor interactions tested at the whole-plot level. It is
MA and has the fewest two-factor interactions tested as whole-plot effects, i.e. extended MA.
The selection of the design for the cheese-making experiment raises an interesting issue with

respect to the true number of different split FFSP designs. In this example, there are seven
non-isomorphic designs for the experimenter to choose from. The practical issue facing the
experimenter is to select the best extended MA design. The first four designs in Table 5 are the
non-isomorphic extended MA designs. But are they different?
The short answer to this question is no. To see why, we first note that the defining contrast

subgroups for the fractional generators of the first four designs are the same. The only dis-
tinguishing feature between the designs is the splitting generators. The effect of the splitting
generator is to move two-factor interactions between subplot factors only, to the whole-plot
level of the design. Therefore, whether the two-factor interaction is aliased with ρ or Aρ is
not relevant. Thus, the generalized interaction between the subplot factors is the only real dis-
tinguishing feature. The simplicity of this argument is a direct consequence of assuming that
interactions involving three or more factors are negligible.

5. Some theoretical results

This section presents two theoretical results to help to discover cases where an FFSP design
cannot be split. These cases precisely motivate the algorithm proposed. Our first result states a
simple case where this can occur for r =1. This is presented for illustration. Result 2 generalizes
the result to r �1.

Result 1. If all generalized interactions between basic subplot factors appear in the generators
of the FFSP design the design cannot be run in 2k1+1 whole plots (i.e. r =1) without destroying
the original split-plot structure.

For a proof of this result see Appendix A.
To see an example of this, let us again reconsider the cheese-making experiment. The exper-

imenters wished to run a 22+[7+1]−.0+[4+1]/ FFSP design. There are three non-isomorphic
22+7−.0+4/ FFSP designs (Bingham and Sitter, 2001). The algorithm of the previous section
yielded non-isomorphic splits of two of these (Table 5). Interestingly, the best 22+7−.0+4/ de-
sign, according to the extended aberration criterion, could not be split and was discarded in
step 3 of the algorithm. The design which was actually used, as given in expression (1), is a split
of the second best design. The best 22+7−.0+4/ design has generators Apqs, Aprt, ABqru and
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Bpqrv. We see then that all four possible generalized interactions, pq, pr, qr and pqr, appear
in a generator and result 1 applies. To illustrate, suppose that we try to split the whole plots
by using, say, I =Bpqρ. The product of the split generator and the first fractional generator
is I =ABsρ. Thus s is aliased with ABρ and is constant within whole plots. Therefore, s is a
whole-plot factor and the desired structure has been destroyed. In this case, the design cannot
be split.
Result 2 below generalizes the principle in result 1. The idea is that to split the subplot level

settings, for fixed whole-plot factor settings, into 2r groups, while preserving the original struc-
ture of the design, enough degrees of freedom must be available at the subplot level of the
design. Recall that there are 2k2−p2 −k2 +p2−1 generalized interactions between basic subplot
factors.

Result 2. If the number of generalized interactions between basic subplot factors appearing
in the generators of the FFSP design is greater than 2k2−p2 − k2 +p2 −1− r the design cannot
be run in 2k1+r whole plots without destroying the original split-plot structure.

The proof of result 2 is similar to that for result 1 except that we must identify which of the r

splitting generators will destroy the original structure of the design.
Result 2 states a condition where we know that the whole-plot trials of a design cannot be

split. However, it does not provide a sufficient condition for when a split does exist. Indeed,
similar to blocking, for the runs of the FFSP to be grouped in the desired fashion, contained in
the remaining generalized interactions between basic subplot factors must be a group with at
least 2r −1 elements.

6. Conclusion

In this paper, we have introduced systematic methodology for redistributing the degrees of free-
dom for an FF design with a nested error structure. It amounts to splitting the runs of an FFSP
design within fixed whole-plot settings. The methodology is easy to implement and gives the
experimenter flexibility when deciding how to analyse the experiment. To aid practitioners, a
table of MA designs that is obtained by using the proposed method for various situations is
provided.

Acknowledgements

The third author was supported by the Natural Science and Engineering Research Council of
Canada. We thank the Associate Editor and two referees for their careful review and useful
suggestions.

Appendix A: Proof of result 1

We prove result 1 by contradiction. Let D be a 2k1+k2−.0+p2/ FFSP design and assume that the de-
sign can be run in 2k1+1 whole plots without destroying the original split-plot structure. Suppose that
each of the 2k2−p2 − k2 +p2 − 1 generalized interactions between basic subplot factors is contained in at
least one of the p2 subplot generators. Let S be the splitting generator. By definition, S is the gener-
alized interaction between at least two basic subplot factors, possibly some number of whole-plot fac-
tors and ρ. Because all generalized interactions between basic subplot factors are contained in at least
one subplot generator, there is a generator g1 where the product of S and g1 contains exactly one sub-
plot added factor. Thus this added subplot factor is aliased with ρ and whole-plot factors. This is a
contradiction since the added subplot factor is now a whole-plot factor and the original structure is
destroyed.
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