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Abstract— The central goal in multiagent systems is to design
local control laws for the individual agents to ensure that
the emergent global behavior is desirable with respect to a
given system level objective. Ideally, a system designer seeks to
satisfy this goal while conditioning each agent’s control law
on the least amount of information possible. Unfortunately,
there are no existing methodologies for addressing this design
challenge. The goal of this paper is to address this challenge
using the field of game theory. Utilizing game theory for the
design and control of multiagent systems requires two steps:
(i) defining a local objective function for each decision maker
and (ii) specifying a distributed learning algorithm to reach
a desirable operating point. One of the core advantages of
this game theoretic approach is that this two step process
can be decoupled by utilizing specific classes of games. For
example, if the designed objective functions result in a potential
game then the system designer can utilize distributed learning
algorithms for potential games to complete step (ii) of the design
process. Unfortunately, designing agent objective functions to
meet objectives such as locality of information and efficiency
of resulting equilibria within the framework of potential games
is fundamentally challenging and in many case impossible. In
this paper we develop a systematic methodology for meeting
these objectives using a broader framework of games termed
state based potential games. State based potential games is an
extension of potential games where an additional state variable
is introduced into the game environment hence permitting
more flexibility in our design space. Furthermore, state based
potential games possess an underlying structure that can be
exploited by distributed learning algorithms in a similar fashion
to potential games hence providing a new baseline for our
decomposition.

I. INTRODUCTION

The central goal in multiagent systems is to design local
control laws for the individual agents to ensure that the
emergent global behavior is desirable with respect to a
given system level objective, e.g., [1]-[6]. These control
laws provide the groundwork for a decision making architec-
ture that possess several desirable attributes including real-
time adaptation and robustness to dynamic uncertainties.
However, realizing these benefits requires addressing the
underlying complexity associated with a potentially large
number of interacting agents and the analytical difficulties
of dealing with overlapping and partial information. Further-
more, the design of such control laws is further complicated
by restrictions placed on the set of admissible controllers
which limit informational and computational capabilities.

Game theory is begining to emerge as a powerful tool
for the design and control of multiagent systems [S]-[9].
Utilizing game theory for this purpose requires two steps.
The first step is to model the agent as self-interested decision
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makers in a game theoretic environment. This step involves
defining a set of choices and a local objective function for
each decision maker. The second step involves specifying a
distributed learning algorithm that enables the agents to reach
a desirable operating point, e.g., a Nash equilibrium of the
designed game. One of the core advantages of game theory
is that it provides a hierarchical decomposition between
the distribution of the optimization problem (game design)
and the specific local decision rules (distributed learning
algorithms) [10]. For example, if the game is designed as
a potential game [11] then there is an inherent robustness
to decision making rules as a wide class of distributed
learning algorithms can achieve convergence to a pure Nash
equilibrium under a variety of informational dependencies
[12]-[15], e.g., gradient play, fictitious play, and joint strat-
egy fictitious play. Several recent papers focus on utiliz-
ing this decomposition in distributed control by developing
methodologies for designing games, or more specifically
agent utility functions, that adhere to this potential game
structure [5], [8], [10], [16]. However, these methodologies
typically provide no guarantees on the locality of the agent
utility functions or the efficiency of the resulting pure Nash
equilibria. Furthermore, the theoretical limits of what such
approaches can achieve are poorly understood.

The goal of this paper is to establish a methodology for
the design of local agent objective functions. We define the
locality of an objective function by the underlying interde-
pendence, i.e., the set of agents that impact this objective
function. For convention, we refer to this set of agents as
the neighbor set. Accordingly, an objective function (A) is
more local than an objective function (B) if the neighbor
set of (A) is strictly smaller than the neighbor set of (B).
The existing utility design methodologies, i.e., the wonderful
life utility [5], [8] and the Shapley value utility [17], [18],
prescribe procedures for deriving agent objective functions
from a given system level objective function. While both
procedures guarantee that the resulting game is a potential
game, the degree of locality in the agent objective functions
is an artifact of the methodology and underlying structure
of the system level objective. Hence, these methodologies
do not necessarily yield agent objective functions with the
desired locality.

The main contribution of this paper is the development of
a systematic methodology for the design of agent objective
functions that satisfy virtually any degree of locality while
ensuring the desirability of the resulting Nash equilibria.
The key enabler for this result is the addition of local state
variables to the game environment, i.e., moving towards
state based games [16], [19]. Our design utilizes these state
variables as a coordinating entity to decouple the system level
objective into agent specific objectives of the desired interde-
pendence. This work is complimentary to our previous work
in [20] where we utilized a similar state based formulation



to localize coupled constraints on agents’ available actions.
However, in [20] we restricted attention to a special class
of system level objectives that naturally decouples while
this work considers more general system level objective
functions. Both approaches to game design guarantee that
the resulting game is a state based potential game. State
based potential games possess an underlying structure that
can be exploited by distributed learning algorithms much like
potential games [16], [19].

The design of multiagent systems parallels the theme
of distributed optimization which can be thought of as a
concatenation between a designed game and a distributed
learning algorithm. One of the core differences between these
two domains is the fact that multiagent systems frequently
place restrictions on the set of admissible controllers. In
terms of distributed optimization, this places a restriction
on the set of admissible distributed algorithms. Accordingly,
the applicability of some of the common approaches to
distributed optimization, e.g, subgradient methods [21]-[26],
consensus based methods [1], [2], [27], or two-step consen-
sus based approaches [9], [28], is predicated on the structure
of the system level objective. There are similarities between
our contributions and the algorithmic structure of existing
distributed algorithms [25], [28] where an underlying state
space is introduced to estimate parameters relevant to the
gradients. However, a core difference is that our focus is
on the decomposition as opposed to a particular algorithm.
Exploiting this decomposition could lead to rich set of tools
for both game design and learning design that permits a broad
class of distributed learning algorithms within an admissible
set. For example, if the designed game is of the desired
interdependence then an admissible distributed algorithm can
be realized by using gradient play on this game. Furthermore,
if the designed game is a potential game then this algorithm
also guarantees convergence to a Nash equilibrium.

II. PROBLEM SETUP AND BACKGROUND

We consider a multiagent system consisting of n agents
denoted by the set N := {1,---,n}. Each agent i € N
is endowed with a set of possible decisions (or values)
denoted by V; which is a nonempty convex subset of RP?,
ie. V; C RPi.! We denote a joint decision by the tuple
(vi,--+,vn) € V := [[, Vi where V is referred to as the
set of joint decisions. There is a global cost function of the
form ¢ : RY — R that a system designer seeks to minimize.
More formally, the optimization problem takes the form:2

min,, ¢(vy,v2,...,0,) )
S.t. v; € V;,Vi € N.

Throughout the paper we assume that ¢ is continuously
differentiable convex and thus a solution is guaranteed to
exist.

The focus of this paper is to establish an interaction
framework where each decision maker ¢ € N makes its
decision independently in response to local information. The

IFor ease of exposition we let p; = 1 for all i € N. The results in this
paper also hold for cases where p; > 1.

2Due to the space considerations we focus on optimization problems with
decoupled constraints, i.e., v; € V;. The forthcoming methodologies can
also incorporate coupled constraints using the approach demonstrated in
[20].

information available to each agent is represented by an
undirected and connected communication (or interaction)
graph G = {N,&} with nodes N and edges £.> Define
the neighbors of agent i as N; := {j € N : (i,j) € E}.
This interaction framework produces a sequence of decision
v(0),v(1),v(2),... where at each iteration ¢ € {0,1,...}
each agent ¢ makes a decision independently according to a
local control law of the form:

vi(t) = F; ({Information about agent j}, N{y) ()

which designates how each agent processes available infor-
mation to formulate a decision at each iteration. The goal
in this setting is to design the local controllers {F;(-)},c
such that the collective behavior converges to a joint decision
v* that solves the optimization problem in (1). We focus on
game theory as a tool for obtaining distributed solutions to
the optimization problem (1).

A. Strategic Form Games

A strategic form game consists of a set of players N =
{1,2,--- ,n} where each player i € N has an action
set A; and a cost function J; : A — R where A 2
A x ... x A, is referred to as the set of joint action
profiles. For an action profile a = (a1,...,a,), let a_;
denotes the action profile of players other than player <,
ie, a_; = (a1,...,a;-1,0i41,---,an). An action profile
a* € A is called a pure Nash equilibrium if for all i € N,
Ji(af,a* ;) = ming,c 4, Ji(a;, a*;).

B. State Based Games

In this paper we consider an extension to strategic form
games, termed state based games [8], [16], which introduces
an underlying state space to the game theoretic framework.*
In the proposed state based games we focus on myopic play-
ers and “static” equilibrium concepts similar to that of pure
Nash equilibrium. The state is introduced as a coordinating
entity used to improve system level behavior and can take
on a variety of interpretations ranging from dynamics for
equilibrium selection to the addition of “dummy” players
that are preprogrammed to behave in a set fashion.

A state based games consists of a player set N and
an underlying state space X. At each state x, each agent
i € N has a state dependent action set A;(x) and a state
dependent cost function .J; : X x A — R, where A £ IL A
and A; = [], A;(x). Lastly, there is a deterministic state
transition function f : X x A — X. In this paper, we
consider continuous state based games in which A;(z) is a
convex subset of RP+ for some dimension p,, X is a subset
of RP= for some dimension p,, and both J;(-) and f(-) are
continuously differentiable functions.

Repeated play of a state based game produces a sequence
of action profiles a(0), a(1), ..., and a sequence of states
z(0), z(1), ..., where a(t) € A is referred to as the action
profile at time ¢ and x(t) € X is referred to as the state at
time ¢. At any time ¢ > 0, each player ¢« € N myopically

3By convention, we let (i,1) € £ for all i € N

“State based games can be interpreted as a simplification of Markov
games [29]. We avoid formally defining the framework of state based games
within the context of Markov games as the inherent complexity of Markov
games is unwarranted in our proposed research directions.



selects an action a;(t) € A; according to some specified de-
cision rule which depends on the current state (t). The state
x(t) and the action profile a(t) = (ay(t),...,a,(t)) together
determine each player’s one-stage cost J;(x(t), a(t)) at time
t. After all players select their respective action, the ensuing
state (¢ + 1) is chosen according to the deterministic state
transition function x(¢t + 1) = f(x(¢), a(t)) and the process
is repeated.

We focus on myopic players and static equilibrium con-
cepts similar to that of Nash equilibria. Before defining our
notion of equilibria for state based games, we introduce the
notion of reachable states. The set of reachable states by an
action invariant state trajectory starting from the state action

0 a% is defined as

pair [z°,a
X(a0,a% f) 2 (20,0t 42, .}

where 251 = (2 a%) for all k € {0, 1,...}. Notice that a
fixed action choice a° actually defines a state trajectory.

Definition 1. (Single state equilibrium) A state action pair
[x*,a*] is called a single state equilibrium if for every agent
i € N, we have Ji(z*,a*) = ming, c 4, (2 Ji(2*, as,a* ;).

Definition 2. (Recurrent state equilibrium) A state action

pair [x*,a*] is a recurrent state equilibrium if

(D-1): [x,a*] is a single state equilibrium for each state
r € X(z*,a*; f) and

(D-2): x* € X(a*,a*; f).

Recurrent state equilibria represent fixed points of the
Cournot adjustment process for state based games. That is,
if a state action pair at time ¢, i.e., [x(t), a(t)], is a recurrent
state equilibrium, then a(7) = a(t) for all times 7 > ¢t if
all players adhere to the Cournot adjustment process. In this
paper we focus on state based games where there exists a
null action 0 € [[, A(z) for every state z € X that leaves
the state unchanged, i.e., for any state + € X we have
x = f(z,0). The motivation for this structure stems from
a control theoretic perspective where an action choice (or
control) influences the state of the system. Accordingly, if
a state action pair [x(t),a(t)] = [z*,0] is a recurrent state
equilibrium, then 2:(7) = z* and a(7) = O for all times 7 > ¢
if all players adhere to the Cournot adjustment process.

Given any state based game, a state recurrent equilibrium
does not necessarily exist. We now introduce the class of
state based potential games for which such an equilibrium is
guaranteed to exist [19].

Definition 3. (State Based Potential Game) A (deterministic)
state based game G is a (deterministic) state based potential
game if there exists a potential function ® : X x A — R that
satisfies the following two properties for every state action
pair [z,a] € X x A:

(D-1): For any player i € N and action o) € A;(x)

Ji(z,al,a_;) — Ji(x,a) = ®(x,al,a_;) — D(z,a)

(D-2): The potential function satisfies ®(x,a) = P(,0)
where T = f(x,a).

The first condition states that each agent’s cost function is
aligned with the potential function in the same fashion as in

potential games. The second condition relates to the evolu-
tion on the potential function along the state trajectory. As in
potential games, a recurrent state equilibrium is guaranteed
to exist and there are distributed learning algorithms that
converge to recurrent state equilibria in state base potential
games [19], [20].

Proposition 1. Let G be a state based potential game with
potential function ®. If a state action pair [x*,a*| satisfies
a* = argmin,e 4(,)®(z*, a), then [z*,a*] is a single state
equilibrium. Furthermore, if [z*,a*] also satisfies x* =
fla*,a*), then [x*,a*] is a recurrent state equilibrium.

III. STATE BASED GAME DESIGN

In this section we introduce a state based game design for
the distributing optimization problem in (1). The goal of our
design is to establish a state based game formulation that
satisfies the following four properties:

(i) The state represents a compilation of local state vari-
ables, i.e., the state = can be represented as = :=
(21,...,x,) where each z; represents the state of agent
1. Furthermore, the state transitions also rely only on
local information.

(i) The objective function of each agent ¢ is local and of
the form J; : [[ ey, (X; X Aj) = R

(iii) The resulting game is a state based potential game.
The significance of this is the availability of distributed
learning algorithm which guarantees convergence to a
recurrent state equilibrium.

(iv) The recurrent state equilibria are optimal in the sense
that they represent solutions to the optimization prob-
lem in (1), i.e., v; = v*

A. A state based game design for distributed optimization

State Space: The starting point of our design is an under-
lying state space X where each state z € X is defined as a
tuple = (v, e), where v = (v1,...,v,) € R™ is the profile
of values and e = (eq,...,e,) is the profile of estimation
terms where e; = (e}, -+ ,el') € R™ is player i’s estimation
for the joint action profile v. The term e¥ captures player i’s
estimate of player k’s actual value vy.

Action Sets: Each agent i is assigned an action set A;
that permits agents to change their value and change their
estimation through communication with neighboring agents.
Specifically, an action for agent ¢ is defined as a tuple
a; = (0;,6;) where 9; € R indicates a change in the
agent’s value v; and é; := (é},--- ,é") indicates a change
in the agent’s estimation terms e;. We represent each of the
estimation terms e} by the tuple &} := {é},;}cn, where
ek, ; € Rrepresents the estimation value that player ¢ passes
to player j regarding to the value of player k.

State Dynamics: Let v(0) = (v1(0),...,v,(0)) be the
initial values of the agents. Define the initial estimation
terms e(0) to satisfy >_,.n€¥(0) = n - v,(0), for each
agent k € N; hence, the initial estimation values are
contingent on the initial values. Note that satisfying this
condition is trivial as we can set €/(0) = n - v;(0) and
el(0) = 0 for all agents i,j € N where ¢ # j. Define
the initial state as (0) = [v(0), e(0)]. Before specifying the
state dynamics we introduce the following notation. Define
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Cicin = ZjENi ej%i and Cisout T Z]EN i—J denote
the total estimation passed to and from agent ¢ regarding the
value of the k-th agent respectively. We represent the state
transition function f(z,a) by a set of local state transition

functions {f{(x,a)},., and {ff,k(%a)}ike]v

. For a state

)

x = (v,e) and an action a = (0, é) we have
fzv (l‘, a) v; + {)i
fik(x’ a) = 6? + néz]’c@i + éi’ﬁein - éfﬁout (3)

where 0% is an indicator function, i.e., 5! = 1 and 6* = 0 for
all k # 4. Since the optimization problem in (1) imposes the
requirement that v; € V;, we condition the available actions
to an agent on the current state. That is, the available action
set for agent ¢ given state © = (v, e) is defined as

Az(fﬂ) = {(f),é) cv; +0; € Vi} 4)

It is straightforward to show that for any action trajec-
tory a(0),a(l),---, the resulting state trajectory x(t) =
(v(t),e(t)) = f(z(t —1),a(t — 1)) satisfies the following
equalities for all times ¢ > 1 and agents k € N:

Soek)

Agent Cost Functions: The introduced cost functions pos-
sess two distinct components and takes on the form

Ji(x,a) = J?(x,a) + a - J(x, a) (6)

=n-wvg(t) (5

where Jf () represents the component centered on the ob-
jective function ¢; JZ(-) represents the component centered
on the disagreement of estimation based terms e; and «
is a positive constant representing the tradeoff between the
two components.” We define each of these components as
follows:

Jf’(%a)
Jf(mva) =

Z]EN d)( ]7 37' 7é;l) 9
Zjem ZkeN [~z‘ o éﬂ

where & = (7, €) = f(z,a) represents the ensuing state. Let
0 represent the null action, that is where ¢; = 0 and &, ;=0
for all agents ¢, j, k € N. Given our state dynamics we know
that « = f(z,0). Accordingly, our designed cost functions
possess the following simplifications: J;(z,a) = J;(&,0)

(7

B. Analytical properties of designed game

In this section we derive two analytical properties of the
designed state based game. The first property establishes that
the designed game possesses an underlying structure that
guarantees the existence of an equilibrium while facilitating
the use of distributed algorithms to reach such equilibria.

Theorem 2. Model the optimization problem in (1) as a state
based game G as depicted in Section III-A with any positive
constant o. The state based games is a state based potential
game with potential function

®(z,a) = ®°(z,a) + - D°(x,a) 8)

5We will show that as long as « is positive, all the results demonstrated
in this paper holds. However, choosing the right « is important for the
learning algorithm implementation, e.g., the convergence rate of the learning
algorithm.

where

% (x,a) Yien O(€, 67, ... e7)
e - ~1.12
°(r,a) = §ien D jeN: 2okeN lef - eﬂ

and & = (0, ¢€)

)

= f(z,a) represents the ensuing state.

Proof: 1t is straightforward to verify that the properties
of state based potential games in Definition 3 are satisfied
using the state based potential function in (8).

The following theorem demonstrates that all equilibria of
our designed game are solutions to the optimization problem
in (1).

Theorem 3. Model the optimization problem in (1) as a
state based game G as depicted in Section IlI-A with any
positive constant «. Suppose the undirected and connected
communication graph G = {N,E} satisfies at least one of
the following conditions
(i) The communication graph G is non-bipartite.®
(ii) The communication graph G contains an odd number
of nodes, i.e., the number of players is odd;
(iii) The communication graph G contains at least two
players which have a different number of neighbors,
ie., |N;| # |Nj| for some players i,j € N;
Then the state action pair [r,a] = [(v,e),(0,€)] is a
recurrent state equilibrium in game G if and only if the
following conditions are satisfied:

(a) The estimation profile e satisfies that e¥
N;

(b) The value profile v is an optimal solution for problem
(1);

(c) The change in value profile satisfies v = 0;

(d) The change in estimation proﬁle satisfies the following
for all agents i,k € N, é¥_. = éF

i—out*

= Vg, Vi,k‘ S

1<—in

The above theorem demonstrates that the resulting equi-
libria of our state based game coincide with the optimal
solutions to the optimization problem in (1) under relatively
minor conditions on the communication graph. Hence, our
design provides a systematic methodology for distributing an
optimization problem under virtually any desired degree of
locality in agent objective functions.

C. Proof of Theorem 3

It is straightforward to prove the sufficient condition of
the theorem by utilizing the fact that the state based game
we designed is a state based potential game with potential
function defined in (8). Applying Proposition 1, we can
conclude that if a state action pair [x, a] satisfies Conditions
(a)-(d) listed in the theorem, then [z,a] is a recurrent state
equilibrium.

We prove the necessary condition of Theorem 3 by a series
of lemmas. Notice that a recurrent state equilibrium is a
single state equilibrium by Definition 2. The main part of
the proof is to establish necessary conditions for a single
state equilibrium firstly. We demonstrate that a single state
equilibrium should satisfy the following conditions:

1) Estimation alignment: An equilibrium must exhibit an
alignment between the estimation terms and the value

6 A bipartite graph is a graph that does not contain any odd-length cycles.



profile, i.e., for all agents ¢,k € N we have éf = U

where (7,¢€) is the ensuing state. (Lemma 4 for case
(i)—(i1) and Lemma 5 for case (iii).)
2) Optimality alignment: An equilibrium must be optimal.
That is, the ensuing value profile v is an optimal solution
to (1). (Lemma 6 for cases (i)—(iii))
Conclusion the proof completes the proof by establishing
more thorough conditions on the resulting recurrent state
equilibria.
In the subsequent claims we express the ensuing state for
a state action pair [z, a] = [(v,e), (0,€)] as (0, €) := f(x,a).

Lemma 4. [f [z,a] = [(v,€),(0,€)] is a single state equi-
librium and the communication graph G = {N,E} satisfies
either condition (i) or (ii) of Theorem 3, then all agent have
correct estimates of the value profile. That is, for all agents
i,k € N we have é¥ = 7.

Proof: If [z,a] is a single state equilibrium then
a; € argmindié(m’éi)e&(x)Ji(a:,di, a_;) for all i €
N. The necessary condition for the optimality of a; is
that: %azaﬂ) =0,Vs, k € N, which is equivalent to

P ai

¢k|éi + 2 ZjeNi (éf - é?) =

where ¢y,

Frle, — 20 (&7 — &)
(10)
represents the derivative of ¢ relative to é&F

for the profile ¢;, i.e., ¢k| . Consider any two

connected players i, € N, 1e J 6 Nl and ¢ € Nj;. The
equality in (10) translates to

Prlz, +2aZl€N< &) =
Prle, +2aZleN( —é) =

Addlng these two equality constraints gives us

Dien (6 — &) = = Yien, (& — &) (11)

for all agents i,5,k € N such that j € N; and ¢ € N;.
Since our communication graph is connected, the equality
condition in (11) tells us that the possible values for the
summation terms Y, (€f — &) for each player i € N
can be at most one of two possible values that differ purely

with respect to sign, i.e., for any player ¢ € N we have

ZZEN ( 61 {edlff7 edlff}

where e € R is a constant. We can utilize the underlying
topology of the communication graph coupled with (12) to
demonstrate that e = 0.

1) If there exists a cycle in the communication graph with
an odd number of nodes, applying equality (11), we can
get that ek = —ek.. which tells us that ek = 0.

2) Since the communication graph is undirected we know
that Y-, v > c v, (€5 —€f') = 0. If the number of agents
n is odd, condition (12) tells that » ZleNi( g —

¢k|é7—2a(éf ek
Orls, — 20 (&) —&f

)
).

12)

éz) = h - eky where h is a nonzero integer. Hence
edir = 0

In summary, if the total number of agents is odd or there
exists a cycle in the communication graph with odd number
of nodes we have that for all i,k € N, ZleNi(éf —ér) = 0.
Since the communication graph is connected and undirected,
it is straightforward to show that for all agents 7,5 € N,

ek = e ,Vk € N where the proof is the same as the proof
of Theorem 1 in [30].” Combining with the equality (5), we

get that for all agents i,k € N, éF = vy,.

Remark 1. While we identify two graph structures that lead
to our result this is by no means exhaustive as there are al-
ternative graph structures that provide the same guarantees.

Lemma 5. Suppose the objective function and communica-
tion graph satisfies condition (iii) of Theorem 3. If [x,a] =
[(v,e),(0,€)] is a single state equilibrium, then all agent
have correct estimates of the value profile. That is, for all
agents i,k € N we have ¥ = vy,.

Proof: 1In the proof of last lemma, we have proved
that if [z, a] is a single state equilibrium, then equation (10)
should satisfy. Consider any player 7 € N, any player j € NV,
and any pair of agents j1, jo € NN;, equation (10) tells us that

Ohle, +20 Y e, (e —&5) = uls, —2a (e -2}
sk k) K T
Orle, +20 ey, (@ =) = ol — 20 (e - 2).
(13)
Combining the two equations, we have the following equality
¢k‘éh _¢k|5j —2a( — € )—0

Note that players j; and jo are not necessarily connected but
are rather siblings as both players are connected to player .
Therefore, the above analysis can be repeated to show that
for any siblings ji,j2 € N that are siblings we have the
equality

=2« ( —ék ) .

J2 J1

¢k|gjl - ¢k|éj (14)
for all players £ € N. Applying Lemma 8 in the appendix,
condition (14) coupled with the fact that ¢ is a convex
function implies that for any siblings ji,j2 € N, €;, = €j,.
This property guarantees that there exist at most two different
estimation values which we denote by x := (z1,...,z,)
and y;= (y1,...,Yn), i, & € {x,y},V¥i € N, since
the communication graph is connected and undirected, Now
applying equality (12), for each ¢ € N, we have that either
ek = 2ni(zr — yx) or eky = —2n;(xr — yx), where
n; = |N;| — 1 > 0. If there exist two players having
different number of neighbors, we can derive that x = v,
ie. & = €;,Vi,j € N. Following the same argument as
previous proof, we have that é¥ = v, Vi, k € N.

Lemma 6. If [z,a] = [(v,e), (0, €)] is a single state equilib-
rium and the communication graph satisfies any of conditions
(i)—(iii) of Theorem 3, then v is an optimal solution to (1).

Proof: If [z,a] is a single state equilibrium,
then we know that a; is an optimal solution of
ming, e 4, Jx(z,ar,a_r), where ax = (ig,ér). Accord-
Olwdai)| . (f — ¢y) > 0. which is

ingly, we have .
ag

equivalent to

nrls + 2 Yy (@ -] (@) =0 (19

JENK

‘ 7The‘ main idea of this proof is to write 33, (éf‘—.éf) =0,Vie N
in matrix form for each k € N. The rank of this matrix is n — 1 resulting
from the fact that the communication graph is connected and undirected
hence proving the result.



We have shown in Lemma 4 and Lemma 5 that if [z,a] =
[(v,e),(D,€)] is a single state equilibrium, then éF
Vi, Vi, k € N. Therefore, equation (15) tells that

Okl - (Th — Ox) > 0,0, € V. (16)

This implies that v is an optimal profile for the optimization
problem (1) given that ¢ is convex over V.

Conclusion the proof Lemma 4-6 has demonstrated that
if [z, a] is a single state equilibrium, then the ensuing state
Z = (0,¢€) = f(x,a) has accurate estimation ¢ and optimal
value 0. Since a recurrent state equilibrium [z, a] is a single
state equilibrium, the ensuing state & = (0,€) satisfies
the same conditions. Moreover, the action profile a of a
recurrent state equilibrium [z, a] should satisfy that & = 0
and é;in = €;—out for all 7+ € N. Otherwise, we can check
that z = (v, e) ¢ X (x,a; f), which violates Condition (2) of
Definition 2. Combining those facts we are able to complete
the proof of Theorem 3.

IV. GRADIENT PLAY

We will develop a distributed learning algorithm for the
state based game depicted in section III. The proposed
gradient play algorithm extends the convergence results for
the algorithm gradient play [7], [31], [32] to state based
potential games. In this section, we assume that V; is a closed
convex set for all ¢ € N. Consider the following algorithm:
at each time ¢ > 0, given the state x(t) = (v(¢), e(t)), each
agent i selects an action a; = (0;, é;) according to:

i (T a +
a=0 .
= |—€n il +2na Y (€i(t) — €i(t)
JEN;
ik 0J; (x(t),a)
R S

€- ( ¢k|ei(t) — ¢k|€j(t) + 2« (ef(t) - e?(t))
+200 ) - (eF(t) —ef (1)) (18)

lEN;

where [-]T represents the projection onto the closed convex
set A?(x) := {0; : v; + 0; € V;}; and e is the stepsize which
is a positive constant. The following theorem establishes the
convergences of the gradient play.

Theorem 7. Suppose each agent selects an action ac-
cording to the gradient play algorithm in (17,18) at each
time t > 0. If the stepsizes are sufficiently small, and
the sequence x(1),x(2),--- produced by the algorithm is
contained in a compact subset of R?", then [x(t),a(t)] :=
[((v(t),e(t)),a(t))] asymptotically converges to the recur-
rent state equilibrium [(v*,v*),0].

Proof: The main idea is to explore the properties of
the state based potential function ®(x,a) ®(z,0) and
show that the potential function keeps decreasing during the
gradient play process as long as the stepsize is small enough.
Because of space consideration, we omit the detailed proof.

V. ILLUSTRATIONS

For illustration we focus on a simple distributed routing
problem with a single source, a single destination, and a
disjoint set of routes R = {ry, ..., }. There exists a set of
agents N = {1, ..., n} each seeking to send an amount traffic,
represented by ); > 0, from the source to the destination.
The action set V; for each agent is defined as:

{vi £ (v ...
(19)

where v] represents that percentage of traffic that agent ¢
designates to route r. Alternatively, the amount of traffic that
agent ¢ designates to route r is vj ();. Lastly, for each route
r € R, there is an associated “congestion function” of the
form: ¢, : [0,400) — R that reflects the cost of using the
route as a function of the amount of traffic on that route.® For
a given routing decision v € V, the total congestion in the
network takes on the form ¢(v) = > % fr - ¢,(f;) where
Jr =2 icn Vi Qi. The goal is to establish a local control law
for each agent that converges to the allocation which mini-
mizes the total congestion, i.e., v* € arg min,cy ¢(v). One
possibility for a distributed algorithm is to utilize a gradient
decent algorithm where each agent adjust traffic flows ac-
cording to aazﬁ' = Qi (¢ (Zien Qiv)) +or (Lien QivY))
where ¢,.(-) represents the gradient of the congestion func-
tion. Note that implementing this algorithm requires each
agent to have complete information regarding the decision
of all other agents.

Using the theory developed in this paper, we can localize
the information available to each agent by allowing them
only to have estimates of other agents flow patterns. Consider
the above routing problem with 10 players and the following
communication graph 1 <> 2 < 3 <> --- <> 10. Now, each
agent is only aware of the traffic patterns for at most two of
the other agents and maintaining and responding to estimates
of the other agents’ traffic patterns. Suppose we have 5 routes
where each route r € R has a quadratic congestion function
of the form c,.(k) = a.k*> — b,k + ¢, where k > 0 is
the amount of traffic, and a,, b, and ¢, are positive and
randomly chosen coefficients. Set the tradeoff parameter o
to be 900. Figure 1 illustrates the results of the algorithm
proposed in Section IV coupled with our game design in
Section III. Note that our algorithm does not perform as
well in transient as the true gradient descent algorithm. This
is expected since the informational availability to the agents
is much lower. However, the convergence time is comparable
which is surprising.

,v:m):()gvfgl,VreR;vazl
r€ER

VI. CONCLUSION

We utilize the framework of state based potential games
to develop a systematic methodology for the design of local
agent objective functions that satisfy virtually any degree of
locality while ensuring the optimality of the resulting Nash
equilibria. This work, along with previous work, demon-
strates the framework of state based potential games leads to
a value hierarchical decomposition that can be an extremely

8This type of congestion function is referred to an anonymous in the
sense that all agents contribute equally to traffic. Non-anonymous congestion
function could also be used for this example.
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Fig. 1. Simulation results: The upper figure shows the evolution of the

system cost using the true gradient decent algorithm (red) and our proposed

algorithm (black). The bottom figure shows the evolution of one agent’s
L . k,r r

estimation error, ie., ;” — vy for each route = € R and each agent

k € N. Note that the error converges to O illustrating that the agent’s

estimate converge to the right values as proved in Lemmas 4 and 5.

powerful for the design and control of multiagent systems.
An important future direction is to enrich the tool set for
both game design and learning design in state based potential
games. Examples include (i) developing alternative learning
algorithms to gradient play and characterizing their conver-
gence rates and (ii) extend the analysis of the approach in this
paper to a dynamical changing communication topology.
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APPENDIX

Lemma 8. Given a continuously differentiable convex func-
tion ¢(x1,22,...,xy) and two vectors x := (L1,...,Tp)
and y == (Y1,---,Yn), if for all k = 1,2,...n, we have
Ol — ¢k|y = ai(yx — xx) where ay, > 0, then x = y.

Proof: Since ¢ is a convex function, we have
¢x) = oy)+ (@ —y) Vgl
$y) = o)+ (y—2)"Vels

Adding up the two inequalities, we have
0> (z—y)" (Voly — Vol.)

Since ¢p|s — drly = a(yr — x1) for all k, we have

> ol — i)
k

> 0

0 >

Therefore x = y.



