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Abstract

Genome-wide association studies are revolutionizing the search for the genes underlying human complex diseases. The
main decisions to be made at the design stage of these studies are the choice of the commercial genotyping chip to be
used and the numbers of case and control samples to be genotyped. The most common method of comparing different
chips is using a measure of coverage, but this fails to properly account for the effects of sample size, the genetic model of
the disease, and linkage disequilibrium between SNPs. In this paper, we argue that the statistical power to detect a
causative variant should be the major criterion in study design. Because of the complicated pattern of linkage
disequilibrium (LD) in the human genome, power cannot be calculated analytically and must instead be assessed by
simulation. We describe in detail a method of simulating case-control samples at a set of linked SNPs that replicates the
patterns of LD in human populations, and we used it to assess power for a comprehensive set of available genotyping chips.
Our results allow us to compare the performance of the chips to detect variants with different effect sizes and allele
frequencies, look at how power changes with sample size in different populations or when using multi-marker tags and
genotype imputation approaches, and how performance compares to a hypothetical chip that contains every SNP in
HapMap. A main conclusion of this study is that marked differences in genome coverage may not translate into appreciable
differences in power and that, when taking budgetary considerations into account, the most powerful design may not
always correspond to the chip with the highest coverage. We also show that genotype imputation can be used to boost the
power of many chips up to the level obtained from a hypothetical ‘‘complete’’ chip containing all the SNPs in HapMap. Our
results have been encapsulated into an R software package that allows users to design future association studies and our
methods provide a framework with which new chip sets can be evaluated.
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Introduction

The International HapMap project [1,2] documented the

strong correlations between alleles at polymorphic loci in close

physical proximity along human chromosomes. As a consequence

it is necessary to genotype only a subset of loci to capture much of

the common variation in the genome. Combined with recent

technological innovations this observation has made the concept of

genome-wide association (GWA) studies a reality [3,4]. Over the

few last years these studies have been very successful in uncovering

new disease genes for many different complex diseases [5]. Well

over 300 such loci have already been published and many more

studies are currently being planned.

In the design of such studies two fundamental decisions have to

be made: which loci to genotype, and in how many individuals.

Both decisions have practical constraints. For example it is

currently not possible to assay all known variation in the human

genome at a reasonable cost and choices must be made between a

set of commercially available genotyping chips. Similarly, sample

sizes are often limited by the number of well characterized clinical

samples. Therefore, ultimately, the researcher and funding bodies

must ask how to use the financial and practical resources available

in order to best further the understanding of the genetics of the

disease or trait of interest. A primary consideration should be the

power of the study: the probability of detecting a variant assumed

to be causal.

In comparing chips for GWA studies it has been common to ask

what proportion of SNPs not directly genotyped are ‘‘captured’’ or

‘‘tagged’’ by the chip, i.e. are well predicted, via LD, by a SNP, or

combination of SNPs, on the chip. To do so it is necessary to

define the level of prediction required, or equivalently to set a

threshold for the required level of correlation. Although arbitrary,

this has often been set at 0.8 [6,7,8]. The resulting proportion of

SNPs captured at this level is often referred to as the coverage of the

chip. Having specified the threshold it is possible to estimate the

coverage of a particular chip from HapMap data, although we
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note that some care is required to account for SNPs not in

HapMap [8].

Here we focus instead on the power of particular chips to detect

causal variants of different effect sizes, and the way in which this

varies with study size and/or study cost and when using genotype

imputation methods. Although coverage is straightforward to

estimate, power is a complicated function of the set of SNPs on

the chip, effect size, and sample size, and can only be assessed by

simulation.

It turns out that differences in coverage between chips are often

not reflected in substantial differences in power and that the use of

genotype imputation further reduces these differences. Study

power is routinely used throughout science in experimental design

and we argue that it should be the primary consideration in

designing GWAs. This approach was used in settling several

design questions in the Wellcome Trust Case Control Consortium

[5]. Our results have been encapsulated in a user-friendly R

package that allows the power of different chip and sample size

combinations to be assessed given a total budget for the study.

Knowledge of study power is also invaluable when analysing

data from a study. Assessment of whether positive results at a

particular significance level are ‘‘real’’ or due to chance requires

knowledge of power [5], and the practical decision of how far

down the list of potential associations one should go in replication

studies should be informed by power considerations.

Other comparisons of chips have been carried out but have

either focussed exclusively on estimating coverage [8], have been

limited in scope of which chips have been evaluated [9] or have

used analytical calculations that do not properly take into account

the complex LD structure of the human genome [10,11] or failed

to assess the impact of imputation correctly [11]. A recent paper

[12] has used chip data to assess the performance of the chips but

the small sample size (N = 359) means that these results cannot be

used to assess power of new study designs of more realistic sizes. In

addition, the simulations of quantitative phenotypes used the

Signal to Noise Ratio (SNR) to measure effect size of the causal

SNP which is non-standard and difficult to interpret. For binary

traits, simulations assumed a disease prevalence of 25%, a relative

risk of 3 and a sample size of only 75 cases and 75 controls. These

parameter settings are not realistic for genome-wide association

studies or useful when designing new studies.

Results

Theoretical Results
Study power depends on assumptions about the underlying

disease model, in addition to effect sizes and sample sizes. When

the true causative SNP is not on the genotyping chip there will

typically be several SNPs on the chip which are correlated with it.

One or more of these could give a signal of significant association

and hence allow detection of the locus. The LD structure of the

human genome is sufficiently complicated that this effect cannot

be captured analytically. It must be assessed via simulation studies.

Nonetheless, there is one very simple situation for which

analytical calculation is possible and helpful: that of the simplest

disease model in which only a single SNP, correlated with the

causal variant, is genotyped. For a design with the same number of

cases and controls, under the disease model in which disease risk

changes multiplicatively with the number of copies of the risk allele

carried by an individual (this model is often referred to as the

additive model because risk increases additively on the log scale),

there is a known analytical relationship [13]:

E x2
� �

! Nc2p(1 { p)r2, ð1Þ

where x2 is the chi-squared test statistic, N the number of cases

and controls, c the effect size, p the allele frequency of the risk

variant and c2 is the correlation between the marker and causal

SNP.

Although the real problem is much more complicated than this

setting, Equation 1 does provide some useful intuition. Firstly,

when the relative effect size is large (Nc2p(1{p) & 100) the

correlation between the marker and causal SNP may only need to

be weak (r2%0.8) for the association to be detected (the expected

test statistic is big). Equally, if the relative effect size is small

(Nc2p(1{p) v 10) then even strong or complete association

(0.8,r2#1) may not generate sufficient power to reject the null

hypothesis of no association.

Simulating Case-Control Samples – HAPGEN
Assessment by simulation of the power of a particular chip

requires simulation of large sets of case and control samples which

mimic the LD patterns in human populations (see Figure S1 for an

example). The approach we use, implemented in a software

package called HAPGEN is conceptually simple and is illustrated

in Figure 1. We have previously used this approach to compare

different analysis methods and has been briefly describe before

[14]. In this paper we provide full details of the approach and

these are given in the Methods section.

Informally, the required samples are built up from the known

haplotypes in HapMap. Consider first the simulation of control

samples in a region of the genome. A particular control individual

is simulated by separately simulating its two haplotypes in the

region. Each of these haplotypes is made up as mosaics of the

known haplotypes in HapMap, with the mechanism for construct-

ing these mosaic haplotypes based on population genetics theory.

Fine-scale estimates of recombination rates are used to calculate

the probability of breaks in the mosaic pattern as one moves along

the region.

For a given SNP assumed to be causal under a particular disease

model and effect sizes, it is straightforward to calculate the

Author Summary

Genome-wide association studies are a powerful and now
widely-used method for finding genetic variants that
increase the risk of developing particular diseases. These
studies are complex and must be planned carefully in
order to maximize the probability of finding novel
associations. The main design choices to be made relate
to sample sizes and choice of commercially available
genotyping chip and are often constrained by cost, which
can currently be as much as several million dollars. No
comprehensive comparisons of chips based on their
power for different sample sizes or for fixed study cost
are currently available. We describe in detail a method for
simulating large genome-wide association samples that
accounts for the complex correlations between SNPs due
to LD, and we used this method to assess the power of
current genotyping chips. Our results highlight the
differences between the chips under a range of plausible
scenarios, and we demonstrate how our results can be
used to design a study with a budget constraint. We also
show how genotype imputation can be used to boost the
power of each chip and that this method decreases the
differences between the chips. Our simulation method and
software for comparing power are being made available so
that future association studies can be designed in a
principled fashion.
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genotype frequencies in cases at that SNP. Case samples are

simulated separately by first simulating the genotype of the case at

the causative SNP and then working outwards in each direction to

construct the haplotypes carrying the alleles simulated at the

causative SNP. Loosely, this process will result in oversampling of

HapMap chromosomes which carry the risk allele, with the effect

dropping off as one moves away (in genetic distance) from the

causative locus (see Figures S2, S3, and S4 for examples).

We apply the method here to an assessment of the power of

different chips, but we note that there are many other settings

which require simulations of large case-control samples. These

include comparisons of analysis methods [14] and tagging

approaches [15], assessments of parameter estimates, and design

questions for follow-on studies such as resequencing and fine

mapping of associated regions.

The Power of GWAS Using Commercially Available Chips
We assessed the power of commercially available chips via

simulation. Each simulation assumed a particular SNP in

HapMap was causative, with a given effect size and used the

HAPGEN package to simulate case and control samples of

different sizes. In the simulated data we then restrict attention to

the genotypes at only the SNPs on the chip in question and ask

whether analysis of these would yield a significant result for any of

the SNPs on the chip. An estimate of power is obtained by

repeating the simulation over a large number of putative disease

SNPs across the genome and using the proportion of simulations

in which we find a significant test statistic.

For definiteness, in the results presented below we simulate data

under the additive disease model, and in analysis of the data

consider each SNP separately and apply the so-called trend, or

Cochran-Armitage test [16], a chi-squared test with one degree of

freedom. We fix a significance level of 561027, and vary the

number of cases and controls in the simulated study. There are

various other versions of these assumptions which could be made.

We explicitly look at one set of multi-marker tests below and also

carry-out a limited set of simulations to assess the impact of

genotype imputation.

Figure 1. Schematic of how power is estimated. At the top of the figure is the recombination map and haplotypes estimated from the HapMap
project [1]. Using this population genetic information we simulate a case-control sample (grey lines) where the red dots indicate the disease locus
and blue dots indicate linked genetic variation. By performing a test of association at each SNP on the genotyping chip we can estimate power by
counting the number of simulation for which a test statistic exceed a significance threshold (dotted line). We compare genotyping chips by changing
the set of SNP at which we carry out a test. See Methods.
doi:10.1371/journal.pgen.1000477.g001
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There are two somewhat different perspectives that could be

adopted regarding genome-wide association studies. One is to

regard the GWAS as a self-contained experiment in its own right

with the statistical inference being a formal hypothesis test of the

null hypothesis of no association. From this perspective, the goal at

the conclusion of the GWAS is to decide whether particular SNPs

are, or are not, associated with the phenotype of interest.

But this is not what happens in practice. There is a strong

consensus in the field that the results of association studies should

not be relied upon without additional (statistically significant)

evidence from analyses in independent replication samples [17] ,

and many major journals have policies which preclude publication

of GWAS studies by themselves, without such replication

evidence. Common practice is thus to regard the GWAS as an

experiment to highlight SNPs of interest, and then to take as many

as possible of the interesting SNPs into replication studies.

We adopt the second perspective throughout this paper, and

our power calculations are for the probability that for each of the

genotyping chips considered, there will be SNPs reaching a

prespecified, low, p-value, under specific assumptions about the

underlying genetic effects. Given current practice, we believe

the right quantity to calculate would be the probability, for the

respective chips, effect sizes, and sample sizes, that the experiment

would give rise to SNPs showing enough signal to be taken

forward for replication. This is (inevitably) ill-posed, so we focus

instead on a surrogate for it, namely the probability that at least

one SNP will have a p-value below a very stringent threshold. In

this context there is nothing special about the choice of p-value

threshold, and it is now well understood, for example from meta-

analyses, that SNPs well down any ranked list of hits from the

GWAS associations can still be genuine associations. For

definiteness, we focus throughout on the threshold of

p,561027). This is deliberately set so that false positive rates

will be low – for example, most SNPs with trend test p-values

passing this threshold in GWAS studies, including all of those in

the WTCCC experiment, have had associations confirmed in

replication studies (see [18] and the NHGRI Catalog of Published

Genome-Wide Association Studies at http://www.genome.gov/

GWAStudies/). Choice of a different p-value threshold changes

the numerical value of the power we calculate, but does not affect

the relative performance of the chips, or the relative effect of

sample size (data not shown).

If one were to adopt the first of the two perspectives on a GWAS

study, namely that it is a formal statistical hypothesis test in its own

right, then power comparisons become more complicated, at least

under a frequentist statistical perspective: for a given nominal per-

SNP significance level, the overall GWAS experiment will have

somewhat different false positive rates for the different commercial

chips, because they have different SNP sets, or when some SNP

genotypes are imputed, depending on the number of imputed

SNPs, for the same reason. Actually, even for a fixed chip, overall

false positive rates will differ depending on the population in which

the GWAS is conducted, because of differing patterns of LD

between the SNPs on the chip (and hence different effective

numbers of independent tests).

We do not pursue this approach here, principally because it

does not reflect the way GWAS experiments are typically used in

practice: regardless of the genotyping chip used, whether or not

genotype imputation is employed, and the population studied,

researchers tend to focus on the most significant SNPs after the

GWAS and try to confirm that they are real in replication studies.

In addition, as noted above, overall GWAS false positive rates are

low, for any of the commercial chips, at the very low per-SNP

significance level we consider. Nonetheless, in what follows,

readers should be aware that we are comparing power, defined

here as the probability that at least one SNP reaches a fixed p-

value threshold under specific assumptions about design and effect

sizes, across settings in which these very low false positive rates will

differ between chips (and across populations).

In calculating power, as thus defined, we simulate data under

the assumption that a particular allele is causal and then look to

see whether any SNPs on the respective genotyping chip, within a

large region around the causal SNP attain the specified

significance level. In ignoring the SNPs on the chip elsewhere in

the genome, this approximation will underestimate the probability

of there being a SNP meeting the significance threshold, but at the

very low threshold, the probability of there being a SNP elsewhere

in the genome meeting the threshold is extremely small, so that

effect of this approximation will be minimal and our power

calculations based on only on SNPs within the 1Mb region

containing the causal SNP will be very close to the true values.

We simulated putative disease loci at SNPs in phase II of the

HapMap within twenty-two one megabase regions on each of the

autosomes, a total of nearly 50,000 SNPs, which together are

typical for the genome in terms of SNP coverage and

recombination rates (see Figure S5 and Text S1 for details).

We investigated the power afforded by seven different

genotyping chips: the 100 k, 500 k and 6.0 chips from Affymetrix

(www.affymetrix.com) and the 300 k, 610 k, 650 k and 1 M chips

from Illumina (www.illumina.com). These chips sets differ in the

way in which the SNPs are chosen and the total number of SNPs

assayed.

As technology develops and genotyping chips become denser it

is a natural question to ask how much power would be gained by

genotyping additional SNPs or by using genotyping imputation

methods [14]. To facilitate such comparisons we evaluated the

performance of a hypothetical chip that contains all the SNPs in

HapMap to act as a point of reference in our results. The

performance of this ‘complete’ chip is shown as a solid black line in

all of the figures showing power. Since the simulations we carry

out only use HapMap SNPs as causal SNPs this analysis

approximates the scenario in which we have a chip which types

all possible SNP variation.

We return below to consideration of results for studies in the

Yoruban population. Focussing now on the power curves in the

top row of Figure 2 several features are evident. The first is the

profound effect of sample size. Effect sizes of 1.5 or smaller might

be typical of what would now be expected for most variants

affecting susceptibility to common human diseases [5]. For effect

sizes at the top of this range (1.3–1.5) very large studies (say 2,000–

3,000 cases and the same number of controls) are needed to have

reasonable power, while for smaller effect sizes even studies of

5000 cases and 5000 controls have very little power. This ties in

with growing empirical evidence. For example, for Crohn’s

disease, the WTCCC study, of 2000 cases and 3000 controls

found 9 loci with p,561027, whereas several smaller studies

published around the same time each found only one or two of the

loci, with little overlap across these smaller studies, consistent with

each having modest power for the larger set of loci. Further, recent

meta-analyses of 4,539 cases for type 2 diabetes and 3,230 for

Crohn’s disease have been needed to discover further loci with

estimated effect sizes in the range 1.1–1.2. Even for a disease not

previously studied by GWA, studies with fewer than 2000 cases

and 2000 controls will have low power, except in special

circumstances, for example if there are loci with larger effect sizes

than has been typical across many other diseases.

A second general feature of the power curves for Caucasian

studies in Figure 2 is that aside from the Affymetrix 100 K chip

Designing Genome-Wide Association Studies
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(which is no longer available), there are not major differences in

power across the other seven chips. For Caucasian samples the

chips are typically ordered (with decreasing power): Illumina 1M,

Illumina 650 k, Illumina 610 k, Affymetrix 6.0, Illumina 300 k,

Affymetrix 500 k, but the absolute difference in power between

the best and worst of these chips is often no more than around

10%. Put another way, for effect sizes in the range 1.3–1.5, a study

with the Affymetrix 500 K chip would have the same power as one

with the Illumina 1 M chip if its sample size were larger by 10–

20%, with smaller increases in sample sizes giving studies with

other chips the same power. Further, in Caucasian studies, power

for all chips other than the Affymetrix 100 K chip is quite close to

the best which could be obtained, namely by directly genotyping

the causative SNP.

Rare Alleles and Small Effect Sizes
Equation 1 makes clear the dependence of power on the

frequency of the risk allele. The results in Figure 2 are averaged

over putative causative SNPs with a risk allele frequency (RAF) in

the range 5–95%. Figure 3 shows that this hides quite different

behaviour depending on whether the putative disease SNP is rare

or common, and that the conclusions in the preceding subsection

apply principally for common causative SNPs. The Figure shows a

substantial difference in power for common and rare alleles with

the same effect size and that power is minimal for the rare alleles

when the effect size is small. These results refer to single-SNP

analyses. While there are definitely more powerful analysis

methods for rare alleles [14], this is not a major factor in the

loss of power, and neither is the incomplete coverage of the SNPs

on the commercially available chips: even using a sample size of

3000 cases and controls and genotyping the causal locus directly

(black line) is unlikely to lead to a test statistic which will reach the

small levels of significance thought appropriate for GWAS.

There is an open question as to whether rarer causal alleles

might have larger effect sizes than common causal alleles. If this

were though plausible, then in assessing power overall for a

particular chip, one could focus in Figure 3 on particular ranges of

effect sizes for common causative alleles and a different range of

effect sizes for rarer causative alleles.

It is becoming clear that many loci harbouring common alleles

affecting common diseases will have effect sizes in the range 1.1–

1.2, and our simulations demonstrate that there is almost no power

to detect these in studies of the size currently underway. As has

already been shown empirically [19,20] these loci can be found by

meta-analyses and follow up in larger samples of GWA findings.

Slightly larger relative risks do become detectable in large samples.

Figure 2. Plots of power (solid lines) and coverage (dotted line) for increasing sample sizes of cases and controls (x-axis). From left to
right plots are given for increasing effect sizes (relative risk per allele). Both power and coverage range from 0 to 1 and are given on the y-axis. Results
are for single-marker test of association and for simulations where the risk allele frequency of the causal allele is .0.05. The top row shows power for
case-control studies simulated in a Caucasian population based on the CEU HapMap panel. The bottom row relates to case-control studies simulated
from the YRI HapMap panel.
doi:10.1371/journal.pgen.1000477.g002
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For example the power to detect an effect of size 1.3 jumps from

almost zero with 1000 cases and 1000 controls to over 50% in a

study three times the size.

Figure 3 also demonstrates that chip sets differ in the power they

offer to detect associations at different frequencies. Most

noticeably, when averaged over common alleles the Illumina

300 k chip set offers more power than Affymetrix 500 k. For rare

alleles, the opposite is true with the Affymetrix 500 k chip having

more power than the Illumina 610 k chip. This is most likely due

to the way in which the Illumina SNP sets have been designed to

specifically tag the common variation present in the HapMap

panels.

Power of Chips Compared to a ‘Complete Chip’
Immediately apparent is how close, for studies in Caucasian

populations, the genotyping chips track the power afforded by the

ideal ‘‘Complete chip’’ in a given study design and disease model.

Figure 3 illustrates that the potential benefits of increasing SNP

density on the chips or from using imputation [14] are greatest for

low frequency SNPs. When focusing on common alleles, the

potential benefits are greatest for the Affymetrix 100 k and 500 k

chips and the Illumina 300 k chip and we show this when

specifically consider imputation below (see Table 1). However, a

clear consequence of these results is that for any of the chips in

current use, increasing sample size is likely to have a bigger effect

on power than increasing SNP density.

Power versus Coverage
A striking feature of Figures 2 and 3 is that substantial

differences in coverage between different chips do not translate

into big differences in power. Put another way, coverage is often a

poor surrogate for power. As an example, the coverage in the

CEU HapMap population (r2$0.8) provided by the Affymetrix

500 k and Illumina 610 k chips are 65% and 87% respectively, a

difference of 22%. On the other hand, the difference in power e.g.

for relative risk 1.5 and 1500 cases and controls, is only 7% (66%

and 73% respectively).

In one sense this shouldn’t be surprising. Coverage is measured

to a hard threshold: so if SNP has r2 of 0.85 to its best proxy on

one chip and 0.75 to its best proxy on another chip, it will be

counted as ‘‘covered’’ by one chip but not by the other, whereas

the difference in power is small. Coverage statistics also do not

depend on study size or disease model.

Figure 4 illustrates the differences in correlation structure for

two chips. For each HapMap SNP we found it’s best ‘‘tag’’ (the

SNP on the chip with which it has the highest r2) and generated a

histogram of these maximized r2 values. To recover coverage we

simply count the proportion of SNPs for which the best tag r2 is

$0.8, coloured red in the bottom row of figure 4. In this sense,

informally, it is useful to think of coverage as assuming that there is

power one for every ‘‘tagged’’ SNP and no power for every other

SNP. This is of course false, in ways which help to explain why

coverage differences do not translate into power differences. When

a SNP is common and the effect size is moderate or large, there

will still be good power to detect it even if the best SNP on the chip

only has r2 = 0.5 or less. At the other extreme, for rare SNPs,

unless the effect size is very large, power would be low even if the

SNP had a perfect proxy on the chip. Thus even if these SNPs

were well covered by one chip and completely missed by another

they would not contribute to a difference in power between the

chips because both chips would have power close to zero for them.

The top row of Figure 4 shows the average power for SNPs in each

LD bin. For the Affymetrix 500 K chip, there is a greater

contribution to power from the sets of SNPs which are not well

‘‘covered’’, than for the Illumina chip, and hance a smaller

difference in power than in coverage.

Case-Control Population
For several reasons it is of interest to study the power of

commercially available chips in different populations. Firstly the

Illumina 100 k, 300 k and 610 k chips are aimed at capturing

variation in the CEU population, whereas the Affymetrix 500 k

chip is not designed with a specific population in mind.

Furthermore the Illimina 650 k chip has a subset of SNPs targeted

at capturing variation in the HapMap YRI (Yoruba, Africa)

population. LD will not extend as far in the YRI collection [1] as

in the CEU, reducing the coverage of a given set of SNPs.

Figures 2 and 3 show the results of power calculation using the

distribution of diversity in both the HapMap CEU and YRI

populations. The results show that the increased ancestral

recombination leads to a loss of power and coverage across all

chips for a range of study designs. The difference between the

power available from commercial genotyping chips and that

achievable by exhaustively assaying all SNPs shows that increasing

marker density may yield a better return than a similar approach

in non-African populations. The Illumina 650 k chip, with the

YRI fill-in illustrates these potential benefits, showing a marked

increase in power over the 610 k. However the performance of the

Illumina 300 k chip, designed using the CEU HapMap, falls below

Table 1. The table shows the power for each chip with a
sample size of 2000 cases and 2000 controls and a relative risk
at the causal SNP of 1.3 using a p-value threshold of 561027.

Chip Chip SNP Tests MultiMarker Tests IMPUTE

Affy100 k 0.178 0.212 0.242

Affy500 k 0.363 0.378 0.450

Illu300 k 0.392 0.424 0.467

Illu610 k 0.439 0.455 0.488

Illu650 k 0.443 0.458 0.492

Affy6.0 0.420 0.433 0.478

Illu1M 0.457 0.461 0.493

Complete 0.499 0.499 0.499

Three different methods of analyzing the genotype data from each chip are
shown: (a) testing just the SNPs on each chip, (b) using MultiMarker Tests in
addition to the tests at each chip SNP, and (c) carrying out imputation using
IMPUTE and testing all imputed SNPs in addition to those on each chip. The last
line of the table shows the power that woud be obtained using the ‘Complete’
chip.
doi:10.1371/journal.pgen.1000477.t001

Figure 3. Power for Common versus Rare alleles. Plots of power (solid lines) and coverage (dotted line) for increasing sample sizes of cases and
controls (x-axis). From left to right plots are given for increasing effect sizes (relative risk per allele). Both power and coverage range from 0 to 1 and
are given on the y-axis. Results are for single-marker test of association. The top two rows show the power for rare risk alleles (RAF,0.1) and the
bottom two rows show the power for common risk alleles (RAF.0.1). Rows 1 and 3 show power for case-control studies simulated in a Caucasian
population based on the CEU HapMap panel. Rows 2 and 4 relate to case-control studies simulated from the YRI HapMap panel.
doi:10.1371/journal.pgen.1000477.g003
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the Affymetrix 500 k when genetic diversity is modelled on the

YRI HapMap panel.

It is not yet clear how closely patterns of diversity and LD in

other African populations mimic those in the Yoruba, and hence

to what extent the power results will translate to studies in other

populations. One general point is that the Illumina 650 k chip was

designed specifically to capture common Yoruban variation, so

one might expect power for this chip to decrease in other African

populations, for which it is not specifically designed. On the other

hand, the Affymetrix 500 k chip was not designed using this data,

so there would be not a systematic effect changing power estimates

for other African populations. As a consequence, differences in

power between the Illumina 650 k chip and Affymetrix chips may

well be smaller in other African populations.

Figure 4. Histograms of the proportion of SNPs in the 22 1Mb regions (see Methods) in HapMap Phase II for which the maximum r2

with a SNP on the genotyping chip in in one of eleven bins (increasing in correlation (LD) from left to right). The same histograms are
coloured in two ways. The top row shows in red the percentage of the SNPs in each bin detected (See Methods and text) when selected to be the
causal SNP in our simulations (the proportion of the total volume of the bars coloured red is therefore an estimate of power). In the bottom row all r2

bins above 0.8 are coloured red (the proportion of the total volume of all the bars is therefore an estimate of coverage). Note that the use of HapMap
data in choosing SNPs for the Illumina chip leads to a higher proportion of SNPs in high r2 bins.
doi:10.1371/journal.pgen.1000477.g004
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The Gain from Using Multi Marker Methods and
Genotype Imputation

Multi-marker methods, which use combinations of SNPs, have

been suggested as an efficient way to increase both coverage and

power [15]. Figures S6 and S7 show the results of simulations that

implement the multi-marker tests. In these figures the dotted lines,

which represent coverage, are higher for all chips in comparison to

single marker approaches (Figures 2 and 3) consistent with

previous observations. We find that multi-marker approaches also

increase statistical power to detect disease loci, but that the

increase is modest relative to coverage, and the broad conclusions

above are not much affected. Interestingly, when comparing

across genotyping platforms, we find for example that the

Affymetrix 500 k chip gains more by combining SNPs than the

Illumina 300 k chip.

Genotype imputation methods [21,14] are now being widely

used in the analysis of genome-wide association studies [5] and

meta-analysis of such studies [22,20]. These methods can be

thought of as a more sophisticated version of Multi Marker tests

but are relatively much more computationally demanding. We

carried out an evaluation of the boost in power that can be gained

by imputation using the program IMPUTE [14]. For our

simulations with a sample size of 2000 cases and 2000 controls

and a relative of the causal SNP or 1.3 we ran IMPUTE on the

genotype data from each of the chips under study using the CEU

HapMap as the basis for imputation. We then carried out a test of

association at all the imputed SNPs in addition to the SNPs on

each chip. We used our program SNPTEST to carry out tests of

association at imputed SNPs to properly account for the

uncertainty that can occur at such SNPs[14]. The results of the

simulations are shown in Table 1 and shows that the use of

IMPUTE provides a noticeable boost in power over testing just

the SNPs on each chip or using Multi Marker tests (as defined in

[15]). This agrees with our previous results [14]. It is also very

noticeable that imputation reduces the differences in power

between the chips and that the use of imputation produces a level

of power that is almost as high as our hypothetical ‘complete’ chip.

We also note that the boost in power is more substantial than

that estimated in another recent study [11]. A close look at the

details of this other study shows that the only imputed SNPs used

were those (a) which had real genotype data from one of the other

chips, and (b) the imputed and real data at the SNP agreed with an

r2.0.8. So for example, for the Affy 500 k chip only genotypes at

427,838 imputed SNPs were used, rather than all those available

from HapMap (approximately 2.5 milion SNPs), as normal

practice when carrying out imputation. Using such a filter clearly

creates a bias towards imputed SNPs that are almost perfect tags

for SNPs on the chip so it is not surprising that this study shows

such small increases in power when using imputation.

Unequal Case Control Sample Sizes
One option open to researchers who would like to increase

power in the context of limited case series is just to increase the

control collection. This strategy might include using cases for one

disease as extra controls for another (assuming suitably different

disease aetiologies and similar population history). We investigated

the utility of such an approach by performing simulations with

1000 cases and an increasing number of control (Figure S8).

Although the gains are not as strong as increasing both the case

and control sample sizes (Figure 2), the ability to reject the null

hypothesis of no association increase considerably with the size of

the control panel. For example, adding an extra 2000 controls to a

case-control study with sample size 1000–1000 increases power to

detect an effect of 1.5 typically by 20%. Subject to care in their

use, the growing availability of genotyped sets of controls promises

to make this a possibility worth investigating for many studies.

Designing a New Study
The results of our simulations can be used to assess the power of

a range of possible designs for a given budget and have been

encapsulated in a user friendly R package for this purpose (see

Software section). Table 2 shows the study size and power that can

be achieved on a budget of $2,000,000 for each of the chips

assuming the disease causing allele of has a relative risk of 1.5, a

risk allele frequency of at least 0.05 and that a p-value threshold of

561027 is used to define power. Since the different chips vary in

their prices and their per sample processing costs we obtained

quotes from service providers for the various chips and averaged

them (see Text S1). The prices were based on quotes for 4000

chips and quotes were converted to US dollars using current

exchange rates where necessary. We obtained 5 different quotes

for the Affymetrix chips and 6 different quotes for the Illumina

chips.

The results show that in this scenario the Illumina 300 k chip

produces the most powerful design (82.1%) primarily due to its

relatively cheap price compared to the other chips. Using the same

sample size (2653 cases and controls) the ‘Complete’ chip has a

power of 88.1%. It is also notable that the power of thie Illumina

300 k chip is nearly 17% greater than the power that can be

achieved by the Illumina1 M chip (63.5%) which has approx-

imately 3 times the SNP density. These result further illustrate the

deficiencies in using coverage as a measure of chip performance as

sample size is not factored into the calculation. Although these

results are interesting we advise against using them directly in the

design of a new study. There were noticeable variations in the

quotes we obtained from the service providers and prices are likely

to change through time. We encourage new studies to re-calculate

power of various designs based on a set of up to date and

competitive prices and to take into account the general effect that

genotype imputation can have on these power estimates.

Discussion

Because of the complexity of human LD patterns, many

questions of interest cannot be addressed analytically. We have

described in detail our simulation method, HAPGEN, for

generating large samples of case and control data at every

Table 2. The table shows the power that can be achieved by
each chip with a total budget of $2,000,000.

Chip Average Price ($) Number of cases/controls Power

Affy500 k 420 2381 0.767

Illu300 k 377 2653 0.821

Illu610 k 452 2212 0.818

Affy6.0 505 1980 0.772

Illu1M 750 1257 0.635

Complete - 2653 0.881

These results were calculated assuming a disease causing allele with a relative
risk of 1.5, a minor allele frequency of at least 0.05, that a p-value threshold of
561027 is used to define power and that the study should consist of an equal
number of cases and controls. The second column shows the prices that we
were able to obtain for these products at the time of submission. The last line of
the table shows the power that woud be obtained using the ‘Complete’ chip
using the sample size equal to that of the most powerful design.
doi:10.1371/journal.pgen.1000477.t002
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HapMap SNP, which mimic the patterns of diversity and LD

present in the HapMap data. The software can simulate case data

under a single causal disease SNP model for specified genotypic

relative risks. We have used the method here to assess the power of

various commercially available genotyping chips for case-control

genome-wide association studies, but note that it could be utilised

to assess other design questions, in the evaluation of analytical

methods, and in considering follow-on studies such as resequen-

cing and fine-mapping.

In Caucasian populations the differences in power afforded by

current-generation genotyping chips are not large, and the power

of these chips is close to that of an optimal chip which always

directly genotyped the causal SNP. Listed in order of decreasing

power for the CEU population, averaged over all potential disease

SNPs with RAF $5%, the chips we considered were: Illumina

1M, Illumina 650 k, Illumina 610 k, Affymetrix 6.0, Illumina

300 k, Affymetrix 500 k and Affymetrix 100 k. In line with our

previous work we have shown that imputation can boost the power

of each chip substantially and that the resulting power will

approach that which could be obtained by a hypothetical

‘complete’ chip that types all the SNPs in HapMap.

One limitation of the approach we (and others [9,10,12,11])

have used is that the causal SNP is assumed to be one of those

SNPs in the HapMap panel and this will not always be true. Other

studies [1] have shown that the majority of SNPs not in HapMap

will be highly correlated with the SNPs that are in HapMap and

this is especially true for the more common SNPs. This means

there is a slight bias in our power results for each chip and for the

use of imputation but we do not expect it to be large. A

consequence of this point is that the power we estimate for the

‘complete’ chip approximates the power we might obtain if we had

a chip which typed all the SNPs that exist in the human genome.

A main conclusion from our analysis is that study size is a

crucial determinant of the power to detect a causal variant.

Increasing study size typically has a larger effect on power than

increasing the number or coverage of SNPs on the chip, at least

amongst chips currently available. Even for effect sizes at the

larger end of those estimated to date for common human diseases

(RRs of 1.3–1.5) quite large sample sizes, at least 2000 cases and

2000 controls and ideally more, are needed to give good power to

detect the causal variant. When case numbers are limited, there

are still non-trivial gains in power available from increasing just

the number of controls. Care is needed in assessing the

appropriateness of a set of controls, but as larger sets of control

genotypes are made publicly available this strategy has consider-

able appeal, whatever the number of available cases. SNPs with

smaller effect sizes are unlikely to be detected even in studies of the

sizes currently undertaken, but as has been shown empirically for

several diseases, these can be found by meta-analyses which

combine different GWAs, or by follow-up in large samples of SNPs

which look promising in the original GWA but fail to meet the low

levels of significance thought appropriate for GWAS.

When the causal SNP is rare (MAF,10%), all chips have low

power unless its effect is large and sample sizes are large. This

conclusion would hold even if the chip directly genotyped the

causal SNP. The relative ordering of different chips, on the basis of

power, also changes in this context.

As would be expected, power is also lower for all chips for

samples which match the patterns of LD seen in the Yoruba

HapMap sample, and again the relative ordering of chips changes

in this setting. It is not yet clear how well the results for the Yoruba

would extend to other African populations.

An often-quoted metric in assessing chips is the coverage of each

chip: an estimate of the proportion of SNPs which have r2.0.8

with at least one SNP on the chip. Although relatively simple to

calculate (and even simpler to miscalculate), not least because it

does not depend on study size, our results show that coverage can

be a poor surrogate for power, and that relatively large differences

between chips in coverage do not translate to large differences in

power.

The sets of SNPs on Illumina chips are chosen in part to

maximize particular criteria, such as coverage, for certain

populations, typically those in HapMap. One difficulty of analyses

such as those in this paper is that these resources are also the

natural ones with which to assess properties of the chips. Thus

when Illumina chips ‘‘tuned’’ to one population (say the 610 K

chip for CEU) are used in other populations, power might be

systematically lower than the levels assessed here. In contrast, SNP

sets of Affymetrix chips are chosen largely in a non-population

specific way. While power is likely to vary in populations other

than those we have considered here, there is not the same

systematic effect which would lead to a decrease in power. A

quantitative assessment of this phenomena will be possible when

dense genotype data is available for other populations, such

HapMap Phase 3.

We have assumed here that accurate genotypes are available for

all SNPs on each chip. In practice some SNPs on each chip will fail

QC tests and not be available for analyses. As a consequence, our

study will overestimate power, though this effect is unlikely to be

large. We are only able to use SNPs in HapMap as potential

disease SNPs. These may not be systematically representative of all

potential disease SNPs. HapMap SNPs have systematically higher

MAFs than do arbitrary SNPs [2], but for SNPs within a particular

range of MAF, it seems unlikely that their LD properties will differ

systematically, so, for example, we would expect our results for

common SNPs to extend beyond those in HapMap.

We have focussed on the most common GWA design, namely of

a single-stage study, and the simplest disease model. The flexibility

of the simulation approach allows many other practical aspects of

study design to be incorporated into power calculations. These

include more complex disease models, two-stage strategies (the

starting point for our work was a comparison of power for one-

and two-stage designs in the context of the WTCCC study [5]),

genotyping errors, QC filters, misidentification of cases as controls

and simple types of population structure. The HAPGEN software

also provides a useful tool for the development and comparison of

more sophisticated multi-marker approaches to detecting disease

association (e.g. imputation [14]). We therefore believe that

simulations are an essential tool in the design of association

studies by allowing a focus on study power and an assessment of

the affect on power of following a given study design. We hope

that this method will continue to find use and can be extended to

new catalogs of genetic variation such as the 1000 Genomes

Project http://www.1000genomes.org/.

As in other areas of science, power seems a central consideration

in study design and choice of genotyping chip. But other issues

may also play a role. These include coverage of particular genes,

or genomic regions of interest; the utility of GWA data for

directing downstream studies such as resequencing and fine

mapping; data quality for particular chips; and the extent to which

a chip reliably assays other forms of genetic variation such as copy

number polymorphisms. Adding data to existing studies is

straightforward if the same chip is used, but the success of

imputation methods, in particular in meta-analyses [19,20] means

that this is not essential.

In general, Affymetrix chips have more redundancy than do

Illumina chips, in the sense of containing sets of SNPs which are

correlated with each other. The immediate consequence of this is
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lower coverage and lower power for the same number of SNPs,

but there can be advantages to this redundancy: loss of a particular

SNP to QC filters may not be as costly; and signals of association

are likely to include more SNPs, thus making them easier to

distinguish from genotyping artefacts.

Ultimately power can only be calculated under an alternative

model. Thus on a practical level the optimal choice of assays and

sample sizes will actually depend on the researcher’s belief

regarding the unknown distribution of effect sizes and models

relating genotype and phenotype. In particular we show that one

might adopt different strategies depending on the expected

frequency of disease causing variant, the effect size and even the

population from which cases and controls are sampled (Figure 3).

In the continuing search to better understand the genetic basis

of common human diseases, numerous study designs can be

adopted which may involve combining data sets, imputing missing

SNPs [14], distilling signals of association over multiple experi-

mental stages, and so on. In this complex setting study power will

remain a central criterion in study design, and the kinds of

approaches developed here will continue to allow informed

decision making by experimenters.

Methods

HAPGEN
We adopt the model introduced by [23] (denoted LS from now

on), who described a new model for linkage disequilibrium, which

enjoys many of the advantages of coalescent-based methods (e.g. it

directly relates LD patterns to the underlying recombination rate)

while remaining computationally tractable for huge genomic

regions, up to entire chromosomes. Their model relates the

distribution of sampled haplotypes to the underlying recombina-

tion rate, by exploiting the identity

Pr(h1, . . . ,hnjr)~Pr(h1jr)Pr(h2jh1; r) . . . Pr(hnjh1, . . . ,hn; r) ð2Þ

where h1,…,hn denote the n sampled haplotypes, and r denotes the

recombination parameter (which may be a vector of parameters if

the recombination rate is allowed to vary along the region). This

identity expresses the unknown probability distribution on the left

as a product of conditional distributions on the right. LS substitute

an approximation for these conditional distributions (p̂p) into the

right hand side of (3), to obtain an approximation to the

distribution of the haplotypes h given r

Pr(h1, . . . ,hnjr) & p̂p(h1jr)p̂p(h2jh1; r) . . . p̂p(hnjh1, . . . ,hn; r) ð3Þ

If h1,…,hn are n sampled haplotypes typed at S bi-allelic loci (SNPs)

LS modelled the distribution of the first haplotype as independent

of r, i.e. all 2S possible haplotypes are equally likely, so

p̂p(h1) ~ (1=2)S . For the conditional distribution of hk+1 given

h1,…,hk, LS modelled hk+1 as an imperfect mosaic of h1,…,hk

through the use of a Hidden Markov Model (HMM). That is, at

each SNP, hk+1 is a (possibly imperfect) copy of one of h1,…,hk at

that position where where the transition rates between the hidden

copying states are parameterized in terms of the underlying

recombination rate. The transition rates are different for each of

the conditional distributions in such a way so as to mimic the

property that as we condition on an increasingly larger number of

haplotypes we expect to see fewer novel recombinant haplotypes.

A parameterisation for the mutation rate (or emission probabilities

of the HMM) is used that has similar properties (see [23] for more

details).

The simulation of a new set of haplotypes for NU control and

NA case individuals is proceeds using the following algorithm.

1. Pick a locus from the set of markers in the real dataset as

the disease locus. The disease locus is chosen at random from all

those loci with a minor allele frequency (MAF) within some

specified range [l,u]. We use d[f1, . . . ,Sg to denote the disease

locus, a and A to denote the major and minor alleles at the disease

locus and use p denote the sample minor allele frequency at this

locus.

2. For a given disease model simulate the alleles at the disease

locus of the new individual conditional upon case-control status.

At the disease locus we use a general genotype model in which the

frequencies of the genotypes aa, Aa and AA in control individuals

are given by (12p)2, 2p(12p) and p2 respectively. This assumes that

the control individuals are so-called population controls (as used

by the WTCCC study [5]) rather than individuals who have been

selected to specifically not have the disease. For case individuals

the genotype frequencies are determined by specification of the

two relative risks

a~
p(DjAa)

p(Djaa)
b~

p(DjAA)

p(Djaa)
ð4Þ

where p(Djg) denotes the probability that an individual is a case

conditional upon having genotype g. Under this model

p(aajD) ~
(1{p)2

c
p(AajD) ~

2ap(1{p)

c
p(AAjD) ~

bp2

c
ð5Þ

where c = (12p)2+2ap(12p)+bp2. As an example, if p = 0.1, a = 2

and b = 4 the control and case genotype frequencies are (0.81,

0.18, 0.01) and (0.67, 0.30, 0.03) respectively.

Assuming we have a set of k known haplotypes, the generation

of a case (control) starts by simulating a genotype g using the case

(control) genotype frequencies. This simulated genotype specifies

the alleles on the the two haplotypes of the new individual at

the disease locus. For example, if g = Aa then hk+1,d = 1 and

hk+2,d = 0.

3. This step involves the simulation of two new haplotypes for

the individual conditional upon the alleles simulated at the disease

locus in Step 2 and conditional upon the fine-scale recombi-

nation map across the region. This involves simulating the rest of

hk+1 and hk+2. We only describe the generation of sites right

flanking of the disease locus as the generation of the left

flanking markers is virtually identical. Also the simulation of hk+2

follows directly from our description of how the rest of hk+1 is

simulated.

Let Xj be the hidden state of the HMM that denotes which

haplotype hk+1 copies at site j (so that Xj[f1, . . . ,kg). This state

variable is initialized at the disease locus as follows

Pr(Xd~x)~
(1{(1=2)�hh=(kz�hh)) if hx,d~hkz1,d

(1=2)�hh=(kz�hh) otherwise

(
ð6Þ

The value of �hh , as with LS, is Watterson’s point estimate

(Watterson, 1975)

�hh~(
XL{1

m~1

1

m
){1 ð7Þ
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Simulation of the hidden state of the HMM then proceeds using

the following transition rule

Pr(Xjz1 ~ x’jXj ~ x) ~

e{rj zj=k z (1 { e{rj zj=k)=k if x’ ~ x

(1 { e{rj zj=k)=k otherwise

(
ð8Þ

where zj is the physical distance between markers j and j+1

(assumed known); and rj~4Ncj , where N is the effective (diploid)

population size, and cj is the average rate of crossover per unit

physical distance, per meiosis, between sites j and j+1 (so that cjzj is

the genetic distance between sites j and j+1). This transition matrix

captures the idea that, if sites j and j+1 are a small genetic distance

apart (i.e. cjzj is small) then they are highly likely to copy the same

chromosome (i.e. Xj+1 = Xj).

To mimic the effects of mutation the copying process may be

imperfect: with probability k/(k+h) the copy is exact, while with

probability h/(k+h) a mutation will be applied to the copied

haplotype. Specifically,

Pr(hkz1,j~f jXj~x,h1, . . . ,hk)~
(1{�hh=2(kz�hh)) if hx,j~f

�hh=2(kz�hh) if hx,j=f

(

4. Return to step 2 to generate another individual or terminate.

Illustrations of the HAPGEN method in practice and details of

the testing the method against coalecent simulations are given in

Text S1.

Details of SNP Sets Used in the Study
We used release 21 of the HapMap data for which phased

haplotypes are available in NCBI b35 coordinates. The SNPs that

occur on each genotyping chip were obtained from the websites of

Affymetrix and Illumina respectively. Some of the SNPs in these

sets do not occur in the HapMap phased haplotype data due to

QC measures applied to the raw genotype data. For the

Affymetrix 6.0 and Illumina 1 M chips 90.8% and 88.1% of the

SNPs on these chips respectively are in this release in HapMap.

This will have the effect of making our estimates of power slight

underestimates of the true power.

We simulated data for twenty-two one megabase regions chosen

at random, one from each autosome. To ensure that the regions

used to approximate genome-wide power were representative of

the genome at large we their SNP density. Figure S5 plots the

distribution of inter-SNP distances within the 22 analysis regions

and across the whole genome for three of the genotyping chips

analyzed. The close match between the distribution, both on the

physical scale and in terms of genetic distance suggests that our

results are insensitive to the regions we chose to simulate, and can

be used to make comparisons of genotyping chips genome-wide.

Calculating Coverage and Testing for Association
We used data from the HapMap project Phase II to estimate

coverage. Single marker coverage was defined to be the proportion

of all variation (with minor allele frequency greater than 5%) in r2

with a SNP on the genotyping chip above 0.8. Using this definition

we achieved very similar estimates to previous studies which used

the whole genome (we use twenty two representative megabases).

Multi-marker coverage was calculated by an aggressive search of

all 2-SNP and 3 SNP haplotypes within 250kb of the SNP being

tagged [6]. The SNP was tagged if any of these multi-marker tags

had r2 above 0.8, the rule defining the haplotype was also stored

and added to the list of multi-marker tests.

Single marker tests (Cochran-Armitage test) were performed at

each SNP on the genotyping chip where information were

simulated from the relevant HapMap panel. Multi-marker tests

of association were performed in an identical fashion with the

marker being formed by the multi-marker haplotypes known to

tag HapMap variation. To avoid over estimation of power, multi-

marker tags chosen to tag the current putative disease SNP in the

simulations were excluded from the test set. Tests at imputed SNPs

took account of the uncertainty in genotypes through a missing

data likelihood as described in [14].

Software
The HAPGEN software is freely available for academic use

from the website http://www.stats.ox.ac.uk/,marchini/software/

gwas/gwas.html.

In addition, the results of the power calculations for the 7

commercially available genotyping chips have been included in an

R package called GWASpower available from http://www.stats.

ox.ac.uk/,marchini/#software.

This package allows the user to determine the most powerful

study design for a given budget. As new commercial genotyping

chips become available we will update the package to include

results of new chips. The package works by fitting a Generalised

Linear Model to the results of the simulation study and using the

model fit to predict the power for a given number of cases and

controls.

Supporting Information

Figure S1 Top plot : Linkage disequilibrium plots across the

region : D9 (top left), r2 (bottom right). Bottom plot : Fine scale

recombination map r across the region.

Found at: doi:10.1371/journal.pgen.1000477.s001 (0.21 MB TIF)

Figure S2 For simulated dataset A (a= 1.3, b= 1.69) the top

plot shows D9 and r2 LD measures. The bottom plot shows the x2

statistic for association across the region. The vertical blue line

shows the location of the disease locus.

Found at: doi:10.1371/journal.pgen.1000477.s002 (0.28 MB TIF)

Figure S3 For simulated dataset B (a= 1.5, b= 2.25) the top plot

shows D9 and r2 LD measures. The bottom plot shows the x2

statistic for association across the region. The vertical blue line

shows the location of the disease locus.

Found at: doi:10.1371/journal.pgen.1000477.s003 (0.29 MB TIF)

Figure S4 For simulated dataset (a= 1.7, b= 2.89) the top plot

shows D9 and r2 LD measures. The bottom plot shows the x2

statistic for association across the region. The vertical blue line

shows the location of the disease locus.

Found at: doi:10.1371/journal.pgen.1000477.s004 (0.30 MB TIF)

Figure S5 Representativeness of the 22 1Mb regions used in the

simulation study. Bar plots are shown of the proportion of SNPs

which fall into increasing inter-SNP distances for three of the

genotyping chips used in this study. These distribution are

measured on the physical scale (left column) and genetic map

(right column).

Found at: doi:10.1371/journal.pgen.1000477.s005 (1.37 MB EPS)

Figure S6 Power of Multi-marker tests. Plots of power (solid

lines) and coverage (dotted line) for increasing sample sizes of cases

and controls (x-axis). From left to right plots are given for

increasing effect sizes (relative risk per allele). Both power and

coverage range from 0 to 1 and are given on the y-axis. The results
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are based on simulations where the risk allele frequency of the

causal allele is .0.05. The top row shows power for case-control

studies simulated in a Caucasian population based on the CEU

HapMap panel. The bottom row relates to case-control studies

simulated from the YRI HapMap panel.

Found at: doi:10.1371/journal.pgen.1000477.s006 (1.71 MB EPS)

Figure S7 Power of Multi-marker tests for common versus rare

alleles. Plots of power (solid lines) and coverage (dotted line) for

increasing sample sizes of cases and controls (x-axis). From left to

right plots are given for increasing effect sizes (relative risk per

allele). Both power and coverage range from 0 to 1 and are given

on the y-axis. Results are for single-marker test of association. The

top two rows show the power for rare risk alleles (RAF,0.1) and

the bottom two rows show the power for common risk alleles

(RAF.0.1). Rows 1 and 3 show power for case-control studies

simulated in a Caucasian population based on the CEU HapMap

panel. Rows 2 and 4 relate to case-control studies simulated from

the YRI HapMap panel.

Found at: doi:10.1371/journal.pgen.1000477.s007 (2.90 MB EPS)

Figure S8 Plots of power (solid lines) and coverage (dotted line)

for increasing sample sizes of controls (x-axis). The number of case

individuals is fixed at 1000. From left to right plots are given for

increasing effect sizes (relative risk per allele). Both power and

coverage range from 0 to 1 and are given on the y-axis. Results are

for single-marker test of association and for simulations where the

minor allele frequency of the causal allele is .0.05. The top row

shows power for case-control studies simulated in a Caucasian

population based on the CEU HapMap panel. The bottom row

relates to case-control studies simulated from the YRI HapMap

panel.

Found at: doi:10.1371/journal.pgen.1000477.s008 (1.73 MB EPS)

Text S1 Supplementary text associated with the main article.

Found at: doi:10.1371/journal.pgen.1000477.s009 (0.06 MB PDF)
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