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Abst rac t .  Layout graph grammars are a grammatical or rule-based 
method for the construction of graphs and of their drawings. As such 
they are representatives of the so-called declarative approach. A layout 
graph grammar consists of an underlying context-free graph grammar 
and of layout specifications. These are attached to the productions and 
consist of position relations and distances between the vertices of the 
productions. The layout specifications are often derived from drawings 
of the productions and can be defined in terms of labelled graphs. 
Layout graph grammars have been used unnoticed in many examples. 
They respect the underlying tree-like structure of their graphs and make 
it visible. This is a new effect, which makes them incompatible with 
most other graph drawing algorithms. Given a context-free layout graph 
grammar, there is a polynomial time algorithm which for every specifica- 
tion. The capabilities of layout graph grammars are illustrated by some 
tree drawings, which range from drawings with quadratic area to area 
optimal h-v drawings. 

1 I N T R O D U C T I O N  

Graph drawing is concerned with the construction of readable drawings of graphs, 
i.e. grid layouts satisfying some aesthetics or constraints. The annotated bibliog- 
raphy [8] may serve as a survey. Most contributions to this field are algorithmic 
and introduce efficient algorithms e.g. for drawings of planar graphs or trees. Re- 
cently, hierarchical graphs and descriptions of graphs by expressions have been 
introduced to cope with the increase in complexity and to describe different lev- 
els of abstraction. Here, hierarchical means tree-like or well-formed in terms of 
expressions and operations. These are not the layered diagrams used for draw- 
ings of directed acyclic graphs. Examples of hierarchical graphs are the trees, 
the series-parallel graphs, flowgraphs of well-structured programs, or graphs ob- 
tained by browsing through structures. They all have recursive definitions with 
simple operations. For example, a binary tree is the empty tree or consists of 
a node and two subtrees. Series-parallel graphs are built by serial and parallel 
compositions and flowgraphs along the underlying syntax. Formally and more 
generally this is captured by graph grammars. 
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We introduce a formal framework for the hierarchical design of graphs and of 
their drawings. It is based on graph grammars, which are canonical extensions 
of context-free string grammars. There is a rich theory of graph grammars and 
of graph languages, see e.g. [4, 11, 12, 18]. We follow the algorithmic or vertex 
replacement approach, which is best suited for our purpose. In general, a graph 
grammar generates infinitely many graphs which are comprised into the graph 
language. For effective manipulations on graph grammars and feasible i.e. poly- 
nomial time complexity the restriction to so-called context-free graph languages 
seems necessary. This has strong implications, since the grids and the planar 
graphs cannot be captured by context-free graph grammars. This is a serious 
drawback of the approach. 

A graph grammar consists of a finite set of productions of the form (A, R, C), 
where A is a vertex label, R is a finite graph and C is the connection relation. 
In a derivation step, a vertex w with label A is replaced by the graph R and C 
establishes edges between the neighbors of w and the vertices of R. For a layout 
graph grammar the designer creates finitely many drawings of every production 
and specifies which of the shown position relations and distances are relevant. 
This should be supported by an editor, as in the HiGraD [1] and Graph Ed 
systems [15]. 

The design of a layout graph grammar and also of graph grammars is much 
easier as it seems at the first glance. There is a natural graphic representation 
of the productions (A, R, C). See the figures below. Draw the right-hand side 
graph R such that it looks nice and expresses the intended meaning. For every 
production there may be several such drawings. The vertices are drawn as squares 
of (almost) unit size or are points in the plane. The edges of R are drawn as 
straight lines. The left hand side A is drawn as a big rectangle which includes 
the drawing of R. The tuples from the connection relation C are represented by 
edges from a vertex label outside the rectangle to one of its sides and from there 
to the specified vertices of the right hand side R. 

In a top-down view, this describes the refinement of a vertex with label A by 
the graph R from the right hand side. In a bottom-up view, the subgraph derived 
from R is enclosed by a big rectangle for the left hand side. This rectangle reserves 
the space needed for the derived subgraph. Its final size and the positions of the 
vertices placed inside are computed by attributation techniques, which need only 
linear time, if the derivation is given. If the underlying graph grammar can be 
parsed in polynomial time by some common algorithm, then we can compute 
the area optimal drawings of the generated graphs in polynomial time. For some 
well-chosen examples these drawings coincide with those obtained by special 
algorithms. 

Layout graph grammars were already used before, but they were not recog- 
nized as such. Examples are the drawings of complete binary trees as H-trees 
[20], drawings of series-parallel graphs, diagrams of finite state automata, [20] 
and [16, Fig. 2.13 - Fig. 2.15] well-structured flowgraphs and h-v drawings of 
binary trees [7, 10]. This shows that our approach is natural. Some specialized 
types of layout graph grammars have been implemented in the Graph Ed [15] and 
HiGraD [1] systems. 
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Related approaches have been introduced in [13, 17, 21]. Our goal is to op- 
timize over all possible derivations, and thus to use layout graph grammars for 
syntax directed constructions of graphs and their drawings. 

2 B A S I C  N O T I O N S  

We consider directed or undirected graphs with labelled vertices and labelled 
edges. Multiple edges with different labels are allowed and are needed. The labels 
are not important  for the final graphs. However, they are necessary for graph 
grammars and are used for a graph theoretic specification of the graph layouts. 
Thus, labelled graphs provide a uniform graph theoretic framework, both for the 
graphs and their layouts. 

D e f i n i t i o n  1. Let Z and A be finite sets of vertex labels and of edge labels. A 
directed labelled graph g = (V, E,  m) over Z and A consists of a finite set of 
vertices V, a vertex labelling function m : V --+ Z and a finite set of directed and 
labelled edges E = {(u ,a ,w)  I u , w  E V,u  ~ w and a E A}. An undirected edge 
is identified with a pair of directed edges in both directions. An edge (u, a, w) is 
called an a-edge from u to w. When necessary, we write g = (V(g), E(g), re(g)). 

Let A ~ C A be a set of distinguished edge labels. This selection induces a 
canonical parti t ion of a graph g =- (V, E,  m) into graphs ga, and g,~-a, with the 
same sets of vertices, such that  g -- gA, U g~-z~'. Here ga, = (V, E M {(u, a, w) ] 
a E A~)}, m) is the restriction of g to A ~. Conversely, define the union bf graphs 
with the same sets of vertices and disjoint sets of edge labels by taking the union 
of the sets of edges. Edge labels are also used for special paths. A path consisting 
of directed a-edges only is called an a-path. 

Vertices u and w are neighbors, if they are connected by an edge. The neigh- 
bors of a vertex w can be distinguished by their vertex labels and by the direction 
and the label of their connecting edges. This is important  for graph grammars. 
For a vertex label B, an edge label a and the direction "in" (resp. "out")  the 
(B, a, in)-neighbors of a vertex w are the vertices {u E Y(g) I m(u) = B and 
there is an edge (u, a, w) in E(g)}.  Such triples (B, a, in) and similarly (B, a, out) 
define classes of neighbors of a vertex w, which are indistinguishable for graph 
grammars. 

D e f i n i t i o n  2. A drawing of a graph g = (V, E,  m) or its layout is a mapping d(g) 
into the discrete plane or grid. d maps each vertex w E V to a square of (almost) 
unit size with the center at a grid point such that  the images of distinct vertices 
do not overlap. Such squares may degenerate to points. Each edge e = (u, a, w) 
from u to w is mapped into a curve from d(u) to d(w). We consider only straight 
line drawings. These can be extended to polyline drawings, if the inner points 
P2, . . .  ,Pn-1 of a polyline d(e) = P l , . . .  ,Pn are t reated as extra  vertices with 
special vertex labels. 
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Our approach to graph drawings is based on graph grammars. The core of a 
graph grammar is its finite set of productions. These are constructed by a user or 
a designer and so are fully under his control. The productions are used both for 
the generation of the graphs and for their drawings. This requires a description 
of the transfer of the layout information from the static set of productions to 
the dynamic derivation processes and the generated graphs. 

D e f i n i t i o n  3. A drawing specification D S ( g )  of a graph g = (1/, E ,  m )  consists 
of a set of position relations and distances between the vertices of g. For a vertex 
w let w . X  and w . Y  denote the values of the X- and Y-coordinates associated 
with w under some drawing d. 

For a pair of vertices ( u , w )  define a "left-to-right" relation and minimal 
distances in X-dimension by inequalities of the form w . X  > u . X  + k where 
k _> 0 is a natural  number. The interpretation of w . X  > u . X  + k is that  in 
every drawing, w is placed at least k + 1 units to the right of u. Similarly, define 
"upwards" relations and minimal distances in Y-dimension by w . Y  > u . Y  + m .  
Clearly, such relations between vertices do not fix their distance and the direction 
from u to w, even if both are given. If u is at ( - k  - 1, - m  - 1) then w can be 
anywhere in the first quadrant. Conversely, every drawing makes the directions 
and the distances tight and converts the inequalities into equations. 

Moreover we introduce horizontal and vertical alignments. This extends our 
earlier approach [3]. Alignments are defined by equations of the form w . Y  = 
u . Y  resp. w . X  = u . X  with the obvious meaning that  u and w have the same 
Y-coordinates resp. X-coordinates. Clearly, for u ~ w, both u . Y  = w . Y  and 
u . X  = w . X  are forbidden, since this means an overlap of the vertices u and w. 

This definition is too loose. A drawing specification of a graph g should 
provide sufficient information for the construction of nice drawings. A basic re- 
quirement is that  the drawing specification guarantees no overlap of the vertices. 
This is obtained by the restriction that  for every pair of vertices a left-to-right 
relation or an upwards relation must be specified. A drawing specification does 
not describe a routing of the edges which are drawn as straight-lines. These 
may pass through other vertices or may cross each other. Can this be excluded? 
Are there other meaningful drawing specification in the context of layout graph 
grammars? This is still open. 

There is an alternative and purely graph theoretic definition of a drawing 
specification D S ( g )  of a graph g = (V, E,  m). Let x, y, h, v be new edge labels. 
For every pair of vertices (u, w) a left-to-right relation with w . X  > u . X  + k is 
represented by a directed x-edge (u, x, w) from u to w with length k. Accordingly, 
represent upwards relations with w . Y  > u . Y  + m by a directed y-edge (u, y, w) 
with length m. The length is attached to the edge and is omitted if the length 
is one. Horizontal resp. vertical alignments are expressed by undirected h-edges 
resp. v-edges. 

The set of all left-to-right relations is comprised into a graph g~ = (V, E=, m), 
where V is the set of vertices of g and E= are the x-edges, gy, gh and gv are defined 
accordingly. Let g* = g= U gy Ugh U gv. Then f = g U g* is a graph consisting of 
the underlying graph g together with its layout specification g*. 
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We wish to simplify the approach and focus on the essentials. Lets assume 
that the minimal left-to-right and upward distances between vertices are one 
unit. Then these relations are expressed by greater than relations of the form 
w . X  > u . X  resp. w . Y  > u . Y  and by x-edges resp. y-edges in the graph theo- 
retic definition. The general case can be obtained by attributations and simple 
calculations. 

Vertices shall not overlap. Geometrically the placement of two vertices must 
differ in the X- or in the Y-coordinate. In the graph theoretic setting this leads 
to the following definition. 

Defini t ion 4. Let g be a graph and let g* = gx t3 gy t3 gh 1.3 gv be a drawing 
specification in terms of z-edges with z E {x, y, h, v}. The drawing specification 
g* is consistent if 

1. gx and gy are acyclic. 
2. for every pair of vertices (u, w) with u ~ w there is an x-path from u to w, 

or conversely, or a y-path from u to w, or conversely. 
3. The undirected graph gh consist of cliques, and similarly for gv- 
4. For every pair of vertices, h-edges and y-paths, v-edges and x-paths and 

h-edges and v-edges between them exclude each other. 

These restrictions can be transferred to graph grammars. 

3 G R A P H  G R A M M A R S  

Next we give a short introduction to graph grammars and illustrate some high- 
lights. See for example [4, 5, 6, 11, 12, 18] for basic notions and results. We 
follow the set theoretic or algorithmic approach and consider graph grammars 
from the family of vertex replacement systems. This approach is best suited for 
graph drawing, although it has strong limits, as we will see below. 

Def ini t ion5.  A graph grammar is a system GG = ( N , T  tJ A , P , S ) ,  where N 
and T are the alphabets of nonterminal and terminal vertex labels and A is 
the alphabet of terminal edge labels. S is the axiom and is regarded as an S- 
labelled vertex. P consists of finitely many productions of the form p = (A, R, C). 
Here A E N is the label of a nonterminal vertex w, R is a nonempty, labelled 
graph of the right-hand-side and C is the connection relation. For simplicity, 
let C preserve the direction and the edges labels. C distinguishes incoming and 
outgoing edges and consists of tuples (B , a , u )  with B E ( N  U T ) , a  E A and 
u E V(R) .  A tuple (B, r, u) establishes edges between the specified neighbors of 
w and the new vertex u from R. 

There is an elegant graphic representation of the productions, which is taken 
as the starting point for our layout graph grammars. Consider fig. 1. The graph 
grammar has two productions. It generates the binary trees over the terminal 
vertex label a. The right-hand side graph of the first production (A, R, C) is a 
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tree with three vertices whose root is labelled by a and the two leaves are labelled 
by A. The directed edges go from the root to the leaves. They  are untabelled. 
The left hand A is drawn as a rectangle, which tightly encloses the tree from the 
right-hand side. There is a single tuple (a, a) in the connection relation, which 
is shown by the edge from the vertex label a on top of the rectangle to the 
root. The second production replaces a vertex with label A by a vertex with the 
terminal label a preserving the connections from a. This is a renaming of A into 
a. See [3] for further examples. This representation is self-explaining and it helps 
in understanding graph grammars and their derivations. 

a 

11 

Fig.1 

If a production (A, R, C) is given in textual form it can be converted into a 
visual form as follows. First draw the right-hand side graph R in some way, such 
that  its vertices are squares of unit size and its edges are straight lines. Place the 
vertices in such a way that  they do not overlap. Simply speaking, let d(R) be some 
drawing of R. Then draw the left-hand side A as a big rectangle, box (p), such that  
box(p) includes the drawing of R. box(p) has an expansion width(box(p)) in X- 
dimension and height(box(p)) in Y-dimension. Finally, the connection relations 
(B, a, u) are represented by lines, which start  from a virtual point with label B 
outside box(p), they cross the rectangle box(p) at a distinguished entry point and 
are then routed inside box(p) to the designated vertex u of R. This procedure 
fully describes the task of a designer of a layout graph grammar. 

D e f i n i t i o n  6. A direct derivation step g ~ g~ rewrites a graph g into some 
graph gl by the application of some production p at some vertex w. This means 
an incremental change. To obtain gl from g using the production p = (A, R, C) 
select a vertex w of g with label A. Replace w by an isomorphic copy of R 
that  is vertex disjoint with g. Then establish edges between the neighbors of 
w and the vertices of R as specified by C. Formally, g~ = (V~,E~,m~), where 
V' = V(g) - {w} U V(R). The vertex labels are copied from g and R. An 
edge ( s ,a , t )  is in E '  if and only if e E E(g) and s ~ w ~ t or e E E(R) or 
e is established by a connection from C as follows. Consider incoming edges; 
outgoing edges are similar. If (B, a, u) C C and u C V(R), then (v, a, u) is an 
edge of g~ if and only if (v, a, w) is an edge in g. The language generated by 
a graph grammar consists of all generated graphs with terminal vertex labels, 
L(GG) = { g I S ::::~* g with re(w) E T for every vertex w E V(g)}. 

Our view to graph grammars and to layout graph grammars is dominated by 
the "inclusion principle", which is expressed by the fact that  the graph of the 
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right-hand side R is included in the left-hand side A. This concept corresponds 
to the "contains operation" of Golin and Reiss [13]. 

There is a rich theory of graph grammars and graph languages that has been 
developed in the past decade, see [4, 5, 6, 11, 12, 18]. Many investigations are con- 
cerned with the proper notions of context-free graph grammars and context-free 
graph languages. There exist several concepts, such as confluent and boundary 
graph grammars and hyperedge replacement systems, but that is not of concern, 
here. We shall only rely on effective parsing algorithms, such as those in [2, 18], 
and these should run in polynomial time. 

We cannot go into depth and details and state some important facts and 
highlights: 

Proposition 7. The following sets of graphs can be generated by context-free 
graph grammars and thus are context-free graph languages. See e.g. [18, 11]. 

- the trees and the binary trees 
- the series parallel graphs 
- the partial k-trees for fixed k 
- the maximal outerplanar graphs 
- the (complete) bipartite graphs 
- the complete graphs 
- the flowgraphs of programs. 

These sets of graphs have a recursive definition using some operations, and each 
graph has an underlying tree structure. To the contrary, there are many sets 
of graphs which cannot be defined by context-free graph grammars. There is 
a Pumping Lemma which implies a linear growth in the size of the generated 
graphs and a separator theorem [19] which says that every generated graph as 
a separator which is quadratic in the degree of the graph. This excludes e.g. 
the square grids and many other sets of graphs which are of special interest for 
graph drawings. 

P ro pos i t i on  8. The following sets of graphs cannot be generated by any context- 
free graph grammar and thus are non-languages. Even more, these sets of graphs 
are not contained in any context-free graph language [19]. 

- the grids 
- the planar graphs 
- the directed acyclic graphs 

4 L A Y O U T  G R A P H  G R A M M A R S  

Layout graph grammars transfer the drawing specifications of finitely many pro- 
ductions into infinite derivation processes. They produce graphs together with 
their drawing specifications. This can fully be described in graph grammar terms. 
Hence, layout graph, grammars perform a syntax directed translation of textual 
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representations of graphs into graph drawings. Alternatively they can be seen as 
at t r ibuted graph grammars, where the attr ibutes describe geometric relations. 
Attr ibutation techniques for graph drawings are also used by Golin and Reiss 
[13] and by Zinflmeister [21]. 

D e f i n i t i o n  9. A layout graph grammar LGG consists of a graph grammar GG 
and a layout specification LS. LS associates finitely many drawing specifications 
Cl,.. . ,  Cq with each production p of GG with q _> 1. 

A pair (p, c) is called a layout production. (p, e) is applied to a pair (g, DS(g)) 
consisting of a graph g and a drawing specification of g. It yields a new pair 
(g~,DS~(gt)) by an incremental change, gt is obtained from g by replacing a 
vertex w of g by the graph R according to p. The drawing specification is updated 
as follows. Consider only the horizontal updates; the vertical ones are similar. 
Let k = width(box(p)) be a lower bound of the size of box(p) in X-dimension 
derived from the drawing specification e. Then DS~(g ~) includes all inequalities 
from the layout specification of the right hand side R. The inequalities of DS(g) 
with the replaced vertex w are updated and are transferred to all vertices of the 
right hand side. Thus the left side of the rectangle box(p) inherits all " to  the 
left of" relations of w. Hence, if w.X > z.X + k holds in DS(g) for some vertex 
z E V(g) and u.X > h . X + m  holds in c where h represents the left side of box(p) 
and u is some vertex of R, then u.X > z.X + (k + m). Hence, u must be drawn 
more than k + m units to the right of z, if w was at least k units to the left of z 
and u is at least m units to the right of the left border of the enclosing rectangle. 
Similarly, the right side of box(p) inherits all " to  the right of" relations from w. 
The expansion of the replaced vertex w to box(p) may have an impact on the 
relations between other vertices of g, which are updated by adding an extra shift. 
Layout specifications for horizontal or vertical alignments between the replaced 
vertex w and another vertex z are transferred to distinguished vertices of the 
right hand side. If w.X = z.X is specified in DS(g) then w.X = u.X holds for 
every distinguished vertex. 

With the simplification to unit distances the layout specifications can be 
expressed in graph grammar terms using the extra edge labels {x, y, h, v}. 

D e f i n i t i o n  10. Let p = (A, R, C) be a production and let R~, Ry, Rh and Rv 
be the graphs with vertices V(R) describing a drawing specification c. Then 
(A, R U R*, C U C*) describes a layout production (p, c) where R* = R= U Ry U 
Rh U Rv and C* handles the connections of x, y, h, v - edges . In a derivation 
step, incoming x-edges of the replaced vertex w are transferred to all x-sources 
of gx and outgoing x-edges to all x-sinks, y-edges are t reated accordingly. For 
the h-edges resp. v-edges, there are distinguished vertices in R and these inherit 
the h-edges resp. w-edges from the replaced vertex w. 

D e f i n i t i o n 1 1 .  The language L(LGG) of a layout graph grammar LGG = 
(GG, LS) consists of pairs (g, DS(g)) with g E L(GG) and DS(g) is constructed 
along a derivation S ~ *  g. Equivalently, L(GG) consists of graphs of the form 
f -- g U g*. Let D.(LGG) = {d(g) I (g, DS(g))  E L(LGG) and the drawing 
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d(g) satisfies the specification DS(g)}. D(LGG) contains .the drawings of the 
generated graphs, which satisfy the layout specification. 

Every derivation step by a production p induces an expansion by at most 
width(box(p)) and height(box(p)). Since context-free graph grammars permit 
derivations of graphs of linear length, this implies a linear upper bound in each 
dimension. Recall that there is only a placement of the vertices. 

L e m m a  12. Every drawing d(g) of D(LGG) has an area of size 0(n2), where n 
is the size of g. 

The usefulness of the approach is based on the following result. 

T h e o r e m  13. Let LGG = (GG, LS) be a layout graph grammar such that GG 
is polynomial, i.e. there is a polynomial algorithm for the membership problem 
g E L(GG) as in [2, 17]. Then there is a polynomial time algorithm H which 
for every graph g E L(GG) constructs a drawing d(g) such that d(g) satisfies a 
specification nS(g)  with (g, DS(g) ) in L(GG) and d(g) has minimal area among 
all these drawings. 

Proof. (Sketch). By definition, the underlying graph grammar has a polynomial 
time membership problem and every graph g E L(GG) can be parsed in poly- 
nomial time. Consider a derivation fi : S ---~* g which is reconstructed by the 
parsing algorithm. For every vertex w occurring in d define attributes width(w), 
height(w), X(w) and Y(w). width and height are synthesized attributes. They 
define the minimal size of a rectangle containing the graph generated from w. X 
and Y are inherited attributes defining the X- and Y-coordinates of w relative 
to the next enclosing rectangle. These values are computed in a final top-down 
pass. If a vertex w is replaced by a graph R using a production (A, R, C), then 
for each layout production (p, c) we can compute the updates of width(v) and 
height(v) from the associated values for the vertices of R and from the drawing 
specification c. The parsing algorithm for the underlying graph grammar is aug- 
meni;ed with these attributes. It computes minimal values for the width and the 
height of each vertex. Since width and height are bounded by O(n), there are at 
most O(n 2) incomparable pairs, where n is the size of g. This implies a quadratic. 
increase in the running time of the parsing algorithm, which is supposed to be 
polynomial. 

The outcome of algorithm H depends on the used layout specifications and 
thus on the layout graph grammar designed by the user. There is a wide spectrum 
which is illustrated here for binary trees. Let the vertices be u, w, v from left to 
right. 

The production in fig. 2a is used to define binary trees and to construct H-tree 
layouts, see [20]. For completeness add a production which relabels vertices from 
A to a, as in fig. 1. The layout specification can directly be retrieved from the 
drawing. In the graph theoretic definition of the drawing specification, the tree 
edges coincide with h-edges resp. v-edges as shown. The transitive reductions of 
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the x-edges and the y-edges is shown in figures 2b and 2c. The y-edges .to the 
center vertex could be omitted; they are implied by the vertical y-edges and the 
h-edges. With this layout graph grammar, algorithm H constructs area optimal 
H-tree layouts. 

X X 

X X 

a 

Fig.2a Fig.2b Fig.2c 

Next, consider drawings of binary trees from top to bottom using the graph 
grammar from fig. 1. Consider only the left production, the right one is trivial. 
If the left-to-right and upwards relations between the three vertices of the right- 
hand side are as shown then algorithm H produces inorder drawings. H t is a 
generated tree with n vertices and height h then the X-coordinates of its vertices 
are given by the inorder numbering. The height of the drawing coincides with 
the height of the tree, because the root is at least one unit above its children. 
However, the Y-coordinate of a lower subtree is not exactly fixed. It may vary 
so that t fits into the rectangle of size n �9 h, which is the area used by algorithm 
H. 

Now add a horizontal alignment between the leaves of the production, i.e. 
an h-edge between the two A-vertices. If in derivation steps this alignment or h- 
edge is inherited to the root, then algorithm H produces proper inorder drawings 
of binary trees, where for every tree node t the X-coordinate is determined by 
the inorder numbering and the Y-coordinate by the distance from the root. 
However, if the horizontal alignment or h-edge is inherited to the (left) leaf of 
the production then all leaves are positioned on the same horizontal level. They 
lie on a line. The Y-coordinates of the interior nodes are not exactly fixed. The 
area is n * h. 

If alternatively a y-edge is added from the left leaf to the right leaf, then the 
left subtree must be drawn completely below the right subtree. This results in 
tree drawings of (maximal) width and height n for trees of size n. 

The aforementioned tree drawings are simple and even bad. They cannot 
compete with those of tree drawing algorithms, because the drawings are too 
wide. This is improved by our last example which uses two drawing specifications 
for a single production. 

Take the specification as shown in Fig. 3 where the edge labels indicate 
the specification. Notice that the two drawing specifications differ only by the 
(diagonal) edge between the two leaves, which alternatively is an x-edge or a 
y-edge. In derivation steps the horizontal and vertical alignments are inherited 
to the root. Using both layout productions, algorithm H is the graph grammar 
version of the algorithm from [10]. It constructs area optimal h-v drawings of 
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binary trees and runs in quadratic time. For complete binary trees and Fibonacci 
trees it constructs h-v drawings with linear area as in [8], however it needs 
quadratic time. 

B 

h,V 

Fig. 3 

These notes illustrate that  tree drawings by graph grammars cannot compete 
with tree drawing algorithms. E.g. our graph grammars do not specify that  the 
root is centered over the subtrees; such features can be added. There is a proper 
left-to-right or upwards relation between subtrees. These cannot be merged. 
Hence subtrees cannot be squeezed along their contour, as in many tree drawing 
algorithms. 

5 C O N C L U S I O N  

Layout graph grammar are a complex and powerful concept. However, are they 
really useful for graph drawings? They cannot deal with grids or planar graphs! 
They focus only on the placement of the vertices; the routing of the edges is 
reduced to straight lines. However, there is no guarantee that  such lines cross 
vertices others than their endpoints. Extensions and modifications should over- 
come these limitations. 
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