
Designing Grid-based

Problem Solving Environments and Portals

Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane, Nell Rehn, Mike Russell

Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, U.S.A.

gregor@mcs.anl.gov

Abstract

Building Problem Solving environments in the emerging

national-scale Computational Grid infrastructure is a chal-

lenging task. Accessing advanced Grid services, such as

authentication, remote access to computers, resource man-

agement, and directory services, is usually not a simple

matter for problem solving environment developers. The

Commodity Grid project is working to overcome this dif-

ficulty by creating what we call Commodity Grid Toolkits

(CoG Kits) that define mappings and interfaces between

the Grid and particular commodity frameworks familiar to

problem solving environment developers. In this paper, we

explain why CoG Kits are important for problem solving en-

vironment developers, describe the design and implementa-

tion of a Java CoG Kit, and use examples to illustrate how

CoG Kits can enable new approaches to application devel-

opment based on the integrated use of commodity and Grid

technologies.

1. Introduction

The development of next-generation problem solving

environments (PSEs)[12] is influenced by rapid advances

in the world of commodity computing and the emerging

national-scale Computational Grid. The explosive growth

of the Internet and of distributed computing in general

has led to significant technology improvements in sev-

eral domains that are important for the development of

PSEs accessing large-scale computational resources. In the

world of commodity computing, a broad spectrum of dis-

tributed computing technologies (Web protocols, Java, JINI,

CORBA, DCOM, etc.) has emerged, with revolutionary ef-

fects on how we access and process information. Simulta-

neously, the high-performance computing community has

taken big steps toward the creation of so-called Grids, ad-

vanced infrastructures designed to enable the coordinated

use of distributed high-end resources for scientific problem

solving.

These two worlds of what we will call “commodity” and

“Grid” computing have evolved in parallel, with different

goals leading to different emphases and technology solu-

tions. For example, commodity technologies tend to focus

on issues of scalability, component composition, and desk-

top presentation, while Grid developers emphasize end-to-

end performance, advanced network services, and support

for unique resources such as supercomputers. The results

of this parallel evolution are multiple technology sets with

some overlaps, much complementarity, and some obvious

gaps.

In this context, we have established the Commodity Grid

(CoG) project, with the twin goals of (a) enabling devel-

opers of PSEs to exploit commodity technologies wherever

possible and (b) exporting Grid technologies to commodity

computing for easy integration in PSEs.

A first activity being undertaken within the CoG project

is the design and development of a set of Commodity Grid

Toolkits (CoG Kits), that define and implement a set of gen-

eral components that map Grid functionality into a com-

modity environment/framework. Hence, we can imagine a

Web/CGI CoG Kit, a Java CoG Kit, a CORBA CoG Kit,

a DCOM CoG Kit, and so on. In each case, the bene-

fit of the CoG Kit is that it enables application developers

to exploit advanced Grid services (resource management,

security, resource discovery) while developing higher-level

components in terms of the familiar and powerful applica-

tion development frameworks provided by commodity tech-

nologies. In each case, we also face the challenge of devel-

oping appropriate interfaces between Grid and commodity

concepts and technologies—and, if similar Grid and com-

modity services are provided, reconciling competing ap-

proaches.

As part of these activities, we have successfully devel-

oped a Java-based Commodity Grid Toolkit (Java CoG Kit)

that defines and implements a set of general components

mapping Grid functionality into the Java framework. The

Java CoG Kit is of particular interest for PSE developers

because it allows them to implement preinstalled heavy-

weight applications to be started on user-accessible com-

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 1

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

pute servers, as well as lightweight Web interfaces or portals

allowing access to sophisticated remote compute services.

The primary goal of our research is not to build a PSE

that will solve a specific problem for a particular applica-

tion area. Instead, our focus is on developing a software

infrastructure to make it easier to build and deploy pow-

erful PSEs. We have based our development of the Java

CoG kit on our experiences with application users in various

problem domains. Thus, we are confident that the toolkit is

general enough to be useful for a large number of PSE de-

velopers.

While we have introduced in [17] the general concepts of

the Java CoG Kit, we will illustrate in this paper its practical

use in the development of problem solving environments.

Additionally, we introduce here new components and more

sophisticated security concepts that are of particular interest

to developers of chemistry problem-solving environments.

2. Portals to Problem Solving Environments

For readers to understand the scope of this work, we

explain the terms problem solving environment and portal,

since multiple definitions are used for both terms in the lit-

erature.

2.1. Problem Solving Environment

Our understanding of a PSE follows approximately the

definition given in [7]: “A problem solving environment is

a computational system that provides a complete and con-

venient set of high level tools for solving problems from a

specific domain. The PSE allows users to define and mod-

ify problems, choose solution strategies, interact with and

manage appropriate hardware and software resources, vi-

sualize and analyze results, and record and coordinate ex-

tended problem solving tasks. A user communicates with

a PSE in the language of the problem, not in the language

of a particular operating system, programming language, or

network protocol.”

For our research focus we assume that the problems must

access remote resources, potentially in a secure fashion,

and may require a large amount of compute and/or data re-

sources. The process of solving the problem is steered by

the scientist, and its progress may be monitored through In-

ternet browsers or special-purpose application-monitoring

programs.

2.2. Requirements for PSE Portals

We identified a list of characteristics that influenced our

PSE toolkit design [1]:

Problem-oriented. The PSE should allow specialists to

concentrate on their discipline, without having to become

experts in computer science issues, such as networks, paral-

lel computing, or the World Wide Web.

Integrated. Many problems and their solution strate-

gies are extremely heterogeneous: in models, codes, appli-

cations, and machines. A PSE must be designed to manage

this heterogeneity in an integrated way, so that the user is

presented with a predictable and consistent PSE.

Collaborative. Most science and engineering projects

are performed in collaborative mode with physically dis-

tributed participants. A PSE must include the ability to

foster collaborative solution strategies. We assume that a

general-purpose video conferencing tool can be provided

with common off-the-shelf tools developed by commercial

companies. Nevertheless, it may be necessary to develop

special-purpose collaborative tools that are not provided by

third parties.

Distributed. Besides the need to support distributed col-

laboration between scientists, many problems we have been

dealing with (such as Grand Challenges) can be solved only

while accessing large distributed resources (such as stor-

age and compute resources) in conjunction with each other.

A PSE must be able to access these distributed resources

seamlessly and in collaboration.

Persistent. Since developing a solution for a problem

may require significant time, it is desirable to provide a per-

sistent environment that allows the researcher to resume the

solution process at a later time at a potentially different lo-

cation. Thus, it is necessary to be able to checkpoint not

only the state of the calculation but also the state of the PSE

user interface. The persistence of a PSE could be enhanced

with preferences that are either set by the user or are de-

tected automatically by the PSE. Such functionality could

be achieved with the integration of what is called an elec-

tronic notebook.

Open, flexible, adaptive. Problem strategies require be-

ing able to integrate novel ideas. A sophisticated PSE build-

ing tool must be able to tailor or add new functionality

within its existent base.

Graphical, visual. The use of graphics and visuals can

enhance the usability of the PSE, for example, through ani-

mated tables and directed graphs to visualize the state of the

application. Furthermore, it must be possible to integrate

custom-designed graphical and visual inputs and outputs.

2.3. Portal for Problem Solving Environments

A “Web portal” is commonly defined as an entry point

or starting site for the World Wide Web, combining a mix-

ture of content and services that attempts to provide a per-

sonalized "home base" for it’s audience. Features include

customizable start pages to guide users easily through the

services provided by the portal. Such services include fil-

terable e-mail, chat rooms and message boards, person-

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 2

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Problem Solving Environment Portal

Clients

Servers

XUL,

XML

XML,

HTTP,

SOAP,

(Globus)

Supercomputer Workstation

Cluster

Storage

Servers

Figure 1. A computing portal interfaces

clients with Grid resources such as stor-

age servers, supercomputers, and worksta-
tion clusters.

alized news, gaming channels, shopping capabilities, ad-

vanced search engines, and personal homepage construction

kits. Examples for consumer-oriented portals are provided

by AOL and Yahoo.

In this spirit, we suggest that a convenient way of inter-

facing with a PSE is to design portals for a scientific domain

or a particular problem strategy. Besides providing collab-

orative, interactive, and information services, such portals

include also services that are unique for the domain but are

typically not provided by consumer-oriented portals. These

services include interfaces between users of the PSE with

the help of clients ranging from graphics workstations to

palm pilots to the resources available as part of the compu-

tational Grid (Figure 1). Naturally, not all capabilities of a

portal may be exposed by less capable access devices such

as palm pilots. Nevertheless, the ability to send a message to

a beeper, palm pilot, or cell phone adds significant value to

the PSE functionality by notifying the user of the existence

of a collaborative session or the completion of a problem

solution. Hence, the ability to access a portal with various

(even less capable) devices is an integral part of our design.

2.4. Users and Usage Modes of PSE Portals

Portal development for PSEs first requires determining

which customer group will be using the portal. We distin-

guish three target groups:

1. Novice science or problem solving environment users,

that is, casual or novice users using readily available

solutions to problems. The problem strategy is non-

transparent to novice users.

2. Expert science or problem solving environment users,

that is, users in the domain for which the portal is

developed. Such users are able to extend the por-

tal while providing solution strategies as used by the

novice users or themselves.

3. Developer of application or problem solving environ-

ments, providing general-purpose components used by

experts or novice users.

In addition, we distinguish between interactive and batch

mode in which jobs are submitted from the problem solv-

ing environment to the backend systems by the users. We

have to be able to support the use of compute resources

through fine-grained parallel programs, typically provided

through MPI message-passing parallel programs, or coarse-

grain parallel programs through job dependencies between

jobs submitted to the batch processing systems or a fork

jobmanager. The toolkit we describe in this paper supports

these usage modes.

3. Architecture

Because of the diversified use of a PSE portal, the archi-

tecture of such an environment must be flexible. Thus, it is

not feasible to develop a point solution for a single problem.

Needed instead is a portal toolkit that includes a set of ser-

vices exposed via APIs that can be used to assemble a point

solution for a problem. Figure 2 and Table 1 outline the var-

ious groups of services that we initially focus on and that

must be integrated into a portal toolkit. Each portal compo-

nent may have several subcomponents that support the tasks

performed as part of the computing portal for problem solv-

ing environments. The components in bold text of Figure

2 are developed as part of the CoG Kit. Other components

are provided either by commodity software or the applica-

tion programmers. The flexible design makes it possible

to integrate new components into the framework or replace

existing modules.

3.1. Grid Core Services

The scientific problem-solving infrastructure of the

twenty-first century will support the coordinated use of nu-

merous distributed heterogeneous components, including

advanced networks, computers, storage devices, display de-

vices, and scientific instruments. The term “The Grid” is

often used to refer to this emerging infrastructure [5][6].

NASA’s Information Power Grid and the NCSA Alliance’s

National Technology Grid are two contemporary projects

prototyping Grid systems; both build on a range of tech-

nologies, including many provided by the Globus project in

which we are involved. In designing PSE portals, we make

extensive use of these technologies, including Globus ser-

vices, such as

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 3

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Portal

Display Components

Science

Components

Collaboration

Components

Compute Resource

Components

Design

Components

Administration

Components

Monitoring

Components

PSE/

Computing

Portal

p-flow

p-installer

p-monitor

p-debug

p-brokerp-trader

c-ticker

a-snb

c-video

p-renderer

Security

Components

p-crypt

c-bean c-jsp

p-authenticate

Figure 2. A computing portal is built with

the help of a variety of portal components
ranging from specialized application- spe-

cific portal components to components for

using distributed compute resources or other
Grid infrastructure.

Table 1. Portal Components
Portal Com-

ponent

Sub Compo-

nent

Function

Collaboration c-video Video collaboration (e.g.

netmeeting)

c-ticker news server

Design p-bean Java IDE (e.g. VisualJava,

Forte, ..)

p-jsp Java IDE

Science a-snb Application specific pro-

vided by scientists

Compute Re-

source

p-trader locates compute resources

p-broker schedules jobs

p-flow dependencies between jobs

p-debug debugs job execution

gram Globus job submission

Security p-crypt sends secure messages

p-

authenticate

authenticates to the system

gsi Grid Security Infrastructure

Administration p-installer installs software on client

Monitoring p-monitor monitors the state

mds Globus Metacomputing Di-

rectory Service

Display p-renderer displays information from

XML

� the information service (MDS), which enables uniform

access to information about the structure and state of

Grid resources;

� an authentication and authorization service (GSI),

which provides mechanisms for establishing, identify-

ing, and creating delegatable credentials; and

�
a uniform job submission service across distributed

scheduling systems (GRAM).

These Grid services are often termed “middleware”: they

typically involve a distributed state and can be viewed as

a natural evolution of the services provided by today’s In-

ternet. They build the basis for developing a Grid-based

problem solving environment because many of the portal

components use their services.

3.2. Job Submission and Execution

One of the main services a PSE portal must provide is

to job submission to remote resources. This must be done

in seamless fashion from the desktop with a single sign-on

authentication. Computers must be located and the compu-

tation must be started on the selected systems. It is essential

to monitor the progress of the job execution and obtain the

results of the calculation through, for example, output files

that may be manipulated locally on the client side (the com-

puter from which the job was initiated). We are able to sup-

port such uniform job submission while using the Globus

metacomputing toolkit to access Grid resources securely.

Authentication The first step of the job submission is to

authenticate with the system. Authentication is the pro-

cess to verify the identity of an entity. Although the cryp-

tographic algorithms that form the basis of most secu-

rity systems–such as public key cryptography–are relatively

simple, it is a challenging task to use these algorithms to

meet diverse security goals in complex, dynamic problem

solving environments, with potentially large and dynamic

sets of users and resources and fluid relationships between

users and resources. Authentication solutions for problem

solving environments in a Computational Grids must solve

two problems not commonly addressed by standard authen-

tication technologies.

The first problem is support for local heterogeneity. The

resources available in the Grid are operated by a diverse

range of entities, each defining a different administrative

domain.

The second problem support for N-way security con-

texts. In traditional client-server applications, authentica-

tion involves just a single client and a single server. In

contrast, a Grid-based PSE may require and dynamically

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 4

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

maintained resources. Thus, it must be possible to estab-

lish a security relationship between any two processes in

the computation used to solve the problem even if they are

in different administrative domains. To simplify our task

we use the Grid security infrastructure (GSI) that deals with

the authentication. GSI policy allows a user to authenti-

cate just once per computation, at which time a credential

is generated that allows processes created on behalf of the

user to acquire resources, and so no, without additional user

intervention. Local heterogeneity is handled by mapping

a user’s Grid identity into local user identities at each re-

source. In summary, the GSI security model provides PSEs

the following advantages: single sign-on for all resources,

no need for user to keep track of accounts and passwords at

multiple sites, and no plaintext passwords.

Protocol-based Job Submission Recently, Globus has

been enhanced to include an HTTP-based protocol for job

submission. Thus, job submission can be initiated from a

client on which no other Globus components are installed.

Figure 3 shows the Globus components that are involved in

such a job submission. First, one has to authenticate with

the system, which is done with the help of public key in-

frastructure and a proxy delegation while generating a tem-

porary key. Jobs are submitted from the client side through

API calls known as gram-submit and gram-request. The

gatekeeper on the Globus-enabled resource verifies whether

the user is allowed to submit a job to it and checks the avail-

ability of the user’s public key in a grid map file local to the

resource. Once a job has been successfully submitted to the

system, it is started with the help of the job manager, and

its state is monitored with the help of the reporter. Dur-

ing startup of a job a user can register callback handlers that

provide job status updates. In our Java CoG Kit we have im-

plemented all components and services responsible for the

proxy initialization and the job submission. Furthermore

we have replaced the C-based callback service with a Java-

based event service. Thus, all components to submit a job

are available in pure Java, allowing even Windows clients

to submit jobs to Globus servers.

3.3. Additional Security Issues

In the preceding sections we addressed security issues

related to authentication and authorization while using the

security policy suggested by Globus. The authorization to

use a particular Grid resource can be controlled via a grid-

map file and appropriately specified group permissions con-

trolled by the local system administrators.

Nevertheless, we still have to address issues such as the

secure communication between programs. To guarantee

privacy, we use the security mechanisms provided by secure

socket connections, which we can obtain through GlobusIO.

gram-submit Gatekeeper

job-managercallback handler

grid-proxy-init

authentication

proxy-delegation

job-requestregister callback

status

client side server side

reporter

private key

temporary key

challenge
grid-map

Figure 3. The components of the Globus se-
curity infrastructure used during job submis-

sion. All client side components are available
within the CoG Kit as pure Java components.

This allows us to send messages and data in a secure fashion

between compute resources.

4. Java CoG Kit

In the remainder of this paper we focus our attention on

our Java CoG Kit prototype, which enables us to build the

components listed in Table 1 and used as part of a PSE. Be-

cause of the large number of packages and classes required

to expose the necessary functionality of the Globus toolkit,

we focus in this paper on a subset of the classes that we

deem most useful for the development of PSE-based Grid

applications. The design of the Java CoG Kit is intended to

facilitate the development of future components as a com-

munity project. To support an iterative process of definition,

development, and application of a Java CoG Kit in collab-

oration with other teams, we classify components in four

layers. This categorization provides the necessary subdi-

visions to coordinate such a challenging open community

software engineering task.

Low-Level Grid Interface Components provide map-

pings to commonly used Grid services: for example,

the Grid information service (the Globus Metacom-

puting Directory Service, MDS), which provides

Lightweight Directory Access Protocol (LDAP) [9]

access to information about the structure and state of

Grid resources and services; resource management

services, which support the allocation and manage-

ment of computational and other resources (via the

Globus GRAM and DUROC services); and data

access services, for example, via the Globus GASS

service [3].

Low-Level Utility Components are utility functions de-

signed to be reused by many users. Examples are com-

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 5

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

// Step 0. Initialization

MDS mds=new MDS("www.globus.org","389","o=Grid");

//Step 1. Search for an available machine

result = mds.search

("(objectclass=GridComputeResource)(freenodes=64))",

"contact");

// Step 1.a) Select a machine

machineContact = <select the machine with minimal

execution time from the contacts that are returned in result>

// Step 2. Prepare the data for the experiment

// Step 2.a) Search for the data and return

// the attributes: server,port,directory,file

dn = mds.search

("(objectclass=MoleculeStructureData)(name=cholera)",

"dn", MDS.SubtreeScope);

result = mds.lookup (dn,"server,port,directory,file");

// Step 2.b) download the data to the machine

url = result.get("server")+":"+ result.get("port")+":"

+ result.get("directory")+"/"+ result.get("file");

data = server.fetch (url, machineContact);

// Step 3. Prepare a description for running the model

RSL rsl = new RSL("(executable=snb)(processors=64)

(arguments=-out snb.out)

(arguments=-in " + data.filename +")");

// Step 4. Submit the program

GramJob job = new GramJob();

job.addJobListener(new GramJobListener() {

public void stateChanged(GramJob job) {

// react to job state changes

}

});

try{

job.request(machineContact, rsl);

} catch (GramException e) {

// problem submitting the job

}

Figure 4. This sample script demonstrates

how we access basic Grid services with the
help of the Java CoG Kit. Here data for a

structural biology code called SnB are lo-
cated, an appropriate machine is selected,

and the calculation is executed on that ma-

chine.

ponents that use information service functions to find

all compute resources that a user can submit to, that

prepare and validate a job specification while using

the extended markup language (XML) or the Globus

job submission language (RSL), that locate the geo-

graphical coordinates of a compute resource and that

test whether a machine is alive.

Low-Level GUI Components provide a basic graphical

components that can be reused by application develop-

ers. Examples are LDAP attribute editors, RSL editors,

LDAP browsers, and search components.

Application-specific GUI Components simplify the

bridge between applications and the basic CoG Kit

components. Examples are a stock market monitor,

a graphical climate data display component, or a

specialized search engine for climate data.

Figure 4 shows how a small set of services provided by

the Java CoG Kit may be used in practice. This Java pro-

gram skeleton demonstrates how simple it is to build portal-

specific services when accessing a variety of basic Grid ser-

vices through the Java CoG Kit. In this example, an appro-

priate machine is selected for execution, data for an instanti-

ation of a problem specific algorithm is determined, and the

job is executed on that machine, resulting in the generation

of an output file.

4.1. Low­Level Grid Interface Components

We describe here a subset of packages that provide the

interface to the low-level Grid services and application in-

terfaces. These packages are used by many users to develop

Java-based programs in the Grid. We describe only the gen-

eral functionality of these packages. A complete list of the

classes and methods accompanies the distribution [18].

RSL The package org.globus.rsl provides methods for

creating, manipulating, and checking the validity of the Re-

source Specification Language (RSL) expressions used in

Globus [8] to express resource requirements. As shown in

Step 3 of Figure 4, the arguments to a new call include pa-

rameters that specify both characteristics of the required re-

sources and properties of the computation.

GRAM The package org.globus.gram provides a map-

ping to the Globus Resource Allocation Manager (GRAM)

services [8], which allow users to schedule and manage re-

mote computations. The classes and methods distributed

allow users to submit jobs, bind to already submitted jobs,

and cancel jobs on remote computers. Other methods allow

users to determine whether they can submit jobs to a spe-

cific resource (through a Globus gatekeeper) and to monitor

the job status (pending, active, failed, done, and suspended).

As shown in Step 4 of Figure 4 the class Gram is used

to create a job with an RSL string describing the job and a

machine contact that determines on which machine the job

is requested for execution. Our Java mapping differs from

that provided in Globus for C through the introduction of a

formal job object, as well as the availability of a sophisti-

cated event model in Java. Our implementation utilizes this

event model and transfers the C callbacks into equivalent

Java events. In Java one can now use threads in order to

“listen” to a particular event that can trigger further actions.

A Java interface GramJobListener that contains the

method stateChanged(GramJob job) can be used

to define customized job listeners that can be added with the

GramJob method addListener(GramJobListener
listener).

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 6

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

MDS The package org.globus.mds simplifies access to

the Metacomputing Directory Service (MDS) [15], which

is an important part of the Globus information service. Its

functions include (a) establishing a connection to an MDS

server, (b) querying MDS contents, (c) printing, and (d) dis-

connecting from the MDS server. The package provides

an intermediate application layer that can be easily adapted

to different LDAP [9] client libraries, including JNDI [10],

Netscape SDK [11], and Microsoft SDK [13].

As shown in Step 1 of Figure 4, the parameters to initial-

ize the MDS class are the DNS name of the MDS server,

the port number for the connection, and the distinguished

name (DN) that specifies the root for a search in the direc-

tory tree. A search is performed in Step 2a; the first param-

eter specifies the top level of the tree in which the search is

performed, the second parameter specifies the LDAP query,

and the third parameter specifies the scope, that is, for how

many levels in the tree the search should continue (in our

case, only the next level). Search results can also be stored

in a NamingEnumeration provided by JNDI.

GASS The Global Access to Secondary Storage (GASS)

service [3] simplifies the porting and running of applica-

tions that use file I/O, eliminating the need to manually log

onto sites and ftp files or to install a distributed file system.

The package org.globus.gass provides an essential subset

of GASS services to support the copying of files between

computers on which the Grid Services are installed. The

method get(String from, String to) copies a remote file to a

local file, and the method put(String from, String to) copies

a local file to a remote location. The fetch method used in

our example (Figure 4) provides a convenient wrapper and

uses internally the previously mentioned get method.

4.2. Low­Level Utilities

The low-level utility classes currently defined in the CoG

Kit provide an abstract datatype representing acyclic graphs

and basic XML parsing routines. The graph class is used,

for example, to access dependencies between jobs, a major

requirement for PSEs. The XML classes are used to pro-

vide transformations between different data formats. Using

XML has the advantage that a Document Type Definition

(DTD) that is defined for these data formats can be used to

verify whether a record to be transmitted is well formed be-

fore it is sent to a server. Thus the load on servers can be

dramatically reduced. The availability of a dependency be-

tween jobs is a significant extension to the existing Globus

low-level application interface. In addition, we have defined

a general concept of a machine and job broker interface.

This enables a programmer to define a customized selection

of machines and jobs dependent on his demand. We have

used this technology as part of a high-throughput broker

scheduling

policy

machines jobs

broker

access

policy

Figure 5. A broker interface allows us to

specify an easy way to develop compatible
components relying on this interface. Jobs

and machines are selected based on a pre-

defined access/security policy as well as a
scheduling policy. The policies may be gen-

erated dynamically based on other system in-
formation.

that is implemented in Java but can also exposed through

CORBA objects. The GECCO application introduced in

Section 4.4 uses the Java-based machine and job brokers.

The broker is a good example of a universally useful

component for PSE developers, as well as Grid users. Here

a set of jobs and machines is stored in two tables. Depen-

dent on a scheduling and access policy, a machine is se-

lected and a job is scheduled for the execution on this ma-

chine (see Figure 5). We have defined a simple interface

outlined in Figure 6. This interface allows us to add jobs and

machines to the sets so that it is possible to administer them

dynamically. With the help of this interface we have defined

multiple scheduling policies such as first-come-first-served

and load balancing based on resource characteristics. Cur-

rently we are investigating the use of economy models for

scheduling jobs to machines.

4.3. Low­Level GUI Components

The Java CoG Kit low-level GUI components provide

basic graphical components that can be used to build more

advanced GUI-based applications. These components in-

clude text panels that format RSL strings, tables that display

results of MDS search queries [17], trees that display the di-

rectory information tree of the MDS, and tables to display

HBM and network performance data. Each component can

be customized and is available as JavaBean. In future re-

leases of the Java CoG Kit it will be possible to integrate the

bean in a Java-based GUI composition tool such as JBuilder

or VisualCafe.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 7

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

interface broker ... {

addJob(JobDescription job)

deleteJob(JobDescription job)

addMachine(MachineDescription machine)

deleteMachine(MachineDescription machine)

setAccessPolicy(BrokerAccessPolicy policy)

setSchedulingPolicy(BrokerSchedulingPolicy policy)

...

MachineDescription getMachine()

JobDescription getJob()

...

}

Figure 6. This code fragment shows the ele-

mentary methods of the broker. Jobs and ma-

chines can be added. The job and machine
returned by the get methods are defined by

the policies and the algorithms defined by an
object instantiation of the interface.

4.4. PSE Application Level Utilities and GUI Com­
ponents

High-level graphical applications combine a variety of

CoG Kit components to deliver a single application or ap-

plet. These applications can be combined to provide even

greater functionality. The user should select the tools that

seem appropriate for the task. To demonstrate the range of

applications, we have included a set of screen dumps that

highlight the look and feel of some applications developed

to date.

GECCO The Graph Enabled Console COmponent

(GECCO) is a graphical tool for specifying and monitoring

the execution of sets of tasks with dependencies between

them [16][14]. Specifically it allows one to

1. specify the jobs and their dependencies graphically or

with the help of an XML-based configuration file;

2. debug the specification in order to find erroneous spec-

ification strings before the job is submitted; and

3. execute and monitor the job graphically and with the

help of a log file.

As shown in Figure 7, each job is represented as a node in

the graph. A job is executed as soon as its predecessors are

reported to have successfully completed. The state of a job

is animated with colors. It is possible to modify the specifi-

cation of the job while clicking on the node: A specification

window pops up allowing the user to edit the RSL, the la-

bel, and other parameters. Editing can also be performed

during runtime (job execution), hence providing for simple

computational steering.

Figure 7. The Grid Enabled Console COmpo-
nent (GECCO) allows the user to specify de-

pendencies between tasks that are to be exe-
cuted in the Grid environment.

High-Throughput Broker We have developed a proto-

type of a high-throughput broker to test whether the inter-

faces and classes allow one to easily generate high-level

components that simplify job maintenance tasks for certain

problem-solving strategies. One of the tasks that has been

identified and is common to many solution strategies is to

perform a parameter study [2][4]. That is, an algorithm is

repeatedly executed with a variety of parameters. Our sys-

tem is based on the interface of a broker and thus allows us

to clearly separate the GUI presentation from the function-

ality (Figure 8). The prototype looks for compute resources

available in a pool of machines formed by a Grid informa-

tion service with the help of the Globus MDS. From this

pool we select those resources that are idle and are avail-

able for calculation. If a resource is not able to fulfill a job

(because of connection timeout or excessive time needed

to complete the job), the resource is automatically removed

from the set of viable candidates. The set of resources as

well as those removed from the list can be manipulated

through an interactive shell. A similar interface exists for

the jobs. Special attention has to be placed on the imple-

mentation of such a broker. Although it is possible to spawn

for each job and machine a thread that maintains the appro-

priate object, we have chosen to maintain the jobs and ma-

chines in lists to avoid the overhead associated with threads

and the expected resource limitations on the machine on

which the system is running. Thus, we are able to handle

submissions that maintain 10,000 or more jobs, a task that

would otherwise be impossible.

5. Installation and Upgrading

An important function that must be provided by a PSE

is to install and upgrade the software that accesses the var-

ious services exposed as part of its design. Using Java will

provide us with several options for deploying our client soft-

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 8

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

Figure 8. A high throughput broker allows the

submission of many jobs as part of a prob-
lem. After all jobs are completed a solution of

the problem can be obtained. The progress

of the calculation is monitored with a GUI.

ware. In addition to traditional methods of delivering client

software to be installed and configured prior to its use, we

can develop thin-client software, which can be dynamically

installed or updated as well as loaded at time of use.

Preinstallation of the software in the form of a stand

alone application or a library is convenient for applications

that would take too long to be installed via a network con-

nection (Figure 9). This strategy is today used by many

commercial portals as part of their access software enabled

with the help of so-called browser plug-ins. Nevertheless,

we recognize the fact that it is sometimes not possible to

install any software on the client computer because the user

does not have sufficient access to it. This requires, at the

cost of additional download time, downloading the appro-

priate jar files from a well-defined URL. In both cases it

will be possible to augment the jar files with authentica-

tion measures in the form of certificates. These will allow

clients to identify the source of the code upon downloading

our software and to verify that it can be trusted for use on

their systems.

6. Summary

Commodity distributed-computing technologies enable

the rapid construction of sophisticated client-server appli-

cations. Grid technologies provide advanced network ser-

Renderer Display

XML

Java CoG Kit

X11PalmOs

Renderer

Portal

Palm CoG Kit

Java CoG KitPalm CoG Kit

local install local install

Pages

Figure 9. The installation of the CoG Kit onto
a client can be done prior to the start of the

application as a standalone application or

the installation of a library or during an on-
demand execution.

vices for large-scale, wide area, multi-institutional environ-

ments and for applications that require the coordinated use

of multiple resources. In the Commodity Grid project, we

seek to bridge these two worlds so as to enable advanced

applications that can benefit from both Grid services and

sophisticated commodity development environments.

The Java Commodity Grid Toolkit (CoG Kit) described

in this paper represents a first attempt at creating of such a

bridge. Building on experience gained over the past three

years with the use of Java in Grid environments, we have

defined a set of classes that provide the Java programmer

with access to basic Grid services, enhanced services suit-

able for the definition of desktop problem solving environ-

ments, and a range of GUI elements. Initial experiences

with these components have been positive. It has proven

possible to recast major Grid services in Java terms without

compromising on functionality. Some substantial Java CoG

Kit applications have been developed, and reactions from

users have been positive.

Our future work will involve the integration of more ad-

vanced services into the Java CoG Kit and the creation of

other CoG Kits, with CORBA, DCOM, and Python being

early priorities. We also hope to gain a better understand-

ing of where changes to commodity or Grid technologies

can facilitate interoperability and of where commodity tech-

nologies can be exploited in Grid environments.

With the help of the CoG Kits we have prototyped a

portal to a structural biology problem solving environment.

Other projects are currently investigating the use of the CoG

Kit to simplify the access to Grid resources. Such projects

include the astrophysics portal Cactus, the NCSA Userpor-

tal, and SDSC Hotpage. The requirements demanded by

such projects have influenced our present design, and we are

collaborating with project developers to enhance the com-

ponents we provide in the CoG Kit. Most recently, we have

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 9

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

started to address the integration of components developed

by other collaborators.

7. Acknowledgments

This work was supported by the Mathematical, Infor-

mation, and Computational Science Division subprogram

of the Office of Advanced Scientific Computing Research,

U.S. Department of Energy, under Contract W-31-109-Eng-

38. Globus research and development is supported by

DARPA, DOE, and NSF. We thank Geoffrey C. Fox, Dennis

Gannon, and Jason Novotny for valuable discussions during

the course of the CoG Kit development. This work would

not have been possible without the help of the Globus team.

For up-to-date release notes, and further in-

formation readers should refer to the Web page

http://www.globus.org/cog [18].

References

[1] Marc Abrams, Donald Allison, Dennis Kafura, Calvin

Ribbens, Mary Beth Rosson, Clifford Shaffer, and

Layne Watson. PSE Research at Virginia Tech: An

Overview. Department of Computer Science, Virginia

Tech, Blacksburg, VA 24061, 1999.

[2] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nim-

rod: A tool for performing parameterised simulations

using distributed workstations. In Proc. 4th IEEE

Symp. on High Performance Distributed Computing.

IEEE Computer Society Press, 1995.

[3] Joseph Bester, Ian Foster, Carl Kesselman, Jean

Tedesco, and Steven Tuecke. GASS: A data move-

ment and access service for wide area computing sys-

tems. In Proc. IOPADS’99. ACM Press, 1999.

[4] D. H. J. Epema, M. Livny, R. van Dantzig, X. Evers,

and J. Pruyne. A Worldwide Flock of Condors: Load

Sharing among Workstation Clusters. Future Genera-

tion Computer Systems, 12, 1996.

[5] I. Foster and C. Kesselman, editors. The Grid:

Blueprint for a Future Computing Infrastructure.

Morgan-Kaufmann, 1999.

[6] Ian Foster. Building the Grid: An Inte-

grated Services and Toolkit Architecture for

Next Generation Networked Applications.

http://www.gridforum.org/building_the_grid.htm,

July 1999.

[7] E. Gallopoulos, E. Houstis, and J.R. Rice. Problem-

Solving Environments for Computational Science.

IEEE Computational Science and Engineering, 1:11–

23, 1994.

[8] The Globus GRAM. http://www.globus.org/gram.

[9] Tim Howes and Mark Smith. LDAP : Programming

Directory-Enabled Applications With Lightweight Di-

rectory Access Protocol. Technology Series. Macmil-

lan Technical Publishing, 1997.

[10] JAVA Naming and Directory Interface (JNDI).

http://java.sun.com/products/jndi. Version 1.2.

[11] Netscape Directory and LDAP Developer Central.

http://developer.netscape.com/tech/directory/index.html.

[12] J. R. Rice and R. F. Boisvert. From scientific soft-

ware libraries to problem-solving environments. IEEE

Computational Science and Engineering, Fall:44–53,

1996.

[13] Richard Schwartz. Windows 2000 : Active Directory

Survival Guide. John Wiley and Sons, 1999.

[14] Gregor von Laszewski. A Loosely Coupled Metacom-

puter: Cooperating Job Submissions across Multiple

Supercomputing Sites. Concurency, Experience, and

Practice, Mar. 2000.

[15] Gregor von Laszewski, S. Fitzgerald, I. Foster,

C. Kesselman, W. Smith, and S. Tuecke. A Direc-

tory Service for Configuring High-Performance Dis-

tributed Computations. In Proc. 6th IEEE Symp.

on High-Performance Distributed Computing, pages

365–375, 1997.

[16] Gregor von Laszewski and Ian Foster. Grid Infrastruc-

ture to Support Science Portals for Large Scale Instru-

ments. In Proc. of the Workshop Distributed Comput-

ing on the Web (DCW). University of Rostock, Ger-

many, June 1999.

[17] Gregor von Laszewski, Ian Foster, Jarek Gawor, War-

ren Smith, and Steve Tuecke. CoG Kits: A Bridge be-

tween Commodity Distributed Computing and High-

Performance Grids. In ACM 2000 Java Grande Con-

ference, San Francisco, California, June 3-4, 2000.

http://www.extreme.indiana.edu/java00.

[18] Gregor von Laszewski, Jarek Gawor, and Peter Lane.

Java CoG Distribution. http://www.globus.org/cog,

January 2000. Version 0.8.6.

0-7695-0981-9/01 $10.00 (c) 2001 IEEE 10

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001

