
Designing GUI components from UML Use Cases∗

Jesús M. Almendros-Jiménez and Luis Iribarne
Dpto. de Lenguajes y Computación. Universidad de Almerı́a, Spain.

{jalmen,liribarne}@ual.es

Abstract

In this paper we present how to develop graphical
user interfaces from two UML models: use case and ac-
tivity diagrams. Our method obtains from them a UML
class diagram for representing GUI components, and it
is suitable for generating code fragments which can be
considered as GUI prototypes.

1. Introduction
Currently, the integrated development environments

(IDE) represent a good practice of model-driven de-
velopment (MDD) since they offer tools that raise the
abstraction level for creating applications, such as lan-
guage editors, form builders, and GUI controls. Mod-
eling allows the developers to visualize source code in
a graphical form: graphical abstractions such as flow
charts to depict algorithmic control flows and structure
charts or simple block diagrams with boxes represent-
ing functions and subprograms, and so on. MDD also
involves creating models through a methodological pro-
cess that begins with requirements and delves into high-
level architectural design.

In the Unified Modeling Language (UML), one of
the key tools for behaviour modeling is the Use Case
model, originated from the Object-Oriented Software
Engineering (OOSE). The key concepts associated with
the use case model are actors and use cases. The users
and any other systems that may interact with the system
are represented as actors. The required behaviour of the
system is specified by one or more uses cases, which are
defined according to the needs of the actors. Each use
case specifies some behaviour, possibly including vari-
ants, that the system can perform in collaboration with
one or more actors.

Graphical User Interfaces (GUI) have become in-
creasingly dominant, and the design of the “external”
system has assumed increasing importance. The user in-
terface, as a significant part of most applications, should
also be modeled using UML. However, it is by no means
always clear how to model user interfaces using UML,
although there are recent approaches [5, 10, 9, 1, 2, 7]
which have addressed this problem.

∗ This work has been partially supported by the Spanish project of
the Ministry of Science and Technology “INDALOG” TIC2002-
03968 under FEDER funds.

2. GUI model-driven development
In this paper, we focus on the design of GUI with

the UML Use case model. The design of GUI is based
on Use case model, and conversely, the design of uses
cases is oriented to GUI design.

Use case model is intended to be used in early stages
of the system analysis in order to specify the system
functionality, as an external view of the system. How-
ever, use cases can be specified by means of activity
diagrams, which provide a finer granularity and more
rigorous semantics. Activity diagrams can be used for
specifying user-system interaction, that is, states can
represent outputs to the user which are labeled with
UML stereotypes representing visual components for
data output. In addition, transitions can represent user
inputs which are labeled with UML stereotypes repre-
senting visual components for data input and choices.

Furthermore, the refinement of uses cases by means
of activity diagrams achieves more precise specifica-
tions, enabling to detect <<include>> and generaliza-
tion relationships between use cases [12, 8]. These rela-
tions have an unstable semantics along the UML devel-
opment, and have received several interpretations, re-
flecting a high degree of confusion among developers
[11, 3]. Therefore, our proposal helps to clarify the cited
relations. The GUI design reflects the relationships be-
tween use cases, by using the applet or frame inheri-
tance as an implementation of use cases generalization,
and the applet invocation and embedding as an imple-
mentation of the <<include>> relation.

Our method handles use cases and activity diagrams
and, following some rules of transformation, transforms
both specifications into the user interface. The designer
is the responsible for both specifications and the GUI
are designed according to the specification. Use case di-
agrams can now be viewed as a high-level specification
of each use case description, given by activity diagrams
and, therefore, as a high-level specification of the pre-
sentation logic of the system.

In the literature there are some works which accom-
plish the design of GUI in UML. The closest to our ap-
proach are [10, 9, 7]. These proposals identify some as-
pects of GUI that cannot be modeled using UML nota-
tion, and a set of UML constructors that may be used
to model GUI. However, a method for GUI design us-
ing the use case model is not completely addressed, and
there also exists a lack of formal description of use cases



and the correspondence between use case relationships
and GUI components.

Another similar work to our contribution is [1, 2] in
which state machines and petri nets are used to spec-
ify GUI in UML. In the quoted approaches they specify
user interaction but they also lack of use case relation-
ships handling. Finally, in [6, 4], uses cases are mapped
into a UML class diagram to represent the data logic,
but not to design GUI.

The rest of the paper is organized as follows. Sec-
tion 3 describes the rules of a method that the de-
signer should follow to build GUI components, us-
ing use cases, class and activity diagrams. Section 4
presents a GUI project example of an Internet book
shopping that illustrates the use of the design rules.
Then, Section 5 describes a formalism that helps us to
validate the proposed method. Finally, Section 6 dis-
cusses some conclusions and future work.

3. A GUI modeling method (UML-GMM)
In our method a use case diagram consists of a set of

actors (users and external systems) and use cases. Re-
lationships between actors are generalizations, and rela-
tionships between uses cases are <<include>> depen-
dences, together with generalizations. In addition, rela-
tionships between actors and use cases are simple asso-
ciations. Roles, multiplicity, directionality, and extend
dependences will not be considered in our approach yet.

An activity diagram consists of a set of states, with
two special cases: the initial and the final state. States
can be linked with labeled transitions (arrows), and a
transition can have several branches with a diamond
representing the branching point.

3.1. Steps for applying the method
Now, we present the steps identifying a GUI project

development:

(a) Firstly, an informal high level description of the
system is carried out by means of a use case di-
agram. The use case diagram involves the actors
and the main use cases.

(b) Secondly, for each use case its behaviour is de-
scribed by means of one or more activity dia-
grams, fulfilling those restrictions of the method-
ology. The original use case diagram goes refining
for obtaining a more formal diagram.

(c) Thirdly, the use cases and activity diagrams are
translated into a class diagram.

(d) Finally, the class diagram obtained in the previous
step produces code fragments which could be con-
sidered as GUI component prototypes.

Certainly, this development sequence is cyclic since
the designer can refine high-level details of the use case
diagram in the next phases.

3.2. Rules for a GUI design
In the description of our method, we have chosen

Java as the programming language for GUI coding due

to the familiarity of most software developers with the
Java swing for GUI, however our approach could be
adapted for other kinds of user interface software. We
assume the reader knows the basic behaviour of Java
swing classes, however we would like to remark some
concepts used in our method. Firstly, we consider two
kind of window interfaces: applet and frame. A frame
can include in the window area GUI components such as
buttons, labels, text areas, and so on, and can have em-
bedded (or invoke) one or more applets or frames. An
applet can only contain in the window area GUI com-
ponents. Therefore frames will be used for the building
of complex user interfaces where several tasks can be
done (some of these GUI components could be disabled
according with the executed task). We use inheritance
for frames and applets assuming that it means inheri-
tance of behaviour but not necessarily of appearance.

We can summarize the rules of design as follows:

r1. Each actor representing a user in the use case dia-
gram is an applet or frame. Actors representing ex-
ternal systems are not considered for visual com-
ponent design. The choice of applet or frame de-
pends on whether the actor can perform one or
more tasks, that is, depends on the number of asso-
ciations with use cases.

r2. The generalization relationship between two ac-
tors p and q (p generalizes q) corresponds with in-
heritance of the applet or frame represented by q
from the applet or frame representing p.

r3. Each use case in the use case diagram is an applet
or frame. It is embedded into the frame of the as-
sociated actors.

r4. The generalization relationship between two use
cases u and w (u generalizes w) corresponds with
inheritance of the applet or frame of w from the ap-
plet or frame of u.

r5. The <<include>> relationship between two use
cases u and w (u includes w) corresponds with the
invocation or embedding from the applet or frame
of u of the (sub)applet or frame of w.

r6. Each state of the activity diagram necessarily falls
in one of the two following categories: terminal
states or non-terminal states. A terminal state is la-
beled with a UML stereotype representing an out-
put GUI component (stereotyped states). A non-
terminal state is not labeled, and it is described by
means of any activity diagram. The non-terminal
states can be “use cases” of the diagram or not.

r7. Each transition in the activity diagrams can be la-
beled by means of conditions or UML stereotypes
with conditions. The UML stereotypes represent
input GUI components. This kind of transitions is
also called stereotyped transitions. The conditions
represent use choices or business logic.

r8. In the case of the non-terminal states, the use case
diagram can specify <<include>> or generaliza-
tion relationships between the non-terminal state
and the use case, and we follow these rules: (a)



In the <<include>> relationship case, the non-
terminal state is also an applet or frame. It con-
tains the GUI components in the associated activ-
ity diagram; (b) In the generalization relationship
case, the non-terminal state is also an applet or
frame containing the GUI components in the asso-
ciated activity diagram, but the use case also con-
tains these GUI components.

r9. A non-terminal state, which does not appear in the
use case diagram, is neither an applet nor a frame,
and the GUI components in the associated activ-
ity diagram are GUI components of the applet or
frame of the use case.

r10. The conditions of the transitions are not taken into
account for the GUI design.

With regard to the use case relationships, they are in-
terpreted as follows:

r11. The <<include>> relationship between a use
case u and a use case w (u includes w) means that
one of the non-terminal states of the activity dia-
gram of u is w.

r12. The generalization relationship between a use case
u and a use case w (u generalizes w) means that
the activity diagram representing w contains the
states and transitions of the activity diagram of u,
but some states or transitions s of u can be replaced
in w by states (resp. transitions) s′ following a re-
placement relationship s′ v s. In addition, w can
add new states and transitions starting from (and
reaching) the particular case of the state u.

In practice, this replacement relation should be de-
cided by the designer. Basically, stereotyped states can
be replaced if the output GUI component can be re-
placed. For instance, a list with two columns can be re-
placed by a list with three columns without lost of func-
tionality. The same happens with stereotyped interac-
tions which can be replaced if the input GUI compo-
nents can be replaced. For instance, a selection of any
of the cited list. Finally, conditions can be, for instance,
replaced if one of them is more restrictive than the other.

Let remark that inclusion is a particular case of gen-
eralization, that is, if u includes v then v generalizes u.
However, we handle the generalization by considering
two applets, one for each use case u and v, but u does
not invoke v, rather than u includes the behaviour of v.

4. A GUI modeling example
To illustrate the functionality of the UML-based GUI

modeling method, we will explain a simple Internet
book shopping (IBS) model. In the IBS there basically
appear three actors: the customer, the ordering manager,
and the administrator. A customer directly carries out
the purchases by the Internet, querying certain issues of
the product in a catalogue of books before carrying out
the purchase. The manager deals with (total or partially)
customer’s orders. And finally, the system’s administra-
tor can manage the catalogue of books adding and elim-
inating books in the catalogue or modifying those al-
ready existing. Considering this scenario, in the next

sections we will describe those steps that should be con-
tinued to develop a GUI project using uses cases.

4.1. Step 1: Describing use cases
Initially, the use case diagram contains the identified

actors of the system. In our case study, the actors are the
Customer, the Manager and the Administrator.
The non-formal definition of the system will be refined,
causing more precise use cases diagram(s). Figure 1
shows the complete presentation logic definition for the
Internet Shopping system.

Manage catalogue is an applet that directly de-
pends on four use cases, connected to them by means
of an <<include>> relation. The include relation-
ships between the use cases Withdraw article,
Modify article and Add article were mod-
eled by the system’s designer as relations of op-
tionality (the branches of the use case Manage
Catalogue’s behaviour go to these states in the ac-
tivity diagram). The use case Administrator
identification was considered by the system’s
designer as a relation of mandatory (this state is al-
ways reached in the activity diagram) of the use
case Manage Catalogue. The use case Manage
catalogue is composed of the use cases Withdraw
article, Modify article and Add article
(i.e., applets or frames). Both the manager and the ad-
ministrator should be identified themselves before car-
rying out any kind of operation restricted to his/her
environment of work.

The relation of generalization is intended as an in-
heritance of behaviour and, therefore, of GUI com-
ponents. For example, the Query catalogue use
case has been established as a generalization of the
Purchase use case. That means that the purchasing
applet also allows a query operation on the catalogue.
In fact, the applet of purchasing inherits from query cat-
alogue. Note how the use case Query catalogue
by administrator also inherits from query cat-
alogue, and it generalizes the use cases Withdraw
article, and Modify article.

The distinction between include and generalization
relationships is established by the system’s designer
into the activity diagrams of those include-connected
use cases. In next sections we will only focus on the
Purchase use case to explain our method.

4.2. Step 2: Describing activity diagrams
Each use case will correspond with a Java applet (or

frame) component in the method. Activity diagrams de-
scribe certain graphical and behavioural details about
the graphical components of an applet. In our case study,
we have only adopted four Java graphical components:
JTextArea, JList, JLabel and JButton. Nev-
ertheless, other graphical elements could be easily con-
sidered in the activity diagram since they are modeled
as state or transition stereotypes.

Graphical components can be classified as input (a
text area or a button) and output components (a la-
bel or list). Input/output components are associated



Figure 1. The Internet Shopping use case diagram

with terminal states and transitions by using the appro-
priate stereotype, for instance, JTextArea, JList,
JLabel stereotypes are associated with states and
JButton stereotype to transitions. Since the graphi-
cal behaviour concerns to states and transitions, next
we will describe them separately.

States can be stereotyped or not. Stereotyped states
represent terminal states which can be labeled by the
<<JTextArea>>, <<JList>> and <<JLabel>>
stereotypes. For instance, Figure 2 (a) shows the activ-
ity diagram for the Purchase use case. The behaviour
shows how the customer begins the purchasing process
of querying, adding or removing articles of the shop-
ping cart. After a usual purchasing process, the shop-
ping system requests the customer a card number and
a postal address to carry out the shipment, whenever
the shopping cart is not empty. This diagram shows the
graphical and behavioural content of the applet window
where the purchases can be carried out. The activity
diagram is composed of four states. Two of them are
terminal states, since they correspond to graphical ele-
ments. They are stereotyped (<<JTextArea>>) and
labeled by a text related to the graphical element. Two
other states have been described in a separate activity di-
agram in order to structure better the design. The name
of a separate activity diagram should be the same as the
one of the state.

According to the rules of the proposed methodol-
ogy, if an state is not labeled with a stereotype, this
means that the state is described in another activity di-
agram. This new diagram can either represent the

behaviour of another use case or simply a way of al-
lowing a hierarchical decomposition of the original ac-
tivity diagram. For example, in the activity diagram
associated with the Purchase use case, there ap-
pear two non-terminal states: Manage shopping
cart and Notify shopping cart empty.
At the same time, two activity diagrams are de-
scribed for both states. All these activity diagrams are
also shown in Figure 2.

In the activity diagram of the Notify shopping
cart empty use case, we can observe how the tar-
get use case (being modeled) brings to another ac-
tivity diagram. The model represents a warning ap-
plet window containing only the text Shopping
cart empty and the button Close. In the Manage
shopping cart activity diagram, the states Query
catalogue and Shopping cart are item-
ized on independent activity diagrams. Both states
would also correspond with an applet, since they ap-
pear as use cases in the diagram.

Transitions can be labeled by means of stereotypes,
conditions or both together. For instance, a button is
connected to a transition by using the <<JButton>>
stereotype, and the name of the label is the name of the
button. For example, a Show cart transition stereo-
typed as <<JButton>> will correspond with a button
component called “Show cart”.

Conditions can represent user choices or busi-
ness/data logic. The first one is a condition of the user’s
interaction with a graphical component (related to but-
ton or list states), and the second one is an inter-
nal checking condition (not related to the states, but



Figure 2. The whole activity diagram of the Purchase use case

to the internal process). For example, in our case
study the selections on a list are modeled by condi-
tions. Note in the Query Catalogue activity diagram
how the list Results is modeled by a <<JList>>
state and a [Selected article] condition. Fig-
ure 2 shows some transitions (p.e., [Close], [Exit]
or [Proceed]) that correspond with conditions of the
kind user choice. The [Exit] output transition of the
state Manage shopping cart means that the user
has pressed a button called Exit, which has been de-
fined in a separate Manage shopping cart ac-
tivity diagram. Nevertheless, the [shopping cart
no empty] and [shopping cart empty] con-
ditions are two business/data logic conditions, in which
the human factor does not participate.

Condition/action transitions are also useful to model
the behaviour of generalization relationships between
use cases. Note in the original use case diagram how
the Purchase use case inherits the behaviour of the
use case Query catalogue by means of a general-
ization relationship. This inheritance behaviour is mod-
eled in the Purchase activity diagram as a non-terminal
state that includes the behaviour of the Query Catalogue
activity diagram. For example, let us observe the be-
haviour of the query catalogue shown in Figure 2 (c).
In this activity diagram, the user introduces the search-
ing criteria in the text area, presses the button Search
and then the results are shown on a list. After that,
the user can select articles in the list, presses a but-
ton to exit or try a new search by pressing the but-
ton Clear. When the Purchase use case inherits the
Query Catalogue, it should be possible to interrupt its
behaviour. Condition/action transitions can be used to
interrupt an inherited behaviour. For example, the query
catalogue’s behaviour (previously described) is adopted
in the activity diagram of the Purchase use case as a non-
terminal state called Query catalogue. The output
transition [Selected article]/Add to cart
means that the Add to cart button at the Purchase

applet (use case) can interrupt the query catalogue be-
haviour whether an article has been selected (condi-
tion). Analogously, the output transitions Proceed and
Show cart mean that both buttons can interrupt the
inherited behaviour of the query catalogue.

On the other hand, a generalization relationship does
not only represent an inheritance of the behaviour as
an extension; for instance, the Purchase use case in-
herits the Query Catalogue use case and increases its
behaviour to hold the buttons Add to cart, Show
cart and Proceed. However, a generalization rela-
tionship can also deal with a replacement of behaviour
instead of an increase in behaviour. For example, note in
the original use case diagram how the Query Catalogue
by Administrator also inherits the Query Catalogue. Let
us suppose that their behaviours (activity diagrams) are
the same, but the results list shown to the customer actor
(the Results state) is different from that shown to the
administrator actor (for instance, Administrator
Results state). In this case, the system’s designer can
use the behaviour (activity diagram) of the Query Cata-
logue use case to model the behaviour (activity diagram)
of the “Query Catalogue by Administrator” re-writing
(replacing) the results list (p.e., replacing Results by
Administrator Results). This rule of replace-
ment can also be considered on transitions (p.e, re-
placing a button by another GUI component). Finally,
the conditions and “conditions/actions” can be also re-
placed. In all cases, is a decision of the designer to al-
low the replacement of states and transitions.

4.3. Step 3: Generating class diagrams
Use cases are translated into classes with the same

name as these use cases. The translated classes special-
ize in a Java Applet class. The components of the applet
(use case) are described in activity diagrams. A terminal
state is translated into that Java swing class represented
by the stereotype of the state. The Java swing class is
connected from the container class (i.e., that class work-
ing as an applet window in the use case diagram) and



Figure 3. A class diagram obtained from the use cases and activity diagrams

uses an association relationship whose role’s name is
the one on the terminal state. For example, those termi-
nal states stereotyped as <<JTextArea>> are trans-
lated into a JTextArea class in the class diagram. Some-
thing similar happens to the rest of stereotyped states
and transitions. The non-terminal states of an activity
diagram may correspond to some other use cases (ap-
plets) or activity subdiagrams. In the last case, the non-
terminal states can be considered an abstract class in the
class diagram. Then, it can be described in another class
diagram with the same name as that abstract class. Fig-
ure 3 shows the class diagram of the customer side.

The class diagram contains six applets, four
of which directly specialize in the Applet class:
the NotifyShoppingCartEmpty class, the
Customer class, the ConfirmRemoveArticle
class and the ShoppingCart class. The other classes
inherit the Applet class through their super classes.
For example, the Purchase class inherits the ap-
plet class from the QueryCatalogue class. These
six classes correspond to those five use cases at the cus-
tomer side in the use case diagram together with the
customer actor.

Furthermore, note how the stereotyped states and
transitions in the activity diagrams are translated into
Java classes in the class diagram. The stereotype name
of a transition or state is translated into the appro-
priate Java swing class. The name of the stereotyped
state (transition) is translated into an association be-
tween the swing class and the applet class that con-
tains it. For example, the <<JButton>> stereotype of
the Proceed transition that appears in the Manage
shopping cart activity diagram (see Figure 2) is
translated into a JButton class. The transition name
(Proceed) is interpreted as an association —labeled
with the same name— between the JButton class and
the class containing it (i.e., the Purchase). Due to the
extension of the resultant class diagram, some classes
have not been included in the figure.

4.4. Step 4: Generating the GUI components
Finally, rapid GUI prototypes could be obtained from

the class diagram. Figure 4 shows a first visual result of
the Purchase applet, but without functionality.

Note how the Purchase window (applet) is very sim-
ilar to the Query Catalogue window, except that the sec-
ond one includes three buttons more than the first win-
dow. This similarity between applets was reflected in
the original use case diagram as a generalization rela-
tionship between use cases (applets), here, between the
use cases Query catalogue and Purchase.

The Shopping Cart window (Figure 4, c) ap-
pears when the Show Cart button is pressed on
the Purchase window (Figure 4, b). Note in the origi-
nal use case diagram, shown in Figure 1, how the but-
ton is associated with the window by means of an
<< include >> relation between use cases. On the
other hand, the two information applet windows (Fig-
ure 4, d) are also associated with two buttons: the
Remove article button in the Shopping Cart win-
dow and the Proceed button in the Purchase window.
Note again how these windows are also described as in-
clude relations between use cases. Also observe the
activity diagrams shown in Figure 2 to track bet-
ter the behaviour of the example.

For space reasons, we have included here just
a part of the GUI project developed for the case
study. A complete version of the project is avail-
able at http://www.ual.es/˜liribarn/
Investigacion/usecases.html.

5. Formalizing UML-GMM
In this section we will formalize the described

method, and provide a formal definition for use case di-
agrams and use cases. In particular, we will define
the use case relationships <<include>> and gener-
alization. We will also define well-formed use case
diagram which follows some restrictions. In addi-
tion, we will provide an abstract definition of GUI,



Figure 4. The applet windows of the Customer side

and we will define two relationships between GUI: in-
clusion and generalization. This will allow us to de-
fine a generic transformation technique for use case
diagrams into a set of GUI. Finally, we will estab-
lish some properties of this transformation technique.
Now, let us define a use case diagram as follows:

Definition 1 (Use Case Diagram) A use case diagram

UCD = (n,ACT ,UC , −�,−−,
<<i>>
99K ) consists of a

diagram name n; a finite set ACT of actor’s names
which can be users and external systems p, q, r, . . .; a fi-
nite set UC of use cases u, v, w, . . .; and three relations

−�, −− and
<<i>>
99K , where −� ⊆ (ACT × ACT ) ∪

(UC × UC); −− ⊆ ACT × UC; and
<<i>>
99K ⊆ UC ×

UC; as usual we write p−�q, rather than (p, q) ∈ −�,

and analogously for −− and
<<i>>
99K .

Now, we formally define a use case being specified
by means of an activity diagram as follows:

Definition 2 (Use Case) A use case u = (n, S, SI,
IN, OUT, COND,→) consists of: a use case name n;
a finite set S of states which consist of: a finite set UC
of use cases; a finite set SS of stereotyped states of the
form (sn, p) where sn is an state name and p ∈ OUT ;
three special states SP , the initial, end and branching
states; a finite set SI of stereotyped interactions of the
form [C]/(in, i) where C ∈ COND, in is an inter-
action name, and i ∈ IN . The condition [C] is op-
tional; a finite set IN of input stereotypes i, j, . . .; a
finite set OUT of output stereotypes p, q, . . .; a finite
set COND of conditions C, D . . .; a transition rela-
tion →⊆ S × (SI ∪ COND) × S. As usual we write

A
λ
→ B rather than (A, λ, B) ∈→, where λ can be [C]

or [C]/(in, i).

We denote by name(u) the name of a use case u.
Analogously, we define the functions usecases(u) and
transitions(u), to get the use cases, respectively, the

transitions of a use case. SI(u) —resp. SS(u)— de-
notes the set of stereotyped interactions (in, i) in u —
resp. stereotyped states (sn, p) in u—. Finally, we call
exit conditions, denoted by exit(u), to the interaction

names in of transitions s
[C]/(in,i)

→ s′ and conditions C

of transitions
[C]
→ which go to the end state in a use case.

Now, we have to assume a (reflexive) replacement re-
lation v between stereotyped states, and the same rela-
tion for stereotyped interactions and conditions.

The replacement relation v can be extended to use
cases, as follows. Given two use cases u, v: v v u
whenever (s, λ, t) ∈→ belongs to transitions(u) iff
there exists (s′, λ′, t′) ∈→ of transitions(v), such that
s′ v s, t′ v t and λ′ v λ. Assuming this, we can
define the inclusion and generalization relationship be-
tween use cases as follows. Given two use cases u, v we
say that u includes v if v ∈ usecases(u), and we say
that u generalizes v, if there exists w ∈ usecases(v)
such that w v u. Now, we will define the well-formed
use cases.

Definition 3 (Well-formed Use Case) A use case u is

well-formed if the following conditions hold: for all s
λ
→

t ∈ transitions(u) then λ has the form [C]/(in, i) ∈
SI iff s = (sn, p), p ∈ OUT , or s ∈ usecases(u) and
s generalizes u; for all v ∈ usecases(u) then there ex-

ists s
λ
→ t ∈ transitions(u) such that λ has the form

[C] or [C]/(in, p) for every C ∈ exit(v).

Well-formed use cases take into account that: (1) an
output component should trigger an input interaction;
(2) input interactions can be added to a more general use
case in order to obtain more particular ones; and finally,
(3) the exit conditions of a non-terminal state should be
included in the main use case.

According to the previous definition, a well-formed
use case diagram includes well-formed use cases, and
the <<include>> and generalization relationships be-
tween use cases in the use case diagram correspond with



a subset of the analogous relations defined for use cases.

Definition 4 (Well-formed Use Case Diagram)
A well-formed Use Case Diagram UCD = (n,

ACT ,UC , −�,−−,
<<i>>
99K ) satisfies that every

u ∈ UC is well-formed; for all u, u′ ∈ UC, u′ −�u if

u generalizes u′; and for all u, u′ ∈ UC, u
<<i>>
99K u′ if

u includes u′.

Now, we will provide an abstract definition of GUI
and GUI components. A GUI has a name, a set of GUI
which can be invoked (embedded) from it, and a set of
stereotyped interactions and states which represent the
input and output GUI components.

Definition 5 (GUI) A graphical user interface (GUI)
G = (n, W, I, O) consists of a GUI name n; a finite
set W of GUIs; a finite set I of stereotyped interactions
(in, i); and a finite set O of stereotyped states (sn, p).

GUI can be compared by means of generalization
and inclusion relationships. The first one corresponds
with the inheritance relationship, and the second one
with the invocation (embedding) of GUI.

Given two GUI (n, W, I, O), (n′, W ′, I ′, O′) we say
that (n, W, I, O) generalizes (n′, W ′, I ′, O′) if for all
G ∈ W , there exists G′ ∈ W ′ such that G generalizes
G′; for all i ∈ I , there exists i′ ∈ I ′ such that i′ v i;
and for all o ∈ O, there exists o′ ∈ O′ such that o′ v o.
Given two GUI G and G′, we say that G = (n, W, I, O)
includes G′ if G′ ∈ W .

Now, we can formally define our transforma-
tion technique which provides a set of GUI for each
use case diagram. In order to define our transforma-
tion, we need to suppose that <<option>> is a stereo-
type representing each menu option of a GUI.

Definition 6 (GUI of a Use Case Diagram) Given a
well-formed use case diagram UCD = (n,ACT ,UC ,

−�,−−,
<<i>>
99K ), we define the GUI associated

with UCD, denoted by GUI(UCD), as the set
{GUI(p) | p ∈ ACT is a user}, where:

GUI(p) = (p, W, I, O)

where

8

<

:

W = {GUI(u) | p −− u}
I = {(name(u), << option >>) | p −− u}
O = ∅

and

GUI(u) = (name(u),W, I,O)

where

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

W = {GUI(v) | u
<<i>>

99K v}
I = SI(u)

S

v ∈ usecases(u)

and not u
<<i>>

99K v

SI(v)

O = SS(u)
S

v ∈ usecases(u)

and not u
<<i>>

99K v

SS(v)

We can state the following result from our transfor-
mation technique.

Theorem 1 The GUI associated to a well-formed
UCD satisfies the following conditions: (a) for

all p, p′ ∈ ACT , p′ −�p then GUI(p) general-
izes GUI(p′); (b) for all u, u′ ∈ UC, u′ −�u then
GUI(u) generalizes GUI(u′); (c) for all u, u′ ∈ UC,

u
<<i>>
99K u′ then GUI(u) includes GUI(u′); (d) for

all p ∈ ACT and u ∈ UC, p −−u. then GUI(p) in-
cludes GUI(u)

6. Conclusions and Future Work
In this paper, we have studied a method for map-

ping use case and activity diagram models into graph-
ical user interfaces (GUI). Through a case study, we
have shown how our technique can be applied to the
design of the Internet Book Shopping system. As a fu-
ture work, we firstly plan to extend our work to deal
with the <<extends>> relationship of use cases. Sec-
ondly, we would like to incorporate our methodology in
a CASE tool in order to automatize it. And finally, we
would like to integrate our technique in the whole de-
velopment process.

References

[1] M. Elkoutbi and R. K. Keller. User Interface Prototyp-
ing Based on UML Scenarios and High-Level Petri Nets.
In Procs of ICATPN’2000, pages 166–186. LNCS 1825,
2000.

[2] M. Elkoutbi, I. Khriss, and R. K. Keller. Generating user
interface prototypes from scenarios. In Procs of RE ’99,
page 150. IEEE CS, 1999.

[3] G. G énova, J. Llor éns, and V ı́ctor Quintana. Digging
into use case relationships. In Procs of UML’2002, pages
115–127. LNCS 2460, 2002.

[4] G. Kösters, H. W. Six, and M. Winter. Coupling Use
Cases and Class Models as a Means for Validation and
Verification of Requirements Specifications. Require-
ments Engineering, 6(1):3–17, 2001.

[5] S. Kovacevic. UML and User Interface Modeling. In
Procs of UML’98, pages 253–266. LNCS 1618, 1998.

[6] Y. Liang. From use cases to classes: a way of building
object model with UML. Information & Software Tech-
nology, 45(2):83–93, 2003.

[7] N. J. Nunes. Representing User-Interface Patterns in
UML. In Procs of OOIS 2003, pages 142–151. LNCS
2817, 2003.

[8] G. Övergaard and K. Palmkvist. A Formal Approach to
Use Cases and Their Relationships. In Procs of UML’98,
pages 406–418. LNCS 1618, 1999.

[9] P. Pinheiro da Silva and N. W. Paton. User interface
modelling with UML. In Information Modelling and
Knowledge Bases XII, pages 203–217. IOS Press, 2000.

[10] P. Pinheiro da Silva and N. W. Paton. User Interface
Modeling in UMLi. IEEE Software, 20(4):62–69, 2003.

[11] A. J. H. Simons. Use cases considered harmful. In Proc.
of TOOLS-29 Europe), pages 194–203. IEEE Computer
Society, 1999.

[12] P. Stevens. On Use Cases and Their Relationships in
the Unified Modelling Language. In Procs of FASE’01,
pages 140–155. LNCS 2029, 2001.


