
Designing High Performance CMOS Microprocessors
Using Full Custom Techniques

William J. Grundmann, Dan Dobberpuhl*, Randy L. Allmon, Nicholas L. Rethman

Digital Semiconductor, Digital Equipment Corporation, Hudson, MA.
*Digital Semiconductor, Digital Equipment Corporation, Palo Alto, CA.

Abstract -- In this paper, we describe a full custom
CMOS design methodology and supporting CAD
technologies used to develop ALPHA and StrongARM
microprocessors at Digital Semiconductor. The paper is
subdivided into four parts, starting with a description of
the design methodology and general CAD flows.
Additional sections focus on two particular areas of
interest: high performance low-power and full custom
design benefits and verification issues.

1 Introduction

Microprocessor designers continue using higher speed
clocks combined with advanced microarchitectures to
create the highest performance [2,3,4] and highest
performance per Watt [1] CPUs. Microprocessor chips like
these are difficult to design and verify, while meeting all
performance and functional goals on first pass silicon.

High clock speed chips are considerably more difficult to
design because they use complex circuit styles. These
circuit implementations require extensive electrical
verification in addition to conventional logical verification.
This emphasis on electrical issues causes problems when
trying to force-fit traditional logic oriented design methods
and CAD tools into the design flow.

Using conventionally sanctioned design methodologies and
CAD techniques that were primarily developed for much
simpler and slower design architectures (i.e. the more
common ASIC designs) handicaps a microprocessor
designer. Many microprocessor designers are using or
reverting to full custom design methodologies to stay
competitive. Since conventional EDA vendors do not
support this type of niche-market design style, these
designers have to have significant local CAD resources to
satisfy their needs.

At Digital Semiconductor, we use a stylized full custom
design methodology supported by both design and CAD

resources, which has evolved over many generations of
microprocessor designs. We concluded many years ago
that full custom design methods allow the designer freedom
to solve their electrical problem, and to achieve their
circuit’s performance goal.

Successfully applying a full custom methodology can be
very difficult. This approach can also be particularly
difficult for many outside of the design team to understand.

2 Full custom design methodology
Everyone seems to have a different definition for the
meaning of full custom design methodology. We provide
our own definition. Characteristics of our full custom
design methodology are simply:

• Transistors are the building elements. Other building
elements (cells) are nice but not required.

• Every transistor in the design can be (and often is)
individually sized, regardless of its functional context.

Transistors are combined together to form a broad range of
logic families with full and reduced output voltage swings.
The logic families include dynamic, single or dual-rail
circuits, differential cascode voltage swing logic (DCVSL),
pass transistor logic, and of course, complementary logic
gates.

Designers have the freedom to use these transistors in any
creative fashion, anywhere in the design, to achieve their
performance goals while meeting functionality
requirements and their schedules. This means that
functional units and state-elements can be invented “on-
the-fly”, and application of both dynamic and static circuits
are possible.

A successful full custom design methodology depends
upon many essential prerequisites and requirements, each
having incredible interdependencies. Essential
prerequisites are experienced circuit/logic designers and
team accepted design standards. Important requirements
include customized CAD tools and support oriented to full
custom design and verification.

Digital Semiconductor’s design methodology follows a
“Correct by verification” (CBV) instead of the more
popular “Correct by construction” (CBC) methods. CBV

Design Automation Conference
Copyright 1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept,
ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

better addresses the key electrical issues involved with
high-performance designs, while CBC may still be
adequate for non-critical designs.

In the following sub-sections, we talk about four of our
design methodology aspects: use of hierarchy across
different representations of the design, creation of circuits
and layout, verification of intent, and design flow.

2.1 Digital Semiconductor’s use of design
hierarchy

Our use of design hierarchy is different from the industry
norm. Champions of the status quo advocate strict use of
matching design hierarchy across all chip design steps as
the only possible way to be successful.

While use of hierarchy helps the logical understanding of
the design, exhaustive use of logic hierarchy often hinders
circuit understanding. Design hierarchy is used when it
makes appropriate electrical sense. Electrical hierarchy
helps control the physical attributes of the chips’ layout,
which is ultimately more difficult than the logical aspects.

Our hierarchy may be significantly different between
different views of the design (RTL, schematic, and layout).
The designer is free to move logic/circuit functions
physically to achieve their performance goals without
having to maintain strict correspondence to the RTL
description. This causes irregular overlapping of schematic
and RTL boundaries as shown in Figure 1.

The implementation of any logic function can also be
different between design views, particularly between RTL
and schematic as discussed in section 2.2.

2.2 Creation of logic, circuits, and layout

Most transistors on our microprocessors are constructed in
arrayed or datapath structures. Traditional logic and layout
synthesis techniques have not been very successful in
creating these high performance circuits. Therefore, most
logic in the design is still manually created. Automatic
logic synthesis, when used, is oriented towards creation of
raw unsized gates, allowing designer manipulation to the
final form. Transistors are sized either by the designer or
by using automatic path sizing techniques.

Implementation in different views of the design may
significantly deviate from other views as long as overall
they still achieve the same logical intended behavior (at
some design boundary). For example, a functional
description in the RTL may be modeled as a single output,
which changes value at most once per cycle. The same
function in transistor circuits may be implemented as a
dual-rail, precharge-discharge circuit, which has a
complementary value on the outputs in only one phase.

Schematic cell libraries are not required. However, we
have found that circuit topology templates are very useful
in full custom. For instance, a NAND gate function can
have a NAND gate appearance, but have individual control
of device sizes per instance. Arbitrary complex
complementary gates can be created and sized “on-the-fly”.
Additional use of local schematic hierarchy (macro-box) is
extremely useful to define templates that are used
frequently on a particular schematic, but not needed
anywhere else.

While automatic logic synthesis has not historically been a
major factor in our designs, CAD layout synthesis and
assistance tools have had a greater impact in our layout
creation. The emphasis of these layout generation tools is
to assist in the creation of macrocells, at the level of
transistor place and route.

2.3 Verification

Digital Semiconductor’s design methodology is supported
by many methods to assist in logical, electrical, physical,
and reliability verification. A large challenge caused by
our methodology is the automatic recognition of groups of
full custom transistors in their logical and electrical
meanings. The logical behavior or intent of a collection of
transistors has no inherent pre-defined meaning as normally
provided by traditional cell library approaches.
Subsequently, all logic and timing constraints along with
electrical requirements have to be automatically and
conservatively deduced from the topology and context of
the actual transistors.

For many verification questions, we do not have an
absolute answer. Instead, we use CAD tools to filter the
amount of design the designer has to inspect. These CAD
tools use the circuit recognition information along with
other information (e.g., capacitance and timing) to provide
filtering of circuits that do not have a problem, and
reporting those circuits that might have a problem. This
allows the designer to work with the CAD tool to identify
and isolate real problems in the design.

Overall, this methodology maximizes the freedom for the
creative designer. It also requires a significant increase in
trusting a designer’s ability to make a working design and
delivery of a supporting verification methodology to
conservatively analyze correctness of the design.

RTL 1
RTL 2

RTL 3

S1 S2
S3

Figure 1: RTL vs. Schematic hierarchy

Schematic #2

This design methodology is constantly changing. We have
to adapt to different circuit implementation ideas, new
electrical concerns, and new manufacturing processes,
while still addressing and improving designer productivity.

Additional topics on logic, circuit, and timing verification
are covered in section 4.

2.4 ALPHA microprocessor design flow

The design flow used for ALPHA CPU designs is similar in
appearance to many other design flows (Figure 2). A
significant difference to other design flows is the amount of
automatic synthesis of schematic and layout. Since there is
a reduced amount of automatic synthesis, there has been
much more emphasis on the verification of all
implementation representations.

Although this appears as a top-to-bottom flow, there are
actually many bottom-to-top interactions. For instance,
there are many feasibility studies on different circuit
implementations during the development of the RTL.
These studies analyze timing, layout area, power, and
electrical concerns. Physical floorplanning also occurs
during all design phases and helps control eventual circuit
performance and area results.

3 Low power design

Power dissipation is a concern for any chip, but it is
especially important for applications intended for portable,
“Anywhere-Anytime” computing [1]. In 1992, the first
ALPHA chip delivered the raw performance of a Cray-1 in
a single device dissipating about 25W [2]. The next
generation of ALPHA chips delivered more than four times
that performance level at about the same power [3]. The

latest ALPHA CPU delivers more than 8X the performance
level at about twice the power [4]. The design and
fabrication technology which has made this possible, when
applied within the constraints of the portable computing
market, can deliver Cray-1 class performance to battery-
powered and low cost tethered applications. The
StrongARM 110 is such a device, designed by full
custom designers using techniques developed for ALPHA
CPU’s.

To achieve the substantial power reduction from ALPHA to
StrongARM, several well known methods were applied:
reduced VDD, conditional clocking, efficient state
elements, and micro-architecture carefully balanced
between clock rates (pipelining) and clock efficiency (CPI).
It is interesting to quantitatively compare the power
dissipation of StrongARM to an ALPHA CPU to see how
this is achieved. As shown in Table 1, the ALPHA 21064
is compared against StrongARM for first order differences.

Starting with ALPHA 21064: 200MHz @
3.45v, Power = 26W

VDD reduction: power reduction = 5.3x -> 4.9W
Reduce functions: power reduction = 3x -> 1.6W
Scale process: power reduction = 2x -> 0.8W
Clock load: power reduction = 1.3x -> 0.6W
Clock rate: power reduction = 1.25x-> 0.5W

Table 1: ALPHA -> StrongARM Power Dissipation

Starting with a 200MHz 21064 in 0.75� technology,
factoring in VDD, functionality differences, process
scaling, clock loading and frequency, we end up with a
power dissipation close to the realized value of 450mW.

A process for low-power using a low-supply voltage and
low-threshold device is essential to the design of a
microprocessor that will run at 160MHz while burning only
500mW. However, the low device thresholds, which allow
the reduction of VDD, also result in significant device
leakage. While this leakage is not large enough to cause a
problem for normal operation, it does pose problems for
standby current. To reduce this leakage, devices in the
cache arrays, the pad drivers, and certain other areas were
lengthened by 0.045µm or 0.09µm as part of the design
process. This brought the leakage power to below the
20mW specification in the fastest process corner.

4 Full custom benefits and headaches for
verification

Designing full custom must result in manufacturing
technology and designer creativity limiting circuit
performance, not the CAD methods. This freedom also
means the extreme need for project control (adherence to
design methodology) and verification CAD-tool support.

There are really only three silicon product goals: cost,
performance, and functionality or capability. Everything a

Figure 2: ALPHA design flow

designer does relates to one or more of these fundamental
goals. “Cost” is managed via the architecture definition
(function, packaging, etc.), time-to-product (schedules),
and quality (Defects, Lifetime, etc.) Our verification
methodology breaks most of these product goals into three
categories: Logic verification, circuit verification, and
timing verification.

4.1 Logic verification

We perform logic verification at four levels:
Behavioral/RTL simulation, standalone schematic
simulation, shadowed schematics under RTL simulation,
and RTL to schematic equivalence checking. Since most of
our logic verification is simulation based, the speed of
simulation is very important. Phase accurate simulation of
Behavioral/RTL can be performed, achieving >200 cycles
per second per simulation CPU. To execute our typical
logic design verification goals of two billion aggregated
simulated cycles per day requires dedication of about 100
CPUs.

Our high-level logical model of a full-custom design
includes both behavioral and RTL constructs. The level of
detail for any part of the description depends upon many
issues of uncertainly in implementation. For example, a
common problem is to determine if a particular circuit’s
implementation functional works at all. The
Behavioral/RTL description is the first representation of the
design, and is continuously updated to better reflect
differences in actual circuit implementation.

Standard hardware description languages have proven to be
inadequate for us when describing highly variable (function
changing daily) parts of the design. In addition, these
standard languages tend to require more hierarchical levels
than desired. Some of our functional units are just difficult
to code in standard languages and result in highly
inefficient run-times, e.g. a 2000 “port” CAM structure.
We have developed a hardware language driven by our
style of designing microprocessors, with programming
constructs that make sense for the design itself, and which
compiles into very efficient code.

Our full custom designs have a significant difference
between the Behavioral/RTL model and the circuit
description. This is caused by two factors: circuit designers
adding creative difference by liberally interpreting the
Behavioral/RTL model, and circuit detail which is created
to achieve other goals but maintaining overall logical
intent.

Since the circuit implementation is loosely equivalent to the
high-level model, two methods are used to check functional
correctness. The first is logic simulation, executed in a
stand-alone type of simulation or more popular at Digital
Semiconductor is the “shadow-mode” simulation. This
latter simulator is a mixed mode simulation of full design
Behavioral/RTL with a part of the circuit logic shadowing

(not replacing) the corresponding RTL description.
Simulation requires stimulus patterns, which are either
manually generated or pseudo-random sequences.

The second method for functional correctness of circuits is
logical equivalence checking. This does not require input
stimulus, however a common difficulty is the amount of
logical difference that an equivalence-checking tool can
accommodate. This can be complicated since the designer
has the freedom to create a circuit that behaves the same
with different state declarations and state transitions. For
instance, a counter coded in the Behavioral/RTL model
with an output every five events may be implemented in the
circuit as a shift register with a cyclic value of five. In this
example, both achieve the same behavior, but are
significantly different in internal implementations.

Digital Semiconductor’s logic verification strategies
include both simulation and equivalence checking,
thoroughly providing coverage of logic intent.

4.2 Circuit verification

Circuit verification covers any circuit implementation
issues not directly related to logic or timing behavior [5].
Most of these verification steps address circuit functional
hazards, adherence to chip specific design methodologies,
and circuit reliability. The many logic families and heavy
use of dynamic logic has given the designer the ability to
meet their circuit’s performance and functionality goals.
Each of these logic families has electrical considerations
that are taken into account during the design phase,
however a post-layout verification step ensures that all
goals were met.

The circuit verification at Digital Semiconductor depends
upon heavy use of CAD verification for those issues which
rules can be clearly specified. Additional CAD tools
perform probability “filtering” on any remaining complex,
hard to clearly specify design rules. This approach
eliminates those situations that have a high degree of
confidence of being correct while reporting the situations
that may have violations and require closer inspection by
the designer.

Figure 3 illustrates the type of verification checks that are
performed looking for circuit noise in dynamic circuits.
The primary sources of noise are interconnect capacitance
coupling that could corrupt the dynamic node, charge
sharing between the dynamic output node and the internal
transistor stack nodes, and power supply voltage
differences between the driver and receiver circuits. Other
sources of noise include Alpha particle and noise induced
minority carrier charge collection from the substrate and
wells, and sub-threshold leakage through the N-device
network. In-house CAD tools are used to analyze these
concerns. The tools use extracted interconnect parasitic
capacitance and resistance data, signal timing information,

transistor capacitance, drive strength and fanout to identify
potential circuit failures.

Figure 3: Noise sources in dynamic structures

The automated CAD circuit verification checks performed
at Digital Semiconductor include:
• Transistor configuration analysis
• Beta ratio and device size checks of all complementary

and ratioed structures.
• Clock distribution RC analysis.

• Node-by-node clock RC analysis
• Correlated minimum/maximum RC analysis

• Edge rate and delay analysis for clocks and signals
• Latch checks
• Coupling analysis of static and dynamic nodes
• Dynamic charge share analysis
• Dynamic node leakage checks
• State-element writability and noise margin analysis
• Electromigration, statistical and absolute failures
• Antenna checks
• Hot Carrier and Time Dependant Dielectric

Breakdown checks

4.3 Timing verification

Timing verification is used to identify all critical and race
paths. Critical paths (slow paths) will limit the clock
frequency of the chip while race paths (fast paths) will
prevent the chip from working at any frequency. Figure 4
illustrates our definition of both the critical path and races.
Traditionally timing verification has focused more on
critical paths than on race paths. However, when exotic
clocking methodologies are used, the importance of
verifying race paths greatly increases.

The biggest worry a designer has about timing verification
is that a timing induced functional violation may go
undetected. If a violation is missed by the timing verifier
and the violation makes it to silicon then a costly debug
along with a schedule slip will probably result. The
designers also want to minimize the number of false
violations they have to examine. As the number of false
violations goes up, the productivity of the designer goes
down and the greater the risk that real violations will be
lost in a sea of output.

Two main areas can cause violations to be missed. The
first occurs when the timing verifier miss-recognizes some
circuit constraints (setup, hold, and glitch). The second
occurs when min/max delay times are not calculated
accurately.

The reliability of recognizing circuit constraints is a big
problem due to the freedom the designers have in creating
state-elements “on-the-fly”. The automatic recognition of
state-elements, clocking nodes, glitch sensitive nodes, and
data nodes is essential. In addition, algorithms are needed,
which when given this information, will automatically
identify the constraint and calculate the correct constraint
time (setup time and hold time) for any full custom circuit.
The constraint generation algorithms must be accurate but
error on the side of being pessimistic in order to insure no
violations are missed.

There are three main areas concerning the accuracy of the
delay calculation:

• Accuracy of minimum and maximum capacitance
calculation (fixed, coupling, and transistor input)

• Accuracy of RC interconnect models

• Accuracy of computing transition offsets and transition
edge

A traditional extraction and calculation of max capacitance
partially addresses the goal of identifying critical paths.
However, max-capacitance alone does not address the issue
of correctly identifying circuit races that prevent the part
from working under any operating conditions. Internodal
capacitance values (coupling capacitance) have significant
variation from both manufacturing tolerances and miller
coupling capacitance multiplicative effects. Bounding the
min/max coupling along with manufacturing tolerances is
essential in accurately computing nodal capacitance.

Figure 4: Clocking and Timing Methodology

Transistor gate input capacitance can also have a wide
range of values, depending upon its logical context. That
context includes the state and transitions of other inputs to
the logic function, topological position relative to power or
ground, and the state and transition of associated source
and drain transistor connections.

The traditional “gate” modeled with a single output “port”
no longer works in high-performance designs, especially in
the presence of significant RC interconnect. For instance, a
large inverter is commonly implemented with many smaller
transistor fingers distributed across a large area along the
output node. This results in the output of inverter tied into
multiple positions along the RC grid as in Figure 5. This is
additionally complicated by the fact that the inputs of the
individual inverter transistors are also themselves, outputs
of another RC grid. The inverter’s “turn-on” characteristics
are highly dependent upon the inverter’s RC input and
output grid characteristics.

The timing model itself must be accurate and, if necessary,
error on the side of being pessimistic. Typically, the
designer uses SPICE to obtain the delay times and edge
rates. However, using SPICE on large structures is not
feasible due to the size and turnaround time of the timing
simulation. Therefore timing models for individual
transistors and “clumps” of transistors are derived that
sacrifice accuracy for simulation efficiency. Also, SPICE
will only give you the delay times for the particular input
condition which the user supplied and not the worst case
min and max times. Therefore timing models must also be
smart enough to setup the delay calculation for the worst
case min (fastest delay time) and max (slowest delay time).

Three main areas can cause false violations. Two of these
areas are the constraint identification and the delay
calculation mentioned above. If either of these two areas is
too pessimistic then false violations will be created. Static
timing verification always has two conflicting goals:
enough pessimism to insure identification of all violations,
while not so much pessimism to cause false violations. A
third culprit of false violations is a logically or
architecturally false path. Automatic elimination of these
false paths is difficult due to insufficient information of
designer’s intent.

By allowing the designer to have the freedom to use any
arbitrary configuration of transistors, we enabled them to
develop high performance microprocessors. However,
allowing this freedom poses significant challenges to any
circuit timing verification tools.

5 Conclusion

We have provided a short description of the design and
CAD methodology used to develop the high performance
ALPHA and StrongARM microprocessors at Digital
Semiconductor. This methodology was shown similar yet
in many ways significantly different to traditional methods.
These differences were focused on the correct-by-
verification strategy as applied to high-speed clocked
microprocessor designs.

Acknowledgement

The authors thank Bill Bowhill for his help with this paper.

References

[1] J. Montanaro, R. Witek, K. Anne, A. Black, E. Cooper,
D. Dobberpuhl, P. Donahue, J. Eno, G. Hoeppner, D.
Kruckemyer, T. Lee, P. Lin, L. Madden, D. Murray, M.
Pearce, S. Santhanam, K. Snyder, R. Stephany, S. Thierauf,
“A 160MHz 32b 0.5W CMOS RISC Microprocessor,”
ISSCC Digest of Technical Papers, pp. 214-215, Feb.,
1996.

[2] D. Dobberpuhl, et. al., “A 200MHz 64b Dual-Issue
CMOS Microprocessor,” IEEE Journal of Solid State
Circuits, vol. 27, no. 11, Nov., 1992.

[3] P. Gronowski, et. al., “A 433Mhz 64b Quad-Issue
CMOS RISC Microprocessor,” ISSCC Digest of Technical
Papers, pp. 222-223, Feb., 1996.

[4] B. Gieseke, et. al., “A 600mhz Superscalar RISC
Microprocessor With Out-of-Order Execution,” ISSCC
Digest of Technical Papers, pp. 176-177, Feb., 1997.

[5] P. Gronowski, et. al., “A 433 MHz 64b Quad-Issue
RISC Microprocessor”, IEEE Journal of Solid State
Circuits, vol. 31, no 11, page 1687-1696, Nov., 1996.

Simple

Reality

Figure 5: Real gates have multiple inputs/outputs

