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SUMMARY

Dynamic flexibility is a major challenge in modern system design to react to context or
applicative requirements evolutions. Adapting behaviors may impose substantial code
modification across the whole system, in the field, without service interruption, and
without state loss. This paper presents the JnJVM, a full Java virtual machine (JVM)
that satisfies these needs by using dynamic aspect weaving techniques and a component
architecture. It supports adding or replacing its own code, while it is running, with no
overhead on unmodified code execution. Our measurements reveal similar performance
when compared to the monolithic JVM Kaffe. Three illustrative examples show different
extension scenarios: (i) modifying the JVMs behavior; (ii) adding capabilities to the
JVM; and (iii) modifying applications behavior.
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1. Introduction

Dynamically modifying and extending a system is a critical need in modern systems design.
Consider three examples. (1) Dynamic algorithm change: in an embedded device (e.g., a mobile
phone) memory size limits the range of adequate systems algorithm available at any time. As
resources or requirements evolve with the context, the current algorithm may become sub-
optimal and must be replaced by another one. (2) Application specific optimization: the choices
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made during system design may not be optimal for all kinds of application [15]. For quality
of service requirements, the system policies need adaptations at a fine granularity (such as
a method). (3) Security: installing security patches typically requires a lengthy reboot, but
in some applications, such as commercial application servers, a service interruption is not
acceptable.

Simple plug-in mechanisms, such as loadable device drivers in Linux, allow an administrator
to update a piece of code, but this technique is insufficient for changes that cut across previously
loaded code, as in the above examples: the Linux kernel itself can not be changed and an
adaptation implies unloading the plug-in and therefore the loss of its state. Published hot-
swapping mechanisms as in K42 [28, 44] let the state transfer between components be handled
by the developer. For changes that imply updates in many components, the state transfer can
be an arduous task.

Our proposal is the addition of an aspect weaver to the component updating mechanism.
The core of our system is the Micro Virtual Machine (MVM†) associated with a just in time
compiler (JIT). The MVM is extended on the fly by adding new code or replacing its code
dynamically. Components are used for code injection (see Sec. 2.1) but code replacement relies
on our dynamic compiler coupled with a dynamic aspect weaver [27] (see Sec. 2.2). A predefined
extension, called the JnJVM provides a full JVM. Applications can further extend and modify
this base. The MVM is a common core for different virtual machines: a complete CLR is also
developed on top of the MVM. The CLR is not presented in this paper‡ because this paper
focus on dynamic code evolution but not on VM interoperability.

System code is organized as a component architecture with associated adaptation points.
Adaptation consists of compiling new source code and injecting it into the running components
(either by extending or replacing methods) without losing their state and inserting new
fields in components. This mechanism is inspired by aspect oriented programming and aspect
weaving [27]. Of course, if the software architecture is modified and components are split or
merged, the state of every obsolete component must also be transferred to the new architecture.
Our adaptations focus essentially on binding new components without major modifications:
oldest components are extended, but the software architecture of oldest components remains
globally the same. When state transfer is furthermore required, we let the developer handle
this transfer.

Compared to dynamic software updating [24], we focus on running code evolution instead of
source evolution: we construct code evolution from a representation in memory of the running
process independently from source code. MVM relies on runtime reflection whereas dynamic
software updating relies on source code comparison. Especially, our adaptation system does
not impose a unique language: applications developed in different languages are composed at
runtime, thanks to the abstract representation. Original and adapted code are not necessarily
developed in the same language and developing the new adapted code does not require access
to the original code: a piece of Java code or Microsoft Intermediate Language (MSIL) code
can replace native MVM code or a piece of Java code can replace MSIL code. Moreover,

†Our MVM is unrelated to the Multi-tasking Virtual Machine.
‡Another paper that describes VM interoperability is submitted at [19].

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 00:1–7
Prepared using speauth.cls



DESIGNING HIGHLY FLEXIBLE VIRTUAL MACHINES: THE JNJVM EXPERIENCE 3

our adaptation system is developed only once for all languages, whereas semantic patches
generation of dynamic software updating must be developed for all languages. On the other
hand, dynamic software updating provides a general solution to state transfer, whereas we
avoid this problem with AOP but we do not provide an automatic solution when state transfer
is furthermore required.

The main contributions of this paper are the following:

• Design and implementation of a minimal, dynamically adaptable execution environment,
the Micro Virtual Machine. It defines our component architecture and our aspect weaver.
The Micro Virtual Machine is the main novelty of our research: it defines a common
layout for building dynamically adaptable systems. As far as we know, there is no other
work that tries to build a runtime dedicated to the construction of dynamically adaptable
systems.

• Design and implementation of the JnJVM, a flexible Java Virtual Machine (JVM) which
extends the Micro Virtual Machine. The JnJVM is our main realization of a flexible
runtime based on the MVM. The goal of our work is not the construction of a flexible Java
Virtual Machine, but the construction of an environment dedicated to the construction of
flexible systems. The JnJVM is only a complete applicative example that demonstrates
the flexibility of the MVM.

• Demonstrate different useful specialization scenarios: (i) modifying the behavior of the
JVM, (ii) adding capabilities to the MVM and JVM, and (iii) modifying the execution
behavior to applications above the JVM.

• Performance evaluation of the JnJVM. It shows that the JnJVM performs roughly the
same as the existing open-source JVM Kaffe for an equivalent engineering effort. Most of
all, JnJVM is compiled on the fly by the MVM when it is loaded. Our performance study
shows that this level of virtualization has an acceptable cost in term of execution speed
and memory consumption. Our evaluation also shows that our prototype is not optimized
and performs 2 to 10 times slower than robust JVMs (IBM and Sun). Better performances
of robust JVMs are explained by their Just In Time Compiler which optimizes the code.
With a better JIT, we expect similar performances.

Our system is based on our minimal core, the Micro Virtual Machine, which contains a JIT,
a dynamic loader, and a fine-grain dynamic binding mechanism. The MVM can run either
atop a standard Unix or atop Linux. The JnJVM is itself a substantial extension of the core,
and runs standard Java applications and benchmarks. We report here on a number of further
specializations, both to the core and to the JnJVM. They demonstrate how applications can
extend the core to accommodate to new requirements.

Our study focuses on a JVM for practical reasons but the lessons learned are applicable to
execution environments in general. Indeed, a Java virtual machine acts as a small operating
system for Java applications and provides a powerful experimental environment, which leaves
aside hardware-related issues.

The main strength of the MVM is its independence from the targeted execution environment
or language. We have also built a CLR over the MVM [19], a new middleware [35], a framework
to adapt Jonas and OpenCCM [22] on the fly, a flexible Web cache [36], a flexible viewer for
documents [45], and an execution environment for active network [12]. The MVM imposes only
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minimal abstractions by using a flexible language inspired from Lisp and gives all required
abstractions to modify the execution environment on the fly. The technique used to modify
execution environment on the fly relies on aspect weaving and is not new by itself, but its
application in a generic execution environment that imposes only minimal abstraction coupled
with a flexible language is an innovation. In this paper, we only present our Java virtual
machine in order to study step by step the construction of a concrete execution environment
with the MVM.

From a conception point of view, compiling the Java Virtual Machine in another virtual
machine (the MVM) on the fly is original and our performance evaluation shows that this
level of indirection does not seem to slow down the global performance of the JnJVM.

Some of the experiences reported in this paper were partially presented in other papers. A
first version of the MVM without its aspect weaver was presented in [38], a first version of
the JnJVM with partial performance evaluations and first results on escape analysis in [46],
a partial implementation of the Java aspect weaver without technical algorithms in [37] and
an extended version of the specialization of dynamic load balancing in [21]. The experience
reported in this new paper completes the previous with new results and gives a global overview
of our work on dynamic adaptability.

The outline of this paper is the following. Section 2 describes the MVM and the JnJVM.
Section 3 presents our first example, optimizing allocation and synchronization for non-
escaping objects. In Section 4 we present our experience extending the system with a Java
aspect weaver. Section 5 presents our final example, a specialization for load balancing. In
the next section we study the performance of the JnJVM (Section 6). Section 7 contains a
discussion of the results, limitations and future work. Section 8 assesses related work. Section 9
concludes the paper.

2. MVM and JnJVM

The JnJVM is implemented on top of a minimal execution environment. This environment, the
Micro Virtual Machine (or MVM), contains the usual core components of a virtual machine
(see Section 2.1). We define a component in the MVM as a piece of code that implements an
interface. A component is also our deployment unit. At runtime, a component is simply an
object (a set of fields) which implements the interface.

The MVM loads and compiles code on the fly. We define specializations as the code loaded by
the MVM. A specialization extends, modifies or removes components of the MVM dynamically
for a particular need. The three kinds of specializations are discussed in Section 2.2. One of
the specializations is the JnJVM, a complete Java Virtual Machine: the JnJVM specializes the
MVM with a fully functional JVM. The runtime can accept further dynamic specializations.
Sections 3, 4 and 5 presents three specializations for the JnJVM.

The primary loader of the Micro Virtual Machine is a small lexer/parser for a Lisp-like
language. We discuss this choice in Section 2.1.1.

Figure 1 shows a snapshot of a specialized JnJVM. The MVM is extended with the
components of the JnJVM. A standard Java Virtual Machine is therefore constructed in
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Figure 1. Global architecture of the MVM and the JnJVM

memory and executes standard Java classes. MVM can then load specializations and specializes
the JnJVM on the fly, without interrupting the running Java application.

2.1. The Micro Virtual Machine

The MVM is a minimal execution environment. In addition to usual virtual machine
components such as a memory manager, a thread manager, a just in time compiler (JIT),
a lexer/parser for a Lisp-like language and an input/output layer (which relies on a standard
libc library), the MVM defines components that will enable its specialization: an extensible
compiler, a component manager and a code weaver.

Figure 2 summarizes our architecture. The code is loaded by the input/output component.
The lisp front-end then constructs abstract syntax trees from the code. The abstract syntax
trees are compiled by the extensible compiler, which uses the aspect weaver to construct
adaptation points, the Just In Time Compiler to build native code and the component manager
to build representations of loaded components. Adaptation points, native code and component
descriptions are stored in components managed by the memory manager. All shared objects
are synchronized thanks to the thread manager.

We choose a Lisp-like language as the primary language for the MVM for its simplicity and
for its extensibility. The simplicity of the Lisp parser allows us to obtain good performance and
the extensibility of Lisp-like languages permits the definition of new keywords by manipulating
abstract syntax trees (see Section 2.1.1). This second point is essential in order to build the
Java aspect weaver (see Section 4): new keywords are constructed on the fly so as to adapt
assembled code. Two aspect weavers are defined: the first one is the MVM aspect weaver used
to adapt the JnJVM, the second one is a Java aspect weaver used to adapt running Java
applications.

The component manager of the MVM separates component interfaces (the definition)
from their implementations (the code). Replacing a whole component is one mechanism for
adaptation, but it implies the state transfer for this component. Most of the time, an adaptation
does not imply the destruction of old components, but only their adaptation. Therefore, we
introduce a dynamic code weaver. Our code weaver uses Aspect Oriented Programming (AOP,
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Figure 2. Internal architecture of the MVM

see Section 8) and aspect weaving mechanisms. It replaces code in well defined points of a
program, called join points with the AOP terminology. Join points include calling methods,
accessing fields and throwing exceptions.

The Just in Time Compiler of the MVM, called the Virtual Processor Unit (VPU) [40],
assembles the code of components in memory. In order to interact with the MVM and more
generally with C libraries, the VPU generates code following the local C ABI specification.

The Aspect Weaver of the MVM generates the join points for every methods. It is separated
from the JIT to let the JIT independent from the aspect weaver.

The extensible compiler is used to define new keywords. A keyword is a symbol that compiles
its s-expression itself (see Section 2.1.1). A specialization script can define its own language
tuned to its domain. The keywords of this language are defined dynamically. For instance, it
can be a high-level language that hides the internal implementation of specializations. The
extensible compiler is used in Section 4 to define new keywords for the Java aspect weaver or
in Section 2 to define new keywords for the JnJVM just in time compiler.

The MVM defines the basic components that are needed by the rest of the system: a thread
manager, a memory manager and an Input/Output manager. The thread manager provides
thread primitives such as thread creation, synchronization, condition variables and local thread
memory. The memory manager allocates and collects objects. Its garbage collector uses the
concurrent colored mark and sweep algorithm of Dijkstra et al’s [14] based on Boehm’s [11].
The Input/Output manager forwards I/O to the libc library. The MVM runs above any OS
that provides the libc. Alternatively we provide a small subset of the libc to execute the MVM
on top of Think [17].

In order to guarantee a stable system base, the component manager, the memory manager
and the dynamic code weaver can not be modified after startup. However, nothing prevents us
from replacing statically one of these component with another during compilation. All other
internal MVM components may be subject to dynamic adaptation.
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1 (define .inc−v1
2 (lambda(x)
3 (+ x 1)))
4
5 (define (syntax .inc−v2)
6 (lambda(formal compiler)
7 ‘(+ ,(:object.list.at formal 1) 1)))
8
9 (define (syntax .inc−v3)

10 (lambda(formal compiler)
11 (let ([vpu (:compiler.vpu compiler)])
12 (:compiler.emit compiler (:object.list.at form 1))
13 (:compiler.vpu.ld−int vpu 1)
14 (:compiler.vpu.add vpu)
15 0)))

Figure 3. Definition of new keywords

2.1.1. The Lisp-like Language

The MVM defines a new Lisp-like language. We choose this language for two reasons:

• Its simplicity. Only eight objects are used in abstract syntax trees (string, integer, long
long, float, double, namespaces, symbols and list). A list is the abstract syntax tree of
an s-expression.

• Its extensibility. Specializations can define new keywords on the fly. A keyword is a
symbol called by the MVM compiler to compile an s-expression. A keyword can compile
an s-expression by modifying it (i.e. macro) or by using the Just In Time Compiler of
the MVM directly.

The Lisp-like language of the MVM is only used for its syntactic properties: by using
quotation (quote, quasiquote and unquote), manipulating an s-expression is only the
manipulation of a list. A list is directly used by a keyword. Thus, the simplicity of our Lisp-like
language eases the development of new keywords. In contrast, our Lisp-like language is not a
functional language: functions may have side effects.

Extensibility is used to define new keywords on the fly. For example, the MVM does not
implement lazy binding whereas the JnJVM does. Thus, a new keyword is defined by the
JnJVM on the fly to call Java methods. This new keyword generates a code that compiles on
demand Java bytecode.

For the MVM, the semantic of an s-expression is purely imperative. A function is statically
called with parameters. The object invocation semantic is defined in the Lisp-like language:
new keywords are written in the Lisp-like language to generate virtual method invocations.
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Figure 3 gives an example of our Lisp-like code. The first definition defines a function inc-v1
with a traditional lambda expression that increments the parameter x. Inc-v1 is compiled on
the fly as a function. Inc-v2 and inc-v3 define new keywords. To define a new keyword, a
symbol must be defined as a syntactic symbol. The first declaration is a macro: it replaces the
abstract syntax tree (inc-v2 value) by (+ value 1). The formal parameter is the original
s-expression. Inc-v3 uses the Just In Time compiler directly (see section 2.1.2). It emits
the abstract syntax tree and increments it by using low level VPU functions. All predefined
keywords of the Lisp-like language, such as define, let or lambda, are defined as syntactic
symbols. Internal or applicative keywords use exactly the same mechanism. An extension can
thus modify an internal keyword by redefining its syntactic symbol.

2.1.2. The Virtual Processor Unit
The Virtual Processor Unit (VPU) is the Just In Time Compiler of the MVM. It provides an
interface to compile functions on the fly. The VPU is a stack-based machine: it transforms a
sequence of actions on a stack to an equivalent machine code which uses stack and registers. The
VPU compiles code for PowerPC and IA-32. Therefore, the MVM uses two main intermediate
representations: abstract syntax trees and linearized sequences of action on the stack of the
VPU.

The programming interface of the VPU is relatively standard. It defines loads and stores on
stack, arithmetic operations (integer and float), flow operations, loads and stores on memory
and loads and stores on local variables. The VPU interface is directly used from the Lisp-like
language through syntactic symbols. This property is used to build the Java bytecode compiler
of the JnJVM.

The new keyword inc-v3 of Figure 3 shows the definition of a new keyword that uses the
VPU directly. At line 12, the second element of the s-expression is emitted to the compiler.
The compiler generates the VPU code of this abstract syntax tree (AST) and lets the result
on top of the VPU stack. At line 13, the integer value 1 is pushed on the stack and at line
14, the two values on top of the stack are popped, added and the result is pushed on top of
the stack. The VPU records all this sequence of actions. The MVM then calls the compile
function of the VPU, which generates the equivalent machine code in memory.

The main weakness of our prototype comes from the VPU. The VPU does not optimize the
code: all local variables live on stack, constants are not propagated, common sub-expressions
are not eliminated, array bound checks are not eliminated, exceptions rely on setjmp/longjmp
and so on. The weakness of the VPU explains why the JnJVM is slower than modern JVMs. As
far as we know, there are only three generic JITs: the VPU, LibJIT [4] and LLVM [29]. LibJIT
seems to have the same limitations as the VPU. We have replaced the VPU with LLVM and
first results show that generated code with LLVM performs as fast as IBM and Sun for Java
bytecode. The compilation time of LLVM is furthermore twice slower than VPU. A paper on
this subject is submitted in [20].
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Figure 4. Specialization of the MVM

2.2. Adaptability of the Micro Virtual Machine

The component architecture and the dynamic code weaver provide performance and
extensibility. The implementation of components uses virtual tables to hold pointer of methods:
this structure is one of the fastest structures for virtual calls because only two memory reads
are needed in order to find the method pointer. This structure is the same as the structure used
by a C++ compiler for virtual calls and therefore it offers the same performance when call are
not inlined. The extensibility mechanism relies on three mechanisms that we now detail.

2.2.1. The component structure: loading code extension.

New code is injected by loading new components in the MVM. An extension (or a
specialization) is a set of components. They are loaded on the fly by the input/output
component (see Figure 4)§. The input/output component is executed in the current thread.
Loading a new specialization does not interfere with running threads and does not require
synchronization: a new lexer instance, a new parser instance, a new compiler instance and a
new VPU instance are allocated. Furthermore, accesses to the symbol table are synchronized.

A component holds methods, fields and implements an interface. The extensible compiler
constructs a virtual table (a table of code pointers) filled with the implementations of the
methods of its interface and the JIT compiles the code of the components. An instance of
a component is thus represented in memory by its fields and a pointer to its virtual table.
Figure 4 shows the loading of two specializations: the JnJVM and another specialization.
These components extend the MVM and then the JnJVM and can use loaded components.

§Three input/output components are defined. The first one launches an interactive shell, the second one waits
for incoming new specializations from a socket and the third one reads a specialization from a file.
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1 ;; ——- define an interface with two methods f and g —————
2 (define .Ifce (def−interface "interface name" .f .g))
3 ;; ——- define a component that implement Ifce ————————
4 (define .Comp
5 (implement "component name"
6 ;; interface implemented
7 .Ifce
8 ;; methods implementation
9 [(lambda(this x) ;; implementation of f

10 (printf "; call f on %p/%d\n" this x))
11 (lambda(this) ;; implementation of g
12 (printf "; the-field: %d\n" (the−field this)))]
13 ;; fields of the component
14 [word the−field])) ;; e.g. signed int the-field
15 ;; ——- allocate an instance of Comp —————————————
16 (define .i (cnew Comp)) ;; i is an instance of Comp
17 ;; ——- call i.f(42) ————————————
18 (Ifce.f i 42)

Figure 5. Injection of a component

For example, the JnJVM defines a new Java bytecode compiler (extension) which uses the JIT
of the MVM.

Figure 5 line 2 presents an example of an interface definition with methods f and g. A
component Comp is defined from line 4 to 14. It implements the methods and holds one field,
the-field. An instance of the component is then allocated (line 16) and f is called (line 18) on
this instance. Previously loaded code does not call the newly-loaded extension, as it requires
rebinding to the new code, which is explained in the next subsection.

Our component layer remains very simple: a component can only implement one interface
or it can only inherit one component. Moreover, a component can not inherit a component
and implement an interface simultaneously. We made this choice for two reasons:

• Because we want to keep our component layer as fast as possible. With this restriction,
virtual tables can directly be used for interface method invocations.

• Because we also want to use the component layer for MVM internal components.
However, the MVM is written in C++, which does not permit dynamic adaptation
of the code. An internal component of the MVM is defined as a C structure with a
virtual table. Managing this structure is relatively simple in C++. Building a more
complex component layer requires many C++ lines of code for each component access.
We estimate that the engineering cost of rewriting the MVM is prohibitive, whereas our
component layer is sufficient for our work.
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Figure 6. Compilation and reflection.

2.2.2. The code weaver: binding extension code.

Modifying existing components of the MVM on the fly relies on a code weaver. For each method
of an interface, the aspect weaver defines a join point, i.e. an adaptation point in the AOP
terminology. In Figure 4, binding an extension code is symbolized by the term modify.

Figure 6 summarizes the compilation of the abstract syntax tree of Figure 5. The keyword
implements takes the abstract syntax tree of the component definition. It generates the code
of methods f and g thanks to the VPU and generates a representation of the component Comp
in memory. This representation is used to introspect and to adapt the component on the fly.

Moreover, at line 2 of Figure 5, two join points (Ifce.joinpoint.f and Ifce.joinpoint.g)
are generated during the definition of the interface. A join point is defined by a new symbol
used to modify a method of the virtual table of a component: this symbol is used to bind
and therefore replace the existing code with the new code. A join point is a keyword that
hides the direct manipulation of the component description. In Figure 7, we use the join point
Ifce.joinpoint.f to modify the virtual table of the component Comp on the fly: the compiler
inserts a new code in the entry f of the virtual table of the component definition Comp. A
specialization can also modify the content of a field to bind a new component to an existing
one.

A method modification does not interrupt the execution of the old code. If a method is
executing while it is changed, the old code is still executed. Future calls will execute the
new method. However, the application might be in an inconsistent state if the old and
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1 ;; ——- modify on the fly f ——————————————————
2 (set! (Ifce.joinpoint.f Comp)
3 (lambda(this x)
4 (printf "; Hi!, it’s the new f!\n")))

Figure 7. Modification of a component

the new methods are executing concurrently. We do not believe that a common pattern to
ensure consistent state transition is the right solution: we let the developer ensure that his
synchronization is functional. If synchronization is required during adaptation, MVM defines
a function that interrupts temporarily all executing threads (by issuing a signal) except the
thread that initiates the adaptation.

Adding new fields to components is also possible, but with restrictions. This task is much
more complex, as all instances of the component must be found in memory and reallocated.
The system must then update all references to this component. To find all these references, the
MVM relies on the garbage collector, which has a list of all live objects. Two passes on objects
are done. The first one finds all the instances of components that implement or inherit the
modified component. All these old instances are stored in a list and a new version is allocated
with the new size. The second pass updates all references from the old instances to the new
ones. This pass uses the meta description of components, which is stored in the virtual table
of components. If a component B references a modified component A, after this pass, the
component B references the new version of A. Finally, all compiled functions that access a
field of an inherited component of the modified component must be recompiled. Indeed, if a
component B inherits a component A, fields of B are stored after the fields of A in an instance.
If A grows, offsets of fields of B change. Because these offsets are directly used in the machine
code to access fields, functions that access fields of B must be recompiled. Maintaining the list
of these functions for each field is relatively costly in terms of memory and an option enables
or disables the capability of adding new fields.

Figure 8 gives an example of field insertion. In this example, we add the new field
a-new-field in the component that describes a Java class in the JnJVM. This field is
initialized by the lambda-expression to 42. We have tested this example on a running JnJVM
with an object memory of 5MB. On a Linux on a Core 2 Duo at 2.33GHz executed in the
Parallels virtual machine and 768MB of memory, adding this field takes around 3 seconds.
This first result shows that adding fields is relatively costly. The capability of adding fields do
not cause overhead during execution but requires memory to store field accesses.

We have two restrictions on field addition:

• If a modified component is directly referenced from the compiled code, this reference
is not updated because offsets of these references from the code are lost during the
compilation.
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1 (add−field :jnjvm.class.class−def
2 [word .a−new−field]
3 (lambda(cl)
4 (:system.printf "; add field on: %p (%s)\n" cl (:object.print−string cl))
5 (set! (.a−new−field cl) 22)))

Figure 8. Adding a field in a component

• If a modified component is referenced from the stack, this reference is not updated
because the type of local variables is lost during compilation.

Avoiding the first restriction requires modifications directly in our VPU and does not require
a lot of work. Avoiding the second restriction requires also modifications in our VPU to
maintain a description of the stack, but also in all the MVM code. Indeed, if a component
is referenced from MVM code, which is written in C++, we can not have the description of
the stack. We are actually working on a new prototype of the MVM written in the Lisp-like
language of the MVM to solve this problem. By using our own compiler we will maintain a
description of the stack for all functions.

2.2.3. Deleting unneeded code.

After an adaptation, component definitions or methods may become unneeded. In this case,
the old component or the old method will become unreachable. The unused memory will be
reclaimed by the garbage collector. Even if a method is executing but is not referenced by a
component after an adaptation, the garbage collector reaches the old code because it finds a
reference to it on the stack or in the program counter. The reclamation of the unused code
will therefore be delayed and the execution of the method will finish normally.

2.3. Internal architecture of JnJVM

The JnJVM is a complete Java Virtual Machine that conforms to the second version of the Java
Virtual Machine specification [31]. It is based on the bootstrap classes of GNU Classpath [1],
which follows version 1.2 to 1.4 of the Java API Specification.

The JnJVM is developed on top of the MVM and uses its component architecture.
Implementing the JnJVM atop the MVM allows specializations to adapt JnJVM components
on the fly: the JnJVM is extensible since it is built upon the MVM. The JnJVM is thus
written in the Lisp-like language of the MVM: the MVM compiles the JnJVM on the fly when
it is loaded. Executing a complete virtual machine (JnJVM) in another (MVM) and obtaining
good performance is one of the challenges of our work. From a reflective point of view, the
MVM executes at the base level, the JnJVM at the meta level and Java applications at the
meta-meta level.
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unresolved
use an

symbol

throw an
exception

allocate a
Java object

JnJVM

load a class

exception code

bind a native method

Loader

Bytecode Compiler

Native

allocate a class

GNU Classpath

VPU

allocate the code

read it
Reader

find the class

Exception

Memory

Binder

compile and bind
a Java method

Java Objects

Java/JnJVM Codes

Classes Definitions

JnJVM Components

Figure 9. Relationships between JnJVM components

The JnJVM adds an entirely new functionality to the MVM, therefore loading it does not
require any code weaving. Because the JnJVM is written in the Lisp-like language of the MVM,
it is portable for different architectures and systems (the MVM itself has to be adapted for
different architectures and systems).

Figure 9 summarizes the relationships between the components of the JnJVM. The three
incoming arrows symbolize the calls generated by the Java code during the execution of the
application. Each component of the JnJVM implements one of the standard mechanisms of a
JVM. The reader and loader components read, resolve and initialize Java classes in memory.

Each element of a class file (a field definition, a method definition, a class definition or an
attribute), is represented in memory by a MVM component instance. These components are
collected by the garbage collector.

2.3.1. The Java Just In Time Compiler

The bytecode compiler component compiles the bytecode of a Java method: this component,
the Just In Time Compiler (JIT) of the JnJVM, reuses the JIT (the VPU) of the MVM (see
Section 2.1). The bytecode compiler of the JnJVM is therefore portable because it uses only
the VPU interface. We use directly the API of the VPU to compile Java bytecode on the fly.
By using the same technique, we can compile other bytecoded languages. A first version of the
CLR built over the MVM is functional and reuses also the VPU [19].
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1 (def−opcode .irem 112
2 (lambda(op code−reader position compile−env compiler vpu)
3 (:compiler.vpu.imod vpu)
4 (+ position 1)))
5
6 (def−opcode .invokevirtual 182
7 (lambda(op code−reader position compile−env compiler vpu)
8 (let ([index (read−u2 code−reader)]
9 [jnjvm (env.vm compile−env)]

10 [cl (env.resolve−class jnjvm compile−env)]
11 [signature (generate−invoke−interface compile−env vpu (:jnjvm.class.constant−pool cl) index)])
12 (+ position 3))))

Figure 10. Mapping Java bytecode to VPU API

Figure 10 gives two examples of mapping. A new keyword is defined in the MVM to map
Java bytecode to VPU intermediate representation: def-opcode. This keyword compiles the
translator method (the lambda-expression), fills the appropriate entry of the dispatch array of
Java opcode translator (for the first example, the instruction irem has the opcode 112) and
preserves a symbol for debugging (irem or invoke-interface in examples).

The first example is the opcode irem which computes the remainder of the division of
the first argument on the Java compilation stack by the second one. The mapping is direct:
the VPU provides an integer remainder function and also uses a stack. The second example
translates the invoke-interface Java opcode. At line 8, the index in the constant pool of
the invoked method is extracted from the bytecode. At line 9, the current instance of the
JnJVM is retrieved from the compile environment component. At line 10, the class is resolved
by the JnJVM, i.e. a class component is found from the String which represents the class. At
line 11 the code to invoke a Java interface is generated. The mapping is not direct because
the VPU provides only two function call semantics: direct and indirect call. The function
generate-invoke-interface generates the code with the VPU to invoke an interface by
generating dispatch code.

2.3.2. Other components

The binder associates a Java symbol to an internal representation of this symbol. Binding is
lazy: methods, fields and classes are bound when they are used during execution. The exception
component manages exceptions. The memory component uses the garbage collector of the
MVM, but other garbage collectors can be implemented. The native component implements
the interactions between the JnJVM and GNU Classpath.

Once the JnJVM is loaded, Java applications can run. Applications may replace components
of the JnJVM or invoke the MVM code weaver to introduce or modify components.
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There can be several instances of the JnJVM; they can be isolated from one another or
they can share components. A first implementation of isolates [3] is under development and
preliminary work on isolation based on different instances of JnJVM in the same address space
is submitted in [19]. In section 4, we use multiple JnJVMs to load a new version of a bytecode.
The original JnJVM instance has the old version of the class and the new instance loads the
new version, compiles the new code with its constant pool and replaces the old method with
the new one.

The main originality of the JnJVM is the use of MVM components which enable their
dynamic adaptation. Internal components of the JnJVM are relatively standard and algorithms
used are well known in the virtual machine developer community, hence we do not detail them
further in this paper.

To demonstrate the extensibility of the JnJVM, the next three sections present adaptation
experiments that show three different levels of adaptability. The experiment with escape
analysis illustrates modification of JVM internals such as bytecode compilation and thread
synchronization. The second experiment illustrates extension of the virtual machine with a
Java aspect weaver. The third experiment extends the JnJVM with system services that are
not application specific and modifies the application with distribution and monitoring.

3. Specializing the JnJVM for non-escaping objects

The first experiment modifies the behavior of the JVM. It consists of specializing allocation
and synchronization for non escaping-objects [13, 9, 46]. Escape analysis calculates the lifetime
of Java objects. A captured object is defined as an object whose lifetime does not exceed the
lifetime’s method in which it was allocated. Otherwise, the object escapes from the method.
Captured objects do not need garbage collection nor synchronization.

A static lifetime analyser finds captured objects (e.g. objects whose lifetime does not exceed
the method). The static analysis was done by A. Galland [18] with GemPlus¶ to optimize Java
applications for embedded devices. Class files are annotated by the analyzer to list captured
objects. This information is then exploited by the escape specialization script.

The escape specialization modifies on the fly the JnJVM to allocate captured objects on
a stack called captured stack‖ instead of putting them in the heap. The script also removes
synchronizations on captured objects. An uninstallation script restores the old behavior on
demand.

The main goal of this experience is to demonstrate the dynamic adaptability of the JnJVM.
We choose escape analysis because it modifies the behavior of the garbage collector and the
synchronization model. It requires modification in the core of a Java Virtual Machine: in the
memory allocator, the garbage collector and the code generator. Adding this new behavior on
the fly does not slow down the JnJVM: JnJVM is launched normally and adapted later.

¶The french smart cards constructor.
‖We do not use the execution stack to avoid stack overflow.
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A standard Java Virtual Machine might be statically modified to provide escape analysis
facilities. However, escape analysis is one possible system mechanism required by an application
(such as persistence, migration, specific resource control...) and an application server can not
predict at startup which applications will be executed and what possible specific system
mechanisms will be required by these applications. Choosing specific system behaviors at
startup becomes therefore impossible and dynamic adaptation is a solution to inject new
system mechanisms on the fly, when it is required by an application.

3.1. The escape specialization script

The escape specialization script modifies methods of the JnJVM by using extension and
modification mechanisms provided by the MVM. The escape specialization script weaves an
aspect in the JnJVM to take into account escape information given by the analyzer. This
aspect is defined by the join points (the methods of the JnJVM) modified by the script. Three
kinds of join points have been identified and are modified by the escape specialization:

Allocation The compilation of bytecodes new, newarray, anewarray and multianewarray.
For captured objects, they specialize instances with synchronizations removed and by
allocating them on stack.

Method compilation The bytecode compilation of the prologue and the epilogue of
methods. Captured objects are stored on the captured stack which must be updated
at the end of the method that holds captured object. Figure 11 presents a simplified
version of the code advice woven for the prologue and the epilogue. First (line 3 to 6),
the state of the stack is preserved, then the original code is called (line 8 and 9) and
finally (line 10 to 13) the state of the stack is restored before the return. The code advice
is woven at lines 15 and 16, e.g. the compilation of the prologue and epilogue method is
updated.

Exception throw When an exception is thrown, the captured stack must be updated to
deallocate all unused captured objects.

3.2. Performance measurements

Figures 12 and 13 summarize measures observed with the escape specialization script. The
evaluation was done on a PowerPC at 1GHz with a Gentoo Linux. To compare performances
with and without escape analysis, we evaluated the execution time of four representative
applications of the JavaGrande Benchmark suite [16]. The heap is limited to 512 MB and the
stack for captured objects to 4 MB.

With the Search test, the number of results per second is increased by 25%. Indeed, most
of the collections are avoided because most of allocations are captured. This test shows the
potential benefit of escape analysis. The Euler test gives an intermediate result where the half
of the allocations are captured. MonteCarlo test shows that the impact of escape analysis may
be insignificant when most of the main allocations are not captured.
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1 (define .java−compiler−escape ; define the code advice
2 (lambda(code−input code−len opinfo env comp vpu)
3 (push−locals vpu 1) ; create a new local variable
4 (call vpu 0 get−captured−stack−pointer) ; get sp
5 (st−tmp vpu 0) ; preserve it in new local
6 (drop vpu 1) ; clean up VPU stack
7 ; call the original method
8 (java−compiler−orig code−input
9 code−len opinfo env comp vpu)

10 (ld−tmp vpu 0) ; get new local
11 (call vpu 1 set−captured−stack−pointer)
12 (drop vpu 1) ; clean up VPU stack
13 (pop−locals vpu 1))) ; delete the local variable
14
15 (set! (java−compiler (compiler (jnjvm)))
16 java−compiler−escape) ; weave the aspect

Figure 11. The code advice woven at the prologue and epilogue
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Figure 13. Acceleration of escape analysis

The last test, RayTracer, shows that escape analysis can decrease the performance. Most of
the allocations are captured in this test and captured allocations are performed in a loop. The
stack is filled rapidly and objects are then allocated with the MVM memory manager. The
4MB of the stack contain only unreachable objects that are followed during collections because
these objects can reference gc-allocated objects. Our garbage collector is not generational and
the 318 collections traverse the stack. Approximately 1.2 useless GB of memory is traversed
by the garbage collector during the test: escape analysis degrade performance.
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The four tests show the different behaviors under a new system policy: escape analysis is
an optimization for some applications such as the Search and the Euler test but can degrade
performance for inadequate applications: this result confirms that specialized system policies
are not suitable for all applications.

3.3. Summary on escape analysis

Escape analysis illustrates the flexibility of the JnJVM. The specialization script remains
small (approximately 1000 lines of code). It can be reused with another specialization of
the JnJVM, (provided that they do not adapt the same behavior). The above measures of
escape analysis show that our architecture make possible application-specific optimizations
and improves performance for suitable applications.

The escape specialization script modifies three components of the JnJVM: Just in Time
Compiler, memory management and thread synchronization. Because every behavior of the
JnJVM is exposed at the specialization script level, the technique presented in this section can
be used to deploy other technologies, such as Proof Carrying Code [34, 41] to accelerate type
verification during bytecode compilation.

4. Extending the JnJVM with a Java-level aspect weaver

The second experiment extends the capabilities of the JnJVM. It consists of adding a Java
aspect Weaver (see Section 8) that can adapt the application. This experience shows the
extensibility of the JnJVM and illustrates potential of the Micro Virtual Machine for language
extension.

To adapt the Java application, we developed a second dynamic aspect weaver [27, 39] ∗∗

at the Java level, similar to Steamloom [10] (see Section 8). The MVM aspect weaver is not
reused for Java applications because it only weaves Lisp-like code to running components:
Java classes have specific data that do not exist in MVM components. Weaving Java code also
requires loading of new bytecode and thus new mechanisms.

Moreover, MVM components do not support multiple interface inheritance and simple
virtual tables were not pertinent (see Section 2.2). Modifying the component layer of the MVM
could be a judicious choice, but we preferred building a new object layer to avoid rewriting the
MVM internal components, which would be a considerable engineering effort. Another reason
is more pragmatic. We did not design the MVM to execute Java bytecode, but to adapt on the
fly the MVM and its running components. At the MVM level, we can not predict all specificity
of all possible virtual machine. Therefore, we do not want to impose a fixed object layer. Adding
a new object layer in the MVM on the fly is thus the right solution: if we impose the Java
object layer at the MVM level, we are designing the MVM as an execution environment only
for JVMs, whereas adding the new object layer on the fly shows the extensibility of the MVM.

∗∗The first aspect weaver is the MVM aspect weaver.
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By transitivity, the aspect weaver of the MVM can not manage Java objects and we decided
to extend the MVM aspect layer to support this new object layer. Moreover, adding an aspect
weaver on the fly through our MVM aspect weaver shows the extensibility of the MVM and
provides an experimental demonstration of the MVM extensibility.

We could also integrate the Java aspect weaver directly in the JnJVM, but it is not the
point of the JnJVM: a dynamic aspect weaver is a specific system mechanism and must thus be
external. Integrating all possible specific system mechanisms directly in a Java virtual machine
is not a good solution because it complicates the code and consumes memory. Moreover, some
system mechanisms can be incompatible and can not be present simultaneously. We argue in
this paper that specific system mechanisms must be provided as tier components. We want to
load the aspect weaver dynamically because we let the application choose its specific system
mechanisms. The Java application requires a Java aspect weaver and thus loads this system
component in its JVM: the end user does not have to choose which system mechanism will be
needed by his application.

The specialization script, called the aspect specialization script, is loaded dynamically in
the JnJVM. It modifies and extends the JnJVM to provide (i) a simple aspect language and
(ii) a way to weave aspects in Java applications. The aspect weaver permits the weaving of
Lisp-like code in Java code, but also the weaving of Java code in Java code. Weaving Java-code
in the Lisp-like code is already possible with the JnJVM to invoke the main method of the
Java application or to find the applicative class loader.

4.1. The aspect specialization script

The aspect specialization script is loaded in the JnJVM by the MVM. It defines a language to
describe and weave aspects in Java applications. This language manipulates Java join points
and associates code advice with these join points. Basically, the script encapsulates the internal
component methods of the JnJVM that define and manipulate the state of class, method and
field definitions in order to provide a higher abstraction to the developer. Figure 14 presents
a Java application with its aspects and its aspect specialization script:

• The Java binary application is a standard Java application on which aspects will be
woven;

• The aspect specialization script extends the language of the MVM with the Java aspect
language that defines, manipulates and weaves aspects;

• The Java aspect description defines the Java join points and defines code advice that
will be woven on these join points. The Java aspect description uses the Java aspect
language.

• The Java code advice and MVM code advice are the code advice that will be woven
by the Java aspect description. The aspect specialization script permits the use of both
kinds of code advice. A MVM code advice interacts directly with the MVM from the
JnJVM because the code advice can manipulate the internal elements of the MVM. A
Java code advice replaces a Java methods by another, provided that they have the same
signature and are members of the same class.
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Figure 14. The Java aspect weaver of the JnJVM

The code advice, the Java aspect description but also the aspect specialization can be loaded
dynamically during the execution of the Java application.

The aspect language defines new keywords to search classes, fields, methods, to duplicate
methods, and to weave aspects on these methods and fields. In this experience, we have not
developed the addition of new fields in existing objects. The solution provided for field addition
in MVM components could be reused in our Java aspect weaver with the same limitations (see
Section 2.1). To weave an aspect on a method, the aspect specialization script modifies the
code pointer of the method and updates the different calling sites of this method.

4.2. Aspect weaving example

Figure 15 presents a complete sample of a simple aspect weaving. This code weaves a
MVM code advice that prints which method is executed on the Java instance method void
Hello.m(int). First, the instance method void m(int) of the class Hello is stored in the
symbol m (lines 1 to 5). At line 7, a join point named cut is defined for the method in the
symbol m. The keyword def-joinpoint-on duplicates the method m with a new name and
reallocates the original method definition so that it holds a reference to the original method,
reachable with the keyword get-original. The function m-advice (line 9 to 15) is the code
advice. It prints the name of the method and calls the original method. Finally, the aspect is
woven (line 17).

The keyword weave-lisp at line 17 updates the code pointer of the method and updates
all the potential calling sites for the method. This sample with Lisp-like code is not type safe
because MVM does not yet provide a complete type model. Defining a complete type model
is planned for the next version of the MVM.
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1 ;; ——– find a method (Aspect description) —————-
2 (define .m ;; store in the symbol m
3 (get−method ;; the method
4 (get−class (jvm) "Hello") ;; in the class “Hello”
5 "m" "(I)V" ACC VIRTUAL)) ;; named “void m(int)”
6 ;; ——– define a joinpoint (Aspect description) ———–
7 (def−joinpoint−on cut m) ;; define a joinpoint named cut on m
8 ;; ——– define the code advice (Microvm code advice) ——
9 (define .m−advice

10 (lambda(cache this the−integer−arg)
11 (let ([meth (deref−cache cache)]) ;; find the method
12 (printf "; enter in: %s\n" (:object.print−string meth))
13 ;; *** invoke the original method ***
14 (invoke−virtual (get−original meth) value this)
15 (printf "; get out: %s\n" (:object.print−string meth)))))
16 ;; ——– weave the code advice (Aspect description) ——–
17 (weave−lisp cut m−advice)

Figure 15. An aspect weaving example

4.3. Weaving Java code

Another keyword (weave-bytecode) weaves directly a new Java bytecode to a join point. To
load a new Java bytecode, we must have two versions of the same class in the same class loader:
the two classes must have the same fields, but the new class contains the new methods. If a
new method is present in the oldest version of the class, the oldest version is replaced and if a
method is not present, it is added to the oldest. The old and the new versions of the class do
not share the same constant pool and the two versions must be present in memory. The two
versions share the same fields and methods. The methods array is thus a mixed array with old
methods and new methods. Old methods reference the old class and thus the old bytecode,
whereas new methods reference the new class and thus the new bytecode. The JnJVM does
not support the definition of multiple versions of the same class in the same class loader and
can not manage mixed classes. To solve this problem, we allocate a new instance of the JnJVM
for the new version of the class, which shares all JnJVM components with the original JnJVM.
This new JnJVM can store multiple versions of the same class. When this version loads a new
class, it updates the original one in the original JnJVM.

Figure 16 describes a class with old and new methods. Original methods use the old constant
pool (Ctp) while new methods use the new constant pool. If a second new bytecode must be
loaded, a third JnJVM is allocated and three versions of the class co-exist. The new JnJVM
is small because it shares all the original components.

4.4. Summary on the aspect specialization script

The specialization script enables:
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Figure 16. Weaving Java code

• Flexibility, as in Steamloom, by defining on the fly new join points.
• Good performance because a join point does not require an indirection to reach a code

advice. Indeed, the internal structure of a Java method (the method descriptions, see
Section 2.3) is used directly. Moreover, to weave an aspect dynamically, we do not require
to define an unused join point like an aspect weaver at language or loading level would
(see Section 8) .

The MVM aspect weaver allows an application to adapt the JnJVM for a specific need, whereas
the Java aspect weaver allows an application to adapt the running Java code. The Java aspect
weaver relies on the MVM aspect weaver, but also on the extensibility of the language of the
MVM to define new keywords.

The purpose of the experience on Java Aspect presented in this section is not to design of
a new complete Java Aspect weaver but to put forth the dynamic adaptability of the JnJVM.
The Java aspect specialization script enriches the JnJVM with new keywords (weave-on-*)
and adds a new functionality on the fly (Java code replacement). New keywords, such as
equivalents of AspectJ keywords after, around or before (see Section 8) could be defined in
the same way.

The aspect specialization script uses the internal mechanisms of the MVM to generate and
replace the Java code on the fly. Our Java aspect weaver updates directly code pointer and
there is no indirection to reach code advice. Therefore, executing a Java application with and
without the Java aspect weaver does not change the execution time.

The aspect specialization script is fully functional and has been used to realize the integration
of our aspect weaver with the application modeling tool Objecteering [5]. It uses the Java aspect
weaver to adapt dynamically the execution of an application when its model (representation)
in Objecteering changes.
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5. Extending the JnJVM for transparent load-balancing
Our final experiment adds distribution capabilities to the MVM and the JnJVM on the fly.
Some applications evolve in environments where their load or available resources can change
at runtime. Pervasive computing and Web servers belong to these kinds of systems: pervasive
computing aims at bringing software into all kinds of devices, which do not provide lots of
resources, and web servers are prone to overload because the number of requests can not be
predicted. A solution to exploit available resources is to offload entities of the application
dynamically.

We have implemented method offloading on top of the JnJVM. The application is not
modified but enriched with meta data. The application is not aware of the offloading system.
It can be added dynamically during the execution of the application, when needed.

This experiment shows how adapting the JnJVM and the application. The JnJVM is
enriched with the load balancing system which modifies the application to distribute the
computation on a cluster. The load balancing system relies on the JnJVM aspect weaver to
modify a local call to a remote call. With this last experiment, we highlight two interested
points. First, our specializations can be composed: the load balancing system requires the Java
aspect weaver. Second, this experience executes a complete real Java applications, Tomcat, and
evaluate the completeness of our JVM.

5.1. System overview

Method offloading relies on (i) an offline analysis of which methods can be offloaded, (ii) the
weaving of a monitoring aspect and (iii) the weaving of a distribution aspect. The offline
analysis gives a set of methods that do not manipulate system-dependent objects. Currently,
the analysis is done by the developer but we plan to automate this task. The monitoring aspect
collects information on methods at run-time: execution time, number of times executed and size
of the arguments. This information is used to choose which methods should be offloaded. The
monitoring aspect is woven when an overload is detected and unwoven when the distribution
aspect is woven.

The distribution aspect sends the execution of methods chosen by the monitoring aspect to
underloaded computers by using the RMI framework: on every computer where computations
will be sent, an RMI object is executed. This object can receive, load and execute bytecode.
To update locally modified objects on remote peers, we have implemented a copy-restore
algorithm [47] at the JVM level.

The peers are not dedicated to one application and can be shared with other applications.
They can be personal computers or clusters. When the end of the overload is detected, the
distribution aspect is unwoven and the execution continues normally. Because the Java aspect
weaver does not introduce performance loss (see Section 4), the execution performance without
aspects is not affected. On the other hand, when the distribution aspect is woven, a remote
method invocation is executed and performance decreases. However, when the distribution
aspect is woven, the load decreases and the response time increases.
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5.2. Case study: load-balancing a multi-threaded Web server

We did a case study of our system with the TPC-W benchmark.TPC-W is composed of
Java servlets that implement an interactive bookstore. It is executed on the Tomcat servlet
container, version 5.0.28. The application contains 29 classes, 15 of which are servlets, 49
methods and 5409 code lines. A manual analysis of the code detects 21 methods whose
execution can be migrated.

At first, the application is launched on the JnJVM without the offloading specialization.
When the administrator decides that the application would need offloading, he can inject
the specialization. The offloading system starts to monitor the application, and waits for
computational peers to record themselves. When many users of the application are connected,
the system disables monitoring and enables distribution of Java methods.

A first evaluation of the system shows that responsiveness and availability of the server
are improved. The Web server is a 1GHz PowerBook G4 with 1GB of memory. In the first
experiment, a dual-processor G5 2GHz and a 3GHz Pentium register to the offloading system.
In the second experiment, a cluster of 20 dual-processors Xeon 2GHz dynamically registers to
the offloading system. We could not use a machine of the cluster to be the Web server because
the JnJVM does not compile on x86 64. Figure 17 shows the average response time of the Web
server proportionately to the number of clients. When 200 clients are connected to the server,
the average response time is 1.4 times better with two surrogates, and two times better with the
cluster. The small improvement between two surrogates and a cluster of surrogates is mostly
due to the fact that the server still has to dispatch the requests. Hence, the performance of the
server is the bottleneck. Note that the goal of this experiment is to show how the JnJVM can
be easily adapted for an application-specific need; in this case load balancing. The performance
results, while necessary, are still very limited to the JnJVM performance.

5.3. Summary on load balancing

Dynamic load balancing can improve performance of a Web server during overload and there
is no performance loss when monitoring and distribution are not enabled. For a well-written
application, which separates platform dependent entities from business entities, many of its
methods can be migrated. Therefore no effort on rewriting the application has to be done.

Achieving dynamic offloading inside the JnJVM does not impose modifying the JnJVM
code. The code is composed of 300 lines for manipulating the JnJVM components, and 2000
lines for the resource manager, manipulating the set of methods, and the call by copy-restore
implementation.

6. Performance measurement of the JnJVM

In order to evaluate our prototype, we used the JavaGrande Test Suite [16]. It measures the
performance of basic operations such as arithmetic operations, collection and exceptions, and
it measures global performance with representative applications. The JnJVM performs as fast
as the Kaffe virtual machine with a Just In Time compiler. The Kaffe virtual machine is an
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Figure 17. Average response time of the Web server (smaller is better)

open source virtual machine distributed under the GNU public licence. Kaffe was popular
five years ago and was the default virtual machine shipped with most Linux distributions. In
opposition to the IBM virtual machine or Sun virtual machine, Kaffe is not developed by an
industrial. Kaffe is equivalent in terms of engineering effort to the JnJVM. However, JnJVM
and Kaffe perform 2 to 10 times slower than the robust virtual machines from IBM and Sun.
The remainder of this section describes and explains our results.

Our tests were performed on a PowerPC with a Gentoo Linux, kernel revision 2.6.15 at 1
GHz with 1 GB of RAM, and an Athlon XP 1800+ with Gentoo Linux 2.6.15 with 512 MB of
RAM. On the IA-32 architecture, the JVMs we evaluated were: IBM JVM version 1.4.2 with a
Just In Time bytecode compiler; this Java Virtual Machine is one of the fastest JVM [6]; Sun
JVM version 1.4.2.10 with JIT; Kaffe 1.1.6 with JIT and Cacao 0.95, an open-source research
JVM, which concentrates on JIT compilation.

On the PowerPC architecture, the JVMs we evaluated were IBM JVM version 1.4.2.03 with
JIT, and Cacao version 0.95 with JIT. We have not reported the result of Kaffe and Sun on
PowerPC because they do not have a JIT for this processor: comparisons with these JVMs
only show that a JIT is better than an interpreter.
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JVM JnJVM IBM Sun Kaffe Cacao
Memory on IA-32 (MB) 25.6 12.7 20.2 4.6 5.3
Memory on PPC (MB) 26.6 11.7 - - 5.6
Startup on IA-32 (s) 1.2 0.2 0.1 0.0 0.0
Startup on PPC (s) 2.1 0.3 - - 0.0

Table I. JVM Bootstrap (smaller is better)

JnJVM comprises 15000 lines of MVM code and MVM comprises 30000 lines of C++ code.
The amount of code is comparable with that of other JVMs.

We present a relatively complete set of results because the JnJVM is itself compiled on the
fly by the MVM and we want to show that this property appears not to degrade performance.

6.1. Bootstrap performance

Because our system compiles the JnJVM when it is loaded, the bootstrap of the JnJVM is
slower than other JVMs. Nevertheless, the loading time of the JnJVM remains reasonable: 1.2
seconds on IA-32 and 2.1 seconds on PowerPC.

The memory footprint of the JnJVM is larger than other JVMs. JnJVM keeps the meta
components and interfaces in memory and the MVM has a compiler for the Lisp-like language
that is not present in other JVMs. Table I indicates the total amount of memory used by the
JVMs on IA-32. The JnJVM consumes between 10 and 20 MB. For modern desktop machines,
this occupied memory is not a limitation, but for embedded devices, the memory footprint of
the JnJVM has to be downsized.

6.2. Micro-benchmarks

Micro benchmarks give information on micro operations such as addition or object allocation.
We present these results because they explain the difference observed in the later macro
benchmark (see Section 6.3) and show some limitations of our prototype. Figures 18 and 19
give a set of results of the JavaGrande section 1 benchmark. All results are normalized to
1 which is the constant result of the JnJVM. The result given is the average time of one
operation. We concentrate on arithmetic operations, object allocation, object assignment and
method calls because they are the most significant to explain the difference observed between
the JnJVM and others for complete applications.

The Kaffe and Cacao virtual machines give the most significant results. Indeed, these virtual
machines and the JnJVM are comparable in terms of engineering, but are not comparable with
optimized Java Virtual Machines (IBM and SUN).
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6.2.1. Arithmetics.

Integer and floating-point addition benchmarks are the same with the JnJVM and with other
JVMs on PowerPC. However, performance differs on the IA-32 architecture. This is explained
by the lack of any register allocation algorithm of the VPU. On PowerPC, VPU uses r14 to
r31 for the first variables and leaves the others in stack. In the arithmetic tests on PowerPC,
these registers are sufficient for local variables and JnJVM performs as fast as other JVMs.
But on IA-32, the VPU keeps all variables on stack: when a variable is accessed, it is loaded
from the stack, the operation is done and the result is stored on stack. Modern JITs try
to maintain most frequently used variable on register. In other JVMs, intensively used local
variables are maintained in registers, and in contrast, the VPU can not move variables and
suffers when temporaries are on the stack. This limitation requires a complete rewriting of the
VPU because live analysis of locals is necessary. This test explains the differences observed
between the JnJVM and other JVMs: when the register allocator is stressed, the JnJVM is
not competitive.

6.2.2. Object allocation.

The object allocation benchmark of the Javagrande Test Suite measures both the garbage
collection algorithm and the allocation performance. Our garbage collector is the colored mark
and sweep of the MVM (see section 2.1). JnJVM outperforms Kaffe, but is slower than others
on PowerPC and IA-32. IBM and Sun are using a modern generational GC, which explains
the ratio of 2.5 to 5 with the JnJVM (except for IBM in IA-32). The result of IBM on IA-32 is
spectacular: 50 times faster than JnJVM and 10 times faster than Sun. IBM version 1.4.2.03
probably uses a single object for this allocation because an instance of an object does not have
fields, whereas version 1.4.2 does not.
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6.2.3. Object assignment.

Object assignment in the JnJVM is far from optimized because of the VPU register allocation
algorithm. Most of the time, parameters are taken from the stack in the JnJVM, while they
are in register in other JVMs.

6.2.4. Method invocation

The JnJVM is slower than other JVMs because the VPU allocates most of its local variables
on the stack. The JnJVM uses caches for instance method invocations. A virtual table could
improve performance by 5%, but does not suffice to explain the differences.

6.3. Macro-benchmarks

The JavaGrande Test Suite also measures performance of JVMs with representative
applications. The results are presented in Figure 20 and 21. Only measures on IA-32 are
reported here because results on PowerPC are equivalent. These tests show that the JnJVM is
on average equivalent to Kaffe for section 2 and better than Kaffe for section 3. The JnJVM is
at the same level as Cacao, but most of the time slower. The limitations in JnJVM presented in
the micro-benchmarks explain the main differences between the JnJVM and the other JVMs:
we did not observe a big difference between micro and macro benchmarks (the ratio remains
globally the same between the two series of test). The comparison with Sun and IBM shows
that JnJVM is 2 to 10 times slower (in the worst case).

The set of results given by the JavaGrande test is very encouraging considering the level
of immaturity of the JnJVM, whereas Sun Microsystem and IBM have spent considerable
engineering effort on optimizations. Only three individuals developed the JnJVM and the
MVM, and we can not expect the same performance as with industrial JVMs. Results reported
in this paper show that the architecture of the JnJVM gives admissible performance. We expect
that the bad performance of the JnJVM compared to IBM and Sun are explained by some
unoptimized algorithms of the JnJVM and by the limitations of the VPU (see Section 2.1),
but not by our flexible architecture. However, without an optimized prototype, we can not
prove yet that our architecture has no impact on performance.

6.4. Summary on performance evaluation

Executing the JVM on the MVM introduces a new level of virtualization: the JnJVM is
compiled by the MVM. Our performance study shows that the JnJVM is still competitive and
we show how the limitation of the VPU impacts these results (the VPU does not perform any
optimizations and does not have an optimized register allocator).

We note that with the best JVMs, despite virtualization, performance is comparable to
C++ [26, 32], at the cost of substantial engineering effort. We expect that similar efforts
applied to the JnJVM would yield similar results.
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Figure 20. Macro Benchmark of section 2 on IA-32.

7. Discussion and future work

By modifying method pointers directly in memory, adaptations are done at a finer granularity
than component replacement. Furthermore, the method replacement does not imply the loss of
the component state: the developer of a specialization does not have to manage state transfer.
Nevertheless, our adaptation mechanisms are based on aspect technology and have the same
limitations: to modify the JnJVM, a specialization directly uses and modifies the internal
structures of the JnJVM. A specialization script is therefore highly dependent on the code of
the JnJVM. If the JnJVM evolves, reconfiguration scripts may have to be changed. This is
because specialization scripts weave code by using the names of the methods directly. To solve
this problem, we plan to express the reconfigurations by manipulating higher level abstractions
via well defined reconfiguration interfaces: a reconfiguration script will be independent from
the JnJVM internals.
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The second direction of our research is security of adaptation that we have ignored for
the current JnJVM experiments. This could be solved by authenticating the application or
the user who wants to modify the JnJVM at the reconfiguration interface. Indeed, by letting
an application modify the methods of the internal components of the JnJVM, we can not
ensure security, but by using a reconfiguration interface, we can restrict the possibility of such
applications.

The third perspective of our work concerns optimizations and portability. The speed and
the memory footprint of the JnJVM will be improved. The VPU currently generates code for
PowerPC and x86, thanks to a clean separation of its interface and its processor description;
other processor targets can easily be accommodated.

The last perspective of our work concerns the language. MVM is developed in C++ and we
can not know its internal structures at the MVM level. This limitation implies limitations on

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 00:1–7
Prepared using speauth.cls



32 G. THOMAS, N. GEOFFRAY, C. CLÉMENT, B. FOLLIOT

field addition. We are actually developing a new prototype of MVM in the Lisp-like language
of the MVM. This prototype will solve this limitation.

8. Related Work

This work draws on three different research areas: (i) Flexible operating systems, (ii) Aspect
oriented programming and (iii) Virtual Machines/Languages.

Flexible operating systems. The design of our flexible system is based on previous works
on flexibility issues on operating systems design. The component architecture of the JnJVM
is similar to simple plug-in mechanisms, such as loadable device drivers in Linux. Defining
specific policies is also possible in micro-kernel using servers (such as L4 [30] or Mach [7]) and
exo-kernels (such as Aegis [15]) in user-space libraries. The problem with loadable modules is
that the state is lost: when a dynamic update is needed, the state of the module (the loadable
device driver, the server or the library) is lost. Kernels defined with component architecture,
such as the OSKit Think [17, 42] or K42 [28, 44] with its hot-swapping mechanism raise the
same problem. The dynamic replacement of modules is permitted, but the developer has to
manage the transfer from old components to new ones.

Our MVM defines the core concepts of a flexible operating system and the JnJVM is
implemented with components (equivalent of libraries or servers). Because our experiment
is at the application level, the same address space is used by the MVM, JnJVM and the
application. Our component architecture could also be used for hot-swapping, but the main
originality of our work is the use of adaptation points to adapt a component without losing
its state.

Aspect oriented programming. Aspect oriented programming (AOP) defines language
constructions to (i) declare sets of points in the code and to (ii) associate entities with these
sets of points. From an engineering point of view, AOP increases the reusability of the code
and from a system point of view, dynamic AOP is a technique to modify the code on the fly. In
the AOP terminology, a join point is a point in the code (a method calling site, a field access
site, an exception throwing site). A set of join points is a pointcut and weaving an aspect is
the act of inserting some code (an aspect, or a set of code advice) across a pointcut.

Many aspect tools exist for Java (AspectJ, JBoss AOP, Jac...) and are used to modify
applications during compilation or loading time. These tools can only adapt predefined join
points (all join points must be defined before the execution of the application). They are
relatively slow in case of dynamic adaptation because an intermediate method is called on
each join point to select the current code advice. Steamloom [10] is a modified JVM that
defines a dynamic Java aspect weaver. Steamloom does not introduce indirection to reach
code advice because the JVM can modify directly code pointers in memory to adapt the
application. Therefore, Steamloom does not degrade performances. The Java aspect weaver of
the JnJVM presented in Section 4 is similar to Steamloom, but we do not use a modified JVM:
the JnJVM is adapted on the fly with a new system abstraction, the Java aspect weaver.
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Aspects are principally used to adapt applications on the fly, but are rarely used to adapt
execution environments such as the operating system or the virtual machine. To our knowledge,
the JnJVM is the only JVM that can adapt itself on the fly with aspect technology.

Extended Virtual Machines and languages. The Distributed Virtual Machine [43] (DVM) is a
Java virtual machine distributed on a network that factorizes common tasks, such as bytecode
verification, optimization or compilation, on a centralized server. DVM distributes internal
components in a network: DVM does not permit dynamic updates of components, but it uses
an architecture close from ours. XVM [23] is an extensible virtual machine in which internal
components of the virtual machine can be updated independently. XVM does not address the
problem of state transfer between components during an update. JnJVM separates the virtual
machine in components as well, but also provides an aspect weaver that allows an application
to modify its execution without losing its state.

JavaOS [33] was a project of Sun microsystem and IBM research to construct a system
based on Java where all drivers were written in Java. KaffeOS [8], which is based on the
open source Kaffe Java virtual machine, is a Java system that runs on Linux and provides
process abstractions. KaffeOS provides also isolation between processes based on Java type
verifications. JavaOS and KaffeOS do not address the problem of flexibility: their runtime are
monolithic JVMs that can not be adapted. Singularity [25] is a Microsoft research prototype
in operating system based on the Microsoft Intermediate Language (MSIL). Singularity allows
an application to define its own system policies for garbage collection algorithm and its own
memory layout, but the goal of Singularity is dependability: extensibility in Singularity is
achieved via communication channels. Singularity isolates the kernel from the drivers and
does not permits adaptations of kernel system policies.

The Common Language Runtime (CLR) of the .Net framework is a monolithic virtual
machine able to execute MSIL code. The CLR allows a user to execute different language, but it
can only executes MSIL. Compared to the CLR, the MVM does not impose a unique bytecode:
we are executing Lisp-like source, Java bytecode or MSIL with the same JIT. Moreover, the
goal purchased by the MVM is dynamic flexibility while the goal purchased by the CLR is
the construction of a common virtual machine. The CLR does not provide any abstraction to
modify the virtual machine or the application on the fly.

JikesRVM [2] or Joeq [48] are prototypes of Java Virtual Machine to experiment new virtual
machines algorithms. They allows a developer to change one of their main components at
compilation time, but the goal of these virtual machines is not dynamic adaptation: they does
not provide tools to modify theirs internal components on the fly. JikesRVM or Joeq could be
good platforms to experiment dynamic flexibility, but it would require the same engineering
effort as the development of the MVM.

Works on dynamic software updating [24] show how to adapt a software during its execution
by generating dynamic patches between two versions of the source and by loading them to
adapt the software on the fly. The state of the software is also preserved and dynamic addition
of fields is permitted. Our work does not address evolution of source code but evolution of the
runtime system: whereas dynamic software updating needs to access the source code of the
application, JnJVM constructs evolution directly from the running application in memory. In
our system, patches are not necessarily written in the same language. The innovative concepts
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presented in [24] to adapt running code and to construct patches are reusable in MVM. A new
interesting research project could be the construction of dynamic patch from the representation
of the running application in memory (instead of using source code) to automatize adaptation
in JnJVM and MVM.

The Low-Level Virtual Machine (LLVM) [29] and LibJIT [4] define also a generic virtual
machine with a common intermediate representation. However, our experiment explores
flexibility of execution environment while these virtual machines offer a framework to build
other virtual machines. The VPU acts as LLVM, but we propose also a flexible language and
an aspect oriented system with the MVM. We are actually investigating the replacement of
the VPU by LLVM [20].

9. Conclusion

This paper presents a flexible Java Virtual Machine based on a generic flexible system, the
MVM. Flexibility relies on language extensibility and aspect weaving. The use of dynamic
code weaving mechanisms is an alternative to traditional component replacement used to bring
flexibility in operating systems. It avoids the problem of state transfer between components
during an adaptation. Our performance measures show that adaptation points do not imply a
decrease in performance during normal operations.

The Micro Virtual Machine is the execution environment of the JnJVM. It is a dynamic
compiler that enables the construction of adaptable components by using aspect techniques.
It is independent from the JnJVM and can be reused for another execution environment, such
as an operating system or another virtual machine.

The JnJVM is entirely written in the MVM Lisp-like language and compiled on the fly by
the MVM at bootstrap. The cost of compiling a Java Virtual Machine is reasonable and our
performance study shows that our JVM is equivalent to the Kaffe Java Virtual Machine.

The Java virtual machine was the base experiment for our work, but our results are
generalizable to other systems, like operating systems, other virtual machines, interpreters
or middlewares. The weaknesses and strengths of our architecture are:

Engineering cost Our approach has a startup engineering cost: the Java virtual machine had
to be wholly reconstructed for this work. JnJVM is equivalent in size to other Java virtual
machines with 45000 lines of code (JnJVM and MVM). For complete operating systems with
millions of lines of code, such as Linux, research has to be conducted to automatically re-
engineer existing code to match our component architecture.

Performance Our adaptable architecture does not introduce indirections in the code.
Replacing whole components, methods or adding fields does not require extra indirections
during execution, due to runtime meta-data. However, the meta-data information increases
the amount of memory required to execute the JnJVM and slows down the garbage collector.
In term of performance, the JnJVM is approximately equivalent to Kaffe and remains 2 to 10
times slower than recent and robust JVMs by IBM and Sun. This result is encouraging for
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a first prototype and lets us expect that our architecture does not slow down an application.
Nevertheless, we can not state that this is the case after our evaluation.

Our prototype shows however that admissible performance is not in contradiction with
dynamic adaptability: JnJVM performs roughly the same as the Kaffe virtual machine, which
was a standard 5 years ago.

Adaptability The experiments presented in this paper show different levels of adaptability
of the JnJVM. Escape analysis shows that traditional hidden components, like the memory
manager and the thread manager, can be adapted. Java aspects show the extensibility of our
Lisp-like language. It allows an application to build simultaneously a specialized behavior and
an associated language. The load-balancing specialization shows that system behaviors can be
added dynamically and transparently for the application.

We have constructed a generic flexible environment, the MVM, to build other flexible
environments. Flexibility relies on an extensible language and an aspect weaver. The result
is a highly flexible virtual machine, whose internal components can be modified and adapted
dynamically by the application or a system administrator. We presented three adaptation
experiments, that show dynamic extensions and modifications of the virtual machine. We
believe our system can be a framework for the construction of many other dynamic flexible
systems.
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