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Designing image-based control systems considering workload variations

Sajid Mohamed, Asad Ullah Awan, Dip Goswami and Twan Basten

Abstract— We consider the problem of designing an Image-
Based Control (IBC) application mapped to a multiprocessor
platform. Sensing in IBC consists of compute-intensive image
processing algorithms whose execution times are dependent
on image workload. The challenge is that the IBC systems
have a high (worst-case) workload with significant workload
variations. Designing controllers for such IBC systems typically
consider the worst-case workload that results in a long sensing
delay with suboptimal quality-of-control (QoC). The challenge
is: how to improve the QoC of IBC for a given multiprocessor
platform allocation?

We present a controller synthesis method based on a
Markovian jump linear system (MJLS) formulation consid-
ering workload variations. Our method assumes that system
knowledge is available for modelling the workload variations
as a Markov chain. We compare the MJLS-based method
with two relevant control paradigms - LQR control considering
worst-case workload, and switched linear control - with respect
to QoC and available system knowledge. Our results show
that taking into account workload variations in controller
design benefits QoC. We then provide design guidelines on the
control paradigm to choose for an IBC application given the
requirements and the system knowledge.

I. INTRODUCTION

Image-Based Control (IBC) systems are a class of data-

intensive feedback control systems having camera(s) as the

sensor (see Fig. 1). IBC has become popular with the advent

of efficient image-processing systems and low-cost CMOS

cameras with high resolution [1][2]. The combination of the

camera and image processing (sensing) gives necessary in-

formation on parameters such as relative position, geometry,

relative distance, depth perception and tracking of the object-

of-interest. This enables the effective use of low-cost camera

sensors to enable new functionality or replace expensive

sensors in cost-sensitive industries like automotive [1][3][4].

A typical implementation of an IBC system uses linear

quadratic regulator (LQR) control [5] and considers the

worst-case workload [4]. However, this leads to a long

sensing delay, poor effective resource utilisation in the

multiprocessor platform, and suboptimal quality-of-control

(QoC) [6]. Fig. 2 illustrates these challenges. The camera

captures an image stream at a fixed frame rate per sec-

ond (fps). The execution times of the compute-intensive
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Fig. 1: An image-based control (IBC) system: block diagram

processing (sensing) of the image stream depend on image

workload variations. The workload variations occur due to

image content and result in a wide range between best-case

and the worst-case image processing times.

The workload variations can, however, be statistically

analysed, e.g. as a PERT distribution [7] or discrete-time

Markov chain (DTMC) [8], from observed data and can be

modelled as workload scenarios [6]. The workload scenarios

can be modelled (e.g. as a task graph or a data flow graph),

analysed (for timing) and then mapped to a multiprocessor

platform. A system scenario abstracts multiple workload

scenarios having the same sampling period as determined

by platform constraints. An optimal mapping and controller

may then be designed for each system scenario.

For efficiently designing IBC systems, we should consider

the workload variations and the given platform allocation.

An ideal design approach should: (i) identify, model and

characterise the workload scenarios; (ii) find optimal map-

pings for these workload scenarios for the given platform

allocation; (iii) identify optimal system scenarios; and (iv)

design a controller with high overall QoC for the chosen

system scenarios. One of the critical aspects here is: what

is a good metric to define the QoC for the application?

A vision-guided braking application requires a fast settling

time, whereas an automotive vision-based lateral control [9]

application requires to minimise the reference tracking error.

In [6], a scenario- and platform-aware design (SPADe)

approach is introduced for designing IBC systems. SPADe

characterises a set of frequently occurring workload sce-

narios, identifies a set of system scenarios that abstract

multiple workload scenarios based on platform constraints,

and designs a switched linear control system for these system

scenarios to improve the settling time. However, a challenge

in SPADe is the difficulty to guarantee stability for the

resulting switched system [2]. In case of failure to guarantee

stability, SPADe would result in LQR control for the worst-

case workload scenario.

The contributions of the current paper are as follows:

• We present an alternate controller synthesis method

based on a Markovian jump linear system (MJLS) for-



mulation. Our synthesis method involves the following

steps. (i) Modelling workload variations as a DTMC,

(ii) system scenario identification, and (iii) controller

design and implementation. The motivation to choose

the MJLS approach [10] over other standard sampled-

data linear control design techniques [11] is that it does

not require us to know the exact sequence of incoming

sample times due to the workload variations apriori.

• We provide design guidelines on the applicability of

control design methods for given requirements, im-

plementation constraints and system knowledge. For

this, we compare the three control paradigms - opti-

mal control design using LQR, switched linear control

design [2] using SPADe [6], and controller synthesis

using the MJLS formulation - for IBC system design

with respect to QoC while taking into account available

system knowledge and implementation constraints, i.e.

camera fps, platform allocation and mapping. Note

that we cannot compare with adaptive [12] or model

predictive control [13] approaches since we do not know

the exact sequence of occurrence of incoming sample

times due to the workload variations apriori.

This paper is organised as follows: We explain the embed-

ded IBC system setting, the motivating case study, controller

implementation and our controller configurations in Sec. II.

In Sec. III, modelling the IBC application, system mapping,

system scenario identification and configuration switching

are discussed. The control problem and the QoC metrics

we consider are explained in Sec. IV. Sec. V explains the

method for designing the controllers we consider, including

the controller synthesis method using the MJLS formulation

that we present in this work. Section VI presents the results

and observations of our comparison of control paradigms and

provides design guidelines. Conclusion and future work are

summarised in Section VII.

II. EMBEDDED IMAGE-BASED CONTROL

We consider a setting for an IBC system as shown in

Fig. 1. Our sensor is the camera module that captures the

image stream. The image stream is then fed to an embedded

platform, e.g a multiprocessor system-on-chip (MPSoC), at

a fixed frame rate per second (fps), e.g. 30 fps. The tasks in

our IBC application - compute-intensive image sensing and

processing (S), control computation (C) and actuation (A) -

are then mapped to run on this MPSoC.

Motivating case study: We consider the motivating

case study of vision-based lateral control of a vehicle [9],

where the vehicle should follow a lane autonomously (lane-

keeping). The image (sensing and) processing algorithm

processes the camera frames and computes the lateral

deviation at a set look-ahead distance. The controller takes

the lateral deviation as the sensor input, computes the

steering angle and actuates the steering to follow the lane.

best-case

CS A CS A

100 time (ms)0 200

CS A

Average workload Minimal workload

workload 

distribution

worst-case

rarely happens

idle time

30 fps

idle time

frequent idle resource time – inefficient utilisation

dropped frames

Fig. 2: Illustration of IBC system implementation and

challenges for LQR control design considering worst-case

workload. (S: sensing and image processing, C: control

computation and A: actuation, see Fig. 1.)

A. LTI systems

We consider a linear time-invariant (LTI) system given

by:

ẋc(t) = Acxc(t) +Bcu(t), (II.1)

yc(t) = Ccxc(t),

where xc(t) ∈ R
n represents the state, yc(t) ∈ R represents

the output and u(t) ∈ R represents the control input of the

system at any time t ∈ R≥0. Ac, Bc and Cc represent the

state, input and output matrices of the system, respectively.

For our case study, we consider the model in [9], where

Ac =













−10.06 −12.99 0 0 0
1.096 −11.27 0 0 0

−1.000 −15.00 0 15 0
0 −1.000 0 0 15
0 0 0 0 0













, Bc =













75.47
50.14
0
0
0













.

The five system states are - lateral velocity, yaw rate of

of vehicle, lateral deviation from the desired centerline point

at look-ahead distance yL, the angle between the tangent to

the road and vehicle orientation, and the curvature of the

road at the look-ahead distance. The control input u(t) is

the front wheel steering angle δf and the output yc(t) is the

look-ahead distance yL leading to Cc = [0 0 1 0 0].

B. Discrete-time control implementation

Implementation of an IBC system involves the execution

of three sequential tasks: sensing and processing (S), control

computation (C) and actuation (A). These tasks repeat; let

the start and finish times of the k-th instance be given by

ts(.) and tf (.), respectively. The execution times of Sk, Ck

and Ak (the k-th instance) are given by,

ekT = tf (T
k)− ts(T

k)

where T ∈ {S,C,A}. The interval between two consecutive

executions of sensing tasks Sk and Sk+1 is then the sampling

period hk for the k-th instance.

hk = ts(S
k+1)− ts(S

k)

Within each sampling period hk, the control operations are

executed sequentially (i.e., Sk → Ck → Ak). In addition, the

time interval between the starting time of Sk and finishing



time of Ak is then the sensor-to-actuator delay τk for the

k-th instance.

τk = tf (A
k)− ts(S

k).

We consider a time-triggered implementation for actuation

task A to guarantee constant τk. A data-driven implementa-

tion approach is considered for S and C. Each workload

scenario sk is annotated with pair (hk, τk) that models the

sampling period and delay associated with it. A zero-order

sample-and-hold approach can then be used to discretize the

system based on the workload scenario sk. Eq. (II.1) can be

reformulated as follows:

x[k + 1] = Askx[k] +B0,sku[k] +B1,sku[k − 1],

y[k] = Ccx[k] (II.2)

where,

Ask = e
Achk , (II.3)

B0,sk =

∫ hk−τk

0

e
Acsds ·Bc, B1,sk =

∫ hk

hk−τk

e
Acsds ·Bc

In Eq. (II.2), we assume that u[−1] = 0 for k = 0. We

define new system states z[k] =
[

x[k] u[k − 1]
]T

with

z[0] =
[

x[0] 0
]T

to obtain a higher-order augmented

system as follows:

z[k + 1] = Aaug,skz[k] +Baug,sku[k] (II.4)

where,

Aaug,sk =

[

Ask B1,sk

0 0

]

, Baug,sk =

[

B0,sk

I

]

. (II.5)

0 and I represent the zero and identity matrices of appro-

priate dimensions. A check for controllability [5] is done

for this augmented system. If the system is not controllable,

controllability decomposition is done to obtain a controllable

subsystem.

C. Control law and control configurations

The control input u[k] is a state feedback controller of

the following form,

u[k] = Fskz[k] + Ff,skrref (II.6)

where Fsk is the state feedback gain and Ff,sk is the

feedforward gain both designed for the workload scenario sk.

rref is the reference value for the controller. The approaches

we use for designing the gains are explained in Sec. V.

For each workload scenario sk, we then define a control

configuration χsk as a tuple χsk = (hsk , τsk , Fsk , Ff,sk).

III. IBC MODEL, MAPPING AND CONFIGURATIONS

In this section, we explain how we model our IBC

application, characterise the workload, map our application

to platform and identify our system scenarios. We also

explain why there is a switching behaviour.

A
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ep

RoIM
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RoIP

ep

y2 y2

y1
y1

Fig. 3: IBC application SADF graph. Assuming two allocated

processors and hence two RoIP actors.

A. IBC Application Model

A typical IBC application model derived from [6] is shown

in Fig. 3. The sensing and processing algorithm receives

the camera image frames and detects the regions-of-interest

(RoID) in the frames. The detected regions-of-interest (RoI)

can be processed in parallel on a multiprocessor platform.

The number of allocated processors for our application

determines the number of RoI processing (RoIP) nodes (or

actors) in our model. In this case, we have two allocated

processors and hence two RoIP actors. The total number of

RoI detected (= y1+ y2) by RoID determines the workload.

The parameters y1 and y2 determine how many RoI need

to be allocated to the individual processors. Note that the

sensor-to-actuator delay and sampling period vary based on

the choice of y1 and y2. After processing the RoI, the data

is merged and the controller state (e.g. the lateral deviation

yL in our case study, see Sec. II-A) is computed by the

RoI merging (RoIM) task. The control algorithm (C) then

computes the controller input u[k] (e.g. steering angle δf in

our case study, see Sec. II-A) and feeds it to the actuation (A)

task. The execution times for the tasks RoID, RoIP, RoIM,

C and A are ed, ep, em, ec and ea respectively. A scenario-

aware dataflow graph [14] (see Fig. 3) is composed of: (i) a

set of scenarios that model the workload variations (and are

hence called workload scenarios); and (ii) a language that de-

scribes a set of infinite scenario (switching) sequences. Each

scenario represents a workload situation and is modelled as a

synchronous dataflow graph (SDF). An SDF graph instance

of Fig. 3 is obtained by assigning values to parameters ei
and yi. E.g. in Fig. 4(d), assigning y1 = 2, y2 = 3, ed =
5, ep = 10, em = 7×(y1+y2) = 35, ec = 2, ea = 2 gives

the SDF graph for a workload of 5 RoI and for mapping to

two processors. The approach in [6] uses SADF as a model-

of-computation for an IBC application.

In [6], the workload variations are characterised using a

PERT distribution [7] (see distribution in Fig. 2). Using this

the probability of frequently occurring workload scenarios

are characterised. However, information regarding scenario

transitions is not captured. This allows any arbitrary order

for scenario switching sequences to be considered in the

language for the SADF.

In the MJLS-based approach, the workload variations

are characterised using a DTMC that takes into account

the scenario transition probabilities along with the scenario

probabilities. The states of the DTMC model the workload

scenarios (see Sec. V-A) and the transitions in the DTMC



model the scenario transitions. This means that a DTMC can

wholly capture the language of the SADF [15].

B. System mapping and timing parameters

In this section, we describe the mapping and scheduling of

our IBC application model to the platform. Fig. 4 illustrates

three workload scenarios and its possible platform mapping.

Fig. 4 (a), (c), and (e) model the data flow graphs for

different workloads and Fig. 4 (b), (d) and (f) show their

corresponding mappings on two or three processor tiles Pi.

Having more processor tiles means that we can reduce h and

τ by parallel execution of the sensing tasks.

Our application runs on a multiprocessor platform with

a tile-based architecture [16]. Each tile has a processor, a

memory, a communication assist and a network interface.

We assume that the platform is predictable (like [17], [18])

so that the worst-case execution times (WCETs) of tasks

can be bounded. A scheduler performs (re)configuration and

time-triggered task execution.

System mapping refers to the mapping of application tasks

(modelled as an SADF graph) to the platform. Each appli-

cation has a given platform allocation that determines the

resources to which it can be mapped. A platform allocation

includes: i) number of processors (could also be a part of

a processor, e.g. a processing tile); ii) memory size; and

iii) network bandwidth. An application can have multiple

mapping options for a given platform allocation. E.g. in

Fig. 4 (c) and (e), the given platform allocation is two and

three processor tiles respectively (visible in the number of

RoIP actors) for the same workload (5 RoI).

The timing parameters for the three mapped workload

scenarios in Fig. 4 are obtained as follows:

τi = ed + (
p

max
i

yi)× ep + em + ec + ea, hi = ⌈
τi

fh
⌉ × fh,

where fh represents the interval between two consecutive

frame arrivals (fh = 1
30s for a camera with 30 fps) and

em = 7×(
p
∑

i

yi) where p represents the number of allocated

(or given) processors. Cost of communicating data between

processors is assumed to be part of the actor execution times

ei; if meaningful, such cost could be made explicit, but for

simplicity, we do not do so. For our example shown in Fig. 4:

τ1 = 5 + 1× 10 + 7× (1 + 1) + 2 + 2 = 33ms,

τ2 = 5 + 3× 10 + 7× (2 + 3) + 2 + 2 = 74ms,

τ3 = 5 + 2× 10 + 7× (2 + 1 + 2) + 2 + 2 = 64ms,

and h1 = fh, h2 = 3fh, h3 = 2fh. The timing parameters

are then used for the discrete-time controller implementation

as described in Sec. II-B and for designing the controller

gains as explained in Sec. V. Further, the timing parameters

are a part of the control configuration as defined in Sec. II-C.

C. System-scenario identification

It is possible for multiple workload scenarios to have

the same sampling period due to implementation constraints

like platform allocation and camera frame rate. E.g. for the

Fig. 4: Illustration of workload variations and platform

mapping.

workload scenario represented in Fig 4 (a) with (h1, τ1), the

number of RoI, #RoI = 2. However, even for the workload

scenario with #RoI = 1 mapped to two processors, we

would have the same timing parameters (h1, τ1) since the

tasks would have to execute sequentially on one processor.

Similarly, for the workload scenario in Fig 4 (c), we would

have the same timing parameters for #RoI 5 and 6.

A system scenario sk abstracts multiple workload sce-

narios si such that for hk = n × fh for some n >

0, (hk − fh) < hi ≤ hk and τi ≤ τk, where fh = 1
30s

for a camera frame rate of 30 fps. Only system scenarios are

then considered for defining the control configuration and for

platform implementation [6].

D. Control configuration switching

Workload variations happen during runtime. This means

that the number of RoI in every camera frame can be varying.

The number of RoI in the frame determines the shortest

sensor-to-actuator delay and sampling period possible for

that control instance as explained in Sec. III-B and as

illustrated in Fig. 4. Note that it is always possible to delay

the execution of the actuation task since we have a time-

triggered implementation in order to guarantee control design

constraints like a constant sensor-to-actuator delay.

If our goal is to improve the control performance, we

should sample as fast as possible. However, sampling as

fast as possible considering workload variations results in

runtime switching between different control configurations

χsk (defined in Sec. II-C). Fig. 4 illustrates three control

configurations for scenarios si, i ∈ {1, 2, 3}, depending

on the workload variations and chosen system mapping.

This closed-loop system can have a switching behaviour as

follows:

χs1 → χs2 · · · → χs1 · · ·

IV. CONTROL PROBLEM AND QOC METRICS

We consider a regulation problem for the IBC sys-

tem. That is, the control objective is to design u[k] such

that y[k] → rref (a constant reference) as k → ∞.

The control objectives can be performance-oriented, control



effort/energy-oriented or a combination of both. The control

performance quantifies, in essence, how fast the output

y[k] reaches the reference rref . The control effort is the

amount of energy or power necessary for the controller to

perform regulation. The control performance and effort are

parameters that can be tuned in the cost function for the

LQR design and MJLS synthesis using the state and input

weights. We evaluate QoC of an IBC application considering

the following metrics: two commonly used control perfor-

mance metrics - mean square error (MSE) and settling time

(ST); and two commonly used metrics to evaluate control

effort/energy - power spectral density (PSD) and maximum

control effort (MCE).

A. Mean square error (MSE)

The MSE is the mean of the cumulative sum of the squared

errors, i.e.:

MSE =
1

n

n
∑

k=1

(x[k]− rref )
2

where n is the number of observations, x[k] is the value of

the kth observation and rref is the reference value. A lower

MSE implies a better QoC.

B. Settling time (ST)

The settling time is defined as the time required for the

output y[k] to reach and stay within a range of a certain

percentage (usually 5% or 2%) of the final (reference) value

rref for ever without external disturbances.

C. Power spectral density (PSD)

The PSD of a signal describes the power present in the

signal as a function of frequency, per unit frequency. It tells

us where the average power is distributed as a function of

frequency. We use Welch’s overlapped segment averaging

spectral estimation method [19] to compute PSD of our

control input. Lower PSD for the control input signal implies

that the energy required is less and hence QoC is better.

D. Maximum control effort (MCE)

We define the maximum control effort as maxk ‖u[k]‖. A

lower MCE means better QoC. MCE can also be used to

identify input saturation, if any.

V. CONTROL DESIGN

The control design technique we choose decides the

controller feedback and feedforward gains F and Ff for the

control law defined in Sec. II-C. To design a controller we

assume that the sampling period hk and sensor-to-actuator

delay τk are known.

A. MJLS synthesis

In this section, we characterise the workload variations

as a discrete-time Markov chain (DTMC). The states of a

DTMC model the workload scenarios and the transitions

model the scenario switching. We aggregate workload sce-

narios into system scenarios as explained in Sec. III-C, and

then recompute transition and steady-state probabilities for

the DTMC. This results in a DTMC with number of states

equal to the number of identified system scenarios, with

each state representing a system scenario. We assume that

the switching between the different control configurations is

governed by this DTMC and show how the system in (II.1)

can be re-cast as a Markov jump linear system (MJLS) [10].

A Markov chain consists of a tuple M = (X,P ) where X

represents the state space, and P represents the one-step tran-

sition probability matrix. In our context of system scenarios

annotated with sampling period and sensor-to-actuator delay,

the state-space of M is given by X = {s1, s2, s3}, where

si = (hi, τi), i ∈ {1, 2, 3}, and

P =





p11 p12 p13
p21 p22 p23
p31 p32 p33



 .

Associated with M is a discrete-time stochastic process θ :
N → X such that for all times sampling instances k ∈ N,

and states si, sj ∈ X , i, j ∈ {1, 2, 3}, one has:

Prob(θ[k + 1] = sj | θ[k] = si) = pij ,

i.e. pij represents the probability of transitioning from state

si to sj . We assume that the initial condition of the stochastic

process i.e. θ[0] is deterministic. The states here represent the

system scenarios and the transitions represent the switching

between system scenarios based on the workload variations.

For the sake of simplicity, we illustrate the formulation using

only three states in the DTMC representing three system

scenarios. Note, however, that it is applicable to any number

of identified system scenarios (as explained in Sec. III-C).

Using a zero order sample-and-hold approach, it can be

readily shown that Eq. (II.1) can be re-formulated into

an MJLS governed by the following stochastic difference

equations:

x[k + 1] = Aθ[k]x[k] +B0,θ[k]u[k] +B1,θ[k]u[k − 1],

y[k] = Ccx[k] (V.1)

where for each si ∈ X , i ∈ {1, 2, 3}: Asi , B0,si , and B1,si

are computed using Eq. (II.3). In Eq.(V.1) we assume that

u[−1] = 0 for k = 0. We define the new system states

z[k] =
[

x[k] u[k − 1]
]T

with z[0] =
[

x[0] 0
]T

to obtain

a higher-order augmented system as follows:

z[k + 1] = Aaug,θ[k]z[k] +Baug,θ[k]u[k],

yz[k] = Caugz[k]

where for each si ∈ X, i ∈ {1, 2, 3}: Aaug,si and Baug,si

are computed using Eq. (II.5) and Caug =
[

Cc 0
]

.



Infinite horizon quadratic optimal controller: Here, we

present the control law design for the MJLS (V.1). We design

a controller to minimize the infinite horizon cost given by

J(θ[0], z[0], u[0]) =

∞
∑

k=0

E[z[k]TCT
augCaugz[k] + d2u|u[k]|

2],

where du ∈ R>0 represents the input weight and the notation

E[X] represents the expected value of a random variable X .
It is shown in [10] that the solution to the above infinite

horizon optimal control problem can be obtained by solving
the coupled algebraic Riccati (matrix) equations (CARE)

Γi = A
T
aug,si

Ei(Γ)Aaug,si + C
T
c Cc

−A
T
aug,si

Ei(Γ)Baug,si(B
T
aug,siEiBaug,si)

−1
B

T
aug,si

Ei(Γ)Aaug,si

where Ei(Γ) =

3
∑

j=0

pijΓj

where i ∈ {1, 2, 3} and Γ = {Γ1,Γ2,Γ3} are the unknown

matrices to be solved for. The mean-square stabilizing opti-

mal control law is then given by

u[k] = Fθ[k](Γ)x[k] + Ff,θ[k]rref ,

where

Fsi = −(BT
aug,si

Ei(Γ)Baug,si)
−1BT

aug,si
Ei(Γ)Aaug,si ,

Ff,si =
1

Caug(I − (Aaug,si − FsiBaug,si))
−1Baug,si

,

where i ∈ {1, 2, 3}. It is shown in Theorem A.12 in [10]

the above CARE can be solved by solving a related convex

optimization problem, the details of which are omitted due

to lack of space.

B. LQR design with worst-case workload

We consider the system scenario for the worst-case work-

load swc having the worst-case period and delay (hwc, τwc)
(one of the scenarios as explained in Sec. III-C) for designing

the control law. We design a controller to minimize the

following cost function

J(u) =

∞
∑

k=0

z[k]T dsC
T
augCaugz[k] + d2u|u[k]|

2,

where du, ds ∈ R>0 represents the input weight and the

state weights respectively. The weights are optimized for the

considered QoC metric. Typically, du ≪ ds so as to optimise

for control performance and du ≫ ds to optimise for control

energy (see Sec. VI-B).

C. Switched linear control design

The switched linear control design we consider is ex-

plained in [6]. Frequently occurring workload scenarios are

characterised using the the PERT distribution. A set of

optimal system scenarios are identified. LQR controllers are

designed for each of these scenarios si with (hi, τi) that

minimises the cost function given in Sec. V-B. Further, the

stability of this switched system is analysed by deriving

linear matrix inequalities (LMIs) that check for the existence

of a common quadratic Lyapunov function (CQLF).

VI. RESULTS, OBSERVATIONS AND GUIDELINES

We consider the case-study of vision-based lateral control

for a vehicle (explained in Sec. II) for comparison of the

three approaches for control design with respect to the

QoC metrics described earlier. The controllers for LQR and

switched linear control are tuned for the corresponding QoC

metric evaluation by adjusting the input and state weights.

A. Simulation setup

We illustrate an instance of our simulation that compares

the three control paradigms: (i) for a reference output profile

(for the control state yL) shown in Fig. 5 (a) - we see that the

switched linear control system (SLC) settles faster than both

MJLS and LQR design; and (ii) for control input shown in

Fig. 5 (b) - we see that minimum control effort is needed for

LQR. SLC needs maximum control effort and might violate

the input saturation requirements, if any. The control metrics

PSD and MCE are derived from the control input u[k] plots

(e.g. see Fig. 5 (b)) and focus on minimizing the control

effort or energy, whereas the control metrics MSE and ST

are derived from the considered control output yL plots (e.g.

see Fig. 5 (a)) and focus on improving the performance of

the system states.

We consider for the above simulation instance a frame rate

of 30 fps, i.e. fh = 1
30 = 33.33 ms and an allocation of two

processors. Then, we characterise the workload variations of

a synthetic data set using a DTMC model. We notice that

the (hi, τi) for the worst-case workload for this allocation is

(100, 74)ms. We then identify the three possible system sce-

narios {s1 = (fh, 33), s2 = (2fh, 57), s3 = (3fh, 74)} ms.

The transition probability matrix of the DTMC model con-

sidered in this case for three scenarios is:

P =





0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5



 ;

The three controllers are then designed for the above scenar-

ios as explained in Sec. V using the input weight du = 1.

The control performance is then evaluated for the QoC

metrics (defined in Sec. IV) - MSE, PSD, MCE, ST and

combinations of MSE/ST with PSD/MCE. The combinations

of MSE/ST with PSD/MCE is considered as they are contra-

dictory in nature and optimising both together is a challenge

and often times necessary. The above QoC metrics’ empirical

cost for each control technique is evaluated over multiple

runs of the simulation. Each simulation run generates dif-

ferent workload scenario sequences that satisfy the modelled

DTMC. These scenario sequences determine the switching

sequence for both SLC and MJLS.

B. Observations

In order to provide design guidelines, we consider and

vary the following different parameters: number of scenarios

- we consider 3, 4 and 6 system scenarios; camera frame

rates - 30 and 60 fps; input and state weights used for

tuning the controllers; given platform allocation - 1, 2, 3,

4, 5, and 6 processors; and available system knowledge. We
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(a) Output yL when input weight du = 1.
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(c) Output yL when input weight du = 10.
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(d) Input u[k] when input weight du = 10.

Fig. 5: Comparison between controller synthesis method based on MJLS formulation (Sec. V-A), LQR design (Sec. V-B),

and switched linear control (SLC) system design (Sec. V-C).

then evaluate QoC metrics’ empirical cost for each control

technique over multiple runs of the simulation. The effects

of varying these parameters are explained as follows:

1) The number of states in the DTMC model, the corre-

sponding transition probability matrix and the number

of control configurations change proportionally with

the number of scenarios we consider. Only the SLC

and MJLS system are affected by this parameter as the

LQR approach always (and only) considers the worst-

case workload scenario;

2) Changing the camera frame rate affects the total num-

ber of feasible scenarios we can have. As the maximum

number of scenarios we can have, intuitively, is equal

to ⌈ τwc

fh
⌉, where τwc is the sensor-to-actuator delay

for the worst-case workload (for a given platform

allocation) and fh = 1
camera fps

;

3) The input and state weights directly affect the control

performance. E.g. for the simulation instance consid-

ered before, if we set the input weight du = 10, we

obtain the plots shown in Fig. 5 (c) and Fig. 5 (d).

What we observe is a similar overall trend for the

considered control paradigms. However, we see poorer

QoC metrics for MSE and ST and better QoC metrics

for PSD and MCE, when compared to du = 1 and all

other parameters remaining the same;

4) The given platform allocation directly affects the tim-

ing parameters for a scenario si, i.e. (hi, τi). A higher

number of available processors mean that we could

execute more tasks in parallel and reduce the (hi, τi)
(even) for the worst-case workload scenario. This

means that we could possibly reduce the total number

of scenarios as well;

5) System knowledge is an important parameter that de-

termines which control design techniques can be used.

An optimal control design using LQR only requires the

worst-case (workload) timing information. However,

for designing an SLC system requires information re-

garding frequently occurring workloads as well and for

MJLS synthesis approach we need both the frequently

occurring workloads and their transition probabilities.

C. Design guidelines

The design guidelines we have inferred from observing our

simulations for choosing the control design techniques for

different QoC metrics and available system knowledge are

listed in Table. I. The cases we see in the table are explained

below.

• Only worst-case workload information is known: This

situation is quite common for a control designer. Worst-

case response time or delay of the algorithms can be

analysed (where often times are pessimistic) through

profiling and/or analytical methods [4]. The control

designer is then given only the worst-case timing infor-

mation and is asked to design a controller with a QoC

requirement. In this case, the SLC and MJLS approach

are not applicable and only the optimal LQR design

approach can be used.

• PERT distribution is known: Here, we assume that

the information with respect to frequently occurring

workloads is known and are characterised analytically

as a PERT distribution [7]. In this case, SLC wins

for performance-oriented metrics - MSE and ST, and

LQR wins for control effort or energy-oriented metrics -

PSD and MCE. For jointly optimising performance and

energy, there is no clear winner as it depends mainly on

which of the two metrics is more important. If perfor-

mance is important, SLC is preferred and if energy is

important, LQR should be chosen. The MJLS approach



TABLE I: Guidelines for choosing the control design techniques: MJS (Sec. V-A), LQR (Sec. V-B), SLC (Sec. V-C).

Available system knowledge

QoC metrics

Performance Control energy Performance

and EnergyMSE ST MCE PSD

Only worst-case workload information LQR LQR LQR LQR LQR

Frequently occurring workloads as a PERT SLC SLC LQR LQR SLC/ LQR

Frequently occurring workloads and their

transition probabilities as a DTMC

SLC/

MJS

SLC/

MJS

MJS/

LQR

MJS/

LQR
MJS

is not applicable as more information is needed.

• DTMC model is known: Information regarding fre-

quently occurring workloads and their transition proba-

bilities are needed for modelling a DTMC. These can be

estimated from observed workload variations data [8].

Intuitively, this means that we can predict the possible

(workload) scenario switching sequences for the control

design. However, for the above two cases the switching

sequence is assumed to be arbitrary and not known. In

this case, for performance metrics, MJLS wins when

the input weight du is very small (since SLC tends to

oscillate before settling). However, for a large value of

du, there is no clear winner between SLC and MJLS and

it depends on the application and chosen parameters.

Please note, however, that a challenge of SLC is to prove

the stability of the designed system. MJLS is a synthesis

method and the design, if any, is stable by construction.

If we consider control effort or energy metrics, LQR

wins when the input weight du is small and there is

no clear winner between LQR and MJLS for a large

input weight du as the results are similar and depends

on the application and chosen parameters. MJLS is the

clear winner if we consider a joint optimisation for

performance and energy QoC metrics.

VII. CONCLUSION

We present a MJLS formulation for controller synthesis

for image-based control systems considering workload vari-

ations and platform implementation constraints. Further, we

compare our method with two relevant control paradigms:

LQR and switched linear control system design. We also

provide design guidelines on the control technique to use

for given constraints on the system knowledge, the QoC and

the implementation.

The synthesis method assumes that the workload varia-

tions can be characterised as a DTMC. A DTMC is sensitive

to the data used for its modelling. As a future work,

sensitivity analysis of the DTMC towards the QoC needs

to be evaluated. Further, the current design guidelines are

provided based on multiple empirical simulation runs of

the controller for varying workloads, number of scenarios,

camera frame rate and given platform allocation. A formal

mathematical analysis would strengthen our design guide-

lines and is planned as future work. The challenge for a

formal analysis of the control design is that we do not know

the exact sequence of occurrence of the workload variations

apriori.
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