
Designing Information-Preserving
Mapping Schemes for XML

Denilson Barbosa∗ Juliana Freire Alberto O. Mendelzon
University of Calgary

denilson@cpsc.ucalgary.ca
University of Utah
juliana@cs.utah.edu

University of Toronto
mendel@cs.toronto.edu

Abstract
An XML-to-relational mapping scheme consists
of a procedure for shredding documents into re-
lational databases, a procedure for publishing
databases back as documents, and a set of con-
straints the databases must satisfy. In previ-
ous work, we defined two notions of information
preservation for mapping schemes: losslessness,
which guarantees that any document can be re-
constructed from its corresponding database; and
validation, which requires every legal database
to correspond to a valid document. We also
described one information-preserving mapping
scheme, called Edge++, and showed that, under
reasonable assumptions, losslessness and valida-
tion are both undecidable. This leads to the ques-
tion we study in this paper: how to design map-
ping schemes that are information-preserving. We
propose to do it by starting with a scheme known
to be information-preserving and applying to it
equivalence-preserving transformations written in
weakly recursive ILOG. We study an instance of
this framework, the LILO algorithm, and show
that it provides significant performance improve-
ments over Edge++ and introduces constraints
that are efficiently enforced in practice.

1 Introduction

In order to use relational engines for managing XML
data, we need a mapping scheme providing a procedure
for shredding the documents into relational databases,
a procedure for publishing the databases as docu-
ments, and a set of constraints that those databases
must satisfy. As with any other mapping strategy,
it is important to study the information preservation
properties of XML-to-relational mapping schemes in
order to understand their suitability for a given ap-
plication [26]. Although there is a rich literature on
mapping schemes [6, 14, 17, 22, 31, 23, 33], to date
little attention has been given to their information-

∗ Most of this work was done while this author was a Ph.D.
Student at the University of Toronto.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

preservation capabilities. In previous work [3], we
defined lossless mapping schemes as those that allow
the reconstruction of the original documents, and val-
idating mapping schemes as those in which all legal
database instances correspond to a valid XML doc-
ument. We argued that while losslessness is enough
for applications involving only queries over the docu-
ments, both losslessness and validation are required if
the documents must conform to an XML schema and
the application involves both queries and updates to
the documents. We also described the Edge++ map-
ping scheme, in which both losslessness and validation
are guaranteed by constraints in the relational schema.

This paper addresses the problem of designing
information-preserving mapping schemes. Note that
previous mapping design algorithms [6, 31] do not
guarantee information preservation; moreover, since
losslessness and validation are undecidable for a large
class of mapping schemes [3], arbitrary design pro-
cedures cannot guarantee information preservation.
We propose a sound framework that can serve as
the basis for design algorithms: repeatedly apply-
ing equivalence-preserving transformations [26] to an
initial mapping scheme known to be information-
preserving. In this way, information preservation is
guaranteed by construction. Our framework is extensi-
ble and allows any transformation that can be written
in weakly recursive ILOG with stratified negation [20]
(wrec-ILOG¬), which is powerful enough for express-
ing most of transformations proposed in the literature
(e.g., [6, 29]). We also present an instance of our frame-
work: the LILO (for Lossless Inlining, Lossless Outlin-
ing) algorithm, which uses Edge++ as starting point
and defines several equivalence preserving transforma-
tions (some of which are extensions of transformations
in the literature). Our experimental results show that
LILO results in mapping schemes that outperform the
previous Edge++ substantially.
Information Preservation in Mapping Schemes.
The following example illustrates the need for informa-
tion preservation in mapping schemes.
Example 1. Consider the schema in Figure 1(a), in-
spired by the Mondial Database1, describing cities and
countries. Each city is described by its name; the name

1http://dbis.informatik.uni-goettingen.de/Mondial

109

Σ = {mondial , cities, country , city,

province , state,name , official}
root = mondial

R = {mondial←cities, country∗; cities←city∗;
city←name, (province|state), official+;

country←name, capital ;

name←#PCDATA; province←#PCDATA;

state←#PCDATA; official←#PCDATA;

capital←#PCDATA}
(a)

1

mondial

2

cities

3

city

4

name

5

Toronto

6

province

7

Ontario

8

official

9

David

10

city

11

name

12

Salt Lake City

13

state

14

Utah

15

official

16

Rocky

17

official

18

Sam

19

country

20

name

21

Brazil

22

capital

23

Brasilia

(b)

Figure 1: (a) A DTD for the Mondial document; (b) an XML document. Node ids are shown as numbers; elements are
shown as circles and text nodes are shown as boxes. Elements labels and the values of the text nodes are also shown.

of the province or state where the city is located; and
one or more government officials. Countries are de-
scribed by their name and the name of their capitals.
A typical relational schema derived from applying in-
lining techniques to this schema is as follows2:
city (cityId, name, ord, provinceId , stateId)

official (officialId, cityId, name, ord)

country (countryId, name, capital)

For the document in Figure 1(b), we would have the
following database instance under this mapping:
city (1,’Toronto’,1,’Ontario’,NULL)
city (4,’Salt Lake City’,2,NULL,’Utah’)

official (2,1,’David’,1)

official (5,4,’Rocky’,1)

official (6,4,’Sam’,2)
capital (7,’Brazil’,’Brasilia’)

This mapping scheme is lossless as the original doc-
ument can be reconstructed from the database (note
that the ordering of many elements in the document is
fixed by the schema and does not need to be stored).
However, by applying the following legal update:
UPDATE city SET province=’Utah’

WHERE name=’Salt Lake City’

we arrive at database that no longer corresponds to a
valid document. This anomaly is due to the fact that
the mapping scheme does not preserve the semantics
of the choice (|) construct, i.e., that each city is part
of either a province or state, but not both. �

In a lossless and validating mapping scheme, the re-
lational schema is equivalent to the document schema;
constraints in the relational schema prevent the
anomalies above by disallowing updates resulting in
databases that represent invalid documents. An al-
ternative to using an information-preserving mapping
scheme is to validate the document resulting from
each update before committing to any changes. How-
ever, this approach has drawbacks. Note that testing
whether even simple updates such as3:

2Primary keys are underlined while nullable columns are
shown in italics; the ord attributes capture the element ordering.

3Using the syntax of [24].

update

delete //city[name=’Toronto’]/official[last()]

result in a valid document cannot be done statically.
In this case, the legality of the update depends on the
number of officials already associated with the city.
Also, while we could test the legality of an update by
reconstructing (a fragment of) the document, apply-
ing the update, and checking the validity of the re-
sult, doing so has many disadvantages. Validation is
computationally expensive [27] and incremental vali-
dation [4, 28] techniques require considerable auxiliary
information. Moreover, this approach requires special-
purpose tools whose functionality overlaps with the
DBMS’s constraint checking facilities.
Outline and Contributions. We argue in this pa-
per that it is feasible to augment the relational schemas
in mapping schemes with constraints for ensuring the
validity of the elements in the XML documents with
respect to the content models in an XML schema.
We start by discussing element and document validity,
XML mapping schemes and information preservation
(Section 2). We propose a sound and extensible frame-
work for designing information preserving mapping
schemes (Section 3), which consists of applying equiv-
alence preserving transformations to an information-
preserving mapping scheme. We show how a map-
ping scheme and an arbitrary transformation written
in wrec-ILOG¬ can be rewritten as another mapping
scheme in a mechanical way (Section 3.3). We discuss
several equivalence preserving transformations that re-
sult in mapping schemes defining simpler relational
constraints for ensuring element validity, and intro-
duce the LILO algorithm (Section 4). We show that
LILO provides significant performance improvements
over Edge++ and that the constraints it introduces
can be efficiently enforced in practice (Section 5). We
conclude with a discussion (Section 6).

2 Definitions and Terminology

XML documents are modeled as ordered labeled trees
whose nodes represent either elements or textual con-

110

tent, thus capturing the essential data representation
components of XML [8]. We use τ , λ and ν to denote
the type, the label and the value of nodes in the tree,
respectively. More precisely, let I, D be two disjoint,
countably infinite sets of node ids and values:

Definition 1. An XML Document is a tuple
〈T, λ, τ, ν〉, where T is an ordered tree whose nodes are
elements of I; τ : I → {element, text} assigns types to
nodes in T , such that all text nodes are leafs in T and
all internal nodes of T are elements; λ : I → D as-
signs labels to nodes in T such that the label of all text
nodes is #PCDATA; and ν : I → D assigns values to
text nodes in T .

For brevity, we will refer to subtrees rooted at el-
ement nodes simply as “elements”. We denote by X
the set of all XML documents.

Our focus in this work is on capturing the element
validity constraint, which is identical in DTDs and
XML Schemas and is checked as follows. First, each
element in the document is a assigned a type (see be-
low); an element of type t is said to be valid if its typed
content (i.e., the string formed by concatenating the
types of the children of the element) spells a word in
a 1-unambiguous regular language [9]. One difference
between DTDs and XML Schemas is that DTDs as-
sign types to elements based on their labels only, while
XML Schemas take the context in which the element
appears in consideration as well. While our method
handles both formalisms seamlessly, we restrict our
discussion to DTDs for simplicity, and refer the reader
to [3, 4] for details on handling context-dependent type
specialization.

Definition 2. An XML DTD is a triple 〈Σ, r ,R〉
where Σ is a set of element labels, r ∈ Σ is a distin-
guished label and R is a mapping associating to each
a ∈ Σ a content model expressed as a 1-unambiguous
regular expression over Σ ∪ {#PCDATA}.

Figure 1(a) shows a DTD. The validity of a doc-
ument D with respect to a DTD X = 〈Σ, r ,R〉 is
done as follows. Let e be an element and c1, . . . , cn

be its ordered children; the content of e is the string
λ(c1) · · ·λ(cn). We say that e is valid with respect to
X if its content matches the regular expression asso-
ciated with λ(e) in R. A document D is valid with
respect to X , written D ∈ L(X), if all of its elements
are valid with respect to X and the label of its root el-
ement is r. Thus, the validation problem can be stated
as: given D and X , is it the case that D ∈ L(X)?

2.1 XML-to-relational Mapping Schemes
Relational databases are modeled using two attribute
domains: one for surrogates to node ids (e.g.,cityId in
Example 1) and another for all other constants. De-
note by I, D two disjoint countably infinite sets of
surrogates and constants, respectively. A relational
schema is a set of relation schemes and constraints;

each relation scheme R has a set (possibly empty) of
attributes of domain I—called the surrogate attributes
of R, and a set (possibly empty) of attributes of do-
main D. Instances are defined as customary [1, 25]. A
constraint is expressed as a boolean query and is said
to be violated if that query evaluates to true. A rela-
tional database instance is legal if it does not violate
any constraint in its schema. We denote by R(S) the
set of legal instances of S.

No meaning is assigned to node ids the document
tree, nor to the surrogates used for representing them;
furthermore, no relationship between node ids and sur-
rogates is assumed either. That is, renaming node ids
in Figure 1(b) does not yield a new document; sim-
ilarly, renaming surrogates in the database in Exam-
ple 1 does not create a new database. These properties
are captured as follows:

Definition 3. XML documents D1 = 〈T1, λ1, τ1, ν1〉,
and D2 = 〈T2, λ2, τ2, ν2〉, are equivalent, denoted by
D1 ≡X D2, if there exists an isomorphism φ : I → I
between T1 and T2 such that λ1(v) = λ2(φ(v)), τ1(v) =
τ2(φ(v)), and ν1(v) = ν2(φ(v)), for all v ∈ T1.

Definition 4. Database instances I1, I2 are equiva-
lent, written I1 ≡R I2 if there is a bijection on I ∪D
that maps I to I, is the identity on D, and transforms
I1 into I2.

The notion of database equivalence above has been
called OID equivalence in object databases [1]. [D]
denotes the equivalence class of document D; that is
[D] = {D′ ∈ X | D′ ≡X D}; similarly, [I] denotes the
equivalence class of database I.

An XML-to-relational mapping scheme [3] is de-
fined as a triple μ = (σ, π, S), where S is a relational
schema; σ is a mapping function that assigns instances
of S to XML documents; and π is a publishing function
that assigns XML documents to instances of S.

Definition 5. An XML-to-relational mapping scheme
is a triple μ = (σ, π, S), where σ : X → R(S) is a
partial function; π : R(S) → X is a total function;
and the following hold: (1) for all D1, D2 ∈ X we
have that D1 ≡X D2 implies σ(D1) ≡R σ(D2); and (2)
for all I1, I2 ∈ R(S) we have that I1 ≡R I2 implies
π(I1) ≡X π(I2).

Defining σ as a partial function accommodates map-
ping schemes customized for a specific DTD (e.g., [6,
31]); on the other hand, defining π to be total ensures
that any legal database represents (i.e., can be pub-
lished as) a document. Conditions (1) and (2) ensure
that both σ and π are generic: they map equivalent
documents to equivalent databases and vice-versa.

2.2 The XDS Class of Mapping Schemes

A class of mapping schemes is defined by the lan-
guages used for specifying σ, S, and π; the expres-
sive power of these languages determines what kinds

111

X R(S)

[D]

D

σ

D′ π

(a) Lossless mapping scheme.

X R(S)

L(X)

[D1]

[D2]

[I1]

[I2]

(b) Lossless and validating mapping scheme.

Figure 2: Information preservation in mapping schemes.

of mappings belong to the class. The XDS class of
mapping schemes [3] is defined as follows.

The Mapping Language. The language consists
of XQuery augmented with a clause sql . . . end for
specifying SQL insert statements, and to be used in-
stead of the return clause in a FLOWR expression.
The semantics of the mapping expressions is defined
similarly to the usual semantics of FLOWR expres-
sions: the for, let, where, order by clauses de-
fine a list of tuples which are passed, one at a time,
to the sql . . . end clause, and one SQL transaction is
issued per such tuple.

The Constraint Language. Constraints are
boolean programs in Datalog with stratified nega-
tion [1]. This language allows easy expression of
standard relational constraints (e.g., functional de-
pendencies and referential integrity), as well as graph
connectivity—required for ensuring the database en-
codes a tree and element validity (Section 3.2).

The Publishing Language. Publishing functions
are arbitrary XQuery expressions over a “canonical”
XML view of a relational database. That is, each re-
lation is mapped into an element whose children rep-
resent the tuples in that relation in the standard way
(i.e., one element per column). This is the approach
taken by SilkRoute [16] and XPERANTO [10].

XDS is, by design, a powerful mapping tool. In
fact, XDS can express all mapping schemes that we
are aware of in the literature.

2.3 Information Preservation in XDS
For completeness, we revisit losslessness and valida-
tion here, and refer the reader to [3] for details. A
mapping scheme is lossless if it allows the complete
reconstruction of any (fragment of a) document from
the database assigned to it (see Figure 2(a)):

Definition 6. A mapping scheme μ = (σ, π, S) is loss-
less if for all D ∈ Dom(σ), π(σ(D)) ≡X D.
The following is easy to verify:

Proposition 1. μ = (σ, π, S) is lossless if and only
if π(σ(·)) is the identity on equivalence classes in
Dom(σ).

Validation is defined in terms of a DTD X . A val-
idating mapping scheme is one in which every legal
database instance corresponds to a document in L(X):

Definition 7. A mapping scheme μ = (σ, π, S) is val-
idating with respect to DTD X if σ is total on L(X),
and for all I ∈ R(S), there exists D ∈ L(X) such that
I ≡R σ(D).

For a validating μ = (σ, π, S), every successful up-
date on an instance of S results in a database that
represents a valid document; thus, only permissible
updates over the original document can be effected on
its corresponding relational database. As discussed in
Section 1, if μ is lossless, testing if an update is per-
missible can be done by materializing π(σ(D))), effect-
ing the update, and validating the resulting document,
which is prohibitively expensive in most cases.

Losslessness and validation are orthogonal and one
does not imply the other. Also, applications involv-
ing both queries and updates and in which documents
must conform to a DTD, require mapping schemes
that have both properties [3]. When a lossless and
validating mapping scheme is used, queries and all per-
missible updates over the documents can be done using
(SQL queries over) the databases.

Proposition 2. μ = (σ, π, S) is lossless and validating
with respect to DTD X if and only if σ and π are
bijective, and π is the inverse of σ (up to equivalence).

Proof. It is easy to verify that μ is both lossless and
validating if σ and π are as above. For the other im-
plication, note that since μ is validating with respect
to X and both σ and π are generic (Definition 5), it
follows that σ defines a bijection between equivalence
classes of documents in L(X) and database instances
in R(S). A similar argument applies for π. Since μ
is also lossless, Proposition 1 implies that σ and π are
the inverse of each other up to equivalence.

We say a mapping scheme is information-preserving
if it is both lossless and validating with respect to
a DTD understood from the context. Note that an
information-preserving mapping scheme defines a bi-
jection among equivalence classes of valid documents
and legal relational databases, as shown in Figure 2(b).

3 Designing Information-Preserving
Mapping Schemes

We now discuss a general and sound framework
for designing information-preserving mapping schemes
based on applying structural transformations [19, 26]

112

X S0 S1 · · · Sk

μ0 μ1 · · · μk

σ α1 α2 αk

π β1 β2 βk

Figure 3: Designing of an information-preserving mapping
scheme: X is a DTD, μ0 is the Edge++ mapping scheme,
and each μi is the result of applying an information-
preserving schema transformation.

to an existing schema. We start with an initial map-
ping scheme μ0 that is known to be information-
preserving, and subsequently transform it until the de-
sired one μk, defined as

μk =
(
(αk ◦αk−1 ◦ · · · ◦α1 ◦ σ), (π ◦ β1 ◦ · · · ◦ βk), Sk

)

is found, as illustrated by Figure 3. To make this
framework concrete we must specify the languages for
expressing the (1) mappings between XML documents
and database instances, as well as the (2) mappings
αi, βi between instances of different relational schemas.
In our case, the mapping and publishing languages are
those in XDS (Section 2.2), and the mappings be-
tween relational instances are given as “weakly recur-
sive” ILOG programs with stratified negation (wrec-
ILOG¬) [20]. Informally, this language corresponds to
Datalog with stratified negation augmented with non-
recursive “invention” rules that create new surrogates,
and is powerful enough for the kinds of transforma-
tions we define.

Soundness. Information preservation in our frame-
work is achieved is as follows. First, we always start
with a mapping scheme μ0 = (σ0, π0, S0) that is both
lossless and validating with respect to a DTD X ; as we
discuss below, this is the case if and only if X and S0

are equivalent (Proposition 3). Second, every trans-
formation applied to a mapping scheme μi, 0 < i < k
results in μi+1 whose relational schema is equivalent to
that of μi. Such transformations are called equivalence
preserving [26]. It follows that the resulting mapping
scheme μk = (σk, πk, Sk) is such that Sk is equivalent
to X and thus information preserving.

In the remainder of this section, we relate classical
notions of information preservation and relative capac-
ity of schemas [19, 26] to our notions of losslessness and
validation [3]. Then, we briefly describe the Edge++

mapping scheme, and give a procedure for deriving
μi+1 = (σi+1, πi+1, Si+1) from μi = (σi, πi, Si) and a
pair of transformations between Si and Si+1 given as
arbitrary wrec-ILOG¬ programs.

3.1 Dominance and Equivalence of Schemas

Equivalence of schemas S and T (within or across data
models) is defined based on properties of the mappings
between their instances. Let I(S) denote the set of all
instances of S (e.g., valid documents if S is a DTD or
legal database instances if S is a relational schema).

Let α : I(S) → I(T) be a mapping given in some
appropriate language. α is said to be information-
preserving if it is reversible; that is, there exists β :
I(T) → I(S) such that β(α(·)) is an equivalence rela-
tion in I(S). If this is the case, we say that T dom-
inates S (via α, β), denoted S 	 T . (We note that
classical notions of schema dominance [19, 26] define
β(α(·)) to be the identity on I(T); without loss of gen-
erality, we use an equivalence relation to account for
renamings of element surrogates.)

If both α and β are total and bijective, then S 	 T
via (α, β) and T 	 S (via β, α). In this case, we say
that S and T are equivalent, denoted S ≡ T , and that
β (resp. α) is an equivalence preserving transforma-
tion. Note that 	 is a transitive relation, while ≡ is
an equivalence relation.

Schema dominance and equivalence establish no-
tions of “relative information capacity” between
schemas. If S 	 T , we say that T has at least the
information capacity of S, since instances of S can
represent any instance of T . Similarly, if S ≡ T , we
say S and T have the same information capacity.
Equivalence of DTDs and Relational Schemas.
In a mapping scheme μ = (σ, π, S), σ and π play the
role of α and β above, respectively:

Proposition 3. If X is a DTD and μ = (σ, π, S) is a
mapping scheme such that L(X) ⊆ Dom(σ) then: (1)
μ is lossless if and only if X 	 S; (2) μ is both lossless
and validating with respect to X if and only if X ≡ S.
Proof. (1) follows from Proposition 1, the fact that
L(X) ⊆ Dom(σ), and the definition of 	. (2) follows
from Proposition 2 and the definition of ≡.

Since losslessness and validation are undecidable [3], it
follows that:

Corollary 1. Equivalence of DTDs and relational
schemas is undecidable.

3.2 The Edge++ Mapping Scheme
We now describe Edge++, which is used as the ini-
tial mapping scheme in our framework, and show it
is information-preserving. Edge++ extends the Edge
mapping scheme [17] (which is lossless) with con-
straints for ensuring validation with respect to a DTD
X = 〈Σ, r ,R〉. Edge++ contains additional relations
for storing the transition functions of the DFAs of the
regular expressions in R, and constraints that check
the validity of the elements by simulating the appro-
priate DFAs on their content.

The Edge++ Relational Schema. Recall that I
is the domain of surrogates and D is the domain of
constants. Let I′ = I ∪ {#}, # /∈ I (the symbol # will
be used for marking elements that have no children);
let Q ⊆ D be a set of surrogates for DFA states; let
T ⊆ D be a set of surrogates for element types (i.e.,
symbols in Σ); and let B ⊆ D denote the set of boolean

113

constants. Edge++ mapping schemes use the following
relational schema (the primary keys of all relations are
underlined):

Edge(parent : I, child : I, label : D),

FLC(parent : I,first : I′, last : I′), ILS(left : I, right : I),

Value(element : I, value : D), Type(element : I, type : T),

Transition(type : T, from : Q, symbol : D, to : Q, accept : B)

The Edge and Value relations store all edges be-
tween elements and between elements and text nodes
in tree, respectively. Unlike in the Edge mapping,
the ordering of the nodes in the document is cap-
tured by the successor relation: for each element e
whose content model is not #PCDATA, we add a tu-
ple (se, sf , sl) to FLC (which stands for “first and last
children”) consisting of the surrogates of e, and its first
and last children; if e has no content (i.e., no children),
we add a tuple (se, #, #) to FLC. The ILS (“imme-
diate left sibling”) relation contains tuples with sur-
rogates of consecutive nodes in the document. Using
the successor relation instead of the ordinals of tree
nodes was motivated by efficiency reasons, to avoid
the reordering all nodes after each update [4]. The
Type relation contains the types of each element in
the document. Finally, Transition stores the transi-
tion functions of the automata that correspond to the
content models in the DTD.

Constraints. Two kinds of constraints are defined in
Edge++. The structural constraints ensure that every
instance of S encodes an XML document (as in Defini-
tion 1); to do that, we define constraints for ensuring
the database encodes a tree, the ordering of the ele-
ments is consistent, etc. These properties are easily
encoded as boolean queries in Datalog with stratified
negation. The validation constraints ensure that ev-
ery legal instance of S encodes a valid document; to
do that, each DTD rule ti ← ri is translated into the
following Datalog program:
reachti (p,#, s) :−FLC(p,#,#), Type(p, ti), (1)

Transition(ti, q0, ε, s,)

reachti(p, c, s) :−Edge(p, c, x), FLC(p, c,), Type(p, ti), (2)

Transition(ti, q0, x, s,)

reachti(p, c, s) :− reachti(p, x, y), ILS(x, c),Type(p, ti), (3)

Edge(p, c, w),Transition(ti, y, w, s,)

acceptti
(p) :− reachti(p, c, s), FLC(p, , c), Type(p, ti),

Transition(ti, , , s, true)

invalidti :−FLC(p, ,),¬acceptti
(p)

Note that reachti simulates the DFA corresponding
to ri on the content of an element p, starting4 with
rule (1) or (2) depending on whether the element has
any content; rule (3) advances the DFA to the next
child of p if an appropriate transition is defined. Thus,
acceptti computes all valid elements (i.e., every ele-
ment p for which an accepting state s is reached after

4The constant q0 denotes the starting state of the DFA.

X S S′σ α

π β

σ′

π′

Figure 4: Deriving a new mapping scheme.

visiting its last child c); invalidti evaluates to true if
and only if there is an element of type ti that is invalid.
The Mapping and Publishing Functions. Both σ
and π in Edge++ are straightforward; due to space con-
straints, we briefly describe how they work and refer
the reader to [3] for details. The mapping function σ
creates a database instance by iterating over a stream
of elements, according to the global document order-
ing; π, on the other hand, reconstructs the ordering
of the elements using the order by clause of XQuery
on FLC and ILS. Note that since σ is defined for a
specific DTD, the mapping of Transition and Type
can be easily hard-coded.

Proposition 4. If μ = (σ, π, S) is the Edge++ map-
ping scheme for a DTD X, then μ is both lossless and
validating with respect to X.

3.3 Rewriting Mappings
Conceptually, a mapping scheme μk = (σk, πk, Sk) in
our framework stores a document D by applying an
initial mapping function σ followed by k wrec-ILOG¬
programs α1, . . . , αk that transform σ(D) into a final
database instance I ∈ R(Sk). Similarly, μk publishes
each instance I ∈ R(Sk) by reversing each transforma-
tion until arriving at the original σ(D), to which π can
be applied, as depicted in Figure 3. In the remainder
of this section, we describe a much more efficient way
of implementing μk, which consists of “compiling” the
wrec-ILOG¬ programs directly into the mapping and
publishing functions σk and πk.

More precisely, let μ = (σ, π, S) be a mapping
scheme in XDS, and let α : R(S) → R(S′) and
β : R(S′) → R(S) be arbitrary wrec-ILOG¬ pro-
grams. We derive μ′ = (σ′, π′, S′) from σ, π, α and
β (Figure 4) as follows. In summary, σ′ works in two
steps: first, it “materializes” σ(D) as an intermedi-
ate XML document and then applies α, rewritten as a
mapping expression. On the other hand, π′ applies β
(rewritten as a publishing function) to an instance of
S′, resulting in a “canonical view” of an instance of S,
to which π can be applied unchanged.

Recall that wrec-ILOG¬ programs are ILOG pro-
grams with stratified negation without recursive inven-
tion of surrogates. We assume α, β are in normal form;
that is, neither program defines cascading invention of
new surrogates5, and they can be stratified in a way
that all invention rules occur after all non-invention

5A program has cascading invention of surrogates if there are
two invention rules ri, rj such that the surrogates generated for
ri are “used” for generating surrogates for rj .

114

rules. We note that for every wrec-ILOG¬ program
there is an equivalent one in normal form [20].
Defining σ′. Without loss of generality, we assume
that each mapping expression in σ populates a sin-
gle relation in S, and that each relation in S is popu-
lated by a single mapping expression in σ. (We can re-
place each procedure p populating relations r1, . . . , rn

by n “copies” of p such that copy pi populates relation
ri only. Also, we can replace n mapping expressions
p1, . . . , pn where each populate relation r by a new pro-
cedure p′ and n functions f1, . . . , fn, such that each fi

return the list of tuples inserted by pi and p′ inserts
into r the “union” of the results of f1, . . . , fn.)

The first step of σ′ materializes an “instance” of S
(which we refer to as IS) as follows. Let R1, . . . , Rn

be the relation names in S and p1, . . . , pn be the map-
ping expressions in σ that populate them; we convert
each pi into a function fi that returns the sequence of
“tuples” that would be inserted in Ri. The result of
each fi is sorted lexicographically and duplicate tuples
are removed. For the second step of σ′, we convert α
into a mapping expression that takes IS and produces
the desired instance of S′. Let r1, . . . , ri, . . . , rn be the
rules in α stratified in a way that all invention rules
are ri+1, . . . , rn. We define α as two standard XQuery
programs fP and fQ: fP computes P = r1, . . . , ri on
IS using the conventional algorithm for fixpoint se-
mantics for Datalog [1]; fQ is applied to the result of
fP and computes Q = ri+1, . . . , rn.

Defining fP . fP is a recursive function that takes a
“database instance” d (represented as an XML doc-
ument) as input, and computes a new “instance” d′
(also represented as an XML document) that contains
a copy of d and the results of the functions that com-
pute the rules in P . If, after an iteration of fP , d and
d′ are not lexicographically identical, we iterate again
using d′ as input; we stop when we reach a fixpoint.
The translation of the rules in P is as follows.

A rule ri : A(x̄) ← B1(ū1), . . . , Bn(ūn) defining a
conjunctive query where each Bj appears positively is
implemented as a function fi using nested loops to iter-
ate over the cartesian product of relations B1, . . . , Bn,
thus computing all possible valuations to the variables
in ri, and returns the “tuples” that satisfy the con-
junctive query in the body of the rule. Negation is
dealt with in the usual way for Datalog with stratified
negation: ¬R(x̄) holds if and only if x̄ is in the active
domain but not in R. A set of rules

A(x̄)← · · · , . . . , A(x̄)← · · ·
computing a union is implemented as a separate func-
tion for each rule (as above); the “union” is done
by concatenating with duplicate elimination and lex-
icographic sorting the individual “relations” (i.e., se-
quences of tuples) returned by each function.

Defining fQ. Since we do not allow recursive gen-
eration of surrogates, we treat each invention rule

Edge0

pid eid label
1 19 country
19 20 name

19 22 capital

FLC0

pid first last
19 20 22

ILS0

left right
20 22

Value0

eid value
20 Brazil

22 Brasilia

(a) Edge++ mapping of the Mondial XML document.

Country1

country name capital
19 20 22

Value1

country value
20 Brazil

22 Brasilia
(b) Inlining element ids.

Country2

country name capital
19 Brazil Brasilia
(c) Inlining element content.

Figure 5: Applying mapping scheme transformations.

A(∗, x̄) ← B1(ū1), . . . , Bn(ūn) like a standard non-
recursive rule as in fP , except that an invented surro-
gate is added to each tuple in the result set, computed
by a Skolem function fA(x̄). Note that the mapping
expressions that populate an instance of S′ from the
result of fQ are straightforward.
Defining π′. We obtain π′ by converting β into
XQuery functions as discussed above; note that, on a
“canonical view” of an instance of S′, these functions
compute a “canonical view” of the corresponding in-
stance of S, to which we can apply π unchanged.

4 The LILO Algorithm

In this section we describe LILO (Lossless Inlining,
Lossless Outlining), a mapping scheme design algo-
rithm based on the framework discussed in Section 3.
LILO uses Edge++ as its initial mapping scheme and
defines several equivalence-preserving transformations,
some of which are similar to those defined in the lit-
erature. We start with an example that illustrates the
use of two transformations to the Edge++ mapping of
the document in Figure 1(b). Next, we discuss in de-
tail the transformations used in LILO and argue why
they are equivalence-preserving. Finally, the LILO al-
gorithm is discussed.

Example 2. Recall the fragment of the mondial
database shown in Figure 1(b) and its DTD in Fig-
ure 1(a). In this example, we focus on country ele-
ments and the constraints defined for them. For clar-
ity, we omit in the figures all relations not involved in
the discussion; also, we use subscripts to distinguish re-
lations with the same name in different schemas (e.g.,
Value1 is a relation in S1).

115

Edge++ Mapping. Figure 5(a) shows the Edge++

mapping of the country element; we refer to its rela-
tional schema as S0 in the remainder of the example.
In S0, we have a recursive constraint to check that each
element e labeled country has has exactly two children
c1, c2; c1 is labeled name; c2 is labeled capital; and c1
precedes c2. Moreover, S0 also has a structural con-
straint requiring both c1, c2 to have a matching tuple
in the Value relation.

Inlining Elements. Consider a schema S1 that adds
to S0 a relation Country1(country,name, capital)
for inlining country elements and their children, and
constraints for enforcing the functional dependencies
name → country and capital → country, for ensuring
that each name and capital element has a single coun-
try element as its parent in the tree. The constraints
for validating name and capital elements (Section 3.2)
are also modified to use Country1. Intuitively, a map-
ping scheme defined on S1 has one advantage over
Edge++: the validation constraints for country ele-
ments can be specified directly using SQL [13], and
thus enforced efficiently by relational database engines.
The mapping α1 : R(S0)→R(S1) is:

Diff (e) :−Edge0(, e, ′country′)

Diff (e) :−Edge0(, e, ′capital′)

Diff (e) :−Edge0(, c, ′country′), Edge0(c, e, ′name′)

Country1(e, n, c) :−Edge0(e, n, ′name′), Edge0(e, c, ′capital′)
Edge1(e, c, l) :−Edge0(e, c, l),¬Diff(e)

FLC1(p, f, l) :−FLC0(p, f, l),¬Diff (p)

ILS1(l, r) :− ILS0(l, r),¬Diff(l)

Value1(e, v) :−Value0(e, v)

Diff computes all elements that are mapped into
Country1 instead of Edge1, FLC1 and ILS1. Fig-
ure 5(b) shows the resulting database instance. The
instance of S0 is recovered by β1 : R(S1)→R(S0):

Edge0(e, c, l) :−Edge1(e, c, l)

Edge0(e, c, l) :−Edge1(e, , ′country′), Country(c, ,),

l = ′country′

Edge0(e, c, l) :−Country1(e, c,), l = ′name′

Edge0(e, c, l) :−Country1(e, , c), l = ′capital′

FLC0(p, f, l) :−FLC1(p, f, l)

FLC0(p, f, l) :−Country(p, f, l)

ILS0(l, r) :− ILS1(l, r)

ILS0(l, r) :−Country1(, l, r)

Value0(e, v) :−Value1(e, v)

It is easy to see that S0 ≡ S1: S0 	 S1 via (α1, β1)
and that S1 	 S0 via (β1, α1)

Inlining Textual Content. We can further mod-
ify S1 by storing the actual names and capitals of
the countries instead of their surrogates; in this new
schema S2, there is no need to enforce the functional
dependencies in S1, nor the validating constraints for
name and capital elements. The validation constraints

for name elements that are not children of country are
not affected by either transformation. Furthermore,
no joins are required for finding names or capitals of
the countries when processing queries. Instances of S2

are computed by α2 : R(S1)→ R(S2):
Diff(e) :−Country1(p, e,), Value1(e,)

Diff(e) :−Country1(p, , e), Value1(e,)

Edge2(e, c, l) :−Edge1(e, c, l)

FLC2(p, f, l) :−FLC1(p, f, l)

ILS2(l, r) :− ILS1(l, r)

Country2(e, n, c) :−Country1(e, v1, v2),

Value1(v1, n), Value1(v2, c)

Value2(e, v) :−Value1(e, v),¬Diff (e)

Figure 5(c) shows the resulting instance. To recon-
struct the instances of S1, β2 : R(S2) → R(S1) uses
invention rules (marked with *) to replace the surro-
gates lost by α2:

Edge1(e, c, l) :−Edge2(e, c, l)

FLC1(p, f, l) :−FLC2(p, f, l)

ILS1(l, r) :− ILS2(l, r)

PName(∗, e, n) :−Country2(e, n,) (∗)
PCapital(∗, e, c) :−Country2(e, , c) (∗)
Country1(e, n, c) :−PName(n, e,),PCapital(c, e,)

Value1(e, v) :−Value2(e, v)

Value1(e, v) :−PName(e, v,)

Value1(e, v) :−PCapital(e, , v)

Again, note that S2 ≡ S1. Thus, the mapping scheme
resulting from applying the two transformations above
to Edge++ is information-preserving. �

4.1 Equivalence Preserving Transformations
We now present the equivalence preserving transfor-
mations used in LILO. Our goal in defining them is
twofold: reduce the number of joins required for nav-
igating the databases; and replace the validation con-
straints defined by Edge++ by simpler ones that can
be expressed in SQL. In the interest of space and for
clarity of exposition, we omit the wrec-ILOG¬ pro-
grams in the discussion below; instead, we informally
describe each transformation and argue why they are
equivalence preserving.

Recall that the Edge++ mapping scheme for a DTD
X includes validating constraints corresponding to
each rule ti ← ri in X . Since the transformations
we define below work by replacing some of these con-
straints by simpler ones, they can be intuitively de-
scribed as changes to the corresponding DTD rules.
For example, suppose μ = (σ, π, S) is the Edge++

mapping scheme for the DTD in Figure 1(a) and we
use inlining on name elements that are children of city
elements. Intuitively, this can be viewed as replacing
city ← name, (province|state), official+ in the DTD
by city1 ← (province|state), official+, and modifying
σ (resp., π) for storing (resp., fetching) the name el-
ements in a separate relation. We also use transfor-
mations that mix the content of different elements.

116

For example, we can nest (defined below) the content
of cities elements as children of mondial, thus replac-
ing mondial ← cities , country∗ and cities ← city∗ by
mondial ← city∗, country∗. In this case, we change σ
to “skip” the cities element and π to “introduce” that
element back as a child of the mondial element.

All transformation in LILO are equivalence-
preserving for two reasons. First, every DTD rule
t ← r to which a transformation applies is replaced by
a “simpler” t ← r ′ and relational constraints that cap-
ture the semantics of part of the original content model
r. Second, every regular expression r′ that is “intro-
duced” by LILO transformations is 1-unambiguous.
Note that f r = r1, . . . , rj , . . . , rn is a 1-unambiguous
regular expression and w ∈ L(r) then there exist
unique w1, . . . , wn such that wi ∈ L(ri), 1 ≤ i ≤ n,
and w = w1 · · ·wn [9]. (Note some wi may be the
empty string.) Thus, even when we mix the contents
of different elements, we can always distinguish them
afterward to reconstruct the original document.
Notation. In the remainder of this section, r, s de-
note regular expressions over Σ ∪ #PCDATA and
a ∈ Σ denotes an element label. μ = (σ, π, S) and
μ′ = (σ′, π′, S′) denote, respectively, the input and the
output of each transformation. Recall that each rule
ti ← ri in the DTD becomes a constraint in Edge++

involving the simulation of the appropriate DFA on the
children of elements of type ti; we call such constraint
an edge constraint and denote it by ti

R← ri below.
The relational schema of the input mapping scheme

is of the form S = {E1, . . . , En, M1, . . . , Mk, Γ}, where
E1, . . . , En are edge relations as defined by Edge++;
M1, . . . , Mk are mapped relations (resulting from the
application of a transformation); and Γ = ΓE ∪ΓM , is
the set of constraints in S where ΓE contains all edge
constraints, and ΓM is a set of mapped constraints
(resulting from the application of a transformation).
Each transformation creates or modifies one or more
mapped relations, and replaces one constraint in ΓE

by other constraints in Γ in a way that the resulting
relational schema is equivalent to S.
4.1.1 Inlining
Inlining [6, 31] consists of using the same relation for
storing an element together with one or more of its
children.
Inline Element(t, rj , M), where t R← r is an edge con-
straint, r = r1, . . . , rj , . . . , rn and rj is either a or a?,
results in using the mapped relation M to store pairs
of surrogates of elements of types t and a, and applies
only if s = r1, . . . , rj−1, rj+1, . . . , rn is 1-unambiguous.
The schema for M is (t, c1, . . . , ck, a) (the primary key
is underlined), where c1, . . . , ck, k ≥ 0, are columns
added by previous applications of inlining on type t.
We replace the constraint t R← r by t R← s , and add
a mapped constraint for checking that values of a in
M are unique (that is, the FD a → t holds). Since
μ′ stores the surrogates for a elements in M , the con-

straint for validating a elements is modified to use M
(recall the discussion in Example 2). Finally, if a ele-
ments are mandatory (i.e., rj = a), we declare a to be
not null in M .

Mapping instances of S into instances of S′ is done
by copying the surrogates of inlined elements (of types
c1, . . . , ck, a) into M , while mapping all other chil-
dren of t elements into the usual edge relations in
S′ (as illustrated in Example 2). The mapping in
the other direction is done by copying the surrogates
of s elements into the edge relations in S. Since
s = r1, . . . , rj−1, rj+1, . . . , rn is 1-unambiguous, we can
recover the original element ordering in an instance of
S: we know that each a element must occur after every
element whose type appears in r1, . . . , rj−1 and before
every element whose type appears in rj+1, . . . , rn.
Inline Union(t, rj , M) is a special case of inlining
that applies when rj = (s1| . . . |sn), and each si is ei-
ther ai or ai?. We add columns a1, . . . , an to M , and
add the following constraints. First, we enforce that
at most one of a1, . . . , an is not null in each tuple in
M ; also, if no si is of the form ai?, then one of these
columns must be not null. Both constraints can be
easily written as SQL “check” clauses.

Note that the update anomaly discussed in Exam-
ple 1 is eliminated by defining the constraints discussed
above in that relational schema.

Inlining Textual Content. After inlining elements
whose content model is #PCDATA, the mapped rela-
tion can be used to store their content directly:
Inline Cdata(a, M), where a is the type of an inlined
element in the mapped relation M , replaces the col-
umn for storing surrogates of a elements by a column
for storing their textual content. Also, this transfor-
mation eliminates the constraint a R← #PCDATA in
S′. As illustrated in Example 2, the mapping between
instances of S and S′ amounts to copying the tuples
in Value corresponding to a elements into M , ignor-
ing their surrogates. The reverse mapping invents new
surrogates for each inlined element.
4.1.2 Nesting Elements
This transformation eliminates some elements in the
initial database by nesting their content within their
parents.
Nest(t, a) applies when t R← r and a R← r ′ are such
that r = r1, . . . , a, . . . , rn, and s = r1, . . . , r

′, . . . , rn is
1-unambiguous. Nesting does not add new mapped re-
lations to S′; instead, it replaces the constraints t R← r
and a R← r ′ in S by t R← s in S′. The wrec-ILOG¬ pro-
grams for mapping instances of S and S′ are straight-
forward, and since s is 1-unambiguous, we can distin-
guish the children of a elements among the children of
t elements in an instance of S′.
4.1.3 Outlining Elements
This transformation is the opposite of inlining and re-
sults in using separate mapped relations for storing

117

Input : a DTD X = 〈Σ, r , R〉
Output : a mapping scheme μ = (σ, π, S)

1. Let μ be the Edge++ mapping scheme for X
2. For each t ∈ Σ, create a mapped relation Mt in S
3. Let t = r
4. Let r = r1 . . . , rnbe the content model associated

with t in R
5. For each ri, 1 ≤ i ≤ n, apply Nest(t, ri),

Inline Element(t, ri, Mt), Inline Cdata(ri, Mt),
Inline Union(t, ri, Mt), Outline(t, ri),
Outline Union(t, ri) whenever possible
and in this order

6. If a transformation creates a new type t′,
add a mapped relation Mt′ to S

7. For each element type ti occurring in r,
let t = ti and repeat from step 3 until no changes
are made to S

8. Remove from S all relations are not used by σ or π
9. Return the resulting mapping scheme

Figure 6: LILO algorithm for designing information-
preserving mapping schemes.

the content of elements of the same type. For in-
stance, one could use this transformation to store city
officials separately from the other children of city el-
ements. Intuitively, this can be seen as replacing the
constraint city R← name, (province|state), official+ by
city1 R← name, (province|state) and city2 R← official+,
which could be further transformed independently.

Outline(t, rj) applies when t R← r1 , . . . , rj , . . . , rm is
an edge constraint, the participation of rj is either ∗ or
+, and s = r1, . . . , rj−1, rj+1, . . . , rn is 1-unambiguous.
In general, outlining does not introduce new mapped
relations; instead it replaces the original edge con-
straint by t R← s and t ′ R← rj . The wrec-ILOG¬ pro-
grams for outlining map part of the content of each t
element into the content of a new t′ element (in the
forward direction) and merge these pieces of content
back (in the backward direction).

When rj is either a∗ or a+ we can store just the
parent-child relationship, ignoring labels (since they
are all identical); if rj = a∗ , we can also drop t ′ R← a∗.
The ordering of the outlined elements, however, must
still be preserved (using the FLC and ILS relations).
Outline Union(t, rj) is a special case that applies
when rj = (u1| . . . |uk) and results in replacing the
original edge constraint t R← rj by the following:

t1
R← r1 , . . . , rj−1 , u1 , rj+1 , . . . , rn

...tk
R← r1 , . . . , rj−1 , uk , rj+1 , . . . , rn

It is easy to see that all regular expressions above
are 1-unambiguous. One issue with this transforma-
tion is that the type of an element may change after
an update. Thus, whenever an update on element e of
type ti violates the edge constraint of ti, we must check
whether the new content of e satisfies the constraint
of some other type tj , and if so, update the type of e.

Operation 512KB 4MB 32MB 256MB 2GB

Edge++ mapping scheme
Insertion 7.72 15.87 17.70 20.48 20.45
Deletion 4.45 8.78 10.43 11.60 11.89

Q3 1.12 5.74 334.21 — —
Q17 0.20 0.23 0.35 1.5 8

LILO mapping scheme
Insertion 4.73 8.55 9.58 9.99 11.38
Deletion 3.53 6.41 7.48 8.16 8.76

Q3 0.09 0.12 0.18 1.47 50.41
Q17 0.03 0.03 0.03 0.09 0.59

Table 1: Experimental results; all times shown in millisec-
onds. For insertion and deletions, the time includes both
modifying the database and checking the constraints.

4.2 The LILO Algorithm

The LILO algorithm is given in Figure 6. LILO visits
each type t once, and after t is visited, its validating
constraint is either mapped by some transformation
or left unchanged. The order in which the transforma-
tions are attempted reflect the criteria discussed in the
beginning of Section 4.1: reducing the number of joins
required for navigating the document (achieved mostly
by inlining), and simplifying the validation constraints
introduced by Edge++.

Theorem 1. Given a DTD X, LILO always ter-
minates and produces a mapping scheme that is
information-preserving with respect to X.

Proof. LILO always terminates because each rule in
the DTD is visited only once, and the total length
(i.e., number of symbols) of all rules in ΓE after each
iteration of LILO is strictly smaller than at the begin-
ning of that iteration. The resulting mapping scheme
is information-preserving since Edge++ is information-
preserving, and all transformation used by LILO are
equivalence preserving (Section 3.1).

5 Experimental Evaluation

Table 1 presents experimental results comparing the
behavior of Edge++ and LILO mapping schemes for
processing updates and queries, using XMark [30] doc-
uments ranging from 512KB to 2GB.

We used DB2 V8.1 on a Pentium-4 2.5GHz (1.5GB
of RAM) running Linux 2.4; we limited DB2’s buffer
to 45MB, to avoid having large portions of the doc-
ument always in main memory. This is the only pa-
rameter we tune; furthermore, the only indices in each
database are those created automatically for the pri-
mary keys of each relation. In our implementation of
Edge++, we use horizontal partition in the Edge re-
lation based on the type of the parent element, which
eliminates some joins in the definition of the validation
constraints. For processing updates, we note that in-
cremental computation techniques [18] can be used to
improve the checking of the Datalog constraints; we
adapted the simple incremental validation algorithm

118

from [4] in our implementation, thus avoiding the re-
computation of the recursive constraints from scratch
after every update. Finally, it is worth noting that, in
this experiment, all transactions were executed at the
user level, thus incurring overheads (e.g., query com-
pilation and optimization) that can be avoided if these
methods are implemented inside the database engine.
Updates. The update workload consists of 100 inser-
tions and deletions of items for auctions in the North
America region, each performed as a separate trans-
action. Each element inserted is valid and consists of
an entire subtree of size comparable to those already
in the document, and each deletion removes one of
the “new” items inserted. Table 1 shows that while
both mapping approaches scale very well with docu-
ment size, LILO is up two times faster for insertions
and 45% faster for deletions when compare to Edge++;
on average, LILO is 83% faster for insertions and 36%
faster for deletions.
Queries. While our focus in this paper is on infor-
mation preservation, we compared Edge++ and LILO
for query processing as well. We used XMark queries
whose focus was on navigating the documents, and
here we show the results for two of them: Q3 and
Q17; Q3 takes order into account and performs a join,
while Q17 is among the simplest queries in the bench-
mark. For practical reasons, we set a timeout limit of
10 minutes for running each query. Table 1 shows that
LILO is vastly superior to Edge++ for query process-
ing: Q3 times out on the 256MB Edge++ mapping,
while it takes less than a second on the LILO mapping
for the 2GB document. The improved performance is
due mostly to the considerably fewer joins required for
querying LILO mappings compared to Edge++.

6 Discussion and Related Work

We proposed a novel and sound framework for gener-
ating information-preserving XML-to-relational map-
ping schemes from an XML schema, which consists
of applying equivalence-preserving transformations to
schemes that are known to be information-preserving.
As discussed, this process results in a mapping scheme
whose relational schema is equivalent to the original
XML schema. Our framework is extensible and can
handle arbitrary transformations that can be written
in wrec-ILOG¬, which captures all transformations of
interest. We also introduced LILO: a mapping scheme
design algorithm for XDS that uses transformations
to derive new mapping schemes that preserve the va-
lidity of XML documents.

Using relational constraints to ensure validity as in
LILO has several advantages compared to the alter-
native of materializing and re-validating the portion
of the document that is updated. Notably, our ap-
proach leverages the constraint-checking infrastructure
already available in the DBMS, and does not require
the development and maintenance of a separate vali-

dation tool. Moreover, our experiments indicate that
even an implementation that incurs all the overheads
of user-level transactions leads to good performance.

While checking and incremental checking of con-
straints in the relational setting is well studied (see,
e.g., [18] for a survey), researchers are only beginning
to consider updating XML [7, 24, 32, 33], and the prob-
lems of validation and incremental validation after up-
dates [4, 21, 28]. In our setting, document validation
amounts to checking Datalog constraints, while incre-
mental validation amounts to incremental checking of
such constraints.

There are well known notions of information preser-
vation in the context of the relational and hierarchical
data models [19, 26]; recently, information preserva-
tion of XML-to-XML mappings has been studied as
well [5]. However, to the best of our knowledge, there
has been no work on information preservation in the
context of XML-to-relational mapping schemes. In [3],
we discussed losslessness and validation, and in this
paper we showed how these notions can be used for
establishing the relative information capacity of XML
and relational schemas. We note that other authors
have also identified the need for information preserva-
tion in mapping schemes and have informally discussed
losslessness [15, 33].

The literature on mapping schemes is already vast,
although the focus to date has been mostly on the
performance of queries (see e.g., [22] for a survey) and
updates [32, 33], rather than on information preserva-
tion. Nevertheless, several existing methods (possibly
with straightforward extensions) can guarantee loss-
lessness. For instance, numbering schemes that cap-
ture both element identity and ordering [33, 34], can
be used to fully preserve the structure of the docu-
ments [6, 15, 17, 31]. While some mapping schemes
are oblivious to document schemas [17], others exploit
(and require) document schemas [6, 29, 31]. The lat-
ter approach has been shown to lead to better query
performance, and is more closely related to our frame-
work and LILO; a similar gain in query performance
is noticed when comparing LILO to Edge++. Some
of the transformations used in LILO can be viewed as
extending those in [6, 29, 31] to guarantee information
preservation. LegoDB [6] uses a cost-based model for
designing mapping schemes whose goal is minimizing
the estimated cost of executing an input query work-
load on an input XML document. Such estimates are
obtained by using features in modern RDBMSs that
allow the query optimizer to use statistical information
describing a hypothetical database instance. While it
would be interesting to extend LILO with a cost-based
model, strong empirical evidence suggests that there
can be considerable discrepancies between the esti-
mated and the actual execution costs of queries, even
for simple SQL workloads [12]. Thus, other models
may have to be considered.

119

Several techniques have been proposed for translat-
ing specific XML Schema constraints into relational
ones in mapping schemes; for instance, techniques for
translating keys [14], foreign-keys [11], cardinality con-
straints [6, 23], ID/IDREF attributes [4], and type
specialization [3] have been proposed. However, to
the best of our knowledge, no work has addressed the
problem of mapping the element validity constraint,
requiring the content of valid elements to be words in
regular languages defined in the document schemas [8],
which is achieved by LILO.

Finally, an interesting observation made in [2] is
that some of the strategies defined in the literature
are orthogonal, and new mapping schemes can be de-
rived by mixing them. The framework we propose is
extensible can accommodate any transformation that
can be described in wrec-ILOG¬. Thus, while we con-
sidered transformations for preserving element valid-
ity only, our framework is not tied to specific kinds
of constraints: different transformations that preserve
additional constraints can be easily incorporated.

Acknowledgments. This work was supported in
part by grants from the Natural Sciences and Engi-
neering Research Council of Canada, the IRIS Net-
work of Centers of Excellence, the National Science
Foundation, and an IBM Ph.D. Fellowship.

References
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley, 1995.
[2] S. Amer-Yahia, F. Du, and J. Freire. A Compre-

hensive Solution to the XML-to-Relational Mapping
Problem. In WIDM, 2004.

[3] D. Barbosa, J. Freire, and A. O. Mendelzon. Informa-
tion Preservation in XML-to-Relational Mappings. In
XSym, 2004.

[4] D. Barbosa, A. O. Mendelzon, L. Libkin, L. Mignet,
and M. Arenas. Efficient Incremental Validation of
XML Documents. In ICDE, 2004.

[5] P. Bohannon, W. Fan, M. Flaster, and P. Narayan.
Information Preserving XML Schema Embedding. In
VLDB, 2005.

[6] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From
XML Schema to Relations: A Cost-based Approach
to XML Storage. In ICDE, 2002.

[7] V. P. Braganholo, S. B. Davidson, and C. A. Heuser.
From XML View Updates to Relational View Up-
dates: old solutions to a new problem. In VLDB,
2004.

[8] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. M.
(Editors). Extensible Markup Language (XML) 1.0.
World Wide Web Consortium, third edition, 2004.

[9] A. Brüggemann-Klein and D. Wood. One-Unam-
biguous Regular Languages. Information and Com-
putation, 142, 1998.

[10] M. J. Carey, J. Kiernan, J. Shanmugasundaram,
E. J. Shekita, and S. N. Subramanian. XPERANTO:
Middleware for Publishing Object-Relational Data as
XML Documents. In VLDB, 2000.

[11] Y. Chen, S. Davidson, C. S. Hara, and Y. Zheng.
RRXF: Redundancy reducing XML storage in rela-
tions. In VLDB, 2003.

[12] M. Consens, D. Barbosa, A. Teisanu, and L. Mignet.
Goals and Benchmarks for Autonomic Configuration
Recommenders. In SIGMOD, 2005.

[13] C. J. Date and H. Darwen. A Guide to the SQL Stan-
dard. Addison Wesley, 4th edition, 1997.

[14] S. Davidson, W. Fan, C. Hara, and J. Qin. Propagat-
ing XML Constraints to Relations. In ICDE, 2003.

[15] A. Deutsch, M. Fernández, and D. Suciu. Storing
Semistructured Data with STORED. In SIGMOD,
1999.

[16] M. Fernández, Y. Kadiyska, D. Suciu, A. Morishima,
and W.-C. Tan. SilkRoute: A Framework for Publish-
ing Relational Data in XML. TODS, 27(4), 2002.

[17] D. Florescu and D. Kossmann. Storing and Querying
XML Data Using an RDBMS. IEEE Data Engineer-
ing Bulletin, 22(3), 1999.

[18] A. Gupta and I. S. Mumick, editors. Materialized
Views - Techniques, Implementations and Applica-
tions. MIT Press, 1998.

[19] R. Hull. Relative Information Capacity of Simple Re-
lational Database Schemata. SIAM Journal of Com-
puting, 15(3), 1986.

[20] R. Hull and M. Yoshikawa. ILOG: Declarative Cre-
ation and Manipulation of Object Identifiers. In
VLDB, 1990.

[21] B. Kane, H. Su, and E. A. Rundensteiner. Consis-
tently Updating XML Documents Using Incremental
Constraint Check Queries. In CIKM, 2002.

[22] R. Krishnamurthy, R. Kaushik, and J. F. Naughton.
XML-SQL Query Translation Literature: the State of
the Art and Open Problems. In XSym, 2003.

[23] D. Lee and W. W. Chu. Constraints-Preserving Trans-
formation from XML Document Type Definition to
Relational Schema. In ER, 2000.

[24] P. Lehti. Design and implementation of a data manip-
ulation processor for an xml query language. Master’s
thesis, Universität Darmstadt, 2001.

[25] D. Maier. The Theory of Relational Databases. Com-
puter Science Press, 1983.

[26] R. Miller, Y. Ioannidis, and R. Ramakrishnan. The
Use of Information Capacity in Schema Integration
and Translation. In VLDB, 1993.

[27] M. Nicola and J. John. XML Parsing: a Threat to
Database Performance. In CIKM, 2003.

[28] Y. Papakonstantinou and V. Vianu. Incremental Val-
idation of XML Documents. In ICDT, 2003.

[29] M. Ramanath, J. Freire, J. R. Haritsa, and P. Roy.
Searching for Efficient XML-to-Relational Mappings.
In XSym, 2003.

[30] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark
for XML Data Management. In VLDB, 2002.

[31] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
Databases for Querying XML Documents: Limita-
tions and Opportunities. In VLDB, 1999.

[32] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. In SIGMOD, 2001.

[33] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmuga-
sundaram, E. Shekita, and C. Zhang. Storing and
Querying Ordered XML Using a Relational Database
System. In SIGMOD, 2002.

[34] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and
G. M. Lohman. On Supporting Containment Queries
in Relational Database Management Systems. In SIG-
MOD, 2001.

120

