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ABSTRACT
As Si CMOS devices are scaled down into the nanoscale regime,
current computer architecture approaches are reaching their practi-
cal limits. Future nano-architectures will confront devices and in-
terconnections with a large number of inherent defects, which mo-
tivates the search for new architectural paradigms. In this paper, we
examine probabilistic-based design methodologies for nanoscale
computer architectures based on Markov random fields (MRF). The
MRF approach can express arbitrary logic circuits and the logic op-
eration is achieved by maximizing the probability of correct state
configurations in the logic network depending on the interaction
of neighboring circuit nodes. The computation proceeds via prob-
abilistic propagation of states through the circuit. Crucially, the
MRF logic can be implemented in modified CMOS-based circuitry
that trades off circuit area and operation speed for the crucial fault
tolerance and noise immunity. This paper builds on the recent
demonstration that significant immunity to faulty individual de-
vices or dynamically occurring signal errors can be achieved by the
propagation of state probabilities over an MRF network. In partic-
ular, we are interested in CMOS-based circuits that work reliably
at very low supply voltages (VDD = 0.1–0.2 V), where standard
CMOS would fail due to thermal and crosstalk noise, and transistor
threshold variation. In this paper, we present results for simulated
probabilistic test circuits for elementary logic components and well
as small circuits taken from the MCNC91 benchmark suite and we
show greatly improved noise immunity operating at very low VDD.
The MRF framework extends to all levels of a design, where for-
mally optimum probabilistic computation can be implemented as a
natural element of the processing structure.
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B.8.1 [Performance and Reliability]: Reliability, Testing, and
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1. INTRODUCTION
For several decades, mainstream silicon technology has relied on

scaling down CMOS transistors following Moore’s Law. Thus far,
the semiconductor industry has successfully overcome many hur-
dles, including the current transition to silicon-on-insulator (SOI)
technology [1]. Looking to the future, the next major challenges to
Si CMOS include new materials (high-κ and low-κ dielectrics [2]),
new device geometries (dual-gate or fin-FET devices [3]), and fur-
ther downscaling of devices and supply voltages with attendant
difficulties in manufacturing, power dissipation, and economics of
commodity manufacturing [2].

Further into the future, the International Technology Roadmap
for Semiconductors (ITRS) predicts that the continued shrinkage
of individual transistors will stop, perhaps around 2015, due to un-
avoidable physical limits, with the ultimate transistor gate length
near LG ∼10 nm [4]. These ultimate transistors will be nanode-
vices in the true sense of the word. Working LG ∼6 nm devices
have already been reported [5], although there is some debate as
to whether the performance gains of such small devices will pro-
vide adequate return to justify the enormous fabrication costs. The
longer-term prospects of digital computation then diverge into two
interrelated areas. On the system side, there are the computer ar-
chitecture issues arising from the problem of integrating billions of
transistors at the lowest possible supply voltage, with tremendous
constraints on total power dissipation and device reliability. On
the device integration front, there is hope that hybrid systems will
emerge, combining CMOS FET-based digital logic with any number
of alternative devices, ranging from analog circuits, to more exotic
alternatives (optical sources and detectors, quantum or molecular
transistors, carbon nanotube devices, etc.) all on the same chip [6].

Currently, exotic materials — from carbon nanotubes to molecu-
lar transistors, to spin-based devices and superconducting junctions,
to single-electron devices, all the way to DNA-based computing —
are being touted as contenders for computational circuitry. Ac-
cording to some benchmarks, many of these devices are quite suc-
cessful: they may be faster (tunneling-based devices), carry more
current (carbon nanotubes), take up less area (molecular transis-
tors), or have higher logic functionality than CMOS FETs. Yet
the key issues of compatibility with the enormous installed base of
VLSI fabrication tools and know-how, and with the usual operating
parameters (room temperature, low-voltage, ultra-low static power
consumption) remain elusive. Instead of targeting the integration
of non-CMOS nanodevices into computational logic circuits, we
propose to examine the performance of ultimate CMOS transistors
in a new computing framework — that of probabilistic computing
embedded in a Markov random network. The premises underlying
this approach are as follows:

• Any computational scheme involving large numbers of nano-
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devices (regardless of whether these devices are LG ∼10 nm
Si transistors or whether the information is stored in the
charge, spin, or even quantum phase of some other material)
needs a large degree of fault tolerance. It is inevitable that a
significant fraction of devices and interconnections will fail,
with failures occurring both during fabrication and operation.

• Since the number of devices in future computational circuits
will be enormous, the constraints on power consumption will
require the lowest possible supply voltages. As a result, these
circuits will operate closer to the thermal limit, where the
difference between the logic voltage levels will shrink well
below the many tens of kT /q of today’s circuits. If so, the
very nature of computation will need to become probabilistic.

Probabilistic computing provides a new approach towards build-
ing more powerful fault-tolerant nanoarchitectures and systems.
The future of computation beyond standard CMOS is highly un-
certain, but it is a given that new fault-tolerant paradigms will be
needed and CMOS will remain the dominant technology for the
next decade or two. If extended to more complex circuits, our ap-
proach could lead to a paradigm shift in computing architecture that
would still be compatible with real-world technology.

The main contributions of this paper are:

• We consider various forms of noise, including thermal noise
and threshold variation, in CMOS devices as these devices
approach their ultimate limiting size and we evaluate their
impact on circuit reliability. These noise sources have not
hitherto been significant but will become so as device size
continues to shrink.

• We propose the first technologically realistic CMOS imple-
mentation of a new logic style based on the Markov random
field (MRF) probabilistic paradigm proposed in [9]. It should
be emphasized that while [9] did discuss the theoretical util-
ity of MRF for probabilistic computation in the presence of
noise and soft faults, no practical implementation was sug-
gested. In this paper, we propose a MRF implementation
using ultimate CMOS operated at ultra-low supply voltages.

• Using circuits from the MCNC benchmark suite, we show
through SPICE simulation how our new family of MRF cir-
cuits can provide superior soft fault tolerance and noise im-
munity at very low supply voltages (e.g., 0.15V) compared
to a conventional CMOS implementation.

The rest of the paper is organized as follows. The enabling the-
ory of probabilistic computation based on the Markov random field
(MRF) approach, is described in Section 2. Our noise-immune
circuit designs are presented in Section 3, followed in Section 4 by
a quantitative analysis of their noise immunity relative to standard
CMOS designs. A discussion on higher architectural level implica-
tions is presented in Section 5, followed by conclusions and future
work in Section 6.

2. MARKOV RANDOM NETWORKS
The downscaling of devices to the nanoscale, the explosion in

the number of devices integrated in a digital computation circuit,
and the reduction of logic levels down to the thermal limit, all
conspire to produce faulty systems. We can expect the frequent
occurrence of both soft faults due to noise and signal coupling, and
hard faults due to process variations and defects. As a result, we
propose a new approach to the design and operation of logic circuits
where the logic states are considered to be random variables. Under

Figure 1: A logic circuit and the corresponding graph. Taken
from [9].

this framework, one no longer expects a correct logic signal at all
nodes at all times, but only that the joint probability distribution of
signal values has the highest likelihood for valid logic states. The
random logic variables for a circuit interact through a distribution
representing their joint probability. This joint distribution can be
considered to be a distribution on random vectors, with a vector
element for each logic variable in the circuit. Thus, under this new
probabilistic approach, circuit design is guided by the formulation
of a multivariate distribution on vectors, aiming for a distribution
that attains maximum probability for the valid states of the circuit.

In a circuit with hundreds of logic variables it is impractical to
directly consider a joint probability distribution. The number of
constraints required to enforce maximum probability for the valid
states grows exponentially with the dimension of the random vector
space and so the computation quickly becomes intractable. For-
tunately there exists a representation for high dimensional joint
distributions that can be factored into low dimensional distributions
known as the Markov random field (MRF) [7][8]. Previous work
has discussed the use of MRF for probabilistic computation in the
presence of noise and faults [9]; however, no practical implemen-
tation using real devices was suggested. Now, we propose to im-
plement MRF-based probabilistic computation in ultimate CMOS
transistors.

An appropriate model for the MRF is a graph structure, where the
nodes of the graph represent logic variables and the edges represent
statistical dependency between the variables. An example of such
a graph is shown in Figure 1 for a very small logic circuit. There
are four logic variables represented by the vector {x0, x1, x2, x3}
and these variables are the nodes of the graph in the lower half
of the figure. The edges of the graph indicate that the subsets
of nodes {x0,x1},{x1,x2,x3} directly interact. These subsets are
called cliques from the graph theory concept of node subsets that
are all mutually connected by graph edges. For any MRF graph
G there exists a set of cliques C that represent the local statistical
dependencies of logic states.

Let the full set of nodes (logic variables) of G be represented
by the vector X. The key result that makes the MRF an attractive
formulation for probabilistic circuit design is called the Hammersley
and Clifford theorem [10]. It can be shown that the joint probability
distribution for X can be factored as,

p(X) =
∏

c∈C

Fc(xc) (1)

where xc is the set of nodes in a clique c. The strictly positive
functions Fc(xc) are known as the Gibbs energy functions and
represent the joint probability of the clique variables. One form for
Fc(xc) is the Gibbs distribution that represents the probability of
states in a physical system,

Fc(xc) =
1

Z
e

−U(xc)
kT (2)
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where Z is the partition function and normalizes Fc(xc) to the range
[0, 1]; U(xc) is the clique energy that depends only on the nodes
in the clique; and kT corresponds to the thermal energy. For the
purposes of probabilistic computation based on interacting nano-
devices, we need to find a physical embodiment of interacting logic
levels. In principle, these could be encoded in many physical vari-
ables, from occupation of quantum dots by single electrons with
occupation probability of neighboring dots mutually influenced by
their Coulomb repulsion, to the orientation of magnetic spins influ-
encing each other via the exchange interaction. However, we choose
to map the MRF probabilistic computation onto nanoscale CMOS,
which is by far the most mature and well-controlled technology.

The key advantage of the MRF approach is that its operation
does not depend on perfect devices or connections. In operation,
the nodes iteratively change their logic levels and these changes
propagate through the network. Successful operation only requires
that the joint energy of correct states be lower than the energy of
the errors, so a degree of fault tolerance is built in.

As was shown in [9], the Gibbs form of Eq. 2 makes it possible to
achieve correct logic operation in the presence of structural faults.
Using the auto-model form of the clique energy, it can be shown that
by adding redundant logic elements and pathways according to the
gate’s clique energy function, high fault tolerance is achieved. For
the inverter example given in [9], up to one third of the redundant
connections or devices can be bad without destroying the correct
energy relations.

3. MRF CMOS-BASED LOGIC ELEMENTS
For the MRF model to be mapped onto a CMOS circuit, we

require two essential ingredients:

• Each logic state, xi, should be represented as a bistable stor-
age element, taking on logical values of “0” an “1”. The
probability for any other signal value should be low.

• The constraints of each logic graph clique should be enforced
by feedback to the appropriate storage elements, implement-
ing the functions Fc(xc) to factorize Eq. 1 and maximize the
joint probability of the correct logical values.

As the simplest example, consider the inverter represented by nodes
x0 and x1 in Figure 1. An MRF implementation of the inverter,
implementing F01(x0, x1) is shown in Figure 2. The circuit consists
of two “storage nodes”, one for x0 and one for x1. The stable states
of the nodes correspond to the maximum probability configurations
of the variables. For example, suppose that x0 = 0 and x1 = 1. Then
the top NAND-inverter gate is active and feeds the logic state “1”
back to the inputs, thereby reinforcing the expected output value.
The other NAND-inverter gate feeds back logic “0” state. These
feedback values are consistent with the input values {x0, x1} and
the overall circuit latches into this state. The other configuration,
x0 = 1 and x1 = 0, corresponding to the other valid inverter logic
state, is also stable.

The layout of Figure 2 suggests a programmable logic array style
encoding where different functions can be achieved by varying the
cross-links. Logic functions with more variables are implemented
by feedback paths involving NAND gates with larger fan-in, and
changing the inverters to NOR gates.

Clearly, the MRF implementation of logic functions requires
many transistors. On the other hand, as our simulations will demon-
strate, the MRF implementation provides significant advantages
over standard, minimum-transistor CMOS designs with respect to
noise immunity, fault tolerance (e.g., imperfect threshold voltage

Figure 2: A circuit for encoding the clique function of two logic
variables defining an inverter (total transistor count is 20, as
compared to two for standard CMOS inverter)

control), and low-voltage operation (e.g., VDD ∼ VTH of the tran-
sistors). In the simulation results to follow, we compare MRF
inverters and NAND gates with their standard CMOS counterparts.
The simulations were carried out in SPICE using the 70 nm CMOS
Predictive Technology Model from Berkeley [11] at T = 100 oC.
These transistor models have threshold voltages VTH of 0.2 V for
NMOS and –0.22 V for PMOS.

Figure 3: MRF NAND gate implementation (total transistor
count is 60). The inputs are x0 and x1, the output is x2.

The MRF inverter is shown in Figure 2 and the MRF NAND
gate in Figure 3. We ran two sets of simulations at VDD = 0.15
V, a voltage below the |VTH | of our model transistors. First, we
simulated the output of the inverter and NAND gate for a noisy
input signal in comparison with the standard CMOS gates. Second,
we simulated the effect of VTH variation on the MRF circuits. We
emphasize that the sources of signal noise in ultimate transistors
are a subject of current research. Some noise sources, e.g., hot-
electron effects, cannot be treated analytically even for standard
supply voltages but rather require Monte-Carlo techniques. On the
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basis of such simulations, some authors have argued that current
noise models will underestimate noise levels in nanodevices [12].
Since we propose to run our circuits at very low VDD and T =
100 oC, both thermal noise and hot-electron effects, as well as
power supply and electromagnetic coupling noise will significantly
degrade the logic voltages, while substantial and unavoidable VTH

variation [13] between transistors will reduce the noise margins.

Figure 4: Standard CMOS inverter and MRF inverter opera-
tion at subthreshold supply voltage. The MRF inverter output
is stable, whereas standard CMOS switches between correct
and incorrect output values (no VTH variation is assumed.)

An estimate of the noise on a typical signal arising from thermal
noise aggravated by threshold variation can be obtained in SPICE
by transient simulation of a chain of standard CMOS inverters.
A sample of bandwidth-limited random noise of magnitude and
spectrum determined from the steady-state noise of the Berkeley
transistor model was added to the output of each of 10 inverter stages
in tandem, with thresholds VTH of individual transistors allowed
a random variation of ± 10%. The resulting noise was roughly
Gaussian with 30.2 mV RMS standard deviation. However, the
Berkeley model deals with 70 nm planar bulk devices, whereas the
future Si technology relies on fully depleted SOI with substantially
lower node capacitances. Since noise is inversely proportional to
the square root of the node capacitance [14], it is expected to be
higher. In addition, our thermal model leaves out crosstalk noise,
which will also have a significant effect. Lacking realistic noise
models for ultimate transistors, we have added Gaussian noise of
zero mean and 60 mV RMS standard deviation to our 0.15 V and
zero voltage levels — a value we believe to be a reasonable lower
bound for the true signal noise seen by ultimate transistors operated
at low VDD.

With this choice of noisy input signals, we have compared the
noise immunity for the MRF and CMOS inverters and NAND gates,
initially assuming no VTH variation. The inverters are compared
in Figure 4, where it is evident that the noisy input causes the
standard CMOS inverter to switch between correct and incorrect
output values, due to the small noise margin at low VDD compared
to the input noise amplitude. The MRF inverter, on the other hand,
provides excellent noise immunity.

The same comparison for NAND gates is shown in Figure 5.
Once again, noisy (uncorrelated) inputs cause the standard NAND
gate operated at subthreshold VDD = 0.15 V to switch between
correct and incorrect output values. The MRF NAND gate provides
stable and correct voltage operation, at the cost of much greater

Figure 5: Same comparison for standard CMOS and MRF
NAND gates with noisy inputs and no VTH variation.

transistor counts (60 transistors compared to four for the standard
NAND).

The MRF implementations analogous to Figures 2 and 3 provide
correct probabilistic operation at low VDD in the presence of noise
that would defeat standard CMOS. Nevertheless, it is instructive to
compare this implementation with other implementations that also
have noise-immunity characteristics, as well as smaller transistor
counts. For example, consider a gate based on differential cascode
voltage switch (DCVS) logic. By virtue of its differential operation
and positive feedback, DCVS has some built-in noise immunity.
Figure 6 compares the DCVS inverter (see inset for layout) to our
MRF inverter of Figure 2, in the presence of the same noisy input
signals as in Figure 4 (i.e., Gaussian voltage noise). We find that
the DCVS inverter has much better noise immunity than a standard
CMOS inverter, but is not as stable as our MRF inverter. At the
same time, a DCVS inverter requires twice the transistor count of
standard CMOS, while our MRF inverter is an order of magnitude
higher.

We emphasize that simulations illustrated in Figures 4 and 5
assumed noisy input signals, without any VTH variation from tran-
sistor to transistor (expected to reduce the noise margins in any
large-scale circuit). The expected threshold voltage variation in
ultimate CMOS transistors will depend on how the threshold is
controlled. The current expectation is that they will have fully de-
pleted undoped SOI channels [4][1] and VTH will be controlled by
the appropriate mid-gap gate material. In order to maintain effec-
tive gate control over the potential along the channel, the channel
thickness W will need to be smaller than the gate length LG, so
W < 10 nm. At the same time, W cannot be made too small
because size quantization in the channel renders VTH very sensi-
tive to any variation in W [15][16]. A monolayer fluctuation in W
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Figure 6: Comparison of DCVS (top, with inset showing the
DCVS transistor layout) and MRF inverters operated at VDD
= 0.15 V, given noisy voltage inputs (Gaussian noise with zero
mean and 60 mV RMS amplitude). Note that DCVS provides
some noise immunity over standard CMOS, but not as much as
MRF.

would lead to several meV variation in VTH . As a result, in the
following simulations we chose a worst-case ±10% (that is, ±20
mV) variation in VTH .

Given their larger transistor counts, the immunity of MRF circuits
in Figures 2 and 3 to VTH variation is not self-evident, but our
preliminary simulations, shown in Figure 7 are reassuring. Figure 7
compares MRF inverter operation for VTH = 0.2 and –0.22 V model
values with the worst-case situation of ∆VTH = 20 mV in all
transistors but with N and P devices changing in opposite senses.

4. QUANTIFYING NOISE IMMUNITY
An appropriate measure of the discrepancy between the actual

output signal probability Preal of a logical element or circuit and
the ideal (correct) output Pideal is the Kullback-Leibler distance
(KLD) [17]. For a digital system with two levels (“0” and “1”),

Figure 7: MRF inverter with variable transistor VTH . Compar-
ison of VTH values = 0.2 and –0.22 V (standard) with worst-case
± 20 mV variation (10% of VTH ) for all transistors.

INV NAND
CMOS 3.404 3.7947
DCVS 2.1832 3.6608
MRF 0.5878 0.4126

Table 1: Comparison of Kullback-Leibler distance from cor-
rect (noise-free) output of unloaded CMOS, DCVS, and MRF
logic elements fed with noisy input voltages.

circuits # gates inp out MRF CMOS
squar5 95 5 8 0.19 0.60
rd53 67 5 3 0.12 0.25

misex1 97 8 7 0.15 0.33
con1 27 7 2 0.10 0.78
5xp1 150 7 10 0.16 0.96

Table 2: Comparison of Kullback-Leibler distance from cor-
rect (noise-free) output of MRF and standard CMOS bench-
mark circuits (run at VDD = 0.15 V, T = 100 oC).

the KLD is the measure of the distance between Preal and Pideal

(where output is sampled and noise leads to some probability of
finding an incorrect output value):

KLD(Pideal, Preal) =
∑

states

Pideal log2(
Pideal

Preal
) (3)

where the smaller the KLD, the better the noise immunity of the
circuit. By sampling the output voltage at discrete points (every 0.1
ns) we can quantitatively compare the noise immunity of our simple
logic elements. A comparison of standard CMOS, DCVS and MRF
inverters and NAND gates is shown in Table 1. Clearly, the MRF
implementations have much better noise immunity as measured by
the KLD (for perfectly correct operation, the KLD is zero, see
Eq. 3).

We have also carried out the same noise immunity simulations
for several larger benchmark circuits, each with two different im-
plementations; one based on our MRF circuits and the other based
on “standard” CMOS gates. Each implementation consisted of in-
verters, and two-input NAND, AND, NOR, and OR gates. These
circuits were selected from the MCNC’91 combinational bench-
mark set and were simulated using the 70 nm Berkeley predictive
technology model [11] at VDD = 0.15 V and T = 100 oC using
SPICE. In Table 2, we present the benchmark circuits, the number
of gates, the primary inputs and outputs. The gate counts reported in
column 2 were obtained after redundancy removal and mapping the
gates using the SIS synthesis tool [18], with each logic cell making
up the circuit driving a maximum of 4 output loads. As can be seen
in Table 2, the KLDs for the MRF circuits are much smaller than
those of the standard CMOS circuits, indicating that the probability
distributions of the MRF gates more closely mimic the ideal output
probability distributions.

5. HIGHER LEVEL IMPLICATIONS
So far, our results have focused on combinational logic circuits;

however, in order to produce an overall architecture that can carry
out useful computing it will be necessary to propagate the random
nature of the logic signals and their distributions to the upper levels
of architectural structure, e.g., register stacks, priority queues, ALU
blocks, etc. Ultimately, the final output of computing is taken as the
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highest probability outcome with confidence derived from the asso-
ciated probability distribution. It will be possible to trade off time
and space (redundancy) to achieve a desired level of confidence.
Some less critical outputs can be less accurate than others and so
achieved more quickly and with less redundant computation.

As an example, consider a finite state machine described by
the following tuple, 〈VIN , S, s0, P 〉, where VIN is a set of input
symbols, S a set of states, s0 the initial state, and P the set of
stochastic state transition rules. For a conventional state machine,
the next state would depend only on the input and the current state
with probability of transitioning into the correct state equal to 1.
But as signals get noisier, the input symbols and the initial state s0

have probability distributions and other state transitions can have
non-zero probability leading to a stochastic finite state machine.

Conventional approaches to stochastic finite state analysis “un-
roll” the state transitions into a MRF based on the state-time trellis.
This trellis represents all the state transition paths over some finite
string of input symbols. The standard approach is to find the se-
quence with maximum probability using the Viterbi algorithm [19],
which is equivalent to solving the trellis MRF by dynamic program-
ming [20]. This is done by taking the current observed result and
backtracking through the trellis, computing the most likely state
sequences that leads to the result. From the perspective of circuit
design this approach is not practical since there is no natural finite
interval for the input sequence and the elements of general dynamic
programming are too complex at this architectural level. How-
ever, recent work on the implementation of the Viterbi algorithm
in programmable logic for speech recognition [21] illustrates that
approximate solutions can be achieved at the level of complexity
consistent with on-chip modules. For control logic, the implemen-
tation only needs to be approximate with a fixed, relatively small,
time history (trellis) of transitions.

The probability distribution for the input symbols can be derived
from the MRF logic implementation of the source logic, in a sim-
ilar manner as was done for combinational logic in the previous
section. Additionally, the probability of each state transition can
be adaptively adjusted over time to reflect the variation in both soft
and hard fault statistics. This approach provides a natural transition
from the level of combinational logic and has sufficient representa-
tional power to support the direct manipulation of probabilities.

This example illustrates our overall vision for probabilistic com-
puting where we determine the best probability model for each level
of abstraction based on distributions supplied by the previous level
as well as prior and learned distributions generated within the level.
Each time the most probable computational decisions are reached
with increasing accuracy and with a better approximation to the
optimum Bayesian decision for computational results.

6. CONCLUSIONS AND FUTURE WORK
This paper is focused on a key question in semiconductor tech-

nology: How can nanotechnology extend our CMOS-based digital
computing paradigm beyond the ITRS roadmap, where transistor
scaling ceases? Our basic device will be the ultimate CMOS tran-
sistor (at LG ∼ 10 nm); however, by designing the circuits using
the Markov Random Field as a framework for probabilistic comput-
ing, the design becomes noise-immune, thereby freeing the design
process from the necessity for perfect operations and error-free in-
puts. Since we have started with CMOS, it will be possible for us
to simulate the entire design spectrum based on realistic signal and
hard fault distributions generated at the logic level. Ultimately, the
MRF framework will allow us to extend our approach to all levels
of a design.

7. REFERENCES
[1] G. K. Celler and S. Cristoloveanu, “Frontiers of

silicon-on-insulator”, J. Appl. Phys. 93, 4955 (2003).
[2] S. Luryi, J. M. Xu, and A. Zaslavsky, eds., Future Trends in

Microelectronics: The Nano, the Giga, and the Ultra, New
York: Wiley, 2004.

[3] H. S. P. Wong, “Beyond the conventional transistor”, IBM J.
Res. Dev. 46, 133 (2002).

[4] The latest publicly released version of the ITRS roadmap is
available on the http://public.itrs.net web site.

[5] B. Doris et al, “Extreme scaling with ultra-thin Si channel
MOSFETs”, Tech. Digest IEDM (2002), p. 267.

[6] H. Iwai, “The future of CMOS downscaling”, in: S. Luryi, J.
M. Xu, and A. Zaslavsky, eds., Future Trends in
Microelectronics: The Nano, the Giga, and the Ultra, New
York: Wiley, 2004, pp. 23-33.

[7] R. Chellappa, Markov Random Fields: Theory and
Applications, New York: Academic Press, 1993

[8] S. Z. Li, Markov Random Field Modeling in Computer
Vision, Berlin: Springer-Verlag, 1995.

[9] R. I. Bahar, J. Mundy, and J. Chen, “A Probabilistic-based
Design Methodology for Nanoscale Computation”,
International Conference on CAD, Nov. 2003.

[10] J. Besag, “Spatial interaction and the statistical analysis of
lattice systems”, J. Royal Statistical Soc. Ser. B 36, 192
(1994).

[11] Available at http://www-device.eecs.berkeley.edu/∼ptm/ .
[12] V. M. Polyakov and F. Schwierz, “Excessive noise in

nanoscaled double-gate MOSFETs: A Monte Carlo study",
Semicond. Sci. Technol. 19, 145 (2004).

[13] S. Narendra, V. De, S. Borkar, D. A. Antoniadis, and A. P.
Chandrakasan, “Full-chip subthreshold leakage power
prediction and reduction techniques for sub-0.18 µm
CMOS”, IEEE J. Solid-State Circuits 39, 501 (2004).

[14] R. Sarpeshkar, T. Delbrueck, C. A. Mead, “White Noise in
MOS Transistors and Resistors,” IEEE Circuits and Devices
Magazine, 6 23 (Nov. 1993).

[15] E. Suzuki, K. Ishii, S. Kanemaru, T. Maeda, T. Tsutsumi, T.
Sekigawa, K. Nagai, and H. Hiroshima, “Highly suppressed
short-channel effects in ultrathin SOI n-MOSFETs" IEEE
Trans. Electron Dev. 47, 354 (2000).

[16] T. Ernst, S. Cristoloveanu, G. Ghibaudo, T. Ouisse, S.
Horiguchi, Y. Ono, Y. Takahashi, and K. Murase,
“Ultimately thin double-gate SOI MOSFETs", IEEE Trans.
Electron Dev. 50, 830 (2003).

[17] S. Kullback, Information Theory and Statistics, New York:
Dover, 1969.

[18] E. M. Sentovich et al., “Sequential circuit design using
synthesis and optimization", International Conference on
Computer Design, Oct. 1992.

[19] A. J. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm", IEEE Trans.
Information Theory 13, 260 (1967).

[20] S. Geman and K. Kochanek, “Dynamic programming and the
graphical representation of error-correcting codes", IEEE
Trans. Information Theory 47, 549 (2001).

[21] S. Melnikoff, S. Quigley, and M. Russell, “Implementing a
hidden Markov model speech recognition system in
programmable logic", 11th Intern. Workshop
Field-Programmable Logic Applications, Aug. 2001.

490


