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ARTICLE

Designing minimal genomes using
whole-cell models
Joshua Rees-Garbutt1,2,7, Oliver Chalkley1,3,4,7, Sophie Landon1,3, Oliver Purcell5, Lucia Marucci1,3,6,8✉ &

Claire Grierson1,2,8✉

In the future, entire genomes tailored to specific functions and environments could be

designed using computational tools. However, computational tools for genome design are

currently scarce. Here we present algorithms that enable the use of design-simulate-test

cycles for genome design, using genome minimisation as a proof-of-concept. Minimal gen-

omes are ideal for this purpose as they have a simple functional assay whether the cell

replicates or not. We used the first (and currently only published) whole-cell model for the

bacterium Mycoplasma genitalium. Our computational design-simulate-test cycles discovered

novel in silico minimal genomes which, if biologically correct, predict in vivo genomes smaller

than JCVI-Syn3.0; a bacterium with, currently, the smallest genome that can be grown in pure

culture. In the process, we identified 10 low essential genes and produced evidence for at

least two Mycoplasma genitalium in silico minimal genomes. This work brings combined

computational and laboratory genome engineering a step closer.
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F
or genome engineering and design, minimal genomes are
currently the best proof-of-concept1. These are reduced
genomes containing only genes essential for life, provided

there is a rich growth medium and no external stressors1,2. The
greatest progress to date includes: JCVI-Syn3.0, a 50% gene
reduction of Mycoplasma mycoides2; several strains of Escherichia
coli reduced by 38.93 and 35%4 of their base pairs in vivo; an
E. coli gene reduction of 77.6% in Saccharomyces cerevisiae5;
and two 36% gene reductions of Bacillus subtilis6. These efforts
began with prescriptive design, gene selection using existing
knowledge, or based on laboratory testing of individual genes,
followed by iterative development. However, this process is time-
consuming and expensive due to the limitations of current
techniques and unexpected cell death. This hinders progress as
laboratories can only follow a small number of high-risk research
avenues, with limited ability to backtrack1.

Another approach, building novel organisms from the bottom-
up, is currently infeasible in the majority of bacteria due to
technological and economic constraints7. Megabase sized gen-
omes can be constructed within yeast5,8, but one of the most
promising approaches, genome transplantation, has only been
demonstrated in a subset of Mycoplasma species9–11 and is
mutagenic10.

A further barrier to genome minimisation is the dynamic
nature of gene essentiality. A simple definition of a “living” cell is
if it can reproduce; an “essential” gene being indispensable for cell
division. A “non-essential” gene can be removed without pre-
venting division1,12. But a cell’s need for specific genes/gene
products is dependent on the external environment and on
the genomic context1 (the presence or absence of other genes/
gene products in the genome), which changes with each gene
deletion. Some essential genes can become dispensable with the
removal of another gene (e.g. a toxic byproduct is no longer
produced, so its processing is unnecessary), referred to as “pro-
tective essential” genes1,13,14. Likewise, some non-essential genes
become essential when a functionally-equivalent gene is removed,
leaving a single pathway to a metabolite (a “redundant essential”
gene pair). In addition, gene products can perform together as a
complex, with individually non-essential genes involved in pro-
ducing an essential function15; with enough deletions the
remaining genes become essential. The cellular death that occurs
when redundant essential genes are removed together, or com-
plexes are disrupted, is referred to as synthetic lethality2,16,17. A
recent review1 updates gene essentiality from a binary categor-
isation to a four category gradient, where genes have: no essen-
tiality (dispensable in all contexts), low essentiality (dispensable
in some contexts, i.e. redundant essential and complexes), high
essentiality (indispensable in most contexts, i.e. protective
essential), and complete essentiality (indispensable in all con-
texts). These broad labels describe an individual gene’s essenti-
ality in different genomic contexts (conditional essentiality), and
are compatible with other labels that explain underlying inter-
actions in greater detail.

To address these problems, we use existing computational
models with novel genome design algorithms to investigate
10,000 s of gene knockout combinations in silico. Testing
potential genome reductions for lethal interactions at scale should
produce functional in silico genomes, which can be implemented
in vivo with a lower risk of failure.

We used the Mycoplasma genitalium (M. genitalium) whole-
cell model18, which presently represents the smallest culturable,
self-replicating, natural organism19. A single cell is simulated
from random biologically feasible initial conditions until the cell
divides or reaches a time limit. The model combines 28 cellular
submodels, with parameters from >900 publications and >1900
experimental observations, resulting in 79% accuracy for

single-gene knockout essentiality18. It is the only existing model
of a cell’s individual molecules that includes the function of every
known gene product (401 of the 525M. genitalium genes) making
it capable of modelling genes in their genomic context18. One
hundred and twenty-four genes of unknown function are not
modelled in silico, but as some unknown function genes have
proposed fundamental functions20, these are assumed to be
essential in vivo (so are added in our in vivo predictions). Outside
of single-gene knockout simulations, the model has been used to
investigate discrepancies between in silico and real-world mea-
surements18,21, design synthetic genetic circuits in cellular con-
text22, and make predictions about retargeting existing
antibiotics23.

We produced two genome design algorithms (Minesweeper
and the Guess/Add/Mate Algorithm (GAMA)) which use the M.
genitalium whole-cell model to generate minimal genome
designs. Using these computational tools we found functional in
silico minimal genomes which, if biologically correct, produce
in vivo predictions between 33 and 52 genes smaller than the
most recent predictions for a reducedMycoplasma genome of 413
genes17. These predicted genomes are ideal candidates for further
in vivo testing.

Results
Genome design tools minesweeper and GAMA. Minesweeper
and GAMA conduct whole-cell model simulations in three step
cycles: design (algorithms select possible gene deletions); simulate
(the genome minus those deletions); test (analyse resulting cell).
Simulations that produce dividing cells proceed to the next cycle,
increasing the number of gene deletions and producing pro-
gressively smaller genomes. Minesweeper and GAMA have gen-
erated 4620 and 53,451 in silico genomes, respectively (see Data
availability section), but for brevity only the smallest genomes are
presented.

Minesweeper is a four-stage algorithm inspired by divide and
conquer algorithms24. It initially deletes genes in groups but
eventually deletes individual genes, and only deletes non-essential
genes (determined by single-gene knockout simulations, see
the “Initial input” section). Excluding essential genes reduces
the search area, making it capable of producing minimal genome
size reductions within two days. It uses between 8 and 359 CPUs
depending on the stage (see Methods), with data storage handled
by user-submitted information and simulation execution con-
ducted manually.

GAMA is a biased genetic algorithm25. It conducts two stages
(Guess and Add) of only non-essential gene deletions, before
including essential genes in the third stage (Mate). GAMA
produces deletions that vary by individual genes, requiring
100–1000 s of CPUs. It takes two months to generate minimal
genome size reductions, using between 400 and 3000 CPUs
depending on the stage. This size of in silico experiment requires
more time than is allowed on available supercomputers so the
genome design suite26 was developed to implement GAMA (see
Methods).

Initial input. To generate an initial input for Minesweeper and
GAMA we simulated single-gene knockouts in an unmodified M.
genitalium in silico genome (as previously reported18,21, Supple-
mentary Data 1). Of the 401 in silico modelled genes 42 are RNA-
coding, which were not selected for knockout. Mutants in each of
the 359 protein-coding genes were simulated individually (10
replicates each), with 152 genes classified as non-essential and 207
genes classified as essential (i.e. producing a dividing or non-
dividing in silico cell, respectively). The majority of genes (58%)
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are essential; this was expected, as Mycoplasma genitalium is an
obligate parasite with reduced genetic redundancy27.

Three hundred and eighteen genes showed consistent pheno-
type across replicates, with 41 showing inconsistent phenotypes.
Statistical analysis (binomial proportion confidence interval,
Pearson–Klopper, 95% CIs for: a 6/10 replicate [5.74, 6.87],
7/10 replicates [6.66, 7.93], 8/10 replicates [7.56, 8.97], 9/10
replicates [8.45, 9.99]) resulted in assigning the most common
phenotype (see Methods and Supplementary Data 2). Overall, our
results agree 97% with Karr et al.18 (Supplementary Data 3).

Minesweeper algorithm and results. The first stage of Mine-
sweeper (Fig. 1) conducts individual protein-coding gene

knockouts (see Initial input section), removing complete/high
essential genes as deletion candidates.

The second stage sorts the singly non-essential genes into
deletion segments (12.5–100% of the remaining genes, resulting
in 26 segments). Deletion segments that can be removed and still
produce a dividing cell are carried forward.

The third stage progresses with the largest deletion segment
that can be removed and produce a dividing cell, which is
matched with other division-producing, non-overlapping deletion
segments. A powerset is generated (i.e. a set containing all
possible unique combinations of the matched deletion segments,
including zero and individual deletion segments) and each of the
deletion combinations is removed from an individual in silico cell
and simulated.

b

a

c

All protein-coding genes No/low essential genes Complete/high essential genes

80%100% 80%90%90%

60%70% 50%60%70% 50%

3 4 8

60% 12.5% 60%

33% 25% 12.5%

12.5% 60% + 12.5%

Powerset

d

Remaining gene

Deleted gene

Reduced genome

Largest deletion combintion
1
2
3
4
5
6
7
8

Combination Combination + 1 Combination + 2

...

Combination + 2,4,7

......

Combination + 3,5–8

...

Combination + 1–8

Powerset

Remaining genes

Update largest deletion combination

Dividing cells = 0

Dividing cells > 0

Individually append remaining genes to largest deletion combination

Reduced remaining genes

Remaining genes < 8
End

End
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Fig. 1 Minesweeper algorithm for genome design. a In silico single-gene knockouts are conducted to identify no/low essential genes (whose knockout

does not prevent cell division). b 26 deletion segments, ranging in size from 100 to 12.5% of the no/low essential genes, are simulated. Grey indicates a

gene deletion, white indicates a remaining gene. Deletion segments that on removal do not prevent division go to the next stage. c The largest deletion

segment is matched with all division-producing, non-overlapping segments. A powerset (all possible unique combinations of this set of matched deletion

segments) is generated and each combination simulated. Combination segments that do not prevent division go to the next stage. d The largest

combination segment determines the remaining no/low essential genes that have not been deleted. These remaining genes are divided into eight groups

(see Methods), a powerset generated for these eight groups, and each member of the powerset individually appended to the current largest deletion

combination and simulated. If none of these simulations on removal produces a dividing cell, the remaining genes are appended as single knockouts to the

current largest deletion combination, removed and simulated. The individual remaining genes that do not produce a dividing cell are temporarily excluded

and a reduced remaining gene list produced. Details of simulations settings are available in the Methods section. Simulation data generated by the

Minesweeper algorithm is available37 (see Data availability section). Powerset*= the complete powerset is not displayed here.
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The fourth stage is cyclical. The largest deletion combination
from the third stage generates a remaining gene list (those yet to
be deleted). The remaining genes are split into eight groups
(see Methods) and a powerset is generated. Each deletion
combination from the powerset is individually appended to the
current largest deletion combination and simulated. The simula-
tion results update the largest deletion combination, which is used
to generate a new remaining gene list, starting the next cycle. If
none of the deletion combinations produce a dividing cell, the
remaining genes are singly appended to the largest deletion
combination, removed and simulated. The individual remaining
genes that do not produce a dividing cell are excluded for a cycle
and a reduced remaining gene list is generated, which is used for
the next cycle.

The fourth stage continues until there are eight or fewer
remaining genes (where a final appended powerset is run) or all
individually appended remaining genes do not produce a dividing
cell. Both outcomes result in a list of deleted genes and identified
low essential genes.

Minesweeper produced results quickly; within two days the
third stage removed 123 genes (a 34% reduction), comparable to
current lab-based efforts in other species3,4,6. In total, Mine-
sweeper deleted 145 genes, creating an in silico M. genitalium cell
containing 256 genes (named Minesweeper_256) and predicting
an in vivo minimal genome of 380 genes. The in silico cell
replicates DNA, produces RNA and protein, grows, and divides.

GAMA algorithm and results. The first and second stages of
GAMA (Guess and Add) are pre-processing stages for the third
stage (Mate), a genetic algorithm. Typically, a genetic algorithm
would start with random gene knockouts, but the pre-processing
stages produce large gene knockouts by exploiting patterns in the
solution-space (Supplementary Data 14), i.e. any set of gene
knockouts is significantly more likely to not produce division if it
knocks out one or more singularly essential genes. Starting with
large knockouts decreases the number of generations to produce
minimal genome size reductions (Fig. 2).

In the first stage, Guess, all the non-essential genes from the
initial input section are segmented into four sets (~40 genes).
Each set is then used to generate ~400 subsets, by randomly
choosing combinations of genes to delete that amount to
50–100% of the genes within the set. These are removed and
simulated. If a cell divides, the deletion subset is labelled “viable”
and carried forward.

During the second stage, Add, “viable” deletion subsets are
randomly selected from two, three or four of the sets. These are
combined into a larger deletion subset. Being able to select a
varied number of sets decreases the chance of only producing
non-dividing cells. Approximately three thousand combined
subsets are created, removed and simulated. Those producing a
dividing cell are ranked. The 50 smallest genomes (i.e. largest
number of deletions) are carried forward.

The third stage, Mate, is cyclical. Each simulation “mates” two
of the 50 smallest in silico genomes at random, and introduces
random gene knockouts and knock-ins from a pool of all protein-
coding genes (including complete and high essential genes). Each
generation conducts 1000 simulations, which are ranked. The
smallest 50 genomes is updated and passed to the next
generation. The Mate step automatically stops after 100
generations, but was manually stopped at 46 generations after
20 generations without producing a smaller genome.

In total, the smallest GAMA-reduced in silico genome deleted
165 genes, creating an in silico M. genitalium genome of 236
genes (named GAMA_236), and predicting an in vivo
minimal genome of 360 genes. GAMA removed more

genes than Minesweeper, while still producing a simulated cell
which replicates DNA, produces RNA and protein, grows, and
divides.

Minesweeper_256, GAMA_236 and GAMA_237 genomes. We
investigated our two minimal genomes for consistency in pro-
ducing a dividing in silico cell, and the range of behaviour they
displayed. We simulated 100 replicates each of an unmodified M.
genitalium in silico genome, Minesweeper_256, GAMA_236, and
a single-gene knockout of a known essential gene (MG_006) to
provide a comparison (Supplementary Data 7). The rate of
division (or lack of in the MG_006 knockout simulations) was
analysed to assign a phenotype penetrance percentage (quanti-
fying how often an expected phenotype occurred). The unmo-
dified M. genitalium and MG_006 knockout in silico genomes
demonstrated consistent phenotypes (99% and 0% divided,
respectively). Minesweeper_256 was slightly less consistent (89%
divided), while GAMA_236 was substantially less consistent,
producing a dividing in silico cell 18% of the time. This is not
entirely unexpected given the presence of gene deletions that have
high essentiality (see below, Supplementary Fig. 1).

We attempted to improve the division rate of GAMA_236 by
conducting independent single knock-ins of its unique deletions
(Supplementary Data 16). We found the highest division rate to
be 33% (100 replicates) due to the reintroduction of a single gene
(MG_270), creating the in silico minimal genome GAMA_237.

MG_270 (lipoate-protein ligase A) modifies MG_272 (Supple-
mentary Note mmc1, pg. 65)18, one of four genes (MG_271–274)
that form the pyruvate dehydrogenase complex. This provides
acetyl-CoA for the Krebs cycle, producing ATP. Reintroducing
MG_270 repairs this complex and increases the available energy
in the in silico cell.

While exploring further deletions for Minesweeper_256,
another individual gene was found that impacted division rate.
MG_104 (ribonuclease R), when deleted additionally, decreased
the division rate to 1/9 of its original value (Supplementary
Data 5). Mycoplasma genitalium has a very small pool of RNAs
(Supplementary Note mmc1, pg. 85)18, relying on ribonucleases
to recycle RNAs for other cellular processes. Without ribonu-
clease R (the only modelled ribonuclease), the RNA decay
submodel cannot function in silico, decreasing the amount of
available RNAs.

The 100 replicates for each of the unmodified M. genitalium
genome, Minesweeper_256, and GAMA_237 were plotted to
assess the range of behaviour (Fig. 3). The unmodified M.
genitalium whole-cell model (Fig. 3, top row) shows the range of
expected behaviour for a dividing cell (in line with previous
results18). Growth, protein production, and cellular mass
increase over time, with the majority of cells dividing within
10 h (see cell diameter change). RNA production fluctuates but
increases over time. DNA replication follows a characteristic
shape, with some simulations delaying the initiation of DNA
replication past ~9 h.

By comparison, Minesweeper_256 (Fig. 3, middle row) displays
slower, and in some cases decreasing, growth over time which is
capped at a lower maximum. Protein and cellular mass are
generated more slowly, lower amounts are produced, and some
erratic behaviour is present. The range of RNA production is
narrower compared with the unmodified M. genitalium whole-
cell model. DNA replication takes longer and initiation can occur
later (at 11 h). Cell division occurs later, between 8 and 13.9 h. A
number of simulations can be seen failing to replicate DNA and
divide.

Compared with the other genomes, GAMA_237 (Fig. 3,
bottom row) shows a much greater range of growth rates. Some
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grow as fast as the unmodified genome, some are comparable to
Minesweeper_256, and some show very low or decreasing growth
(this can also be seen in cellular mass). Observable protein levels
appear between 2 and 5 h, followed by a slower rate of protein
production in some simulations. The range of RNA production is
reduced and the rate of RNA production is slower. Some
simulations replicate DNA at a rate comparable to the
unmodified genome, others replicate more slowly, and some do
not complete DNA replication. Cell division occurs across a
greater range of time (6–13.9 h). A number of simulations
showing metabolic defects can be seen. These do not produce any
growth and can be seen failing to divide.

Genome analysis using gene ontology terms. We investigated
what processes were removed in the creation of Minesweeper_256
using gene ontology (GO) biological process terms (see Methods
and Supplementary Data 9–11), standardised labels that describe
a gene’s function. The baseline M. genitalium whole-cell model
has 259 genes of 401 genes (72% coverage) with GO terms on
UniProt28.

Minesweeper_256 has 186 (73%) genes with GO terms and 70
genes without. The 145 gene deletions reduced 22 (14%) GO
categories, and removed 42 (27%) GO categories entirely, of
which 30 were associated with a single gene (Supplementary
Data 12).

The GO categories reduced include: DNA (repair, replication,
topological change, transcription regulation and initiation);

protein (folding and transport); RNA processing; creation of
lipids; cell cycle; and cell division. As the in silico cells continue to
function, we can assume that these categories could withstand
low-level disruption.

Removed GO categories that involved multiple genes include:
proton transport; host interaction; DNA recombination; protein
secretion and targeting to membrane; and response to oxidative
stress. Removed GO categories that contain single genes include:
transport (carbohydrate, phosphate and protein import, protein
insertion into membrane); protein modification (refolding, repair,
targeting); chromosome (segregation, separation); biosynthesis
(coenzyme A, dTMP, dTTP, lipoprotein); breakdown (deoxyr-
ibonucleotide, deoxyribose, mRNA, protein); regulation (phos-
phate, carbohydrate, and carboxylic acid metabolic processes,
cellular phosphate ion homeostasis); cell–cell adhesion; foreign
DNA cleavage; SOS response; sister chromatid cohesion;
and uracil salvage.

We conducted further analysis, as some of these removals
could be of concern to the longevity of our in silico cell. The GO
term proton transport applies to the genes MG_398–405,
which form ATP synthase, an enzyme that generates ATP
using energy from protons transferring across the cell
membrane. This removes one pathway for producing ATP, but
the minimal genome still contains intact phosphoglycerate kinase
(MG_300) and pyruvate kinase (MG_216) that both produce
ATP as part of glycolysis. In addition, there are 13
reversible reactions that produce ATP in the reverse reaction
(Supplementary Data 17).

Start of generation N of genetic algorithm

Randomly combine

New child genome

Mutation pool

all characterised

protein-coding

genes (359)

Input: non-essential genes

Rank top 50 viable combinations 

that delete the most genes

Randomly select 2 of top 50 viable combinations

End of generation N: rank top 50 viable 

combinations that delete the most genes

Repeat 1000x 

per generation

Repeat until 20x 

generations does 

not produce a 

smaller genome

Combine 2 – 4 viable subsets from sets A – D

c Mate

b Add

a Guess

Random

subsets

Random

subsets

Random

subsets

Random

subsets

Set A Set B Set C Set D

Test genome viability

Parent 1 Parent 2

Fig. 2 GAMA algorithm for genome design. a Only non-essential genes whose knockout does not prevent cell division are deletion candidates and are equally

divided into Sets A–D. Four hundred random deletion subsets are produced and simulated per set, each containing 50–100% of the genes within the set.

Deletion subsets that do not prevent division (“viable”) go to the next stage. b 3000 combinations of deletion subsets are generated and simulated. c This is a

cyclical step. The mutation pool targets a random number of genes for alteration (both knock-ins and knockouts), including essential genes. Simulation data

generated by the GAMA algorithm is available37 (see Data availability section). Details of simulations settings are available in the Methods section.
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The GO term DNA recombination applies to the genes
MG_339, MG_352, MG_358, MG_359, which conduct half of the
steps in homologous recombination double strand break repair.
This process, as well as nucleotide excision repair and base
excision repair are removed from the cell. However, direct
damage reversal (MG_254) and DNA polymerase (MG_001) are
still present. DisA (MG_105), the DNA damage sensor, has
currently been deleted but we believe this is due its model
implementation (Algorithm S6 infers it is not a requirement for
successful repair (Supplementary Note mmc1, pg. 43)18. This may
be an inaccuracy in the model, and with its reintroduction the
minimal genome would contain a functioning DNA repair
process.

The GO term chromosome segregation applies only to
MG_213, where it is listed as its tertiary function. The genes in
the model that actually conduct chromosome segregation
(MG_470, MG_221, MG_387, MG_384, MG_203, MG_204,
MG_224 (Supplementary Note mmc1, pg. 34)18) are all present
in the minimal genome, but do not have an associated GO term.
This underlines the use of caution when using GO terms and the
need for secondary analysis.

The gene deletions in Minesweeper_256 reduce the ability of
the in silico cell to interact with the environment and defend
against external forces. They also cause a reduction in control,
from transport to regulation to genome management, and prune
metabolic processes and metabolites. This leaves the in silico cell
alive, but more vulnerable to external and internal pressures, less
capable of responding to change, and more reliant on internal
processes occurring by chance.

In comparison, GAMA_237 has 163 genes (69% coverage) with
GO terms on UniProt28, with 73 genes with no GO terms. The
165 genes deleted reduced 18 (11%) GO categories, and removed
54 (35%) GO categories, 38 of which were associated with a single
gene (Supplementary Data 13). The gene deletions unique to
GAMA_237 can be seen in Table 1 and Table 2.

One reduced GO category was less affected compared
with Minesweeper_256 (glycerol metabolic process) and one
unaffected GO category was unique to GAMA_237 (phosphate
ion transmembrane transport). Three GO categories were
reduced further in GAMA_237: DNA transcription, DNA
transcription regulation, and transport (ABC transporters, see
Table 1).
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Fig. 3 Behavioural comparison of whole-cell model, Minesweeper_256, and GAMA_237. One hundred in silico replicates, with second-by-second values

plotted for six cellular variables over 13.89 h (the default endtime of the simulations). The top row shows the expected cellular behaviour (previously show

by Karr et al.18) and is used for comparison. Minesweeper_256 and GAMA_237 show deviations in phenotype caused by gene deletions. Non-aggregated

data for each in silico simulation is available37.
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Categories that were removed solely in GAMA_237 include:
DNA transcription (termination, regulation, elongation, anti-
termination, initiation); tRNA (processing, modification);
and rRNA catabolic process.

The GO analysis of GAMA_237, when compared with that of
Minesweeper_256, suggests a further reduction of both internal
control and reactivity to external environment. These reductions
are discussed further below.

Low essential genes. We analysed Minesweeper_256 and
GAMA_237 to determine whether these were different minimal
genomes or GAMA_237 was an extension of Minesweeper_256.
We compared unmodified M. genitalium, Minesweeper_256, and
GAMA_237 genomes (Fig. 4, Supplementary Data 6), which

highlighted gene deletions unique to each minimal genome. We
additionally compared Minesweeper_256 to all of the GAMA in
silico genomes that deleted 145–165 genes (256–236 genes in the
in silico genome). Figure 5 shows the GAMA algorithm’s avenue
of gene reductions converging to a minimal genome, with
Minesweeper_256 not on the same minimisation path.

Our genome comparison found that Minesweeper_256
removed four genes, and GAMA_237 removed five genes
(Table 1), that could not be removed from the other genome
(either individually or as a group) without preventing cellular
division (Supplementary Data 5). An additional gene, MG_305,
could not be removed in either GAMA_237 or Minesweeper_256.
We confirmed that these ten genes were individually non-
essential (Supplementary Data 1), and that nine of the genes
have low essentiality1. To identify the cause of this synthetic

Table 1 Low essential genes from Minesweeper_256 and GAMA_237 genomic contexts.

Gene Annotation Function Removed in Present in

MG_039 Uncharacterised Probable catalyst of redox reactions. GAMA_237 Minesweeper_256

MG_289 p37 High-affinity transport system protein attached to cell

membrane.

GAMA_237 Minesweeper_256

MG_290 p29 Probable ATP-binding cassette (ABC) transporter. GAMA_237 Minesweeper_256

MG_291 p69 Permease (ABC membrane transporter) protein. GAMA_237 Minesweeper_256

MG_427 Unnamed Reduces peroxides, protecting against oxidative stress. GAMA_237 Minesweeper_256

MG_033 glpF Facilitates glycerol across the membrane. Minesweeper_256 GAMA_237

MG_410 pstB Imports phosphate (part of PstSACB ABC complex). Minesweeper_256 GAMA_237

MG_411 pstA Permease protein for phosphate transport system. Minesweeper_256 GAMA_237

MG_412 Uncharacterised Probable phosphate ion binding attached to cell membrane. Minesweeper_256 GAMA_237

MG_305 dnaK Chaperone protein involved in refolding mis/unfolded heat

shock proteins.

M.g* whole-cell model GAMA_237 and

Minesweeper_256

Protein annotation and function obtained from UniProt28, based on Fraser et al.’s Mycoplasma genitalium* G37 genome19.

Table 2 High essential genes from GAMA_237 genomic contexts.

Gene Annotation Function

Transcription-related

MG_022 rpoE DNA-directed RNA polymerase subunit delta. Presence causes increased specificity of transcription, a decreased affinity for

nucleic acids, and enhanced recycling.

MG_141 nusA Transcription termination/antitermination protein. Participates in both.

MG_177 rpoA DNA-directed RNA polymerase subunit alpha. Catalyzes the transcription of DNA into RNA using the four ribonucleoside

triphosphates as substrates.

MG_249 sigA RNA polymerase sigma factor. The primary initiation factor during exponential growth, promoting the attachment of RNA

polymerase to specific sites.

MG_282 greA Transcription elongation factor. Cleaves the fraction of nascent transcripts that get trapped at arresting sites, resuming

elongation and allowing efficient RNA polymerase transcription.

MG_340 rpoC DNA-directed RNA polymerase subunit beta. Catalyzes the transcription of DNA into RNA using the four ribonucleoside

triphosphates as substrates.

MG_341 rpoB Additional part of DNA-directed RNA polymerase subunit beta.

Translation-related

MG_008 mnmE tRNA modification GTPase. Addition of a carboxymethylaminomethyl group to certain tRNAs.

MG_084 tilS tRNA(Ile)-lysidine synthase. Ligates lysine to the AUA codon-specific tRNA, changing the amino acid specificity from

methionine to isoleucine.

MG_182 truA tRNA pseudouridine synthase A. Forms pseudouridine in the anticodon stem and loop of tRNAs.

MG_295 mnmA tRNA-specific 2-thiouridylase. Catalyzes 2-thiolation of uridine in tRNAs.

MG_347 trmB tRNA methyltransferase. Catalyzes the formation of N7-methylguanine in tRNA.

MG_367 rnc Ribonuclease 3. Produces ribosome large and small RNAs (23S and 16S). Processes some mRNAs and tRNAs. Digests double-

stranded RNA. Other rRNA processing genes: MG_110, MG_139, MG_425 also removed in GAMA_237.

MG_372 thiI tRNA sulfurtransferase. Catalyzes the transfer of sulfur to tRNAs to produce 4-thiouridine, and catalyzes the transfer of sulfur

to carrier protein ThiS (a step in the synthesis of thiazole).

MG_379 mnmG Forms a tetramer with MG_008. Addition of a carboxymethylaminomethyl group to certain tRNAs.

MG_445 trmD tRNA methyltransferase. Specifically methylates guanosine−37 in various tRNAs.

MG_465 rnpA Ribonuclease P protein component. Produces mature tRNAs (catalyzes removal of 5’-leader sequence). In addition, it broadens

the substrate specificity of the ribozyme through binding.

Protein annotation and function obtained from UniProt28, based on Fraser et al.’s Mycoplasma genitalium* G37 genome19.
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lethality we attempted to match the functions of the low essential
genes together, anticipating redundant essential gene pairs or
groups.

We found two genes in GAMA_237 (MG_289, MG_291) that
had matching GO terms with the gene MG_411 in Mineswee-
per_256. These, and three other adjacent genes on the genome,
were tested by combinatorial gene knockouts in an unmodified
M. genitalium whole-cell model genome (Supplementary Data 8).
MG_289, MG_290, MG_291 were found to form a functional
group, as were MG_410, MG_411, MG_412. These genes could
be deleted individually and in functional groups from an
otherwise unmodified M. genitalium whole-cell genome, and
produce a dividing in silico cell. However, any double gene

deletion combination that involved one gene from each
functional group resulted in a cell that could not produce RNA,
produce protein, replicate DNA, grow or divide.

M. genitalium only has two external sources of phosphate,
inorganic phosphate and phosphonate. MG_410, MG_411, and
MG_412 transport inorganic phosphate into the cell, and
MG_289, MG_290, and MG_291 transport phosphonate into
the cell (Supplementary Table 227). These phosphate sources
proved to be a key difference between our minimal genomes.
Minesweeper_256 removed the phosphate transport genes,
relying on phosphonate as the sole phosphate source.
GAMA_237 removed the phosphonate transport genes, relying
on inorganic phosphate as the sole phosphate source. This can be
seen in the GO term analysis, the phosphate ion transmembrane
transport is still present in GAMA_237 but not in Mineswee-
per_256 (Supplementary Data 12, 13).

It has previously been theorised that individual bacterial
species will have multiple minimal genomes29,30, with different
gene content depending on the environment (it is predicted that
an additional 500 genes would be required to survive on minimal
media31, see Methods for in silico conditions) and which
evolutionarily redundant cellular pathways were selected during
reduction. We propose that one of these selections is the sourcing
of phosphate, with minimal genomes differing by choice of
phosphate transport genes and associated processing stages,
equivalent to the phn gene cluster in Escherichia coli32. We could
not however find any annotated phosphonate processing genes
that had been subsequently removed in GAMA_237. We suspect
that further “pivot points” (the selection of one redundant cellular
pathway over another during reduction) will be identified in
future in vivo and in silico bacterial reductions, increasing the
number of minimal genomes per bacterial species.

We additionally investigated MG_305, the gene that neither
Minesweeper_256 or GAMA_237 could remove (Table 1,
Supplementary Data 15). Four other genes share the protein
folding GO term, MG_019, MG_201, MG_238, and MG_393.
Three were unmodified in either genome, but MG_393 was
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removed by both Minesweeper_256 and GAMA_237, indicating a
potential redundant essential relationship. However, knocking in
MG_393 and knocking out MG_305 produces a non-dividing
cell, in both GAMA and Minesweeper. We theorise that MG_305
has additional redundant pair relationships that have already
suffered one deletion shared by both GAMA_237 and Mine-
sweeper_256 (which share 141 gene deletions).

High essential genes. Our comparison of the genomes also found
17 genes knocked out in GAMA_237 that have high essentiality1

(Table 2). They were defined as essential by single knockout in an
unmodified M. genitalium whole-cell model, but could be
removed in the genomic context of GAMA_237 without pre-
venting division (Supplementary Data 1, 5). We also found that
four of these 17 genes could be removed as a group in the
genomic context of Minesweeper_256, but doing so greatly
increased the number of non-dividing cells produced (Supple-
mentary Data 5 (col D,S,T)).

These 17 genes can be grouped into either transcription-related
or translation-related functions. The transcription-related genes
produce enzymes required for transcription in the model
(Supplementary Note mmc1, pg. 9318), all of which have been
removed in the GAMA_237 minimal genome. In addition, we
found that the five modelled transcriptional regulators (Supple-
mentary Table S3P col D18) were removed from GAMA_237.
This removes the process of transcription from the in silico cell.

The translation-related genes are involved in the two parts of
the core translation machinery (consisting of ribosome synthesis,
tRNA maturation, and tRNA aminoacylation33), with only tRNA
aminoacylation being conserved in GAMA_237 (Supplementary
Note mmc1, pg. 10418). Nine genes involved in tRNA maturation
are removed (Supplementary Table S3AB18), and a key gene in
ribosome synthesis (MG_367) is deleted (Supplementary Note
mmc1, pg. 8918) from GAMA_237. This effectively removes the
process of translation from the in silico cell.

We theorise that the lower in silico division rate for
GAMA_237 (33%) is due to the cell being reliant on the
biologically feasible random initial conditions (i.e. already present
RNAs and proteins) to survive a single generation. This
underlines a problem with using in silico models in genome
design. To the best of our knowledge, the Mycoplasma genitalium
whole-cell is modelled correctly, including the implementation of
deleting genes (Supplementary Note mmc1, pg. 11718; Simula-
tion.m, lines 194–35034). However, with the complete model only
capable of modelling a single generation, in silico cells that would
not produce a dividing second generation in silico cell (or a
functioning in vivo cell) can divide successfully and appear
functional. Modelling multiple generations is required to allow
the production of in silico genome designs that could reliably
predict in vivo genome function. The E. coli whole-cell model35

(code available, currently in review) models multiple generations,
as should all future whole-cell models.

Discussion
We created two genome design algorithms (Minesweeper and
GAMA) that used computational design-simulate-test cycles to
produce in silico M. genitalium minimal genomes (Mine-
sweeper_256 and GAMA_237, 36% and 41% in silico reductions,
respectively). If biologically correct, our subsequent in vivo
minimal genome predictions are smaller than JCVI-syn3.0 (cur-
rently the smallest genome that can be grown in pure culture at
473 genes2) and smaller than the most recent predictions for a
reduced Mycoplasma genome (413 genes)17. In addition, we
identified 10 low essential genes1, and produced evidence for at
least two minima for M. genitalium in silico.

We believe that single-gene knockout classifications are unre-
liable for genome minimisation, as they fail to take into account
genomic context. Single-gene knockout studies will incorrectly
estimate minimal genome size, as low essential genes will be
scored as non-essential2,16,17 and if high essential genes are pre-
sent they will be scored as essential.

There are limitations to the approach presented here. Models
are not perfect representations of reality. Through necessity, this
model bases some of its parameters on data from other bacteria18,
complete multi-generation simulations are not possible, and M.
genitalium has genes of unknown function that the model cannot
account for. The success of our in silico genomes in vivo is
dependent on the accuracy of the model, which is untested at this
large scale of genetic modification.

Further specific issues have been highlighted, including
the modelling of DisA, and the biologically-infeasible removal of
the high essential genes in silico (an outcome of the model’s single
generation lifespan). We do not have confidence in the in silico
high essential or DisA gene deletions. However, the gene deletions
shared by GAMA_237 and Minesweeper_256 (141 gene dele-
tions) and the deletions responsible for each of the phosphate
“pivot points” are worthy of in vivo testing.

We attempted to gain further insight by using BLAST (tblastn)
to compare the shared deletions to JCVI-Syn3.0 (Supplementary
Data 18). We matched 56% of JCVI-Syn3.0 genes to the Myco-
plasma genitalium whole-cell modelled genes, finding that 73 of
the 141 shared deletions had no BLAST match with JCVI-Syn3.0.
There were 15 deletions in common and 53 deletions not
removed in JCVI-Syn3.0. We conclude that an explicit compar-
ison between the reduced Mycoplasma genomes is difficult and
inconclusive, mainly due to the differences in the considered
species (JCVI-Syn3.0 is a reduction of JCVI-Syn1.0, which is based
on Mycoplasma mycoides).

We believe that our in silico shared deletions could predict a
viable Mycoplasma genitalium minimal cell. Given that the
impact of the unmodelled genes is unknown (e.g. if they perform
a unique essential function with a gene/gene product that has
already been removed the in vivo cell will not survive), until these
predictions are tested experimentally we cannot firmly state how
long our predicted reduced in vivo cells would survive and
replicate, and whether they represent a truly minimal M. geni-
talium genome.

Our algorithms are currently adaptable to in review and future
whole-cell models, as the algorithms interact with the models
only via the input of gene deletion lists and analysing the output.
With future, multi-generational, whole-cell models we will have
greater confidence that our algorithms have produced in silico
genome designs that will be viable in vivo. This includes the E.
coli whole-cell model at the Covert Lab, Stanford35 and the
Mycoplasma pneumoniae whole-cell model at the Karr Lab,
Mount Sinai, New York36.

We believe that a hybrid of computational and lab-based
genome design and construction is now in sight. This could
produce quicker and cheaper laboratory results than currently
possible, opening up this research to broader and inter-
disciplinary research communities. It also expands our research
horizons raising the possibility of building truly designer cells,
with increased efficiency and functional understanding.

Methods
Model availability. The M. genitalium whole-cell model is freely available:
https://github.com/CovertLab/WholeCell. The model requires a single CPU and can
be run with 8 GB of RAM. We run the M. genitalium whole-cell model on Bristol’s
supercomputers using MATLAB R2013b, with the model’s standard settings.

However, we use our own version of the SimulationRunner.m. MGGRunner.m
is designed for use with supercomputers that start hundreds of simulations
simultaneously, artificially incrementing the time-date value for each simulation, as
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this value is subsequently used to create the initial conditions of the simulation.
This incrementation prevents the running of multiple simulations with identical
initial conditions.

Our research copy of the whole-cell model was downloaded 10th January 2017.

Statistics. We used the R binom package (https://www.rdocumentation.org/
packages/binom) to conduct one-tailed binomial proportion confidence intervals on
our 41 genes showing inconsistent results (success ranging from 6 to 9 replicates, out
of a total of 10 replicates). We used binom.confit.exact (Pearson–Klopper) using 95%
CIs, producing 6/10 replicates [0.26, 0.87], 7/10 replicates [0.34, 0.93], 8/10 replicates
[0.44, 0.97], 9/10 replicates [0.55, 0.99]). We graphed these results in R and in Python
using Seaborn (https://seaborn.pydata.org/), the exact values, code, and graphs pro-
duced are available in Supplementary Data 2.

Figure 5 was generated by creating a similarity matrix between all of the 2955
genomes, with the gene information represented in a binary format (present or
absent)37. The matrix calculated a distance metric (1 – (the genes that are the same
between genomes/total number of genes)), with each genome comparison given a
normalised score (0= the genomes were identical, 0.5= as different as would be
expected if each genome was generated randomly, 1= completely different). The
resulting 2955 × 2955 matrix was then reduced to two dimensions with a
standard PCA.

Mycoplasma genitalium in silico environmental conditions. Mycoplasma geni-
talium is grown in vivo on SP4 media. The in silico media composition is based on
the experimentally characterized composition, with additional essential molecules
added (nucleobases, gases, polyamines, vitamins, and ions) in reported amounts to
support in silico cellular growth. In addition, the M. genitalium whole-cell model
represents 10 external stimuli including temperature, several types of radiation, and
three stress conditions. For more information see Supplementary Tables S3F, S3H,
S3R18.

Minesweeper. Minesweeper is written in Python3 and consists of four scripts (one
for each stage). It uses no external libraries, so should be able to be run on any
modern operating system (as they come with Python preinstalled) via a terminal.
Each stage/script requires a text file(s) as input, with each stage outputting simu-
lation files. These are run on a supercomputer and the automatically produced
summary file is used as input for the next stage. Stages one to three are sequential,
with stage four repeating until Minesweeper stops, with progress recorded in the
deletion log in /OUTPUT_final. More detailed information, including instructions
for the demo, is provided in the README (https://github.com/
GriersonMarucciLab). The test data provided with the demo was produced by
completing stages one to four in Minesweeper (producing 2310 in silico minimal
genomes with stage four repeating three times), using the averaged single gene
essentiality data from Supplementary Data 1 (column F).

The first stage of Minesweeper is optional, i.e. if you already have single-gene
knockout simulation results, you can proceed to the second stage. The second stage
creates 26 deletion segments: 100%, 90%A, 90%B, 80%A, 80%B, 70%A, 70%B, 60%
A, 60%B, 50%A, 50%B, 33%A–C, 25%A–D, 12.5%A–H. The A segments start from
the top of the list of genes, whereas the B segments start from the bottom of the
gene list. The third stage progresses with the three largest deletion segments that
produced a dividing cell, these three variants are referred to as red, yellow, blue.
These perform as replicates and as a check on if the results are converging. The
three variants are matched with smaller, dividing, non-overlapping segments using
a list of allowed matches (implementation is detailed in third stage script), and
unique combinations generated using a Python implementation of powersets. The
fourth stage splits the remaining genes into eight groups. The reason for selecting
eight groups and three variants is that a set of eight produces 256 unique
combinations. Three variants each with 256 simulations (768 total) represents 85%
of the capacity of BlueGem. A set of nine groups with three variants
(1536 simulations total) is 170% the capacity of BlueGem. Queueing systems mean
that you do not require this number of CPUs in total, but the execution time is
multiplied as you wait for the simulations to process. The number of variants and
groups can be lowered or increased depending on the number of CPUs available.
To do so, make changes to the calculations and list generation in the
eightPanelGroupingsGeneration function in the fourth script.

GAMA. GAMA is written in Python3 and relies on a variety of different packages.
These dependencies can be easily taken care of by installing it from PyPI using
either ‘pip install genome_design_suite’ or ‘conda install genome_design_suite’ (it
is recommended that you do this from within a virtual environment since this is
pre-alpha and has not been extensively tested with different versions of all the
libraries). A dependencies list is available in the main directory of the github
repository (https://github.com/GriersonMarucciLab) if you would like to do this
manually. The main dependency is the ‘genome_design_suite’26 which is a suite of
tools that we created at the University of Bristol which enables it to be easily run on
different (or even multiple) clusters and allows automatic data processing and
database management. Due to the large amount of data produced by the whole-cell
model, the simulation output data was reduced to essential data, converted into
Pandas DataFrames (https://pandas.pydata.org/) and saved in Pickle files. GAMA

would have produced 100 s of TBs of data in the model’s native output format
(compressed Matlab files) which we are not able to store so this was an essential
step. In order to run this code you must have a computer dedicated to remotely
manage the simulations. A PC with a quad-core Intel(R) Xeon(R) CPU E5410
(2.33 GHz) and 1GB of RAM running CentOS−6.6 was used as our computer
manager, which is referred to as OC2. GAMA was run on OC2 using the scripts
contained in gama_management.zip. Each stage of GAMA was run individually
and manually updated as it was in proof-of-concept stage when GAMA_236 was
found. ko.db is an SQLite3 database used to stored key information about simu-
lations like cell average growth rate and division time.

The guess stage splits the singularly non-essential genes in roughly equally sized
partitions. The four files, focus_on_NE_split_[1–4].py, run the exploration of each
of the four partitions of the guess stage from OC2, after unzipping
gama_management.zip these can be found in gama/guess. The submission scripts
and other files automatically created to run the simulations on the cluster can be
found in gama_run_files.zip→ gama_run_files/guess. The simulation output is
saved in Pickle files and can be found in gama_data/guess.
viability_of_ne_focus_sets_pickles.zip contains the viability data of these
simulations and the Python script used to collect it.

The add stage was executed on OC2 by running the files in gama_management.
zip→ gama/add. The submission scripts and other files automatically created to
run the simulations on the cluster can be found in gama_run_files.zip→
gama_run_files/add. The simulation output can be found in gama_data/add and an
overview of the simulation results can be found in ko.db where the
batchDescription.name is some derivative of ‘mix_ne_focus_split’.

The mate stage was executed on OC2 by running the file in gama_management.
zip→ gama/mate. The submission scripts and other files automatically created to
run the simulations on the cluster can be found in gama_run_files.zip→
gama_run_files/mate. The simulation output can be found in gama_data/mate and
an overview of the simulation results can be found in ko.db where
batchDescription.name is some derivative of ‘big_mix_of_split_mixes’.

Equipment. We used the University of Bristol Advanced Computing Research
Centres’s BlueGem, a 900-core supercomputer, which uses the Slurm queuing
system, to run whole-cell model simulations. GAMA also used BlueCrystal, a 3568-
core supercomputer, which uses the PBS queuing system.

We used a standard office desktop computer, with 8 GB of RAM, to write new
code, interact with the supercomputer, and run single whole-cell model
simulations. We used the following GUI software on Windows/Linux Cent OS:
Notepad++ for code editing, Putty (ssh software)/the terminal to access the
supercomputer, and FileZilla (ftp software) to move files in bulk to and from the
supercomputer. The command line software we used included VIM for code
editing, and SSH, Rsync and Bash for communication and file transfer with the
supercomputers.

Data format. The majority of output files are state-NNN.mat files, which are logs
of the simulation split into 100-s segments. The data within a state-NNN.mat file
are organised into 16 cell variables, each containing a number of sub-variables.
These are typically arranged as 3-dimensional matrices or time series, which are
flattened to conduct analysis. The other file types contain summaries of data
spanning the simulation.

Data analysis process. The raw data are automatically processed as the simulation
ends. runGraphs.m carries out the initial analysis, while compareGraphs.m over-
lays the output on collated graphs of 200 unmodified M. genitalium simulations.
Both outputs are saved as MATLAB .fig and .pdfs, though the .fig files were the sole
files analysed. The raw .mat files were stored in case further investigation was
required.

To classify our data we chose to use the phenotype classification previously
outlined by Karr (Fig. 6b18), which graphed five variables to determine the
simulated cells’ phenotype. However, the script responsible for producing Fig. 6b,
SingleGeneDeletions.m, was not easy to modify. This led us to develop our own
analysis script recreating the classification: runGraphs.m graphs growth, protein
weight, RNA weight, DNA replication, cell division, and records several
experimental details. There are seven possible phenotypes caused by knocking out
genes in the simulation: (i) non-essential if producing a dividing cell, (ii) slow
growing if producing a dividing cell slowly; and essential if producing a non-
dividing cell because of a (iii) DNA replication mutation, (iv) RNA production
mutation, (v) protein production mutation, (vi) metabolic mutation, or (vii)
division mutation.

For the single-gene knockout simulations produced in initial input section, the
non-essential simulations were automatically classified and the essential
simulations flagged. Each simulation was investigated manually and given a
phenotype using the decision tree (Supplementary Data 4).

For in silico experiments conducted using Minesweeper and GAMA,
simulations were automatically classified solely by division, which can be analysed
from cell width or the end time of the simulation.

Further analysis, including: cross-comparison of single-gene knockout
simulations, comparison to Karr et al.’s18 results, analysis of Minesweeper and
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GAMA genomes (genetic content and similarity, behavioural analysis, phenotypic
penetrance, gene ontology), and identification and investigation of high and low
essentiality genes and groupings, were completed manually. The GO term analysis
of gene deletion impacts was processed by a created script (https://github.com/
GriersonMarucciLab), then organised into tables of GO terms that were classified
as unaffected, reduced, or removed entirely.

Modelling scripts, process and simulations. Generally, there are six scripts we
used to run the whole-cell model. Three are the experimental files created with each
new experiment (the bash script, gene list, experiment list), and three are stored
within the whole-cell model and are updated only upon improvement
(MGGrunner.m, runGraphs.m and compareGraphs.m). The bash script is a list of
commands for the supercomputer(s) to carry out. Each new bash script is created
from the TemplateScript.sh template, which determines how many simulations to
run, where to store the output, which analysis to run, and where to store the results
of the analysis. The gene list is a text file containing rows of gene codes (in the
format ‘MG_XXX’). Each row corresponds to a single simulation and determines
which genes that simulation should knockout.

The experiment list is a text file containing rows of simulation names. Each row
corresponds to a single simulation and determines where the simulation output
and results of the analysis are stored.

In brief, to manually run the whole-cell model: a new bash script, gene list, and
experiment list are created on the desktop computer to answer an experimental
question. The supercomputer is accessed on the desktop via ftp software, where the
new experimental files are uploaded, the planned output folders are created, and
MGGRunner.m, runGraphs.m, compareGraphs.m files are confirmed to be
present. The supercomputer is then accessed on the desktop via ssh software, where
the new bash script is made executable and added to the supercomputer’s queuing
system to be executed. Once the experiment is complete, the supercomputer is
accessed on the desktop via ssh software, where the results of the analysis are
moved to /pdf and /fig folders. These folders are accessed on the desktop via ftp
software, where the results of the analysis are downloaded. More detailed
instructions are contained within the template bash script.

Each wild-type simulation consists of 300 files requiring 0.3 GB. Each gene
manipulated simulation can consist of up to 500 files requiring between 0.4 and 0.9
GB. Each simulation takes 5–12 h to complete in real time, 7–13.89 h in
simulated time.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The databases used to design our in silico experiments, and compare our results to, includes

Karr et al.18 and Glass et al.27 Supplementary Tables, and Fraser et al. M. genitalium G37

genome19 interpreted by KEGG38 and UniProt28 as strain ATCC 33530/NCTC 10195. The

initial input and all of the Minesweeper genome simulations completed (raw and

transformed output) consist of 4.2 TB of data, and are available from the corresponding

author upon reasonable request. All of the GAMA genome simulations transformed output

data (ko.db), the binary genome data used to produce Fig. 5, the output .fig files for all

simulations referenced in the Supplementary Data (including Minesweeper simulations) are

available from our group’s Research Data Repository (data-bris) at the University of Bristol,

with the identifier37 https://doi.org/10.5523/bris.1jj0fszzrx9qf2ldcz654qp454. The authors

declare that all other data supporting the findings of this study are available within the paper

and its supplementary information files.

Code availability
The code used for this research is openly available on Github (https://github.com/

GriersonMarucciLab) This includes the code for Minesweeper and GAMA genome

design tools, scripts for statistical analysis, scripts for analysing GO terms, our custom

simulation runner, analysis scripts, a template bash script, as well as the bash scripts and

text files used to generate the simulations in this paper.
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