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Abstract—While FPGA-based hardware accelerators have re-
peatedly been demonstrated as a viable option, their pro-
grammability remains a major barrier to their wider acceptance
by application code developers. These platforms are typically
programmed in a low level hardware description language, a skill
not common among application developers and a process that is
often tedious and error-prone. Programming FPGAs from high
level languages would provide easier integration with software
systems as well as open up hardware accelerators to a wider
spectrum of application developers.

In this paper, we present a major revision to the Riverside
Optimizing Compiler for Configurable Circuits (ROCCC) de-
signed to create hardware accelerators from C programs. Novel
additions to ROCCC include (1) intuitive modular bottom-up
design of circuits from C, and (2) separation of code generation
from specific FPGA platforms. The additions we make do not
introduce any new syntax to the C code and maintain the
high level optimizations from the ROCCC system that generate
efficient code. The modular code we support functions identically
as software or hardware. Additionally, we enable user control of
hardware optimizations such as systolic array generation and
temporal common subexpression elimination.

We evaluate the quality of the ROCCC 2.0 tool by comparing
it to hand-written VHDL code. We show comparable clock
frequencies and a 18% higher throughput. The productivity
advantages of ROCCC 2.0 is evaluated using the metrics of
lines of code and programming time showing an average of 15x
improvement over hand-written VHDL.

Keywords-FPGAs, C-to-VHDL, Compilers, High Level Synthe-
sis

I. INTRODUCTION

Field programmable gate array (FPGA) based hardware
accelerators are a viable option available to designers looking
to improve performance of large software systems. The high
performance computing domain contains many applications
that take days or weeks to run and can benefit from a hardware
implementation, including molecular dynamics simulations,
genetic string matching, and XML query matching. While
a custom hardware implementation will provide the most
benefit, this approach is very expensive and time-intensive and
not cost effective for most designers.

A wide variety of platforms incorporating both micropro-
cessors and FPGAs are now available. The main difficulty
of using FPGAs as hardware accelerators is in the program-
ming of the configurable hardware. Hardware is commonly
programmed with low level hardware description languages
such as VHDL and Verilog. These languages require low-level

knowledge such as complete timing information and can be
tedious and error-prone to program in. Software application
designers are typically unfamiliar with the requirements of
a hardware design and have difficulty utilizing the hardware
optimally.

As an alternative to hardware description languages, a wide
assortment of high level languages have been developed to
target FPGA-accelerators. Most of these high level languages
(HLLs) are variants of C, as C is the most common language
used in coding these applications. HLLs that generate hard-
ware enable easier integration with existing software systems
as well as open up hardware utilization to software designers
who have no hardware design experience.

The standard approach taken in languages such as Impulse-
C [21] and Handel-C [2] is to add explicit constructs that
specify parallelism and timing to the C language in order
to create hardware. An alternative, taken in toolsets such as
Catapult-C [4] and Dime-C [14], is to target specific platforms
and optimize strict subsets of C to take advantage of specific
hardware.

In this paper, we introduce a compiler toolset, ROCCC
2.0, that takes a subset of C without the addition of explicit
parallelism constructs and produces efficient hardware accel-
erators that are competitive with handwritten code and are not
restricted to a particular platform. ROCCC 2.0 introduces a
new way to generate circuits from high level languages that
supports a modular bottom-up construction while maintaining
top-down optimizations. This approach allows for an inte-
grated reusability of compiled code as well as interchangeable
software and hardware.

ROCCC 2.0 is an open source compiler built upon the
SUIF [7] and LLVM [8] infrastructures and is available
from http://roccc.cs.ucr.edu. The toolset is a continuation of
the Riverside Optimizing Compiler for Configurable Circuits
(ROCCC) [18] project.

The rest of this paper is organized as follows: Section
2 describes the original state of the ROCCC compiler as
well as the problems that are alleviated by ROCCC 2.0.
Section 3 describes the ROCCC 2.0 compiler additions, the
interface abstractions that decouples the code generation from
the specifics of a particular FPGA platform and the bottom-up
creation process supported by the ROCCC 2.0 compiler and
gives examples of using the ROCCC 2.0 compiler to create
modular hardware accelerators. Section 4 compares several
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examples with equivalent hand-written VHDL code. Section
5 discusses related work and we conclude in Section 6.

II. THE ROCCC 1.0 COMPILER

The Riverside Optimizing Compiler for Configurable Cir-
cuits (ROCCC) [18] is an open source compiler that accepts a
strict subset of C and generates VHDL for use on FPGAs as
hardware application accelerators. ROCCC was not designed
to create hardware for entire applications, but instead focuses
on the critical regions of large software systems. The critical
regions typically consist of a loop nest performing extensive
computation on large amounts of data.

ROCCC 1.0’s design goals were to maximize throughput,
minimize memory accesses, and minimize the size of the
generated circuit. ROCCC does this by compiling code that
leverages the strengths of FPGA hardware while restricting the
type of code that is inefficient on FPGAs. Namely, ROCCC
code takes advantage of the extensive amount of parallelism
available on FPGAs and the ability to implement large com-
putational pipelines on streams of data while attempting to
minimize off-chip memory fetches and control flow, which
are better handled on microprocessors.

The circuit generated by ROCCC is a decoupled architecture
where the memory accesses have been separated from the
data path. The data path consists of many unrolled loop
bodies performing as much computation in parallel as possible
each clock cycle given the area and bandwidth limitations
of a specific platform. Data to feed the pipeline is fetched
independently by a memory controller and pushed onto the
data path when enough data is ready. After a set number of
clock cycles, the data flows into output memory. The data path
generated contains no control flow other than predication and
the output is always generated after N clock cycles where N
is the pipeline depth.

In generating the VHDL, the ROCCC compiler uses an
intermediate format called CIRRF (Compiler Intermediate
Representation for Reconfigurable Fabrics)[17]. CIRRF has
two distinct representations, referred to as Hi-CIRRF and Lo-
CIRRF. Hi-CIRRF is created after high level optimizations
such as loop unrolling, constant propagation, and loop tiling
are performed and consists mainly of C code with extra macros
for identified hardware constructs. Lo-CIRRF is a low level
representation of the code as a data flow graph with assembly
like instructions and hardware components as the nodes in the
graph. The Lo-CIRRF is mainly an internal representation that
corresponds closely to the VHDL output by ROCCC.

The toolsets used in the ROCCC 1.0 compiler are the SUIF
compiler [7] and the Machine-SUIF extension [3] to handle
the Lo-CIRRF transformations. Both SUIF and Machine-SUIF
are no longer supported and require older versions of common
libraries in order to function correctly.

As shown in [23], generating hardware accelerators with
ROCCC 1.0 for real software systems revealed several issues.
In many cases, the ideal hardware algorithm is significantly
different from the optimal software algorithm. High per-
formance computing applications are tuned to get the best

performance out of a sequential processor and do not port well
to hardware as written. Additionally, compiler optimizations
for software sometimes undermine the advantages hardware
can utilize [22].

In designing hardware accelerators, it is advantageous to
start out with an optimal hardware design in mind and have
the software compile into that design. In order to do this, it
was found that both applications and the compiler must be
completely rewritten in order to generate the optimal design
for hardware. A strict translation of the software system into
hardware does not take advantage of the streaming nature of
FPGAs and although functionally correct does not provide the
speedup that was desired. Software applications are written
with the assumption of a large memory hierarchy and must
be algorithmically modified to support streaming. Creating a
hardware accelerator that provided a speedup on an application
required a complete tuning of both the application and the
compiler to perform the proper optimizations to transform the
algorithm into the appropriate hardware on a specific platform.

Additionally, each optimization in ROCCC 1.0 took the
target platform into account. As different platforms were sup-
ported, the code base and complexity expanded exponentially.
Unlike software compilation, taking the platforms into account
resulted in completely different optimization flows. Compiling
for one system might require a different order of optimizations
and a different scope to each optimization. The complexity
built into the compiler to support many platforms quickly
became unmanageable, even if the underlying optimizations
were the same.

While taking the platform into account can often produce
better code, applying a standard set of optimizations targeting
hardware and allowing the user to fine tune the optimizations
for a specific platform can provide equivalent hardware. Addi-
tionally, user knowledge should be used to guide compilation
when tradeoffs such as space versus throughput have to be
decided and should not be decided by the compiler.

III. THE ROCCC 2.0 COMPILER

In order to address the issues faced by the original version
of ROCCC, we have developed the ROCCC 2.0 compiler.
Using the ROCCC compiler as a base, we have addressed the
problem that specific hardware could not be generated without
a complete overhaul of both application and compiler while
maintaining the strengths, namely the extensive optimizations
that produced efficient parallelized pipelines from C. We do
this by supporting a new model in the ROCCC 2.0 compiler
based upon modularity and reusability.

Since the SUIF platform is no longer supported, a major
task in the creation of the ROCCC 2.0 compiler was rewriting
ROCCC to work with a more modern compiler framework.
We chose to implement the ROCCC 2.0 compiler using the
Low Level Virtual Machine (LLVM) framework [8], which
is currently being maintained and supported as well as being
used by several major companies.

ROCCC 2.0 keeps the same design goals of maximizing
throughput, minimizing memory accesses, and minimizing
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the size of the generated circuit. As such, even though the
generated code undergoes optimizations to reduce the size,
no resource sharing is performed. The generated code prefers
duplicated resources to increase performance. In the ideal case,
the memory bandwidth of the circuit is saturated and the
generated code will produce an entire loop iteration’s worth
of data every clock cycle, utilizing every generated component
every clock cycle.

The ROCCC 2.0 compiler generates VHDL for two types
of C code which we refer to as modules and systems.

One of the most critical features of a design environment is
the ability to reuse sections of code. The ROCCC 2.0 compiler
is built around the concept of reuse through the creation and
integration of modules. Modules are concrete hardware blocks
that have a known number of inputs and outputs, some internal
computation, and a known delay. Modules written in C can
be reused as both software functions or hardware functions
and integrated directly into larger designs. Once compiled to
VHDL, modules are available for integration in larger code
through standard C function calls.

Information on all modules available to the compiler is
stored in a standard database accessible via SQL queries. The
database is implemented in SQLite3 [6] and allows users to
see what cores are available in an external design environment.
The database also allows designers to enter their own cores
they might have access to, such as previously purchased IP
cores or netlists. The designer needs to specify the interfaces,
delay, and name of each externally added module. All the cores
in the database are available to be integrated into pipelines
created by the ROCCC 2.0 compiler.

System code refers to critical loops of applications that
perform computations on large streams of data or windows in
memory. System code can contain loops and reference memory
through array accesses. Data reuse between consecutive iter-
ations of the loop is detected and used to minimize memory
fetches, with the necessary data elements being stored in a
smart buffer [16]. If there is no data reuse, FIFOs are generated
to fetch and store data. System code is very similar to the
type of code supported by ROCCC 1.0 with the addition of
modules.

Floating point operations and integer division are supported
in the C code. The hardware support for these operations
can come from a variety of known library components, as
long as they are placed in the database of modules. In the
experiments we ran, support for floating point operations and
integer division came from cores generated by Xilinx Core
Generator [10]. The specifics of delay and inputs/outputs were
manually added to the database and exported to the ROCCC
2.0 compiler.

The ROCCC 2.0 compiler addresses the issue of platform
tuning by removing the details of the platform from the com-
piler internals. Instead of generating code specific to a plat-
form, the ROCCC 2.0 compiler creates circuits that interface to
streams or memories through a platform interface abstraction
layer. To compensate for the loss of the platform details, we
give the user complete control over which optimizations are

performed, what order, and the scope of each optimization.
This control allows for the generation of circuits tuned to
device specifics, such as unrolling to fill memory bandwidth
and controlling the amount of computation per pipeline stage
to control clock speed.

A. Platform Interface Abstraction Layer
Module code generated by the ROCCC 2.0 compiler is

meant to be used either in other module code or in system
code, and as such is simply a VHDL component with a
variable number of inputs, outputs, and a set delay. System
code is the only generated code that deals with reading and
writing large amounts of external data. As such, system code
needs to communicate with the world outside of the generated
hardware. The ROCCC 2.0 compiler does not have any built
in information regarding the specifics of the platform the
generated code will run on. Instead, we generate hooks to
communicate with the outside world as either a stream or as a
memory. For every array used in the original C code, a hook
is generated in the VHDL.

Streams are data busses that act as FIFOs, with the assump-
tion that no data elements are read more than once. System
code can handle reading N words per clock cycle from a single
stream where N is a configurable amount the user specifies
based upon the width of the actual stream on the platform
being connected to.

Memory interfaces are generated when we must read a
window of data that is noncontiguous, and an internal address
generator is created as necessary. We treat memories as being
word addressable, where the word size is determined by the
size of the elements of the array in the original C. Again,
ROCCC 2.0 can handle reading a configurable amount of
words per clock cycle but can stall as necessary until data
is available.

The number of outgoing memory requests is again config-
urable by the user. The addresses are generated independently
of the data we receive, although we do require that the data is
received in the order requested. This allows data to stream
in at the maximum allowed rate without the overhead of
handshaking if the platform allows it.

With both memory interfaces and stream interfaces, internal
data reuse is handled through the creation of a smart buffer
[16]. The smart buffer stores data that is used across loop
iterations, allowing for the minimal amount of data to be read
between activations of the data path. For example, if the data
path requires nine elements from a three-by-three window as
in the Max Filter System example, the smart buffer would
store six elements and fetch three for consecutive data path
invocations instead of fetching nine elements for consecutive
data path invocations. This exists to minimize the number of
memory fetches.

The ROCCC 2.0 compiler also supports the creation of
channels between hardware systems. At a higher level, in
the development environment, system code can be marked
as receiving or sending data over channels, which in turn
are translated into buffered FIFOs. These FIFOs are mapped

129



over some communication scheme and allow multi-FPGA
communication.

The actual porting of generated code onto a platform is left
to designers. As a proof of correctness, we have created two
interfaces to both a high end system (the SGI Altix 4700 with
RASC blade) [5] and a low end system (the Xilinx Virtex 5
ML507 board) [9].

In both cases, some VHDL glue logic is required as well as
C code to replace the critical region with a call to hardware in
the original application. The VHDL glue logic maps the hooks
generated by the abstraction layer to actual components on the
platform, namely the stream interfaces on the SGI-RASC and
the PLB bus on the ML507 board. The C code is responsible
for identifying arrays as input and output to the hardware and
transferring this memory to and from the hardware accelerator.
The time and complexity of this glue logic is dependent on
the system being targeted, and may be automated for each
platform. The glue logic will consist mainly of connections
between the ROCCC platform interface and actual physical
components on the system and small FSMs to handle buffering
and timing issues.

B. Modular Design in C
Modules are defined using an interface/implementation di-

chotomy. Much like VHDL’s entity/architecture pairing, a
module is described with a struct that lists all of the inputs
and outputs to the module. The inputs are identified by adding
the suffix ” in” to the name of the variable while outputs are
similarly identified using the suffix ” out.”

The implementation is done as a function that takes an
instance of this struct and returns an instance of this struct.
All reads from input elements of this struct translate into reads
from input ports in the generated hardware component and all
writes to output elements of the struct become writes to output
ports in the generated hardware component. Modules must
contain only minimal control flow. Limited if statements are
supported but loop constructs are not supported in modules.

Figure 1 shows an example of a module in C for the
ROCCC 2.0 compiler. The module shown is an FFT module
that takes three complex numbers and computes four outputs.
The example shows integers as the inputs but floats and other
concrete types are supported as well. Each output needs to
have one assignment. Variables can be declared in the function
as shown but are not visible outside the generated VHDL. The
function for the implementation must return the same struct
that is passed in. Enforcing this structure enables the code to
work in C as well as be translated into hardware. A call to
this function in the form ”f = FFT(f);” will perform the same
task in software as the hardware module.

Every module compiled with the ROCCC 2.0 compiler is
exported for reuse in other ROCCC 2.0 codes. The appropriate
information is placed in a header file as well as the database
of cores. The exporting of a module creates a function that
can be called from C to reference the hardware block that
does not take a struct but instead takes individual variables
that correspond to the modules inputs and outputs. Other C

// Interface
typedef struct
{
  int realOne_in ;
  int imagOne_in ;
  int realTwo_in ;
  int imagTwo_in ;
  int realOmega_in ;
  int imagOmega_in ;

  int A0_out ;
  int A1_out ;
  int A2_out ;
  int A3_out ;
} FFT_t ;

// Implementation
FFT_t FFT(FFT_t f)
{
  int tmp1 ;
  int tmp2 ;

  tmp1 = f.realOmega_in * f.realTwo_in ;
  tmp2 = f.imagOmega_in * f.imagTwo_in ;
  
  f.A0_out = f.realOne_in + tmp1 - tmp2 ;
  // The other outputs computations go here...
  return f ;
}

Recognized as inputs
 to the module}

} Recognized as outputs
 to the module

} Internal registers

Fig. 1. An FFT module example

#include “roccc-library.h”

typedef struct
{
  int input0_in ;
  // Other inputs

  int tmp0_out ;
  // Other outputs
} FFTOneStage_t ;

FFTOneStage_t FFTOneStage(FFTOneStage_t t)
{
  FFT(t.input0_in,
      t.omega0_in,
      t.input16_in,
      t.omega1_in,
      t.input17_in,
      t.input1_in,
      t.temp0_out,
      t.temp1_out,
      t.temp2_out,
      t.temp3_out) ;

  // Others ...

  return t ;
}

Instantiation of module

Fig. 2. Calling the FFT module
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#include “roccc-library.h”

void firSystem()
{
  int A[100] ;
  int B[100] ;

  int i ;
  int endValue ;
  int myTmp ;

  for(i = 0 ; i < endValue ; ++i)
  {
    // Data reuse is detected in
    //  loops by the compiler
    FIR(A[i], A[i+1], A[i+2], 
        A[i+3], A[i+4], myTmp) ;
    B[i] = myTmp ;
  }
}

Identified as input
and output streams}

Actual value passed
 to the hardware 

at runtime

Module instantiation
can be duplicated if

loop is unrolled

Fig. 3. System code for an FIR filter

code can make connections from their variables to the module
inputs and outputs by calling this function.

Figure 2 shows an example module calling the FFT module
from Figure 1. Invoking a module is done by calling the
function corresponding to the module, located in the compiler
maintained file ”roccc-library.h.” The inputs and outputs must
be passed into the function in the order they were declared
in the struct in the original module code. This struct is also
listed in the ”roccc-library.h” file. As shown in Figure 2, the
inputs and outputs to the internal module may be mapped
to the inputs and outputs of the containing module, although
this is not necessary. In this example, the module is called
with the inputs in this specific order to perform the FFT
butterfly operation in hardware. When written in software, the
butterfly operation requires shuffling large amounts of data
between memory locations and passing arrays to functions. In
hardware, these operations become wires, and those simple
connections are reflected in the C code in Figure 2. The code
shuffles the data through the values we associate with the
internal modules and the butterfly operation is created.

System code must contain a loop of computation which may
contain instantiations of modules. In system code, streams of
data are represented by arrays and array accesses. Figure 3
shows an example system that performs the finite impulse
response filter on a stream of data and generates an output
stream. Modules inside of loops may be replicated if the
compiler determines there are no data dependencies.

The complete design in both C code and generated hard-
ware for the butterfly FFT is shown in Figure 4. The entire
application accelerator is built from the bottom up as modules
are written and included in larger modules and systems. At
the bottom level, the FFT module from Figure 1 is compiled
and exported by the ROCCC 2.0 compiler. Another module,
FFTOneStage shown in Figure 2, uses multiple instances of the
FFT module to perform one stage of the butterfly operation.
At the topmost level, system code is written that instantiates
several FFTOneStage modules and connects them in to an
input stream and an output stream using arrays in the C code.

The final structure of the generated hardware then consists
of modules connected by wires in a criss-crossing pattern to
perform the butterfly operation and has the input coming from
a stream and the output flowing into a stream.

Note that, as mentioned above, a module can be imported as
C or VHDL code or as a netlist. Importing a C module exposes
its code to the ROCCC 2.0 compiler, by function inlining, and
enables the optimizations to be carried out at the C code level.
When a module is imported in VHDL it is treated as a black
box by the ROCCC 2.0 compiler; however, its code is exposed
to the synthesis tool. When a module is imported as a netlist
its structure is preserved resulting in exact area and timing
behavior.

C. Hardware Optimizations

Compiling C code for hardware enables the ROCCC com-
piler to perform several optimizations that produce better
hardware but would not improve performance if the code
was targeting a standard CPU. These hardware optimizations
include systolic array generation and temporal common subex-
pression elimination.

1) Systolic Array Generation: Wavefront algorithms are
typically coded in C as a nested for loop that iterates
over a two-dimensional array. This construct is inefficient if
converted directly into hardware and requires large memory
allocations and transfers.

The ROCCC 1.0 compiler supported the generation of
systolic arrays for wavefront algorithms as described in [12].
The set of transformations that enables the systolic array
generation has been preserved and enhanced for ROCCC 2.0.
Systolic array generation now may work with modules. Also,
some steps that were previously left to the developer are now
automated, including the transformation of a two-dimensional
array with feedback into a streaming one dimensional array as
input and a streaming one dimensional array as output.

2) Temporal Common Subexpression Elimination: Tempo-
ral Common Subexpression Elimination was introduced in [19]
for the SA-C language. The optimization is much like common
subexpression elimination, except the compiler looks across
loop iterations to find computations that will be recomputed.

Support for temporal common subexpression elimination
has been added to ROCCC 2.0. Commonalities across loop
iterations are removed and replaced with feedback registers,
reducing the amount of hardware generated. Additionally,
module instantiations may be determined to be redundant
across loop iterations and removed, greatly simplifying the
generated hardware.

Temporal common subexpression elimination reduces the
size of the hardware, but may change the clock rate resulting
in less throughput, so this optimization is not performed unless
the user specifies.

IV. EXPERIMENTAL EVALUATION

We compiled several examples with the ROCCC 2.0 com-
piler and verified the generated circuits. These generated
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// Interface
typedef struct
{
  int realOne_in ;
  int imagOne_in ;
  int realTwo_in ;
  int imagTwo_in ;
  int realOmega_in ;
  int imagOmega_in ;

  int A0_out ;
  int A1_out ;
  int A2_out ;
  int A3_out ;
} FFT_t ;

// Implementation
FFT_t FFT(FFT_t f)
{
  int tmp1 ;
  int tmp2 ;

  tmp1 = f.realOmega_in * f.realTwo_in ;
  tmp2 = f.imagOmega_in * f.imagTwo_in ;
  
  f.A0_out = f.realOne_in + tmp1 - tmp2 ;
  // The other outputs computations go here...
  return f ;
}

#include “roccc-library.h”

FFTOneStage_t FFTOneStage
(FFTOneStage_t t)
{
  FFT(t.input0_in,
      t.omega0_in,
      t.input16_in,
      t.omega1_in,
      t.input17_in,
      t.input1_in,
      t.temp0_out,
      t.temp1_out,
      t.temp2_out,
      t.temp3_out) ;

  // Others ...

  return t ;
}

#include “roccc-library.h”

void FullFFT()
{
  int A[100] ;
  int B[100] ;
  int i ;
  int internalWire1 ;
  // ...

  for (i = 0 ; i < 100 ; i+=4)
  {
    FFTOneStage(A[i], A[i+1],

            A[i+2], A[i+2],
        internalWire1,
        ...) ;

    // ...
    FFTOneStage(internalWire8,
                B[i], B[i+1], 
                B[i+2], B[i+3]);
  }
}

Memory Interface

(C)

(B)

(A)

Memory Interface

Fig. 4. Structure of generated system code of the butterfly FFT using modules. (A) is the FFT module that performs the base computation. (B) is the module
for one stage in the butterfly that instantiates multiple FFT modules. (C) is the system code that instantiates multiple stages and connects the inputs and
outputs to streams.

circuits were then synthesized with Synplify Pro and placed
and routed for an LX330 Virtex 5 FPGA.

The ten examples are a mixture of module and system code
and reflect the additions we made to the compiler and the
overall modular approach we are taking. The examples are:

• Complex multiplier: a module that performs the multipli-
cation of two complex numbers with both an imaginary
and a real component. The multiplication is done using
three integer multiplications and four additions.

• FIR: a module that performs a single five-TAP filter on
five numbers and generates a single output.

• FIR-System: a system that uses the FIR module to
perform the filter on a window of five elements over a
stream of data. The FIR-System example creates a stream
interface and communicates with the outside world using
a FIFO.

• Max Filter: a module that determines the maximum of
three elements.

• Histogram: a module that starts out empty and picks up
a valid value from a stream of data. The module then
counts how many times that value is seen in the entire
stream. When pipelined N times, the Histogram module
can be used to determine the number of times N distinct
variables appear in a stream of data.

• FFT: a module that computes the Fourier transform be-
tween two complex numbers and a complex omega. The

module performs the base multiplications and additions
of the FFT.

• FFTComplete: a module that pieces together 24 FFT
modules into a complete butterfly circuit.

• MD: a module which performs the core calculations
to determine the Coulombic force in three dimensions
performed between two atoms at each time step in a
molecular dynamics simulation.

• CompleteMD: a module which uses the MD module
to calculate the Coulombic forces in three dimensions
and also calculates the VanDerWaal energy between
two atoms at each time step in a molecular dynamics
simulation.

• SmithWaterman: system code which calculates a wave-
front algorithm on a two dimensional array. This example
works on 2 and 8-bit numbers and is transformed into a
systolic array implementation by ROCCC 2.0 There are a
total of 36 8-bit cells in the systolic array implementation
after compilation.

The examples were written in C, compiled with ROCCC
2.0 and then synthesized into VHDL. The examples were also
written directly in VHDL by hand, mimicking the function-
ality of the C code. While the handwritten VHDL did not
necessarily follow the same structure as the generated VHDL,
the functionality was identical and effort was made to produce
high quality VHDL.
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Fig. 5. Clock frequencies (MHz) of hand-written VHDL examples (blue)
and ROCCC 2.0 generated examples (red)
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Fig. 6. Throughput (in millions of data elements per second) of ROCCC
2.0-generated and handwritten VHDL examples

Figure 5 shows the difference in the speed between the
handwritten VHDL and the ROCCC 2.0 compiler generated
VHDL in MHz. The circuits generated by the ROCCC 2.0
compiler are 6% faster than the corresponding handwritten
VHDL on average. Taking the geometric mean to remove
outliers, the speed of the generated circuit is on average 98%
of the handwritten speed.

Figure 6 shows the maximum achievable throughput of each
example in both the handwritten circuit and generated circuit.
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Fig. 7. Lines of C code (blue) and hand-written VHDL code (red).

This is calculated by assuming maximum memory saturation
and determining how many clock cycles it takes before the
circuit can generate data in the steady state (after the pipeline
has been filled). The average throughput of the generated
VHDL is 18% higher than the handwritten throughput. Using
the geometric mean to eliminate outliers influence, we see that
the throughput of the generated circuit is 6.98% higher than
the handwritten circuits.

The sizes of the generated circuits created in terms of num-
ber of slices used is on average 1.53x more than the number
of slices used in the handwritten VHDL. This size difference
is due, in part, to the structure and optimizations done by
ROCCC 2.0 to guarantee a higher throughput. The size of
generated VHDL is expected to be an order of magnitude
greater than handwritten code, and ours is much less while
matching the throughput and clock speed of the handwritten
code.

Figure 7 shows the difference in size of the examples, based
off of lines of C and lines of VHDL. For each example, the
amount of handwritten VHDL written is on average 4 times
more than the amount of C.

The number of lines of generated VHDL is on average
2.65 times more than handwritten VHDL code. This bloat is
partially due to assumptions made about the synthesis tool we
made when designing the ROCCC 2.0 compiler. In some cases,
extraneous VHDL is generated knowing that the synthesis tool
will detect and optimize that code away to ease the process
of code generation.

Furthermore, writing the small amount of C took on average
under 5 minutes per example and the generated VHDL was
functional without any modifications. Coding of the VHDL
took on average 45 minutes per example and contained 1-2
errors that needed to be found before working correctly. These
errors occurred during both simulation and post-simulation
synthesis, causing additional time to re-synthesize. On aver-
age, each hand-written example took 75 minutes to produce
a correct code. This is a factor of 15X in programming
productivity.

In order to determine the effectiveness of the temporal
common subexpression elimination (TCSE) optimization we
compared the size of the generated circuit for a Max Filter
System example before and after applying TCSE. The Max
Filter System example uses four instances of the Max filter to
determine the maximum value in a three-by-three 2D window.

Before applying TCSE, the amount of hardware generated
was 851 slices. After applying TCSE, two modules were
detected as redundant and removed resulting in 643 slices,
or 75% of the original hardware while maintaining the same
functionality.

V. RELATED WORK

The C2R Compiler [13] creates Verilog from C code
annotated with compiler directives that describe the desired
architecture and parallelism. The process of creating hardware
accelerators from C2R, covered in [11], requires adding ex-
plicit statements to handle concurrency and manual application
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of loop unrolling to enable better pipelining. The ROCCC 2.0
compiler system requires no annotations to the C source in
order to generate efficient pipelined hardware.

Impulse Accelerated Technologies produces the ImpulseC
programming language [21], which is the commercialization of
StreamsC [15]. Impulse concentrates on developing platform
support packages to compile ImpulseC to different hardware
platforms. ImpulseC requires defining C-level parallel pro-
cesses and the communication channels between them. The
details of the communication protocols specific to each plat-
form are abstracted away using the Communicating Sequential
Processes (CSP) model. ImpulseC requires minimal extensions
to the C language in the form of new data types, including
stream data types and predefined functions.

Handel-C, developed by Celoxica [2], has C-like syntax but
very different semantics from C. Handel-C code is structured
as sequential code with explicit parallel constructs such as
channel communication and parallel sections. Keywords have
been added the the C syntax and Handel-C code requires a
cycle accurate description at the C level in order to generate
hardware.

Catapult C, designed by Mentor Graphics [4], is a subset
of C++ with no extensions. The code that can be compiled
from Catapult C may be very general and may result in
many different hardware implementations with vastly different
timing and resource constraints. The Catapult C environment
takes constraints and platform details in order to generate a set
of Pareto-optimal implementations from which the user much
choose. The ROCCC 2.0 compiler has removed the intricacy
of the platform details and allows user control to generate the
hardware they want.

The Dime-C language, created by Nallatech [14], is a subset
of C that has several unique optimizations specific to certain
platforms. The optimizations are enabled and supported by the
underlying hardware platform also developed by Nallatech and
not portable to other systems.

GAUT is high level synthesis tool dedicated to DSP ap-
plications [1]. The GAUT tool converts a C function into
a pipelined architecture consisting of a processing unit, a
memory unit, and a communication unit. The ROCCC 2.0
compiler creates as many memory interfaces as necessary
while not specializing in DSP-based computation.

VI. CONCLUSIONS

In this paper we have introduced a new C to VHDL
compilation tool that supports a novel way to create circuits
from C. It allows the user to define self-contained modules that
can be re-used by being imported into other modules or system
codes. A module can be imported as C code, VHDL code
or a netlist allowing pre-existing IP cores to be imported as
modules. The creation and importing of hardware modules in
C is done without the addition of explicit commands to C and
allows software designers to generate hardware accelerators
without the low level details inherent in hardware descrip-
tion languages. The ROCCC 2.0 compiler creates efficient
pipelined circuits using these modules as well as integrating

external IP into the same pipeline. We have shown that the
circuits generated by the ROCCC 2.0 compiler are competitive
with handwritten VHDL code in clock frequency and show at
a productivity increase of 15x.
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