UNIVERSITY OF WESTMINSTER

gRabh -

vvyy

WestminsterResearch
http://www.wmin.ac.uk/westminsterresearch

Designing multiplier blocks with low logic depth.

Andrew Dempster
Suleyman Demirsoy
lzzet Kale

Cavendish School of Computer Science

Copyright © [2002] IEEE. Reprinted from IEEE ISCAS International Symposium on
Circuits and Systems, pp. 773-776.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch.
(http://www.wmin.ac.uk/westminsterresearch).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

0-7803-7448-7/02/$17.00 ©2002 IEEE

Designing Multiplier Blocks with Low Logic Depth

A G Dempster, S S Dimirsoy, | Kale
University of Westminster, 115 New Cavendish St, London W1W 6UW
Tel: +44 20 7911 5891, Fax: +44 20 7580 4319, email: dempsta@cmsa.wmin.ac.uk

Abstract - The depth of logic in an integrated
circuit, particularly a CMOS circuit, is highly
correlated both with power consumption and
degraded switching speed. Hence, designs with low
logic depth can aid in reducing power consumption
and increasing switching speed. In this paper we
demonstrate how new and modified algorithms have
been used to design multiplier blocks with low logic
depth and power consumption.

1.0 INTRODUCTION
1.1 Background

Low-power circuit techniques are becoming ever
more important. Power consumption of a node in a
synchronous CMOS circuit can be estimated using:

P

‘switching =aCLVdfi clk)
where Py,cning is the power consumption due to
switching, .o is the probability of aOto 1 or 1 to 0
transition in a clock period, C, is the load
capacitance, ¥, is the supply voltage and f; is the
switching clock frequency. Reducing the logic
depth of a circuit will reduce the length of paths via
which: glitches can propagate, thereby reducing a.
Our early results show that logic depth is a useful
high-level indicator of relative power consumption,
i.e. of two:structures, the one with the higher logic
- depth generally has higher power consumption [1].

Multiplier - blocks are structures made up of
connected two-input adders, configured to produce
products.of an input multiplicand and one or more
coefficients. They are highly efficient replacements
for dedicated multipliers, where fixed-point
constant coefficients are required. Multiplier block
algorithins:[2]-[5] have always aimed at minimising
the number of adders required to perform one [3][4]
or more: [2][5] multiplications of a single
multiplicand. The latter is useful in FIR filtering,
IIR filters [6][7] and filter banks [8]. All these
algorithms exploit redundancy in the shift-and-add
multiplication process. The output of the algorithms
is a graph with vertices representing adders and
edges representing shifts. The output of any adder is
labelled with an odd integer (called a fundamental)
which represents the (possibly partial) product at

that point in the graph. The cost was conventionally
measured only in “adders” (which also includes
subtractors) as shifts can be performed by wiring
and are thus “free”. In general fewer components
implies lower power, but this is not always the case
[9]. Long paths in the network can allow glitches to
propagate via many adders , i.e. structures having
high logic depth consume more power.

We present here some of the key results of a survey
of multiplier block design algorithms [10].

Figure 1 Multiplier blocks producing multipliers
3, 5 and 7 using three adders: a) logic depth 1, b)
logic depth 3. The only fundamentals in both
graphs are 3,5, and 7.

2.0 MINIMUM-DEPTH GRAPHS

When processing a set of coefficients, a series of
decisions as to how to connect new adders into the
graph are made which are critical to the eventual
logic depth. We use the set (3, 5, 7) to illustrate
these “connection decisions”. We start by creating
{3 =2 + 1} (or possibly {3 =4 - 1}), a graph of
logic depth 1. With 3 already in the graph, we either
synthesise 5 as {5 =3 + 2 = say (2+1) + 2}, which
has logic depth 2, or {5 =4 + 1} which has depth 1.
Similarly, adding 7 to the graph could be achieved
as {7 =542} or {7 = 2*5 - 3}, with depth 2 or 3,
{7=3+4} or {7=2%3 +1}, with depth 2, and {7 =
8 - 1}, with depth 1. Minimum-depth decisions lead
to a depth-1 graph; maximum-depth decisions lead
to a depth-3 graph, as shown in Figure 1. The
poorly-performing example in [9] had logic depth 2
for these three coefficients. Note that all of the
above combinations are optimal in terms of fewest
(3) adders. Processing a set of fundamentals in the
order they were added to the graph by a design
algorithm, using minimum-depth decisions we call
Minimum-Depth Processing (MDP).

V773

3.0 SINGLE-COEFFICENT ALGORITHMS

We tested three existing algorithms: MAG [3], an
exhaustive search of graph topologies, BHM [5],
derived from the Bull and Horrocks algorithm [2]
and BERN [4], based on Bernstein’s algorithm [11].

We "also defined a new algorithm, the MAGL
algorithm, which makes use of MDP:

i) Use the outputs of the exhaustive MAG
algorithm, i.e. the table containing the adder costs
the table containing all fundamentals that can be
used to synthesise each coefficient.

ii) For each candidate graph, use MDP and
evaluate its logic depth.

iii) Select all graphs of minimum depth.

iv) From these, select the graph with the lowest
sum of fundamentals (thereby reducing data
wordlength which should also help reduce power)

Whereas MAG produced a set of graphs for each
coefficient, MAGL selects a particular graph.

s

8- MAGL

-A&- BHM

<+~ MAG: arbitrary .
-0~ BERN o T

at

251

average logic depth

wordlength

Figure 2 The logic depth for single multipliers
designed by the MAGL, BHM and BERN
algorithms (averaged over all coefficients of a
given wordlength). Also shown is a
representative arbitrarily (equiprobable)
selected from all possible MAG graphs.

Figure 2 compares the four algorithms. MAG is
represented by an arbitrary (equiprobable) selection
from its set of possible graphs. MAGL always
performs best graph. BHM performs very well.
Interestingly, the arbitrary MAG choice performs
badly. This is because shallow graphs are rare, €.g.
of the 7 cost-3 graph topologies, only one has depth
2 (see Figure 3). Graph 7 in Figure 3 has lower
depth because it makes use of parallelism, or a tree
structure [12]. BERN never uses parallelism, which
is why it performs poorly.

For wordlengths longer than 12 bits, MAG and
MAGL camnot be used, due to computational

limitations. For wordlengths up to 32 bits, BHM
was found to perform very well and produces
designs with low logic depth [10].

AN A

A AN A
< -

Figure 3 The seven three-adder graph topologies
for single multipliers. Graphs 1-6 have logic
depth 3; graph 7 has logic depth 2 [3].

4.0 MULTIPLE-COEFFICIENT
ALGORITHMS

4.1 Short Wordlengths

When designing multiplier blocks to replace several
coefficient multipliers, the algorithms that produce
designs with fewest adders are RAG-n [5] for short
wordlengths (it is limited by its use of the MAG
tables) and BHM [5] for long wordlengths.

Results (dotted lines) in Figure 4 show that for
between 10 and 40 coefficients, BHM is superior to
RAG-n. For more than 30 coefficients, the logic
depth of RAG-n decreases as set size increases, due
to the RAG-n “cost-1 problem”. RAG-n initially
places into the graph any cost-1 coefficients (i.e. 3,
5, 7, 9, 15, 17 etc.). If one of the required
coefficients is cost-1, the algorithm is more likely to
complete the design without resorting to heuristics.
As the probability of a cost-1 in the set increases,
the resulting graph is more likely to be optimal (i.e.
it has fewest possible adders) [5]. As set size
increases, the likelihood of a cost-1 coefficient (and
hence optimality) increases, as also shown in Figure
4. This has an effect on logic depth also because
there seems to be a close relationship with the
decline in logic depth and the incidence of
optimality.

For both RAG-n and BHM, the resulting graphs
were fed back into the original algorithms, i.e. both
algorithms were applied twice (solid lines in Figure
4). The reasoning for this is that when building up a
difficult graph, both algorithms will add cost-1

fundamentals that are not in the original coefficient

set. Both algorithms process cost-1 coefficients first
and placing cost-1 fundamentals in the graph early
tends to produce graphs with shorter depth. The
peak in logic depth for RAG-n is much reduced,

V-774

because there are now guaranteed cost-1
coefficients to work with., However, as the
likelihood of optimality increases (the set size is
increased), the benefit of running the algorithm
twice diminishes. In general, RAG-n performs
better when run twice than any other algorithm.

100

average logic depth
M
g

peccentage optimal RAG-n graphs

[A . 0
[} 10 20 a0 40 50 60 70 80 90 100

number of coefficients

Figure 4 Logic depth for sets of up to 100 12-bit
coefficients, averaged over 50 sets at each set
size. RAG-n and BHM are both applied to the
original coefficient set and then a second time to
the resulting fundamentals. The bold line,
against the right axis, shows the percentage of
RAG-n graphs known to be optimal.

So RAG-n remains a superior algorithm to BHM,
but only if the following procedure is followed:

i) design the muitiplier block using RAG-n

ii) re-design the graph using RAG-n applied to the
fundamentals of the first graph

4.2 Long Wordlengths

The experiment illustrated in Figure 5 examines the
performance of BHM with respect to MDP,
arbitrary decision making, and maximum-depth
decisions. We can see that BHM does not design
minimum-depth graphs, but they are better than if
purely arbitrary decisions were made.

4.3 The C1 Algorithm

Having established that cost-1 fundamentals help
reduce logic depth, we designed the C1 algorithm:

i) Use RAG-n (or BHM for long wordlengths) to
design a multiplier block, using all the required
coefficients plus all cost-1 coefficients up to twice
the value of the maximum coefficient. The logic
depth of this graph is the “target depth”

ii) Eliminate from this graph all cost-1 coefficients
not used to create any of the required coefficients.
We now have a “useful” set of cost-1 coefficients.
The cost of this graph is the “current cost”

iii) For each coefficient in the useful set, starting
with the largest (i.e. least likely to be useful), test if
RAG-n can design a graph without that coefficient,
costing one less than the current cost but not
increasing logic depth. If so, eliminate it from the
useful set. Decrement the current cost and try the
next coefficient.

The algorithm is quite computationally intensive.

average logic depth
o

~©~ minimum depth
~£3- arbitrary

-A— maximum depth J
1 g

0 5 10 15 20 25
wordlength

Figure 5 Comparison of average logic depth for
50 sets of 10 coefficients of different
wordlengths. BHM is compared with post-
processing the BHM fundamentals producing
minimum- and maximum-depth graphs, and
making arbitrary choices.

An experiment comparing C1 with RAG-n and
RAG-n run twice is shown in Figure 6. Again,
applying RAG-n twice produces shallower graphs,
but C1 is better. A small average adder cost penalty
(2.5% for 12-bit coefficients) is incurred by C1.

4.4 An Example FIR Filter

An arbitrary FIR filter specification (Remez, with
normalised f, = 0.25, f; = 0.3, equal ripples in pass-
and stop-bands, order 24) gave “floored” 12-bit
coefficients {-710, 327, 505, 582, 398, -35, -499, -
662, -266, 699, 1943, 2987, 3395, 2987, 1943, 699,
-266, -662, -499, -35, 398, 582, 505, 327, -710}.
Results are in Table 1. BHM produces a shallower
result than RAG-n in this example, despite using
more adders. Reapplying the algorithms doesn’t
help. Applying the C1 algorithm, although costing
one more adder than RAG-n, drastically reduces the
logic depth.

Each design was synthesised using Leonardo for a
Xilinx Virtex 300 BG432-4 and simulated using
Modelsim back-annotated simulation with 1 ps
precision. Arithmetic was 2’s complement and the
input was 512 uniformly distributed inputs in (-128,
127). Transition counts are also shown in Table 1.

V-1775

The simulations support the idea that logic depth is
a good indicator of power consumption. RAG-n
designed the filter with highest power consumption,
despite having fewest adders. As expected, Cl
designed the best (most power efficient) filter.

average logic depth

] 9 10 1 12
wordlength

Figure 6 Average logic depth for short
wordlengths over 50 sets of 25 coefficients:
comparing the C1 algorithm with RAG-n
applied once and twice. RAG-n results are
identical to RAG-n

Design | Adder | Logic | Transitions
Cost Depth

RAG-n 18 9 1766134

BHM 20 5() | 1037407

RAG-nx2 | 18 9

BHMx2 |20 5(5)

Cl 19 4 944440

Table 1 Adder cost, logic depth and transition
count for the example filter multiplier block for
RAG-n and BHM, applied once and twice, and
C1. For BHM, the result of MDP is shown in
brackets.

6.0 CONCLUSION

We introduce the following methods which we have
shown to reduce logic depth in muitiplier blocks:

i) Minimum-depth processing of a set of
fundamentals,

i) The MAGL algorithm which selects
the shallowest of the possible MAG
graphs,

iif) Applying RAG-n, then re-applying it
to the fundamentals produced by the
first application, and

iv) The C1 algorithm.

Logic depth is shown to be a good measure of
power consumption, better than adder cost, and C1
is shown to design an efficient filter.

7.0 REFERENCES

[1] S S Demirsoy, A G Dempster and 1 Kale,
“Transition analysis in multiplier-block based FIR
filter structures”, submitted to ICECS2000

[2] D R Bull and D H Horrocks, “Primitive operator
digital filters”, IEE Proceedings G, vol 138, no 3,

pp401-412, Jun 1991

[31 A G Dempster and M D Macleod, “Constant
integer multiplication using minimum adders”, IEE
Proceedings - Circuits, Devices and Systems, vol
141, no 5, pp407-413, Oct 1994

[4] A G Dempster and M D Macleod, “General
algorithms for reduced-adder integer multiplier

design”, Electronics Letters, vol 31, no 21, pp1800-
1802, Oct 1995

[5] A G Dempster and M D Macleod, “Use of
minimum-adder multiplier blocks in FIR digital
filters” IEEE Trans Circuits and Systems II, vol 42,
no 9, pp569-577, September 1995

[6] A G Dempster and M D Macleod, “IIR Digital
Filter Design Using Minimum-adder Multiplier
Blocks”, IEEE Trans Circuits & Systems II - Digital
& Analog Signal Processing, vol. 45, no. 6, pp.
761-763, June 1998.

[77 A G Dempster, “The Cost of Limit-Cycle
Elimination in IIR Digital Filters Using Multiplier
Blocks™, Proc. ISCAS97, vol 4, pp 2204-2207, June
1997

[8] A G Dempster and N P Murphy, “Efficient
Interpolators and Filter Banks using Multiplier
Blocks”, IEEE Trans Signal Processing, vol 48 no
1, pp 257-261, Jan 2000

[9] David H Horrocks and Yodchai Wongsuwan,
“Reduced Complexity Primitive Operator FIR
Filters for Low Power Dissipation”, Proc ECCTD
’99, Stresa, Italy, pp273-276, 1999

[10] A G Dempster, “Algorithms for Reducing
Logic Depth in Muitiplier Blocks”, submitted to
IEEE Trans C&S I1

[11] Robert Bernstein, “Multiplication by Integer
Constants”, Software-Practice and Experience, vol
16, no 7, pp641-652, Jul 1986

[12] N G Kingsbury, “High-speed binary
multiplier”, Electronics Letters, vol 7 no 10, pp
277-278, 1971

V-776

