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Abstract

Designing and deploying a network protocol determines the rules by which end users interact
with each other and with the network. We consider the problem of designing a protocol to
optimize the equilibrium behavior of a network with selfish users. We consider network cost-
sharing games, where the set of Nash equilibria depends fundamentally on the choice of an edge
cost-sharing protocol. Previous research focused on the Shapley protocol, in which the cost of
each edge is shared equally among its users.

We systematically study the design of optimal cost-sharing protocols for undirected and
directed graphs, single-sink and multicommodity networks, and different measures of the ineffi-
ciency of equilibria. Our primary technical tool is a precise characterization of the cost-sharing
protocols that only induce network games with pure-strategy Nash equilibria. We use this char-
acterization to prove, among other results, that the Shapley protocol is optimal in directed
graphs, and that simple priority protocols are essentially optimal in undirected graphs.

1 Introduction

Most modern-day networks dear to computer science—from the Internet, to the Web, to peer-to-
peer and social networks—are created and used by a vast number of autonomous individuals with
diverse objectives. Research in the design and analysis of algorithms has responded in kind, with
an increasing focus on optimization in networks with self-interested designers or users.

How do we model and analyze selfish behavior in networks? One important genre of problems
posits that some aspect of network resource allocation—such as the routing of traffic, the balancing
of jobs across machines, the division of bandwidth, or the available network infrastructure—is at
least partially controlled by self-interested network users, rather than by the network designer or
manager. Almost all work in this area studies applications in which resource allocation is completely
controlled by selfish network users. The most common goal in these settings is to quantify the
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magnitude of suboptimality that is inevitably caused by selfish resource allocation. This goal is
analytic, not algorithmic. One well-studied approximation measure used for this purpose is the price
of anarchy (POA)—the ratio between the objective function values of a worst Nash equilibrium
and that of an optimal solution.

But inefficiency measures like the POA are flexible enough to inform a broader question: how
should we design networks and their protocols to minimize the efficiency loss caused by selfish
behavior? A measure of inefficiency provides a comparative framework for rigorously answering
this question—given a set of feasible solutions, the “optimal solution” is the one with the smallest-
possible worst-case efficiency loss. This approach adopts inefficiency measures like the POA as
objective functions to be minimized in novel network optimization problems. The optimal objective
function value quantifies the unavoidable loss in solution quality caused by selfish behavior, given
the design constraints of the problem.

1.1 Network Cost-Sharing Games

The question of how to design networks and network protocols to minimize the inefficiency of
their equilibria can (and should) be asked in a range of models. In this paper, we focus on the
conceptually simple but mathematically rich network cost-sharing games introduced by Anshelevich
et al. [2, 3].

A Shapley network design game [2] is defined as follows. The game transpires in a graph, directed
or undirected, with fixed edge costs; these might represent the cost of installing infrastructure
between two vertices, or the cost of leasing a large amount of bandwidth on an existing link.
Each player i is associated with a source-sink pair (si, ti) and chooses an si-ti path Pi to establish
connectivity. Given a choice by each player, the network H = ∪iPi is formed at cost

∑

e∈H ce. The
global objective function is to minimize this cost.

A key assumption in Shapley network design games is that the cost of the network formed is
passed on to the players by sharing the cost of each edge e ∈ H equally among the players that
use it.1 We assume that each player chooses a path to minimize the sum of its cost shares. Every
such game admits at least one pure-strategy Nash equilibrium—a choice of a path for each player
so that no player can strictly decrease its cost via a unilateral deviation [2]. Crucially, the design
decision of how to share the network cost determines the incentive structure and hence the Nash
equilibria of the network design game, but it does not affect the global optimization problem of
connecting all players at minimum cost.

The inefficiency of equilibria in Shapley network design games is largely understood. The
POA can be as large as the number k of players, even in a network of two parallel edges [3].
Better bounds can be obtained by restricting attention to a subset of all Nash equilibria (see also
Section 2.2). Considering only the Nash equilibria reachable via best-response dynamics from
the empty solution, as in [9, 10], the worst-case ratio — which we call the reachable POA —
drops to polylogarithmic in k in single-sink undirected networks [9]. Unfortunately, the reachable
POA remains polynomial in k in directed networks and multicommodity undirected networks (Seffi
Naor, personal communication, May 2007). Considering only the best Nash equilibrium (the price
of stability (POS)), as in [2, 3], the worst-case ratio in directed graphs is precisely the kth Harmonic

1This method of sharing the cost of a single edge e is the same as the Shapley value of the corresponding cooperative
game, where the players S are the users of the edge and the characteristic function is v(∅) = 0 and v(T ) = ce for
all ∅ 6= T ⊆ S.
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number Hk =
∑k

i=1 1/i ≈ ln k [2].2

These lower bounds on the performance of the Shapley protocol motivate an obvious question:
can we design a better cost-sharing protocol?

1.2 Our Results: Uniform Protocols

Which cost-sharing protocol minimizes the inefficiency of equilibria in network cost-sharing games?
To answer this question, we must precisely define a protocol design space. Formulating such a
design space requires a number of modeling choices that are inevitably subject to debate. Our
basic model is characterized by the four requirements listed below and is defined more formally
in Section 2. Naturally, a case can be made for or against each of these; the most obvious pros
and cons of and alternatives to these requirements are discussed in Section 1.4, while Section 1.3
summarizes our results for alternative design spaces.

(1) Budget-balance: In each network design game induced by the cost-sharing protocol and in
every outcome of the game, the cost of each edge in the formed network is fully passed on to
its users.

(2) Stability: In each network design game induced by the cost-sharing protocol, there is at least
one (pure-strategy) Nash equilibrium.

(3) Separability: In each network design game induced by the cost-sharing protocol, the cost
shares of each edge are completely determined by the set of players that use it.

(4) Uniformity: Across all network design games induced by the cost-sharing protocol, the cost
shares of an edge (for each potential set of users) depend only on the edge cost, and not on
the network itself.

The first two constraints are self-explanatory. The third constraint insists that the cost shares of
an edge in a given outcome depend only on the users of that edge, and are independent of which
players use the other edges. The fourth constraint ensures that the cost shares of an edge are
not tailored to a particular network. The Shapley protocol satisfies all four constraints: the cost
shares of an edge depend only on its cost and its number of users, and are independent of all other
properties of the network and the outcome. We call protocols satisfying (1)–(4) uniform.

Our main technical result is a complete characterization of linear uniform protocols — uniform
protocols with cost shares that are a linear function of the edge cost (as in the Shapley protocol).
The difficulty of this result stems from the complex stability requirement (2). More precisely, we
prove a one-to-one correspondence between such protocols and “direct products” of certain weighted
potential functions. Potential functions are a standard sufficient condition for the existence of
pure-strategy Nash equilibria [47, 54], but many games with pure equilibria admit no potential
function. The content of our characterization result is that the only way to obtain pure-strategy
Nash equilibria via a cost-sharing protocol across all possible networks is via a generalized potential
function approach.

We leverage our characterization of linear uniform protocols to identify optimal (not necessarily
linear) uniform protocols in both undirected and directed graphs. In undirected networks, it is easy

2The worst-case POS of Shapley cost-sharing in undirected graphs is at most Hk, but its exact value is unknown [2,
16] and could be O(1).
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to show that simple priority-based uniform protocols dramatically decrease the POA relative to the
Shapley protocol — from polynomial in k to polylogarithmic in k. We prove a complementary
logarithmic lower bound on the best-possible POA, which applies even in single-sink networks,
demonstrating that priority-based protocols are essentially optimal in undirected networks. The
proof idea is to use our characterization of uniform protocols to associate “weights” with the
players, and then exhibit a (weight-dependent) family of networks for which the protocol induces
games with large POA.

Our characterization quickly resolves the optimal uniform protocol design problem for directed
graphs: for all of the measures of inefficiency we consider, the Shapley protocol is optimal. Thus
the Shapley protocol, typically motivated by its simplicity and fairness properties, is equally well
justified on efficiency grounds in directed graphs — fairness arises “for free” when optimizing for
performance.

1.3 Our Results: Extensions

We also study optimal protocol design for the more powerful class of non-uniform protocols—
those that satisfy only requirements (1)–(3). More formally, while a uniform protocol is defined
as a mapping from every possible edge cost and player set to cost shares for these players, a non-
uniform protocol is a mapping from edge costs, player sets, and networks to cost shares for the
players. As we will see in Example 2.7 and thereafter, a simple but powerful way to leverage
non-uniformity is to order the players according to some static property of the network, such as
shortest-path distances.

For non-uniform protocols, we cannot rely on our characterization theorem and instead establish
lower bounds via explicit constructions. For single-sink undirected networks, we show matching
upper and lower bounds of 2 on the best-possible POA. For multicommodity networks, we prove
a (nearly tight) logarithmic lower bound on the best-possible POA via a novel graph construc-
tion. This construction has several additional implications, most notably an information-theoretic
Ω(

√
log k) lower bound for oblivious network design [20, 24] in k-commodity networks.

In directed graphs, we show that even non-uniform protocols do not admit non-trivial positive
results for the POA or reachable POA, and thus focus on minimizing the POS. We show that a POS
of 1 is always achievable in single-sink networks and is not always achievable in multicommodity
networks. Unlike all of the other settings we study, there remains a non-trivial gap between our
best upper and lower bounds in the latter case.

Table 1 summarizes our quantitative results for minimizing the POA and POS. Our upper
bounds on the POA trivially carry over to the reachable POA. Minor modifications of our proofs
extend most of our lower bounds on the POA to the reachable POA as well.

Finally, we generalize our results to a model that includes an “outside option” for each player,
which allows it to opt out of the game at some fixed opportunity cost.

1.4 Discussion

We next discuss the four requirements (1)–(4) in detail. While our protocol design space is nat-
ural and leads to non-trivial problems and interesting results, we freely admit that there may be
alternative, equally interesting design spaces to explore.

Budget-balance (1) is, of course, the raison d’être of a cost-sharing protocol and is the least
contentious. It could be interesting to consider some version of approximate budget-balance; we
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Network Measure Uniform Non-Uniform

U-SS POA Θ(log k) 2
U-MC POA Θ(polylog(k)) Θ(polylog(k))
D-SS POS Hk 1
D-MC POS Hk [3/2,Hk]
D-SS POA k k

Table 1: Summary of results. Quantities denote the smallest-possible worst-case inefficiency of
equilibria, for the given class of networks, approximation measure, and class of cost-sharing proto-
cols. The abbreviations “U”, “D”, “SS”, and “MC” stand for undirected, directed, single-sink, and
multicommodity networks, respectively. The Hk upper bound in directed networks follows from [2].

leave this challenging direction open for future research.
For the stability constraint (2), one line of criticism would argue that it is too strong: by Nash’s

theorem [50], every protocol always induces a game that has at least one mixed-strategy Nash
equilibrium, by which we can measure the protocol’s performance. However, the mixed-strategy
Nash equilibrium is a notoriously problematic solution concept (see e.g. [52, §3.2]), and is adopted
primarily when there is no alternative, in games that possess no pure-strategy Nash equilibria.
When designing the game being played, as in protocol design, there is due cause for avoiding mixed-
strategy Nash equilibria. (A similar argument applies for the “sink equilibria” of [21].) Analogously,
algorithmic mechanism design [51] is a field that designs games (largely auctions) that have good
equilibria, and almost all work in the area has sought games with dominant-strategy (pure) Nash
equilibria, a much stronger requirement than stability (2). A second parallel is provided by work
in the networking community on the BGP interdomain routing protocol [53], which can be viewed
naturally as a game (e.g. [15, 19, 23, 44, 62]) — while mixed-strategy Nash equilibria always exist
in the induced path selection game, research has focused entirely on the existence of pure-strategy
Nash equilibria.

One could also criticize the stability constraint (2) for being too weak: pure-strategy equilibria
should not only exist, but also be easy to find. Arguably the most natural strengthening of (2)
is to insist that best-response dynamics always converges to a pure-strategy Nash equilibrium
from an arbitrary initial state. (This has also been the focus of the literature on BGP, where
this property is called “safety” [19, 23, 62].) While our lower bounds assume only the weaker
stability requirement (2), all of our upper bounds are achieved using protocols that also satisfy
this stronger convergence property. Indeed, a surprising corollary of our characterization of linear
uniform protocols is that such a protocol always induces a game with pure-strategy Nash equilibria
if and only if it always induces a game in which best-response dynamics is guaranteed to converge
(Theorem 4.16).

The separability (3) requirement precludes any explicit coordination between different edges
of a network. This assumption is restrictive but is satisfied by many important practical network
protocols. For example, TCP/IP congestion control with various packet dropping policies (e.g. [31,
45]), can be informally regarded as separable in this sense — each edge makes independent packet
dropping decisions based only on the local state, such as the current queue length. Finding a natural
generalization of separability that still permits interesting protocol design optimality results is an
important research challenge.
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Whatever the merits of the uniformity constraint (4), we thoroughly study the optimal protocol
design problem both with and without it. That said, a protocol often must be designed without
foreknowledge of or assumptions about the network in which it will be deployed. Uniformity is an
appropriate requirement in such cases. Moreover, uniformity ensures that a cost-sharing protocol
remains well defined as the surrounding network evolves over time. Again, TCP/IP congestion
control can be thought of as “uniform” in this high-level sense.

Remark 1.1 We do not allow cost-sharing protocols that can affect the underlying optimization
problem of connecting all players at minimum cost. This rules out obtaining near-optimal equilibria
for the “wrong reasons” — by increasing the optimal cost rather than by improving the quality of
the Nash equilibria.

Remark 1.2 We restrict attention to network cost-sharing games in which players have control
only over their connecting path. In particular, the cost-sharing protocol of Anshelevich et al. [3],
which allows players to choose endogenously their own cost shares, falls outside of our design space.
However, the network games induced by this protocol need not have pure-strategy Nash equilibria
(except in single-sink networks), and can also have highly inefficient equilibria [3]. For these reasons,
the cost-sharing protocol of [3] is not well suited to the design goals of this paper.

1.5 Further Related Work

Several previous papers studied network cost-sharing games [2, 3, 9, 10, 11, 14, 16, 48]. All of these
considered only a fixed cost-sharing protocol and did not address the design questions studied here.
The inefficiency of equilibria in other network design games has also been studied; see [61] for
an overview. For other models of network formation and design with self-interested participants,
see [6, 30, 33] and the references therein.

A few previous papers study how to design protocols to minimize the worst-case inefficiency of
equilibria in models unrelated to ours. Christodoulou, Koutsoupias, and Nanavati [12] and several
follow-up papers [5, 29, 40] design machine scheduling policies to minimize the worst-case POA
in variants of the scheduling game proposed by Koutsoupias and Papadimitriou [42]. Johari and
Tsitsiklis [35] design protocols for allocating a single divisible resource among heterogeneous players
and show that, among all protocols that meet certain desirable “scalability” constraints, the Kelly
protocol [38] minimizes the worst-case efficiency loss. In a mechanism design context, Moulin and
Shenker [49] identify groupstrategyproof and budget-balanced mechanisms that minimize worst-
case additive efficiency loss over all possible valuation profiles.

To a lesser extent, the goals of this paper are similar to previous approaches for improving
the price of anarchy of a given game; see, for example, previous work on pricing selfish routing
networks [13, 17, 37] and Stackelberg routing [43, 56, 60]. Our work here differs in its aim to design
a single distributed protocol to minimize the worst-case inefficiency of equilibria over an entire
family of games, rather than a centralized algorithm for improving the POA in a given game.

Finally, the goal of designing a game with good equilibria bears some resemblance to that of
algorithmic mechanism design [51]. In mechanism design problems, however, there is generally
some crucial data, such as players’ valuations for different goods or resources, which are unknown
to the mechanism designer. There is no private information in the games studied here; instead, the
designer lacks full control over the allocation of resources. For this reason, the problems studied in
this paper are technically very different from those in algorithmic mechanism design.
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2 Definitions and Examples

2.1 Network Cost-Sharing Games

A network is an undirected or directed graph G = (V,E) and a nonnegative cost ce for each edge
e ∈ E. A network cost-sharing game is additionally specified by a set {1, . . . , k} of k players that
we identify with source-sink pairs (s1, t1), . . . , (sk, tk) and a cost-sharing method ξe : 2{1,...,k} → Rk

+

for each edge e. A cost-sharing method assigns nonnegative cost shares to the players, as a function
of the set of players that choose a path that contains the edge e. We abuse notation and write
ξe(i, S) for the cost share of player i for the edge e, given that S is the set of players using e.

The strategy set of player i is the set Pi of si-ti paths. In an outcome of the game, each
player i chooses a single path Pi ∈ Pi. The cost of an outcome (P1, . . . , Pk) is defined to be
C(P1, . . . , Pk) =

∑

e∈∪iPi
ce.

A cost-sharing method ξe is budget-balanced if for every set S ⊆ {1, 2, . . . , k}:

(1) ξe(i, S) = 0 for all players i /∈ S;

(2)
∑

i∈S ξe(i, S) = ce.

A cost-sharing method is automatically separable in the sense of (3) in Section 1.2 in that its
domain is simply the possible sets of users — if the users of an edge are the same in two different
outcomes of the game, the cost shares of these users for this edge are also the same.

The cost-sharing methods determine the incentives in a network cost-sharing game by inducing
a cost function ci : P1 × · · · × Pk → R+ for each player i, defined as

ci(P1, . . . , Pk) =
∑

e∈Pi

ξe(i, Se),

where Se = {j : e ∈ Pj} denotes the set of players choosing a path that contains the edge e. If all
of the cost-sharing methods of a network cost-sharing game are budget-balanced, then the cost of
each outcome (P1, . . . , Pk) is partitioned among the players: C(P1, . . . , Pk) =

∑k
i=1 ci(P1, . . . , Pk).

An outcome of a network cost-sharing game is a pure-strategy Nash equilibrium (PNE) if no
player can decrease its cost by changing its strategy. Formally, the outcome (P1, . . . , Pk) is a PNE
if for every player i and every strategy P ′

i ∈ Pi,

ci(P1, . . . , Pi, . . . , Pk) ≤ ci(P1, . . . , P
′
i , . . . , Pk).

2.2 Quantifying Inefficiency of Equilibria

We aspire toward network cost-sharing games with relatively efficient PNE. A standard and con-
servative measure of the inefficiency of the equilibria of a game is the price of anarchy (POA), the
largest ratio between the cost of a PNE and that of a minimum-cost outcome. When there are no
interesting upper bounds on the cost of all equilibria, a common weaker goal is to bound the cost
of a subset of equilibria. An extreme approach is to bound the price of stability (POS), defined as
the smallest ratio between the cost of a PNE and that of an optimal outcome. An intermediate
measure is what we call the reachable POA, a quantity defined in [10]. The numerator of this ratio
is the largest cost of an equilibrium reachable via the following process: players enter the game one-
by-one in an arbitrary order, and each picks a path of minimum cost, given the choices of previous
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players; after all players have entered, an arbitrary player is selected to re-optimize its path, given
the current strategies of all other players (a “best response”); when the process reaches a PNE (as
it must [2]), it stops. In general, not all PNE of a network cost-sharing game can be obtained via
this process [10]. See [57] for further discussion and interpretations of these and related concepts.

2.3 Cost-Sharing Protocols

Formally, a cost-sharing protocol takes as input a network and player set, and outputs a collection
of edge cost-sharing methods, thereby providing the final ingredient for a network cost-sharing
game.

Definition 2.1 (Cost-Sharing Protocol) A cost-sharing protocol assigns, for every network G =
(V,E) with edge costs c, for every player set {1, 2, . . . , k}, and every set (s1, t1), . . . , (sk, tk) of
source-sink pairs, a cost-sharing method ξe to every edge e ∈ E.

Example 2.2 (The Shapley Protocol [2]) The Shapley protocol always assigns an edge e of
cost ce the cost-sharing method ξe given by ξe(i, S) = ce/|S| for every subset S of players and
i ∈ S.

More generally, a cost-sharing protocol can assign cost-sharing methods in a way that depends on
additional information, including the topology of G, the locations of player sources and sinks, and
the costs of other edges of the network.

A cost-sharing protocol is stable if it only induces network cost-sharing games that possess
at least one PNE. An admissible protocol is stable and only assigns budget-balanced cost-sharing
methods; such a protocol meets the first three requirements from Section 1.2. Uniform protocols
additionally meet the uniformity constraint (4) of that section.

Definition 2.3 (Uniform Protocols) An admissible cost-sharing protocol is uniform if the cost-
sharing method ξe it assigns to an edge e of a network G is a function only of the edge cost ce and
the player set {1, 2, . . . , k}.

Remark 2.4 Definition 2.3 allows a uniform protocol to assign cost-sharing methods {ξe}e∈E in a
way that depends on the number k of players in the game. A natural extra requirement would be
to insist that for every edge e, ξe(i, S) is a function only of ce, S, and i (and is independent of k).
All of our positive results for uniform protocols remain valid under this extra constraint, and all of
our negative results apply to all uniform protocols.

Are there admissible protocols other than the Shapley protocol? Ordered protocols form simple,
important examples. Such cost-sharing protocols are defined with respect to an ordering of the
players, and can be either uniform (independent of the network) or non-uniform (defined in a
network-dependent way). In either case, the first player in the ordering pays the full cost of every
edge in its path; the second player pays the full cost of every edge in its path not already paid for
by the first player; and so on.

Definition 2.5 (Ordered Protocols) A cost-sharing method ξe in a network cost-sharing game
with player set {1, 2, . . . , k} is ordered according to σ, where σ is a permutation of the players, if
for every S ⊆ {1, 2, . . . , k} and i ∈ S, ξe(i, S) = ce if σ(i) ≤ σ(j) for all j ∈ S and ξe(i, S) = 0
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otherwise. A cost-sharing protocol is ordered if, for every network and player set, it assigns cost-
sharing methods that are all ordered according to a common ordering.

Proposition 2.6 (Stability of Ordered Protocols) Every ordered cost-sharing protocol is ad-
missible.

Proof: Budget-balance is clear. For stability, fix a network and a player set, and suppose the
protocol assigns cost-sharing methods that are all ordered according to σ. Renaming the players,
we can assume that σ is the identity. Define P1 to be a shortest s1-t1 path with respect to c. For
each i > 1 in turn, define Pi to be a shortest si-ti path after zeroing out the cost of all edges of
P1 ∪ · · · ∪ Pi−1. The outcome (P1, . . . , Pk) is a PNE. �

2.4 Example: The Prim Protocol

Ordered protocols can be radically better than the Shapley protocol in undirected networks; our
first demonstration is for a non-uniform protocol for single-sink networks.

Example 2.7 (Prim Cost-Sharing Protocol) Consider an undirected single-sink network G
with edge costs c, a sink vertex t, and source vertices s1, . . . , sk. The Prim cost-sharing protocol is
the (non-uniform) ordered cost-sharing protocol that orders the players as follows. The first player
is the one with source si closest to the sink t with respect to the edge costs c; the second player is
the one with source closest to the set {t, si}; and so on.

Proposition 2.8 (POA of Prim Protocol) For every single-sink undirected network and player
set, the Prim protocol induces a network cost-sharing game with POA at most 2.

Proof (sketch): Fix a single-sink undirected network and a player set. Renaming the players, we
can assume that the Prim protocol assigns cost-sharing methods that are ordered by the identity.
In every PNE of the induced network cost-sharing game, every player i chooses a shortest path Pi

between its source si and P1 ∪ · · · ∪ Pi−1. The cost incurred by this player is at most the shortest-
path distance (w.r.t. the original network edge costs) between si and the set {t, s1, . . . , si−1}. Thus,
every PNE has cost bounded above by a possible output of the MST heuristic for the Steiner tree
problem, when implemented using Prim’s MST algorithm. Every such output has cost at most
twice that of a minimum-cost Steiner tree (see e.g. [63]), a minimum-cost outcome in the network
game. �

Recall that the worst-case POA of the Shapley protocol, even in undirected networks of parallel
edges, is the number k of players [3].

Remark 2.9 (Optimality of the Prim Protocol) Standard examples (e.g. [63, Example 3.4])
give a matching lower bound on the worst-case POA and reachable POA of every (possibly non-
uniform) admissible cost-sharing protocol in single-sink undirected networks.

Remark 2.10 (Forthcoming Lower Bounds) Both the non-uniformity of the Prim protocol
and the restriction to single-sink undirected networks are necessary to obtain a constant worst-case
POA. We prove, by completely different methods, that every uniform protocol has a worst-case
POA of Ω(log k), even in single-sink undirected networks (Theorem 4.3); and that every (possibly
non-uniform) admissible protocol has a worst-case POA of Ω(log k) in multicommodity undirected
networks (Theorem 6.1).
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3 Characterization of Linear Uniform Protocols: Overview

This section describes a complete characterization of the linear uniform protocols as those induced
by the “concatenation” of “weighted potential functions”. The stability constraint (2) from Sec-
tion 1.2—a complex global constraint on all network games that might be induced by a protocol—
makes this result highly non-trivial, and we defer the proof to Section 5. Section 4 gives several
applications of this characterization, including lower bounds on the worst-case POA and POS
achievable by (not necessarily linear) uniform protocols in undirected and directed networks, re-
spectively.

3.1 Potential-Based Protocols

We begin with two definitions.

Definition 3.1 (Linear Protocols) A uniform protocol is linear if, for all ce ≥ 0, the cost-sharing
method it assigns to an edge of cost ce is ce · ξ1, where ξ1 is the cost-sharing method it assigns to
an edge of unit cost.

We often abuse notation and refer to a linear uniform protocol by the cost-sharing method it assigns
to a unit-cost edge.

Definition 3.2 (Positive Methods and Protocols) A cost-sharing method of a non-zero cost
edge is positive if it always assigns strictly positive cost shares to its users. A cost-sharing protocol
is positive if it assigns only positive cost-sharing methods to edges with non-zero cost.

For example, the Shapley protocol is positive, but ordered protocols are not.
Our plan is to use the two known methods of proving stability as a compass to map the

terrain of linear and uniform protocols. Proposition 2.6 proves that ordered protocols are stable
by explicitly exhibiting a PNE in every induced network cost-sharing game. The stability of the
Shapley protocol is a more subtle “potential function argument” [2, 47, 55]: one exhibits a potential
function for each induced network game such that local minima of the potential function are in
bijective correspondence with the PNE of the game. To begin our development, do any other
protocols admit analogous potential functions? This question motivates the following definition.

Definition 3.3 (Edge Potential) Let {1, 2, . . . , k} be a player set. A strictly positive function
f : 2{1,...,k} → R+ is an edge potential if it is strictly increasing (f(T ) < f(S) whenever T ⊂ S) and
if

∑

i∈S

f(S) − f(S \ {i})
f({i}) = 1 (1)

for every S ⊆ {1, . . . , k}.
Every edge potential induces a positive, linear, and uniform cost-sharing protocol; we call these

potential-based protocols.

Proposition 3.4 (Properties of Potential-Based Protocols) Let f be an edge potential for
the player set {1, 2, . . . , k}. Define a cost-sharing protocol by assigning an edge of cost c the cost-
sharing method ξ, where

ξ(i, S) = c · f(S) − f(S \ {i})
f({i}) (2)
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for every S ⊆ {1, . . . , k} and i ∈ S. This protocol is positive, linear, and uniform.

Proof: Linearity is clear. The method ξ for an edge of cost c > 0 is positive because the edge
potential is, by definition, strictly positive and strictly increasing. The method is budget-balanced
by (1). To prove that this cost-sharing protocol is stable and hence uniform, consider the following
potential function for a (directed or undirected) network G = (V,E) with edge costs c:

Φ(P1, . . . , Pk) =
∑

e∈E

ce · f(Se), (3)

where Se = {i ∈ {1, . . . , k} : e ∈ Pi}. By the definitions (2) and (3), whenever a player i changes
its strategy from Pi to Qi, the identity

∆ci =
∑

e∈Qi\Pi

ξ(Se ∪ {i}) −
∑

e∈Pi\Qi

ξ(Se)

=
∑

e∈Qi\Pi

ce ·
f(Se ∪ {i}) − f(Se)

f({i}) −
∑

e∈Pi\Qi

ce ·
f(Se) − f(Se \ {i})

f({i})

=
∆Φ

f({i}) (4)

holds. Hence, every local minimum of Φ is a PNE of the network cost-sharing game — and there
is at least one, the global minimum of Φ. �

The Shapley protocol is potential-based with the edge potential f(S) = H|S| for every subset S

of players, where as usual Hk =
∑k

i=1 1/i denotes the kth Harmonic number. Are there any others?
Because of the budget-balance constraint in Definition 3.3, the answer is not clear. But our proof
of Theorem 3.8 implicitly shows that there are a plethora of potential-based protocols, in bijective
correspondence with the open unit cube (0, 1)k−1 in (k − 1) dimensions.

Remark 3.5 (Weighted Potentials and Weighted Shapley Values) Due to the player-specific
scaling factor in (4), the function in (3) is more properly called a weighted potential function [47],
as opposed to the exact potential function for the Shapley protocol (where f({i}) = 1 for all i). It
is tempting but incorrect to regard each value f({i}) of an edge potential as a “weight” for player i
in the weight-proportional sharing sense of [2, 11]. The appropriate interpretation is in terms of the
weighted Shapley value [36, 59]; the value f({i}) corresponds to a player weight of 1/f({i}) in the
sense of Kalai and Samet [36]. See also Hart and Mas-Colell [27] and Monderer and Shapley [47]
for similar connections between weighted potential functions and weighted Shapley values in other
contexts.

3.2 Concatenation

Ordered protocols demonstrate that not all linear uniform protocols are positive. This motivates
an operation that combines two cost-sharing protocols into a single (non-positive) one. In the
following definition, we refer to a linear protocol in terms of the cost-sharing method it assigns a
unit-cost edge.
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Definition 3.6 (Concatenation) Let ξ1 and ξ2 be linear, uniform cost-sharing protocols for dis-
joint player sets A1 and A2, respectively. The concatenation of ξ1 and ξ2 is the cost-sharing protocol
ξ1 ⊕ ξ2 for the player set A1 ∪ A2 defined by

(ξ1 ⊕ ξ2)(i, S) =







ξ1(i, S ∩ A1) if i ∈ A1

ξ2(i, S) if S ⊆ A2

0 otherwise.

In words, players of A1 share the cost of an edge as if no players of A2 were present (according
to ξ1); if only players of A2 use an edge, they share its cost according to ξ2. Ordered protocols are
precisely the k-fold concatenations of trivial one-player protocols.

Proposition 3.7 (Concatenation Preserves Linearity and Uniformity) The concatenation
of two linear uniform cost-sharing protocols is a linear uniform protocol.

Proof (sketch): Arguing as in the proof of Proposition 2.6 shows that concatenation preserves
stability; all other properties are obvious. �

We can now state our characterization result: every linear uniform cost-sharing protocol arises
as the concatenation of potential-based protocols.

Theorem 3.8 (Characterization of Linear Uniform Protocols) A cost-sharing protocol is lin-
ear and uniform if and only if it is the concatenation of potential-based protocols.

Remark 3.9 (Interpretation via Weighted Shapley Values) As alluded to in Remark 3.5, a
positive protocol induced by a potential f coincides with the weighted Shapley value for the weight
vector 1/f({1}), . . . , 1/f({k}) (see [27, 36, 47]). Theorem 3.8 can therefore be interpreted as: the
linear uniform cost-sharing protocols are precisely the concatenations of weighted Shapley values.

We provide a full proof of Theorem 3.8 in Section 5, after exploring several applications in
Section 4. We record here one of the major milestones of the proof, which is also directly useful in
the applications in the next section.

Lemma 3.10 (Monotonicity of Linear Uniform Protocols) Every linear and uniform pro-
tocol ξ for a player set {1, . . . , k} is monotone: for every S ⊆ T ⊆ {1, . . . , k} and i ∈ S,
ξ(i, S) ≥ ξ(i, T ).

4 Characterization of Uniform Protocols: Applications

This section presents three results that build on Theorem 3.8: ordered protocols have near-optimal
worst-case price of anarchy in undirected networks; the Shapley protocol has optimal worst-case
price of stability in directed networks; and PNE exist in all network cost-sharing games induced by
a protocol if and only if better-response dynamics always converges (to a PNE) in these games.
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4.1 Undirected Graphs: Near-Optimality of Ordered Protocols

Which uniform protocol minimizes the worst-case POA in undirected graphs? Ordered protocols
offer some simple but interesting upper bounds.

Proposition 4.1 (POA of Ordered Protocols) Every uniform ordered protocol has a worst-
case POA of O(log k) in single-sink undirected networks and a worst-case POA of O(log2 k) in
multicommodity undirected networks.

Proof: Consider a uniform ordered protocol for single-sink undirected networks with the player
set {1, 2, . . . , k}. Renaming the players, we can assume that the corresponding ordering is the
identity. Consider a single-sink network G and define paths P1, . . . , Pk as in the proof of Propo-
sition 2.8, breaking ties among equal-cost paths in a worst-case manner. The POA of the corre-
sponding network cost-sharing game is the ratio between the cost of these paths ∪k

i=1Pi and that
of a minimum-cost Steiner tree spanning {s1, . . . , sk, t}.

An alternative interpretation of the network ∪k
i=1Pi is as the output of a natural greedy algo-

rithm for the online Steiner tree problem: player 1 arrives first and is immediately connected to t
via a shortest path; then player 2 arrives and is connected to the network-so-far via a shortest
path; and so on. This process generates the exact same sequence of paths P1, . . . , Pk. Thus, the
worst-case POA of this (arbitrary) ordered uniform protocol is precisely the worst-case competitive
ratio of this online Steiner tree algorithm. Imase and Waxman [28] proved that the latter quantity
is O(log k), and the assertion for single-sink networks follows immediately.

For multicommodity networks, the worst-case POA of an ordered uniform protocol is precisely
the worst-case competitive ratio of the natural greedy algorithm for the online generalized Steiner
tree problem. Here, pairs (si, ti) arrive online, and the algorithm connects si to ti using a shortest
path relative to the network already constructed (with previously constructed edges treated as
zero-cost). Awerbuch, Azar, and Bartal [4] proved that this competitive ratio is O(log2 k); the
claim for multicommodity networks follows. �

Remark 4.2 (Lower Bounds for Ordered Protocols) Theorem 4.3 below shows that this O(log k)
upper bound for single-sink networks cannot be improved by any uniform protocol, ordered or oth-
erwise. For multicommodity networks, there is a Θ(log k) factor gap between our upper and lower
bounds on the worst-case POA of uniform protocols, both in general and for the special case of
ordered protocols. Obtaining a tight analysis of the greedy online algorithm of [4] remains an open
problem, and its competitive ratio might well be O(log k). A proof of such an upper bound would,
of course, close the remaining gap between our upper and lower bounds for multicommodity net-
works. We note that Berman and Coulston [8] devised a non-greedy O(log k)-competitive online
algorithm for the generalized Steiner tree problem, but it does not seem to have any implications
for our game-theoretic protocol design problems.

Next, we leverage our main characterization result (Theorem 3.8) to prove that ordered protocols
are almost optimal uniform protocols.

Theorem 4.3 (Near-Optimality of Ordered Protocols) Every uniform cost-sharing protocol
has a worst-case POA of Ω(log k), even in single-sink undirected networks.

We develop the proof of Theorem 4.3 in several steps. The high-level proof plan is, given a
uniform protocol, to first apply Theorem 3.8 to classify players i according to their f({i})-values
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in the associated edge potential f . We then make precise the intuition that players with similar
f -values should have similar cost shares. This enables a dichotomy lemma showing that there are
either log k players that receive near-identical cost shares, or k/polylog(k) players for which the
protocol is close to an ordered protocol. In each case, we construct a family of networks in which
the protocol induces games with Ω(log k) POA.

We first dispense with a preliminary result: a reduction of Theorem 4.3 to the special case of
linear uniform protocols. Every uniform protocol induces a linear extension, the linear protocol
that assigns the cost-sharing method ce · ξ to an edge of cost ce, where ξ is the cost-sharing method
that the given uniform protocol assigns to a unit-cost edge.

Lemma 4.4 The linear extension of a uniform protocol is uniform.

Proof (sketch): We prove stability of the linear extension; all other properties are obvious. Suppose
there is a counterexample network in which the linear extension fails to induce a game with at least
one PNE. Appealing to linearity and the density of the rationals, there is also such a counterexample
with rational edge costs. Scaling the edge costs and invoking linearity, there is a counterexample
network with integral edge costs. Again by linearity, subdividing edges yields a counterexample in
which all edges have cost 0 or 1. But the linear extension and the original protocol coincide on
such a network, contradicting the stability of the latter. �

Arguing as in the proof of Lemma 4.4 also shows that the worst-case POA of linear uniform
protocols is determined by 0-1 networks — those in which all edges have cost 0 or 1.

Lemma 4.5 For every linear uniform protocol and every k ≥ 1, its worst-case POA in k-player
single-sink undirected networks is attained, up to an arbitrarily small additive constant, in a 0-1
network.

We can now deduce that the minimum worst-case POA of uniform protocols is the same as that
of linear uniform protocols.

Lemma 4.6 (Reduction to Linear Protocols) For every k ≥ 1, the worst-case POA of a uni-
form protocol in k-player single-sink undirected networks is no smaller than that of its linear ex-
tension.

Proof: Lemma 4.5 implies that, up to an arbitrarily small error, there is a worst-case network G for
the linear extension which is also 0-1. Since the original protocol and its linear extension coincide
on 0-1 networks, they induce the same game (with the same POA) in G. �

Conceptually, Lemma 4.6 implies that adding linearity to the requirements (1)–(4) of Section 1.2
would not affect the optimal solutions to our protocol design problems.

Remark 4.7 In preparation for Theorem 4.15 below, we note that Lemmas 4.4–4.6 also hold,
with the same proofs, in directed networks. Moreover, Lemmas 4.5 and 4.6 also hold with the POA
replaced by the POS.

We next prove four lemmas that relate proximity in edge potential values to proximity in cost
shares. Henceforth, we write f(i) for f({i}), which we call the f -value of player i. We first use (1)
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to obtain the following useful expression for the value f(S) of an edge potential in terms of the
f -values of the players of S:

f(S) =

(

1 +
∑

i∈S

f(S \ {i})
f(i)

)

·
(

∑

i∈S

1

f(i)

)−1

. (5)

Lemma 4.8 Let f be an edge potential for the players {1, 2, . . . , k}, α ≥ 1 a constant, and S a
subset of players with f(i) ≤ α · f(j) for every i, j ∈ S. For every subset T ⊆ S and player j ∈ S,
f(T ) ≤ αH|T |f(j).

Proof: By induction on |T |. For the inductive step, fix T ⊆ S. Use (5) to obtain

f(T ) =

(

∑

i∈T

f(T \ {i})
f(i)

)

·
(

∑

i∈T

1

f(i)

)−1

+

(

∑

i∈T

1

f(i)

)−1

.

The first term on the right-hand side is a weighted average of the f(T \ {i})’s, which is at most
αH|T |−1f(j) by the inductive hypothesis. The second term is at most αf(j)/|T | by the definition
of α, completing the inductive step. �

Lemma 4.9 Let f , S, and α be as in Lemma 4.8. For every two (not necessarily disjoint) subsets
T1, T2 ⊆ S with ℓ players each, f(T1) ≤ α2ℓ−1f(T2).

Proof: By induction on ℓ. Lemma 4.8 provides the base case. For the inductive step, let T1, T2 ⊆ S
have size ℓ. By (5), the definition of α, and the inductive hypothesis, we have

f(T1) =



1 +
∑

i∈T1

f(T1 \ {i})
f(i)



 ·





∑

i∈T1

1

f(i)





−1

≤



1 +
∑

i∈T2

α2ℓ−3 · f(T2 \ {i})
(f(i)/α)



 ·





∑

i∈T2

1

α · f(i)





−1

≤ α2ℓ−1 · f(T2).

�

We can now show that players with similar f -values receive similar cost shares. For the rest of
this section, all logarithms are base 2 (say).

Lemma 4.10 (Proximity Lemma) Let f , S, and α be as in Lemma 4.8. Assume further that
|S| ≤ log k and that α satisfies

α2 log k ≤ 1 + log−3 k. (6)

Let ξ be the potential-based cost-sharing method induced by f for a unit-cost edge. Then,

ξ(i, S) ≤ α
(

ξ(j, S) + 2 log−2 k
)

for every pair i, j of players of S.
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Proof: Lemma 4.9 and (6) imply that for every two subsets T1, T2 ⊆ S, f(T1) and f(T2) differ by at
most a factor of 1+ log−3 k. Lemma 4.8 implies that f(T1) and f(T2) are both at most f(i) · 2 log k
for any player i ∈ S. Hence, f(T1) and f(T2) differ by at most an additive 2 log−2 k · f(i) amount
for any player i ∈ S.

Therefore, for every two players i, j ∈ S,

ξ(i, S) =
f(S) − f(S \ {i})

f(i)

≥ f(S) − f(S \ {j}) − 2 log−2 k · f(i)

f(i)

≥ ξ(j, S)

α
− 2 log−2 k,

which proves the lemma. �

Our final lemma prior to the proof of Theorem 4.3 is a weak converse of Lemma 4.10.

Lemma 4.11 (Separation Lemma) Let f and ξ be as in Lemma 4.10, and i, j two players with
f(i) ≥ β · f(j). Then:

(a) ξ(i, {i, j}) ≥ β
β+1 ;

(b) for every S ⊇ {i, j}, ξ(j, S) ≤ 1
β+1 .

Proof: Part (b) follows from (a) and the monotonicity of ξ (Lemma 3.10). To prove (a), we can

assume without loss that f(j) = 1. First assume that f(i) is exactly β. By (5), f({i, j}) = 1+ β2

β+1 .
By (1), ξ(i, {i, j}) = β/(β + 1). Since this is increasing in β, part (a) follows. �

Proof of Theorem 4.3: Consider a uniform cost-sharing protocol for the player set {1, 2, . . . , k}. We
can assume that k is sufficiently large (at least 232, say). By Lemmas 4.4 and 4.6, we can assume
that the protocol is a linear protocol ξ.

Theorem 3.8 implies that f is a concatenation of potential-based cost-sharing protocols ξ1, . . . , ξm

for disjoint player sets A1, . . . , Am, where the protocol ξi is derived from an edge potential fi. Scal-
ing the fi’s, we can assume that fi({j}) ≥ 1 for every i and j. We bucket the players of each Ai

by fi-values into groups, using intervals of the form [αℓ, αℓ+1) for nonnegative integers ℓ, where α > 1
is chosen to satisfy (6) with equality.

The proof now breaks into two cases. First suppose that there are fewer than k/ log k distinct
non-empty groups across all of the Ai’s. Then, there is a single group that contains a set S of
log k players. Budget-balance implies that there exists a player j for which ξ(j, S) ≤ 1/ log k. The
Proximity Lemma (Lemma 4.10), our choice of α, and the fact that k is sufficiently large then
imply that ξ(j, S) ≤ 2/ log k for every j ∈ S. Create a single-sink undirected network as follows
(Figure 1(a)). Each player not in S has a zero-cost edge from its source vertex to the single sink t.
The players of S share a common source vertex s, and there are two parallel edges from s to t, with
costs 1 and (log k)/3. The optimal solution clearly has cost 1. On the other hand, if all players
of S share the more expensive s-t edge, then each incurs a cost share strictly less than 1 and will
not unilaterally deviate to the unit-cost edge. This outcome is therefore a PNE, and the POA in
this network game is (log k)/3.
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Figure 1: Proof of Theorem 4.3. Networks that induce games with large POA for uniform protocols
with many similar players and for those with many different players, respectively. In (b), the precise
value of ǫ is different for different edges (see text).

In the second case, there are at least k/ log k distinct non-empty groups. Our choice of α ensures

that αa log5 k ≥ k + 1 for a sufficiently large constant a that is independent of k. We can therefore
pick one player out of every Θ(log5 k) groups to obtain a set S of 2p − 1 players such that: p is a
positive integer; |S| = Θ(k/ log6 k); and every pair j, h of distinct players of S either come from
different Ai’s or have fi-values that differ by at least a (k + 1) factor. We rename players of S so
that they are ordered according to the Ai’s, and in decreasing order of fi-values within an Ai.

We next construct a single-sink undirected network (Figure 1(b)). Each player not in S again
has a direct zero-cost edge to t. The rest of the network is similar to a lower bound construction for
the online Steiner tree problem [28] and is defined in rounds. In the 0th round, we add a unit-cost
edge (the main path) incident to t. For r = 1, . . . , p, in the rth round, we bisect the 2r−1 edges
of the main path created in previous rounds with the sources s2r−1, . . . , s2r−1 — that is, each such
edge is replaced by two edges (in series) with half the cost, with a new source vertex between
them. Additionally, we create a shortcut edge between each source added in the rth round and its
neighbor on the main path that is closer to t, of cost 2−r((k − 1)/k)p−r+1. The cost of all of the
shortcuts added in a round is Ω(1). The optimal outcome, with all players following the main path,
has unit cost.

The outcome in which all players completely eschew the main path has cost Ω(p) = Ω(log k),
and we complete the proof by showing that it is a PNE. Consider this outcome and a player j using
the path Pj. The first edge of Pj is the shortcut (sj , sh). Every sj-sh path other than the shortcut
comprises only edges of the main path (currently used by no players) and edges added in subsequent
rounds (each currently used only by players with larger index). The claim is that player j’s cost
shares on such a path would total at least a (k − 1)/k fraction of the path cost, and this is no
less than the cost incurred on its shortcut. To argue the claim, consider the players with which j
would share edges on this sj-sh path: there are some from later groups Ai (who pay nothing in j’s
presence), and some players in the same group Ai as j but which have fi-values (relative to fi(j))
that are bounded above by a geometric sequence with ratio 1/(k + 1). The Separation Lemma
implies that the sum of the cost shares of all of these players is at most a 1/k fraction of the path
cost, which implies the claim.
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Figure 2: Proof of Proposition 4.12. Every uniform protocol has worst-case POA at least k in
directed single-sink networks.

After player j reaches sh, it shares each remaining edge of Pj with at least one player of lower
index. By the Separation Lemma, the sum of its cost shares on these edges is strictly less than 1/k,
a lower bound on the cost it would incur for being the sole inhabitant of some edge on the main
path. Thus Pj is a best response for player j, and this outcome is a PNE. �

4.2 Directed Graphs: Optimality of the Shapley Protocol

We now turn to directed networks, and prove that the Shapley cost-sharing protocol is the optimal
uniform protocol. We first note that the worst-case POA is a useless measure for differentiating
between competing protocols in directed networks.

Proposition 4.12 (POA in Directed Networks) For every k ≥ 1, the worst-case POA of ev-
ery uniform protocol in k-player directed networks is k. The lower bound holds even in single-sink
directed networks.

Proof: Fix k and a uniform protocol. For the upper bound, consider a directed network and the
induced network cost-sharing game. Let (P ∗

1 , . . . , P ∗
k ) denote an optimal outcome, with cost C∗.

Every player i can guarantee itself a cost of at most C∗, independent of the protocol and the other
players’ choices, by choosing the path P ∗

i . Thus in a PNE, the cost of each player is at most C∗.
By budget-balance, the cost of every PNE is at most k · C∗.

The lower bound is provided by the single-sink network shown in Figure 2. The optimal outcome
has cost 1 + ǫ, where ǫ > 0 is arbitrarily small. The outcome in which each player i selects the
direct si → t path is a PNE (for any protocol) and has cost k. �

Remark 4.13 Proposition 4.12 and its proof hold even for non-uniform cost-sharing protocols (see
Section 6.3).
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Figure 3: Proof of Theorem 4.15. Every linear monotone protocol has worst-case POS at least Hk

in directed single-sink networks.

Proposition 4.12 also holds, with the same proof, for the worst-case reachable POA in (single-
sink) directed networks. We therefore resort to our weakest inefficiency measure, the price of
stability (POS). Anshelevich et al. [2] proved the following tight guarantee for the Shapley protocol.

Proposition 4.14 (POS of the Shapley Protocol [2]) For every k ≥ 1, the worst-case POS of
the Shapley protocol in k-player directed networks is the kth Harmonic number Hk: 1+ 1

2 + · · ·+ 1
k

=
ln k + O(1).

Using the technical tools already developed in this and the previous section, we can quickly
prove that the Shapley protocol is optimal.

Theorem 4.15 (Optimality of the Shapley Protocol) For every k ≥ 1, every uniform cost-
sharing protocol has a worst-case POS of at least Hk in k-player single-sink directed networks.

Proof: Fix k ≥ 1 and a uniform cost-sharing protocol for the player set {1, 2, . . . , k}. By Lem-
mas 4.4–4.6 and Remark 4.7, we can assume that the protocol ξ is linear. Lemma 3.10 ensures
that ξ is monotone in the sense that ξ(i, S) ≥ ξ(i, T ) whenever i ∈ S ⊆ T ⊆ {1, . . . , k}. Since
ξ is budget-balanced, there is a player ik satisfying ξ(ik, {1, 2, . . . , k}) ≥ 1/k. Similarly, for each
j = k − 1, . . . , 1, there is a player ij satisfying ξ(ij , {1, . . . , k} \ {ij+1, . . . , ik}) ≥ 1/j.

Now consider the single-sink directed network of Figure 3, taken from [2]. There is a sink t,
source vertices s1, . . . , sk, and an additional vertex v. Player ij has source sj and sink t. For each j,
there is an edge of cost 1/j from sj to t and an edge of zero cost from sj to v. There is also an edge
of cost 1 + ǫ from v to t. The optimal solution has cost 1 + ǫ. On the other hand, we claim that
in the network cost-sharing game induced by ξ, the only PNE has cost Hk. To see this, consider
an arbitrary outcome of the game, and let S ⊆ {1, 2, . . . , k} denote the set of players that share
the edge (v, t), with the rest of the players choosing their one-hop paths to t. Suppose that S 6= ∅
and let ij ∈ S be the player of S with maximum index j. By construction, ξ(ij , {i1, . . . , ij}) ≥ 1/j.
Since ξ is monotone and linear, player ij incurs cost at least (1+ ǫ)/j in this outcome. Since player
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ij incurs cost only 1/j by choosing the path sj → t, this outcome cannot be a PNE. Thus S = ∅ in
the unique PNE, which has cost Hk. �

4.3 Convergence of Better-Response Dynamics

Our final application of Theorem 3.8 is technically straightforward but conceptually interesting.
Guarantees that equilibria (such as PNE) always exist in a family of games are important but lack
predictive power: how do we know that rational players will successfully reach such an equilibrium?
A guarantee that selfish participants converge to an equilibrium through repeated experimentation
is much more compelling that a mere existence result.

Better-response dynamics is a simple and well-studied model of repeated experimentation: while
the current outcome is not a PNE, choose an arbitrary player that could decrease its cost by
switching paths, and update its path to a better one. If better-response dynamics is guaranteed
to converge in a game, then the game obviously has at least one PNE; the converse generally fails
(see e.g. [47]). But Theorem 3.8 implies a converse of sorts for network cost-sharing games: the
only way to guarantee the existence of PNE in all such games is to guarantee the convergence of
better-response dynamics.

Theorem 4.16 (Convergence of Better-Response Dynamics) In every network cost-sharing
game induced by a linear and uniform protocol, better-response dynamics always converges to a
PNE.

Proof: First consider a potential-based protocol ξ for a player set {1, 2, . . . , k}. Every network
cost-sharing game induced by ξ admits a weighted potential function Φ, given in (3), and every
time a player changes its path in better-response dynamics, Φ strictly decreases (4). Since there
are only finitely many outcomes, better-response dynamics must terminate.

For an arbitrary linear and uniform protocol ξ, we can apply Theorem 3.8 to express ξ as the
concatenation of potential-based protocols ξ1, . . . , ξm for disjoint player sets A1, . . . , Am. Players
of A1 are unaffected by the choices of other players, so the above argument can be applied to ξ1

and A1 to conclude that, in an arbitrary network cost-sharing game induced by ξ, better-response
dynamics eventually reaches an outcome from which no player of A1 has an incentive to switch
paths. This property cannot be violated by subsequent moves by players from A2, . . . , Am, so no
player of A1 will ever change paths again. Proceeding inductively on the Ai’s, we conclude that
better-response dynamics eventually terminates. �

Theorem 4.16 implies that, for linear protocols, strengthening the stability constraint (2) in
Section 1.2 to require the convergence of better-response dynamics has no effect on the protocol
design space.

5 Characterization of Uniform Protocols: The Proof

This section presents a proof of Theorem 3.8. The “if” direction is immediate from Propositions 3.4
and 3.7. The four major milestones of the “only if” direction are as follows.

1. Every linear and uniform protocol ξ must be monotone in the sense that ξ(i, S) ≥ ξ(i, T )
whenever i ∈ S ⊆ T ⊆ {1, 2, . . . , k}. (Recall Lemma 3.10.)
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2. For every linear and uniform protocol ξ, the players can be partitioned into ordered equiv-
alence classes so that ξ(i, S) > 0 if and only if i belongs to the lowest-indexed class that
intersects S. Different equivalence classes correspond to disjoint player sets that are com-
bined via concatenation.

3. For every linear and uniform protocol ξ that is also positive, all of its cost shares are uniquely
determined by the k − 1 pairwise cost shares ξ(1, {1, 2}), ξ(1, {1, 3}), . . . , ξ(1, {1, k}).

4. For every linear and uniform protocol ξ that is also positive, ξ is potential-based.

We work with undirected networks throughout the proof. Our proof can be modified trivially to
use only directed networks.

Our first technical lemma builds toward the first milestone of the proof by showing that any
failures of monotonicity in a linear uniform protocol must be “symmetric”. The proof of this lemma
also develops arguments crucial to the second milestone of the proof of Theorem 3.8 (see Lemma 5.4,
below).

Lemma 5.1 Let ξ be a linear and uniform cost-sharing protocol with player set {1, 2, . . . , k}. Let S
be a non-empty set of players and i and j distinct players not in S, and suppose that ξ(i, S ∪{i}) <
ξ(i, S ∪ {i, j}). Then ξ(j, S ∪ {j}) ≤ ξ(j, S ∪ {i, j}).

Proof: Fix ξ, i, j, and S, and assume that ξ(i, S∪{i}) < ξ(i, S∪{i, j}); in particular, ξ(i, S∪{i, j}) >
0. The heart of the proof is the following claim: for all positive constants α and β, if

α (ξ(i, S ∪ {i}) − ξ(i, S ∪ {i, j})) < β (ξ(i, {i}) − ξ(i, {i, j})) , (7)

then
α (ξ(j, S ∪ {j}) − ξ(j, S ∪ {i, j})) ≤ β (ξ(j, {j}) − ξ(j, {i, j})) . (8)

To see why the claim implies the lemma, set β = 1. Since ξ(i, {i}) = 1 and ξ(i, {i, j}) ≤ 1,
the right-hand side of (7) is non-negative. Since ξ(i, S ∪ {i}) < ξ(i, S ∪ {i, j}) by assumption,
inequality (7) holds for all values of α > 0. By the claim, inequality (8) holds for every α > 0.
Since the right-hand side of (8) is nonnegative, we conclude that ξ(j, S ∪ {j}) ≤ ξ(j, S ∪ {i, j}).

To prove the claim, fix α and β and consider the network shown in Figure 4. All players of S
have source s and sink t. Players outside S ∪ {i, j} are confined to a different, disjoint subnetwork.
The parameter M is sufficiently large relative to α, β, and 1/ξ(i, S ∪{i, j}). The parameter A is at
least M2; its precise value will be fixed later. We show that if the claim fails, then we can choose
edge costs so that the game induced by ξ in this network has no PNE, thereby contradicting the
stability of ξ.

We first argue that, at equilibrium, no player chooses a path containing both the edges (si, u)
and (si, v). This is true for player i because it must choose a simple si-ti path. For a contradiction,
assume that at least one player of S ∪ {j} chooses a path containing both these edges, and let e
be one of the two edges that is not used by player i. By budget-balance, one of the players using e
must pay at least M2/k for it. No player of S will incur such a large cost share at equilibrium
because of the deviation s → u → w → x → v → t (assuming M is sufficiently large). Player j will
not incur such a cost share at equilibrium, because the w-v subpath of its path that contains e can
be replaced by the subpath v → x → w (removing the resulting cycles if necessary) to decrease its
cost. Thus no player will use edge e in a PNE.
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Figure 4: Network in the proofs of Lemmas 5.1 and 5.4.

A similar argument shows that no player will use the edges (y, ti) and (z, ti) in a PNE. Thus
no player other than i uses an edge incident to si or ti in a PNE. So, player j uses either the path
sj → v → x → w → y → tj (denoted Q1) or the one-hop path sj → tj (denoted Q2) in a PNE.

Next we argue that no player of S ∪ {i} uses the edge (sj , tj) in a PNE. Player j uses at most
two of the three edges (tj , y), (sj, tj), and (v, sj). If any players of S ∪ {i} use the edge (sj , tj),
one of them incurs a cost share of at least M2/k for one of these three edges. (Recall that A is at
least M2.) As above, no player of S will incur such a large cost share in a PNE. If player i incurs
a cost share of at least M2/k on these edges, then its overall cost is at least M2(2 + 1/k) (since no
players other than i use edges incident to si or ti). Since player i can guarantee itself a cost of at
most 2M2 + α + β, this cannot occur in a PNE provided M is sufficiently large.

Summarizing, player j will take path Q1 or Q2 in a PNE, and all players of S will follow the
path s → u → w → x → v → t. Let P1 and P2 denote the si-ti paths si → u → w → y → ti
and si → v → x → z → ti, respectively. If player j chooses path Q1, then our assumption that
ξ(i, S ∪ {i, j}) > 0 implies that player i will not use the edge (w, x) in a PNE (assuming M is
sufficiently large) and hence uses P1 or P2. If player j chooses path Q2, then the cost incurred by
player i on path P2 is no more than that on any other si-ti path. Thus, if there is a PNE, there is
one in which player i chooses either P1 or P2. We label the four candidates for a PNE according
to the paths selected by players i and j, and proceed to choose parameters to rule them out.
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We have cj(P1, Q2) = cj(P2, Q2) = A, and

ci(P1, Q1) = 2M2 + αξ(i, S ∪ {i}) + βξ(i, {i, j});
ci(P2, Q1) = 2M2 + αξ(i, S ∪ {i, j}) + β − ǫ;

ci(P1, Q2) = 2M2 + αξ(i, S ∪ {i}) + β;

ci(P2, Q2) = 2M2 + αξ(i, S ∪ {i}) + β − ǫ;

cj(P1, Q1) = 2M2 + Mξ(j, {S ∪ {j}) + αξ(j, S ∪ {j}) + βξ(j, {i, j});
cj(P2, Q1) = 2M2 + Mξ(j, {S ∪ {j}) + αξ(j, S ∪ {i, j}) + β.

If (7) holds but (8) fails and ǫ is sufficiently small, then ci(P1, Q1) < ci(P2, Q1). Setting the cost
of edge (sj , tj) to be a number A satisfying cj(P2, Q1) < A < cj(P1, Q1), we obtain a network game
induced by ξ with no PNE: player i wants to deviate from (P2, Q1) and (P1, Q2), while player j
wants to deviate from (P1, Q1) and (P2, Q2). (Note that A ≥ M2, as required.) This contradicts
the stability of ξ, completing the proof. �

The next lemma is a restatement of Lemma 3.10, and establishes the monotonicity of linear
uniform protocols.

Lemma 5.2 (Monotonicity of Linear Uniform Protocols) Every linear and uniform proto-
col ξ for a player set {1, . . . , k} is monotone: for every S ⊆ T ⊆ {1, . . . , k} and i ∈ S, ξ(i, S) ≥
ξ(i, T ).

Proof: We show if ξ is linear and uniform but not monotone, then it is not stable (a contradiction).
By definition, if ξ is not monotone, there is a set S ⊆ {1, . . . , k} and a pair i, i′ ∈ S of players such
that ξ(i, S\{i′}) < ξ(i, S). This can only occur if S contains a player other than i, i′. Among all such
sets, choose one of minimum-possible cardinality. We assume henceforth that ξ(i′, S \{i}) ≤ ξ(i′, S)
as well; otherwise, by Lemma 5.1, the proof is complete.

Since the cost-sharing method ξ is budget-balanced, we have

∑

j∈S\{i}

ξ(j, S \ {i}) +
∑

j∈S\{i′}

ξ(j, S \ {i′}) = 2 =
∑

j∈S

ξ(j, S) +
∑

j∈S\{i,i′}

ξ(j, S \ {i, i′}).

Thus,

ξ(i, S) + ξ(i′, S) +
∑

j∈S\{i,i′}

[

ξ(j, S) + ξ(j, S \ {i, i′})
]

=

ξ(i, S \ {i′}) + ξ(i′, S \ {i}) +
∑

j∈S\{i,i′}

[

ξ(j, S \ {i}) + ξ(j, S \ {i′})
]

.

Since ξ(i, S \ {i′}) < ξ(i, S) and ξ(i′, S \ {i}) ≤ ξ(i′, S), there is a player j ∈ S \ {i, i′} with

ξ(j, S) + ξ(j, S \ {i, i′}) < ξ(j, S \ {i}) + ξ(j, S \ {i′}).

Now consider the network shown in Figure 5. All players of S \{i, i′, j} have source s and sink t.
As in the proof of Lemma 5.1, players outside of S are confined elsewhere. The parameter M is a
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Figure 5: Network in the proof of Lemma 5.2.

sufficiently large function of ξ(i, S). (By assumption, ξ(i, S) > ξ(i, S \ {i′}) ≥ 0.) The parameter ǫ
is small enough so that ξ(i, S \ {i′}) + 2ǫ < ξ(i, S). The parameter A is chosen to satisfy

2M2+Mξ(j, S\{i})+ξ(j, S)+ξ(j, S\{i, i′}) < A < 2M2+Mξ(j, S\{i})+ξ(j, S\{i})+ξ(j, S\{i′}).
(9)

We claim that the network cost-sharing game induced by ξ in this network admits no PNE.
First, note that player i can guarantee itself a cost share of at most 2M2 + 1; player j a cost

share of at most 2M2 +M +2; and all other players a collective cost share of at most M +2. Hence,
in every PNE, the total cost incurred by all players is strictly less than 5M2 − 2ǫ (provided M is
sufficiently large). Every outcome in which both edges incident to si or both edges incident to ti
are used by some player has cost at least 5M2 − 2ǫ—player i must use one edge incident to each of
si and ti, and player j must incur cost at least 2M2 on the edges (sj , v), (sj, tj), and (w, tj)—and
thus none of these are PNE. By similar reasoning, no player other than j uses the edge (sj , tj) in
a PNE.

We have established the following for every PNE: player i′ must take the path si′ → u → x →
v → ti′ ; players of S \ {i, i′, j} must take the path s → w → u → x → v → t; and player j must
take either the path Q1, defined as sj → v → x → u → w → tj, or the one-hop path Q2 from sj to
tj.

Let P1 denote the path si → u → w → ti and P2 the path si → v → x → ti. The following four
statements will complete the proof:

(1) In a PNE, if player j chooses the path Q1, then player i chooses the path P1.
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(2) In a PNE, if player i chooses the path P1, then player j chooses the path Q2.

(3) In a PNE, if player j chooses the path Q2, then player i chooses the path P2.

(4) In a PNE, if player i chooses the path P2, then player j chooses the path Q1.

Statement (2) follows immediately from the second inequality in (9), and (4) follows from the first
inequality in (9). (Recall that in a PNE, no player other than j uses an edge incident to sj or tj.)
To prove (1), suppose that player j chooses path Q1. Since ξ(i, S) > 0 and M is sufficiently large,
player i will not use edge (u, x) in a PNE, and hence it chooses either P1 or P2. Since the edges
incident to si and ti are used by no other player, and since ǫ satisfies ξ(i, S \ {i′}) < ξ(i, S) − 2ǫ,
player i strictly prefers path P1 to path P2.

To establish (3), suppose player j chooses path Q2. No players other than i use an edge incident
to si or ti, and the minimality of S implies that ξ(i, S \ {j}) ≤ ξ(i, S \ {i′, j}). These facts imply
that P2 is the unique best response of player i (provided M ≥ 1), and the proof is complete. �

Lemma 5.2 and budget-balance yield a useful corollary.

Corollary 5.3 Let ξ be a linear uniform protocol for the player set {1, 2, . . . , k}. Suppose that
ξ(i, S) = 0 for some S ⊆ {1, . . . , k} and i ∈ S. Then ξ(j, S \ {i}) = ξ(j, S) for every j ∈ S \ {i}.

The second milestone in the proof of Theorem 3.8 states that, for every linear uniform protocol ξ,
the players can be partitioned into ordered equivalence classes so that ξ(i, S) > 0 if and only if i
belongs to the lowest-indexed class that intersects S. This and Corollary 5.3 will imply that every
linear uniform protocol is the concatenation of positive protocols in the sense of Definition 3.6. The
next two lemmas work toward this goal by establishing further restrictions on how two players can
influence each others cost shares.

Lemma 5.4 Let ξ be a linear uniform protocol with player set {1, 2, . . . , k}. Let S be a non-empty
set of players and i, j distinct players not in S, and suppose that ξ(i, S ∪ {i, j}) > 0. Then,

(

ξ(i, S ∪ {i}) − ξ(i, S ∪ {i, j})
)(

ξ(j, {j}) − ξ(j, {i, j})
)

=
(

ξ(j, S ∪ {j}) − ξ(j, S ∪ {i, j})
)(

ξ(i, {i}) − ξ(i, {i, j})
)

. (10)

Proof: Fix ξ, i, j, and S. Denote the four differences in (10) by ∆1, ∆2, ∆3, and ∆4, respectively.
By Lemma 5.2, these are all nonnegative numbers.

From the key claim in the proof of Lemma 5.1 (relating (7) and (8)), we know that for every
pair α, β of positive constants,

α∆1 < β∆4 ⇒ α∆3 ≤ β∆2. (11)

(The proof of that key claim did not use the hypothesis that ξ(i, S ∪ {i}) < ξ(i, S ∪ {i, j}), and
relied only on the fact that ξ(i, S ∪ {i, j}) > 0.) Exchanging the costs of (y, ti) and (z, ti) in the
network in Figure 4, an analogous argument proves a partial converse:

α∆3 < β∆2 ⇒ α∆1 ≤ β∆4 (12)

for each pair α, β of positive constants.
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We conclude with a case analysis. If ∆2 = ∆4 = 0, then the lemma clearly holds. If ∆2,∆4 > 0,
then ∆1/∆4 and ∆3/∆2 are well-defined nonnegative numbers; the implications (11) and (12) imply
that they are equal, and hence the lemma holds. The final two cases are symmetric; if ∆2 > 0
while ∆4 = 0 (say), then (12) implies that ∆1 = 0, and again the lemma holds. �

Lemma 5.5 Let ξ be a linear uniform protocol with player set {1, 2, . . . , k}. Suppose there are
distinct players i, j, ℓ such that ξ(ℓ, {j, ℓ}) = 0 and ξ(i, {i, j}) > 0. Then ξ(ℓ, {i, ℓ}) = 0.

Proof: By monotonicity (Lemma 5.2), ξ(ℓ, {i, j, ℓ}) = 0. By Corollary 5.3, ξ(i, {i, j, ℓ}) = ξ(i, {i, j}) >
0 and ξ(j, {i, j, ℓ}) = ξ(j, {i, j}). We can apply Lemma 5.4 with S = {ℓ} to obtain
(

ξ(i, {i, ℓ}) − ξ(i, {i, j, ℓ})
)(

1 − ξ(j, {i, j})
)

=
(

ξ(j, {j.ℓ}) − ξ(j, {i, j, ℓ})
)(

1 − ξ(i, {i, j})
)

. (13)

By hypothesis and budget-balance, ξ(j, {j, ℓ}) = 1 − ξ(ℓ, {j, ℓ}) = 1. Rewriting (13) we obtain
(

ξ(i, {i, ℓ}) − ξ(i, {i, j})
)(

1 − ξ(j, {i, j})
)

=
(

1 − ξ(j, {i, j})
)(

1 − ξ(i, {i, j})
)

.

Since 1−ξ(j, {i, j}) = ξ(i, {i, j}) > 0 by assumption, we can divide through to obtain ξ(i, {i, ℓ}) = 1,
which completes the proof. �

The next lemma and its corollary completes the second milestone of the proof of Theorem 3.8.

Lemma 5.6 Let ξ be a linear uniform protocol for the player set {1, 2, . . . , k}. Then there exists
a partition of the players into classes C1, . . . , Cℓ with the following property: for every subset S
of players and i ∈ S, ξ(i, S) > 0 if and only if i is contained in the lowest-indexed class that
intersects S.

Proof: Define a relation on players by i → j if and only if ξ(i, {j, i}) > 0. Lemma 5.5 implies that
this relation is transitive. Interpret this relation as a directed graph H (where the relation i → j
yields the arc (i, j)). By budget-balance, for every pair i, j of players, either i → j or j → i (or
both); thus H includes a tournament as a subgraph. As a consequence, there is a unique topological
ordering C1, . . . , Cℓ of the strongly connected components of H. By transitivity of →, each Ch is a
complete directed graph.

Next, consider a subset T of players and a player i ∈ T \ Ch, where Ch denotes the lowest-
indexed component that intersects T . Since i /∈ Ch, there is a player j ∈ T ∩ Ch with i 6→ j and
hence ξ(i, {i, j}) = 0. By monotonicity (Lemma 5.2), ξ(i, T ) = 0.

To complete the proof, assume for contradiction that there is a set T ⊆ {1, 2, . . . , k} and a player
i ∈ T ∩ Ch with ξ(i, T ) = 0, where Ch denotes the lowest-indexed component that intersects T .
Among all sets T with this property, choose one of minimum cardinality. By the previous paragraph
and Corollary 5.3, T ⊆ Ch. (If T 6⊆ Ch, then deleting a player of T \ Ch yields a smaller set with
the same cost shares, contradicting the minimality of T .) Since Ch is a complete directed graph,
the definition of → implies that |T | ≥ 3.

Pick j ∈ T \ {i} arbitrarily. By Corollary 5.3, ξ(j, T \ {i}) = ξ(j, T ). By the minimality of T ,
ξ(i, T \ {j}) > 0. Applying Lemma 5.4 with S = T \ {i, j}, we have ξ(j, {i, j}) = ξ(j, {j}) = 1 and
hence i 6→ j. This contradicts the fact that T is a complete directed graph. �

Corollary 5.7 (Linear Uniform Protocols are Concatenations of Positive Protocols)
A cost-sharing protocol is linear and uniform only if it is the concatenation of positive protocols.
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Proof: Let ξ be a linear uniform protocol for the player set {1, 2, . . . , k}. Partition the player set
into classes A1, . . . , Am according to Lemma 5.6. For a subset T lying entirely in some Ah and
a subset S ⊆ {1, 2, . . . , k}, we say that S induces T if S contains no players of A1, . . . , Ah−1 and
if S ∩ Ah = T . Lemma 5.6 implies that the players i with ξ(i, S) > 0 are precisely those in the
induced subset T . Corollary 5.3 implies that the values of these cost shares depend only on T and
not on S’s intersection with Ah+1, . . . , Am. For each h, we can therefore define a linear uniform
protocol ξh on Ah by setting ξh(i, T ) equal to i’s cost share ξ(i, S) in every subset S that induces T .
Then ξ = ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξm, as desired. �

To complete the proof of Theorem 3.8, we need to show that every linear uniform cost-sharing
protocol that is also positive is potential-based in the sense of Proposition 3.4. The third milestone
in the proof states that every such protocol is uniquely determined by its pairwise cost shares for
a given player (player 1, say): the cost shares of the player in the k − 1 player pairs to which it
might belong. This fact is proved over the next three lemmas. The first is a calculation.

Lemma 5.8 Let ξ be a linear uniform protocol for the player set {1, 2, . . . , k} that is also positive.
For every three players i, j, ℓ,

ξ(i, {i, j}) × ξ(j, {j, ℓ}) × ξ(ℓ, {ℓ, i}) = ξ(j, {i, j}) × ξ(ℓ, {j, ℓ}) × ξ(i, {ℓ, i}). (14)

Proof: Denote the three cost shares on the left-hand side of (14) by x, y, and z, respectively; the
lemma is then equivalent to the identity xyz = (1 − x)(1 − y)(1 − z). Denote the cost shares
ξ(i, {i, j, ℓ}), ξ(j, {i, j, ℓ}), and ξ(ℓ, {i, j, ℓ}) by a, b, and c, respectively. The plan of the proof is to
use Lemma 5.4 to express x, y, z in terms of a, b, c, apply the budget-balance constraint a+b+c = 1,
and then solve for x, y, z. By positivity of ξ, x, y, and z are strictly between 0 and 1.

An application of Lemma 5.4 (with S = {ℓ} and i, j as themselves) gives

[(1 − z) − a]x = (y − b)(1 − x); (15)

another application, after permuting the roles of the three players, yields

[(1 − y) − c]z = (x − a)(1 − z).

Solving for b and c gives

b =
xa − x(1 − z) + y(1 − x)

1 − x

and

c =
(1 − z)(a − x) + z(1 − y)

z
.

Applying the budget-balance constraint a + b + c = 1 we can solve for a in terms of x, y, z:

a =
(1 − z)(x − x2 + xz)

1 − x + xz
.

A symmetric argument (with the substitutions x → y, y → z, and z → x) yields a solution for b:

b =
(1 − x)(y − y2 + yx)

1 − y + yx
.
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Substituting into (15) and clearing denominators gives

x(1 − y + yx)(1 − z)(1 − x)2 = (1 − x)(1 − x + xz)yx2;

cancelling through and subtracting xy(1−x)(1−z) from both sides yields (1−x)(1−y)(1−z) = xyz,
as desired. �

Lemma 5.9 Let ξ1, ξ2 be linear uniform protocols for the player set {1, 2, . . . , k} that are also
positive. If ξ1 and ξ2 have identical pairwise cost shares for some player i, then they have identical
pairwise cost shares for all players.

Proof: For every pair j, ℓ of other players, the pairwise cost shares for player i and budget-balance
determine the first and third terms on both sides of (14). Equation (14), positivity, and budget-
balance then uniquely determine the second terms of both sides. �

The next lemma completes the third step of the proof of Theorem 3.8.

Lemma 5.10 (Pairwise Cost Shares Determine a Positive Protocol) Let ξ1, ξ2 be linear uni-
form protocols for the player set {1, 2, . . . , k} that are also positive. If ξ1 and ξ2 have identical
pairwise cost shares for some player i, then they are identical cost-sharing protocols.

Proof: We show that for every m ≥ 3, the cost shares of a positive, linear uniform protocol for
subsets of at most m− 1 players uniquely determine those for each subset of m players; the lemma
then follows from Lemma 5.9 and induction.

Consider a positive, linear uniform protocol ξ for {1, 2, . . . , k} and a set S of m ≥ 3 players. For
every distinct i, j ∈ S, we can use Lemma 5.4 (with S \ {i, j} playing the role of S) and positivity
to write

ξ(j, S) = ξ(j, S \ {i}) +
1 − ξ(j, {i, j})
1 − ξ(i, {i, j}) (ξ(i, S) − ξ(i, S \ {j})).

This equation shows that the given cost shares for all subsets with at most m − 1 players and a
choice of a cost share ξ(i, S) uniquely determine the cost share ξ(j, S) for every other player j of S.
Moreover, the cost shares {ξ(j, S)}j 6=i are strictly increasing with the choice of ξ(i, S). There can be
only one choice of ξ(i, S) that satisfies the budget-balance constraint

∑

j∈S ξ(j, S) = 1, completing
the proof. �

The fourth and final main step in the proof of Theorem 3.8 is to show that the only positive,
linear uniform protocols are potential-based. The idea is that every set of positive pairwise cost
shares for a player can be extended to a potential-based protocol; and by Lemma 5.10, this is the
only possible extension.

Lemma 5.11 (Positive Protocols Are Potential-Based) If ξ is a positive linear uniform pro-
tocol for the player set {1, 2, . . . , k}, then ξ is potential-based.

Proof: Given ξ, set ai = ξ(1, {1, i}). Define f({1}) = 1 and, for i ∈ {2, . . . , k}, assign f({i}) so that
1/[1 + f({i})] = ai. Extend f inductively to all of 2{1,...,k} using (5) and let ξ̂ denote the protocol
induced by f via equation (2). By construction and equations (1) and (2), ξ and ξ̂ have identical
pairwise cost shares for player 1. Lemma 5.10 and its inductive proof show that ξ = ξ̂ everywhere.
Since ξ̂ is potential-based by construction, ξ is also potential-based. �
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Proof of Theorem 3.8: The “if” direction follows from Propositions 3.4 and 3.7. For the “only
if” direction, let ξ be a linear uniform cost-sharing protocol. By Corollary 5.7, we can write
ξ = ξ1 ⊕ · · · ⊕ ξp for protocols ξ1, . . . , ξp that are linear, uniform, and positive. Lemma 5.11 implies
that each ξi is potential-based, completing the proof. �

6 Extensions

This section studies two extensions to the basic protocol design problem: relaxing the design space
to include non-uniform protocols (Section 6.1 and 6.3), and allowing a player to withdraw from
the game in favor of an “outside option” (Subsection 6.4). We also discuss the applications to
approximation algorithms of one of our constructions (Section 6.2).

6.1 Non-Uniform Protocols in Undirected Graphs

Recall from Definition 2.1 that a (non-uniform) cost-sharing protocol assigns a cost-sharing method ξe

to every edge of a network G. Unlike uniform protocols, the definition of ξe can depend on the
network G and the edge e. We continue to require admissibility (i.e., budget-balance and stability).

Example 2.7 and Theorem 4.3 rigorously separate the power of uniform and non-uniform proto-
cols: in single-sink networks with k players, there is a non-uniform protocol with worst-case POA
at most 2, while every uniform protocol has worst-case POA Ω(log k). We now systematically study
the power and limitations of non-uniform protocols.

This section considers undirected networks. Example 2.7 and Remark 2.9 resolve the best-
possible worst-case POA in single-sink networks, so we turn to multicommodity networks. Is a
constant (independent of k) worst-case POA achievable by a non-uniform protocol? For example,
there is a natural analogue of the Prim cost-sharing protocol in such networks: the first player
i is the one minimizing the distance between its source si and sink ti; the second player is the
one minimizing the distance between its source and sink, after all edges in the shortest si-ti path
have been reset to zero; and so on. Our characterization result (Theorem 3.8) pertains only to
uniform protocols and offers no assistance. Nevertheless, we can devise an explicit multicommodity
example that provides a logarithmic lower bound on the best-possible worst-case POA of non-
uniform protocols.

Theorem 6.1 For all sufficiently large k, the worst-case POA of every (non-uniform) admissible
cost-sharing protocol for k-player undirected multicommodity networks is Ω(log k).

Theorem 6.1 and Proposition 4.1 imply that, unlike in single-sink networks, non-uniform cost-
sharing protocols provided little advantage over uniform ones.

The proof of Theorem 6.1 is based on the following combinatorial lemma.

Lemma 6.2 For all sufficiently large n, there exists a 3-regular graph G = (V,E) with 2n vertices
and a perfect matching M in G satisfying the following two properties. First, deleting all of the
edges of M yields a graph with O(n/ log n) connected components. Second, contracting all of the
edges of M yields a graph with girth Ω(log n).

Proof: For sufficiently large n, we begin with a 4-regular graph G1 = (V1, E1) that has n vertices and
girth Ω(log n). Such a graph exists due to, for example, a construction of Erdös and Sachs (see [46,
Exercise 15.3.1]). First, we pick a cycle cover (a 2-regular subgraph, not necessarily connected)
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of G1; an application of Hall’s Theorem (e.g. [58, Theorem 22.1]) shows that one exists. Let C1

denote the edges in this cover. Since G is 4-regular, the set C2 of the rest of the edges of G1 is also
a cycle cover. Since G has girth Ω(log n), C1 and C2 each contain O(n/ log n) cycles.

Letting {v1, v2, . . . , vn} denote the vertices of G1, we construct the following 3-regular graph
G. There are 2n vertices v11, v12, . . . , v1n, v21, v22, . . . , v2n. For every edge e between vi and vj in
the original graph, we add an edge between v1i and v1j if e is in cycle cover C1 and add an edge
between v2i and v2j if e is in the cycle cover C2. We also add an edge between v1i and v2i for every i
and call the resulting graph G.

First, G certainly has 2n vertices and is 3-regular. It also contains a perfect matching M
consisting of the edges (v1i, v2i) for every i. If we contract all of the edges of M , then we recover the
graph G1, which has girth Ω(log n). If we delete every edge of M , then each connected component
that remains corresponds to a cycle in the graph G1 and hence contains Ω(log n) vertices. Since G
has 2n nodes, there are at most O(n/ log n) connected components after we delete the edges of M .
�

Proof of Theorem 6.1: Let G = (V,E) be the graph described in Lemma 6.2. Let G1 be the graph
obtained from G by contracting the perfect matching M . G1 has girth at least 2c log n for some
constant c > 0. Assign cost c log n to all edges of M in G. All other edges in G have cost 1.

We add an additional vertex v and, for every connected component C of G\M , we add an edge
with cost 2c log n between v and an arbitrary vertex of C. There are n players in the game, with
one for each edge e of M . The endpoints of e are the source and sink vertices of the corresponding
player.

Now fix arbitrary cost-sharing methods for the edges of G. We claim that the outcome in which
every player chooses its one-hop path is a PNE with respect to these cost-sharing methods. First,
every deviation from this outcome must use either an edge incident to the extra vertex v or all of
the edges of a cycle in the graph G1. Since all such edges are currently unused by all of the players,
the budget-balance constraint ensures that the deviating player must pay their full cost. Since each
edge incident to v has cost 2c log n and G1 has girth 2c log n, every deviation by every player incurs
cost at least 2c log n. Since every player’s one-hop path has cost only c log n, it follows that this
outcome is indeed a PNE with respect to an arbitrary set of cost-sharing methods. The cost of this
outcome is cn log n.

To finish the proof, it suffices to exhibit a connected subgraph with cost O(n). Consider taking
all of the edges incident to v and all of the edges in G but not M . By construction, this subnetwork
is connected. All of the edges in G but not M have cost 1 and there are 2n of them. All of the
edges incident to v have cost 2c log n and there are O(n/ log n) of them, for a total cost of O(n). �

6.2 Applications of Theorem 6.1 to Approximation Algorithms

The construction in Theorem 6.1 is relevant to a number of well-studied NP -hard network design
problems. The most interesting application is to oblivious network design [20, 24], where the goal
is to simultaneously route one unit of flow between source-sink pairs in an undirected network
at minimum cost. The key assumption is that the cost of routing a given amount of flow on
an edge is governed by a concave function that is unknown to the algorithm. Can the flow be
routed in a way that is competitive with an optimal solution that is privy to this cost function?
Precisely, the input is specified by an undirected graph G with a cost ce for each edge, and known
source-sink pairs (s1, t1), . . . , (sk, tk). Given this information, the design problem is to select a
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multicommodity flow x that routes one unit for each source-sink pair. An adversary then chooses
a concave function f , and the cost incurred is Cf (x) =

∑

e ce · f(xe), where xe is the total flow
routed across edge e. A flow x is α-competitive if, for every concave f , Cf (x) ≤ α ·Cf (x∗

f ), where x∗
f

denotes a minimum-cost multicommodity flow for the function f .3

Amazingly, for every undirected network, there is a multicommodity flow with a polylogarithmic
competitive ratio [24]. The construction in the proof of Theorem 6.1 implies an unconditional lower
bound that rules out a constant competitive ratio.

Corollary 6.3 For all sufficiently large k, there are k-commodity oblivious network design in-
stances such that no routing of the demands is o(

√
log k)-competitive with respect to every concave

cost function.

Proof (sketch): We require only two different concave cost functions: a linear function and a
constant function. (A constant competitive ratio is possible for this special case in single-sink
networks [20, 39].) Begin with the network G and corresponding source-sink pairs in the proof of
Theorem 6.1, and set the scaling factor ce to

√
log n for all edges of M and to 1 for all other edges.

Consider the two cost functions f(x) = x and f(x) =
√

log n, where x denotes the amount of flow
on an edge. For each cost function, there is a routing of the traffic in G with cost Θ(n

√
log n). On

the other hand, every fixed routing of the demands has cost Ω(n log n) with respect to one of the
two functions. �

The other implications of the proof of Theorem 6.1 concern the generalized Steiner tree (GST)
problem [1]: given an undirected graph with fixed edge costs and source-sink vertex pairs, the ob-
jective is to compute a minimum-cost subgraph that includes a path between each source-sink pair.
This is the underlying optimization problem of network cost-sharing games in multicommodity net-
works. This problem and numerous variants have been extensively studied from an approximation
algorithms viewpoint.

The best currently known approximation algorithms for the GST problem are fairly sophisti-
cated primal-dual or LP-rounding algorithms that obtain an approximation ratio of 2 [1, 22, 32, 41].
Unlike the simpler Steiner tree problem, no constant-factor greedy approximation algorithm for
GST is known. An obvious candidate heuristic is: iterate through the source-sink pairs in some
order, always connecting the current pair via a shortest path (with already built edges viewed as
zero-cost). The most natural order is to select unconnected pairs to greedily minimize the ad-
ditional cost incurred at each iteration; this yields a 2-approximation algorithm when there is a
common sink vertex (cf., Example 2.7). If this or any other ordering gave a constant-approximation
algorithm for GST, it would also lead directly to the simplest-known constant-factor approximation
algorithm for the multicommodity rent-or-buy problem (see [7, 18, 25]) and the first constant-factor
approximation algorithm for the Stochastic Steiner Forest problem (see [26]).

Unfortunately, the network in the proof of Theorem 6.1 shatters all of these hopes: for every
ordering of its source-sink pairs, the greedy heuristic above outputs a network (the matching M)
that has cost Ω(log k) times that of an optimal solution.

3In [24], this version of the problem is called “function-oblivious”; polylogarithmic lower bounds on the best-
possible competitive ratio were already known for the “demand-oblivious” version [24, 34], in which the sources
themselves are unknown.
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6.3 Non-Uniform Protocols in Directed Graphs

This section studies non-uniform protocols in directed networks. Recall from Remark 4.13 that the
proof of Proposition 4.12 carries over without change to non-uniform protocols, and shows that the
worst-case POA and reachable POA remain linear for all such protocols.

Proposition 6.4 (POA in Directed Networks (Non-Uniform)) For every k ≥ 1, the worst-
case POA of every admissible protocol in k-player directed networks is k. The lower bound holds
even in single-sink directed networks.

Proposition 6.4 justifies adopting the POS as an inefficiency measure. Are there non-uniform
protocols more powerful than the optimal uniform one (the Shapley protocol)? To answer this ques-
tion, call an outcome (P1, . . . , Pk) of a network enforceable if there exists a cost-sharing method ξe

for each edge e such that the outcome (P1, . . . , Pk) is a PNE in the resulting network cost-sharing
game. For example, a POS of 1 is achievable in a network (via a non-uniform protocol) if and only
if some optimal outcome is enforceable.

Proposition 6.5 Every single-sink directed network admits an enforceable optimal solution.

Proof: Anshelevich et al. [3], motivated by network design games with endogenous cost shares,
prove the following result: there always exists a minimum-cost solution P1, . . . , Pk of a single-sink

directed network and nonnegative payments {π(i)
e }e∈E,i∈{1,...,k} with the following properties:

(a)
∑k

i=1 π
(i)
e = ce for every edge e;

(b) π
(i)
e = 0 for every player i and edge e /∈ Pi;

(c) for every player i and si-t path P̂i,
∑

e∈Pi
c
(i)
e ≤∑

e∈P̂i
c
(i)
e , where c

(i)
e = π

(i)
e for e ∈ ∪iPi and

c
(i)
e = ce otherwise.

Part (c) states that every player simultaneously chooses a minimum-cost path given the current
payments π, with the understanding that the player would have to pay the full cost of an edge not
currently in use.

Given this result, the proof of the proposition is easy. Consider a single-sink network, let (P1, . . . , Pk)
denote the optimal solution guaranteed above, and define Se = {i : e ∈ Pi}. Let π denote pay-

ments satisfying properties (a)-(c) above. Define ξe(i, Se) = π
(i)
e for every edge e and player i ∈ Se.

Define ξe(i, Se ∪ {i}) = ce for every e and i /∈ Se; this ensures that the penalty of deviating
from (P1, . . . , Pk) is at least as severe as in property (c) above. Define other cost shares arbitrarily,
subject to budget-balance. Property (c) implies that (P1, . . . , Pk) is a PNE with respect to these
cost-sharing methods, completing the proof. �

In multicommodity networks the optimal POS can be strictly larger than 1.

Proposition 6.6 For every ǫ > 0, there is a directed network in which every enforceable outcome
costs at least (3/2 − ǫ) times that of an optimal solution.

Proof: To illustrate the main ideas, consider the network depicted in Figure 6. The unique optimal
outcome has both players sharing the middle route with cost 2. For this outcome to arise as a PNE
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Figure 6: A network with POS strictly greater than 1 with respect to every (non-uniform) cost-
sharing method.

with respect to a cost-sharing protocol, the sum of the cost shares charged to the first player must
not exceed 1− ǫ (otherwise the first player would deviate to its 1-hop path). Similarly, the sum of
the cost shares charged to the second player cannot exceed 1, as otherwise it would substitute one
of the two edges of cost 1/2 in its path. Budget-balance now implies that this optimal outcome is
unenforceable, and the POS for this example is 5/4 − ǫ.

We build on this example to show for every ǫ > 0, there is a network in which every enforceable
outcome has cost at least 3/2− ǫ times that of the optimal solution. The base case of our iterative
construction is the network of Figure 6. The second network in the sequence is shown in Figure 7,
and the general process is as follows. To obtain the ith network from the (i − 1)th network in
the sequence, we first “split” the last player i of the latter network into two identical players, with
respective sources and sinks si, ti and si+1, ti+1. Each of these two players has the same links
incident to its respective source and sink as player i had in the (i − 1)th network, except with all
costs divided in half. Next, we add a direct link from si to ti of cost (i + 1)/2i − ǫ. We subdivide
the middle route so that it has 2i sections of cost 1/2i−1 each, with a zero-cost link separating
each such segment. We then add 2i − 1 pairs of new edges. Each pair has one edge emanating
from si+1 and one entering ti+1, and the other ends of these edges are connected to the tail and
head (respectively) of one of the newly added zero-cost segments of the middle route. Finally, the
new edges’ costs are set so that every si+1-ti+1 path using exactly one positive-cost segment of the
middle route has total cost (i + 2)/2i.

We now argue that if the first i− 1 players of the (i− 1)th network use their direct source-sink
paths in every PNE (with respect to every cost-sharing protocol), then the same property holds for
the first i players of the ith network. To see this, first note that in the latter network, players i and
i+1 are collectively willing to contribute at most 1/(2i−2) toward paying for the middle route (the
optimal shared path), and this is the same maximum amount that player i is willing to contribute
to the middle route in the (i− 1)th network. This implies that players 1, . . . , i− 1 will continue to
take their direct source-sink paths in the ith network in every PNE. As for player i, it uses some
part of the middle route — at least two consecutive positive-cost segments — only if it pays at
most 1/2i−1 − ǫ for these segments. Player i + 1 deviates to a path with only one positive-cost
segment unless it pays strictly less than 1/2i−1 for these multiple segments. Thus, player i must
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Figure 7: A network with POS ≈ 11/8 with respect to every (non-uniform) cost-sharing method.

use its direct source-sink path in a PNE. Since the sum of the costs of the direct source-sink paths
approaches 3 as i → ∞, the proof is complete. �

We leave open the challenging question as to whether or not every multicommodity network
admits an enforceable near-optimal outcome.

6.4 Outside Options

We have assumed so far that each player in a network cost-sharing game is required to choose a
path connecting its source and sink. This section considers briefly the obvious generalization in
which each player has the “outside option” of not participating in the game, thereby suffering a
constant opportunity cost. Every PNE then satisfies a “voluntary participation” constraint, in that
a player agrees to select a path in the network only if its incurred cost does not exceed that of its
outside option.

Formally, a network cost-sharing game with outside options is specified by the same data as a
standard network cost-sharing game, but with an additional constant opportunity cost ai for each
player i. The strategy set of each player i is its si-ti paths, and also its own outside option. (No
player can select an outside option belonging to a different player.) A PNE is defined in the obvious
way with respect to this enlarged strategy set. The cost of an outcome is the sum of the costs of
the edges used by players that select paths, plus the sum of the opportunity costs of the players
that choose their outside option.

An outside option for player i is essentially equivalent to an additional directed si-ti edge that
cannot be used by any other player. For this reason, the best-possible worst-case POA and POS
in such games (in both undirected and directed networks) is the same as that in directed network
cost-sharing games without outside options. Precisely, we have the following.
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Theorem 6.7 (Optimality of the Shapley Protocol with Outside Options)

(a) For every k ≥ 1, the worst-case POA of every cost-sharing protocol in k-player networks with
outside options is k. The lower bound holds even in single-edge networks.

(b) For every k ≥ 1, the worst-case POS of the Shapley protocol in k-player networks with outside
options is the kth Harmonic number Hk: 1 + 1

2 + · · · + 1
k

= ln k + O(1).

(c) For every k ≥ 1, the worst-case POS of every uniform protocol in k-player networks with
outside options is Hk. The lower bound holds even in single-edge networks.

Proof (sketch): Part (a) follows from the proof of Proposition 4.12. The lower bound in that proof
can be simulated with a network with one edge (s, t) with cost 1 + ǫ, and k players all with ai = 1.

Part (b) follows from the potential function argument of Anshelevich et al. [2]. In more detail,
define the function Φ as in (3), with f(S) defined as H|S| for every set S of players. This function is
defined for all strategy profiles in which each player i selects either an si-ti path or its own outside
option; in the definition of Φ, the latter can be treated as an edge with cost ai. The function Φ
can only overestimate the cost of a strategy profile, and only by an Hk factor. It follows that the
global minimizer of the potential function is a PNE with cost at most Hk times that of an optimal
solution.

Finally, part (c) follows from the proof of Theorem 4.15; that example can be simulated by a
single edge of cost 1 + ǫ and opportunity costs ai = 1/i for all i ∈ {1, 2, . . . , k}. �

7 Conclusions and Open Questions

Our work suggests a number of promising directions for future research. One concrete question is
to narrow the gap between our upper and lower bounds for non-uniform cost-sharing protocols in
directed multicommodity networks. More broadly, different trade-offs between the constraints (1)–
(4) discussed in the Introduction should be studied. For example, can the separability assumption
be weakened in a useful way? Can the trade-off curve between efficiency and budget-balance
be rigorously quantified? What about quantitative trade-offs between fairness and efficiency in
undirected networks?

Finally, as the techniques for analyzing the inefficiency of equilibria in static games mature
rapidly, the more algorithmic and challenging worst-case design questions should assume a central
role in algorithmic game theory research. This paper presented one study of such problems; we
expect similar pursuits in other settings—from routing, to facility location, to other models of
network formation—to be equally fruitful.
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