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ABSTRACT 1 

Aim   Conservation practitioners use biological surveys to ascertain whether or not a site is 2 

occupied by a particular species. Widely-used statistical methods estimate the probability that a 3 

species will be detected in a survey of an occupied site. However, these estimates of detection 4 

probability are alone not sufficient to calculate the probability that a species is present given that it 5 

was not detected. The aim of this paper is to demonstrate methods for correctly calculating (i) the 6 

probability a species occupies a site given one or more non-detections, and (ii) the number of 7 

sequential non-detections necessary to assert, with a pre-specified confidence, that a species is absent 8 

from a site.  9 

Location   Occupancy data for a tree frog in eastern Australia serve to illustrate methods that 10 

may be applied anywhere species' occupancy data are used and detection probabilities are less than 1.  11 

Methods   Building on Bayesian expressions for the probability that a site is occupied by a 12 

species when it is not detected, and the number of non-detections necessary to assert absence with a 13 

pre-specified confidence, we estimate occupancy probabilities across tree frog survey locations, 14 

drawing on information about where and when the species was detected during surveys.  15 

Results   We show that the number of sequential non-detections necessary to assert that a 16 

species is absent increases non-linearly with the prior probability of occupancy, the probability of 17 

detection if present, and the desired level of confidence about absence.  18 

Main conclusions   If used more widely, the Bayesian analytical approaches illustrated here 19 

would improve collection and interpretation of biological survey data; providing a coherent way to 20 

incorporate detection probability estimates in the design of minimum survey requirements for 21 

monitoring, impact assessment and distribution modelling. 22 

Key-words: Bayes' theorem, detectability, survey effort, monitoring, species distribution model23 
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(A) Introduction 24 

Species site occupancy data underpin many of the analyses undertaken in conservation 25 

biogeography. Of eight 'prominent areas of research in conservation biogeography' identified by 26 

Richardson and Whittaker (2010), five are fundamentally reliant on occupancy data; (i) 27 

understanding processes such as extinction, persistence, range expansion, dispersal; (ii) inventory 28 

and mapping; (iii) species distribution modelling; (iv) characterizing biotas, including species–area 29 

relationships, and (v) conservation planning. Each of these activities is, to some extent compromised 30 

by uncertainty arising from imperfect detection of species during biological surveys. A range of 31 

statistical methods exist to model imperfect detection of species during occupancy surveys, estimate 32 

species' detection probabilities, identify conditions most conducive to detection, and control for 33 

imperfect detection in statistical inference (McArdle, 1990; Boulinier et al., 1998; MacKenzie et al., 34 

2002; MacKenzie et al., 2003; Tyre et al., 2003; Wintle et al., 2004; Royle & Link, 2006).  These 35 

statistical approaches have been primarily used to estimate detection probabilities under various 36 

survey conditions (Bailey et al., 2004; Wintle et al., 2005), to analyse temporal trends in habitat 37 

occupancy (MacKenzie et al., 2002; MacKenzie et al., 2003; Field et al., 2005), to condition species 38 

richness estimates (Dorazio et al., 2006 ; Kéry et al., 2009 ), and to remove false negative 39 

observation bias from estimates of species distribution model coefficients (e.g. Tyre et al., 2003).  40 

 41 

Arguably, the most common application of detectability estimates is in interpreting observation data 42 

to determine whether or not a species is, in fact, present at a given site when not detected. 43 

Environmental impact assessments utilize these kinds of data to inform decisions about whether or 44 

not destruction or development of potential habitats should be allowed to proceed, at the risk of 45 

losing endangered species that have not been detected on the site (Garrard et al., 2008). Declaring 46 

eradication of a weed or disease depends on the probability that there are unobserved breeding 47 

individuals (Regan et al., 2006; Rout et al., 2010). Quarantine operations must assess the probability 48 
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that an unwanted pest is in fact present in a shipping container, given that it was not detected using a 49 

particular search strategy (Burgman et al., 2010). In all such cases, it is important to correctly 50 

interpret non-detection data so that decisions can be based on coherent estimates of the probability 51 

that a species is truly absent, or alternatively that the species is present but not detected.  52 

 53 

It is tempting to imagine that a good estimate of the detection probability; the probability that a 54 

species would be detected if it is present, would be enough to estimate the probability it is present 55 

given that it was not detected in a given number of survey visits. Unfortunately, it is not enough to 56 

know the probability of detection conditional on presence if the aim is to determine the probability of 57 

presence given non-detections. To illustrate, let’s say the chance of detecting a hypothetical rare 58 

species, if in fact it is present, is 50% in any one survey and that six independent surveys at a site fail 59 

to detect it. There is a probability of (0.5)6 = 0.016 that all six surveys will fail to detect the species if 60 

it is present. There is a tendency to confuse this, the probability that species is not detected given that 61 

it is present, with the probability that it is present given that it was not detected (e.g., Pellet & 62 

Schmidt, 2005; Jackson et al., 2006; Olea & Mateo-Tomas, 2011). This common logical error is 63 

known as the 'inverse fallacy' or 'base-rate fallacy' (Bar-Hillel, 1980; Koehler, 1996; Villejoubert & 64 

Mandel, 2002) and amounts to mistakenly accepting that Pr(A|B) = Pr(B|A). This result also impacts 65 

on the design of minimum survey effort requirements for detecting species. If one wishes to calculate 66 

the number of sequential non-detections necessary to assert, with a pre-specified confidence, that a 67 

species is truly absent, it is not sufficient to consider only the detection probability. One must also 68 

consider the expected prevalence of positive observations (expected rate of occupancy in a sample). 69 

This quantity is equivalent to the prior probability of occupancy in a Bayesian analysis.  70 

 71 

Bayesian approaches have been applied to modelling imperfect detection data (e.g., Wintle et al., 72 

2005; McCarthy, 2007; Royle et al., 2007; Garrard et al., 2008; Royle & Dorazio, 2008; Burgman et 73 
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al., 2010). The aim of this paper is to demonstrate Bayesian approaches to collecting and interpreting 74 

observation data of the kind described above. We provide mathematical expressions and computer 75 

code to (i) estimate the probability that a species occupies a given site after one or more non-76 

detections have occurred at that site; (ii) estimate the number of sequential non-detections necessary 77 

to assert with a pre-specified degree of confidence that a species is truly absent from the site; and (iii) 78 

generalize these to estimate occupancy probabilities at multiple sites, drawing on information about 79 

the sorts of places the species has and has not been located over all the sites in a multi-site survey. 80 

We demonstrate the application of these methods using a case study based on tree frog survey data 81 

from sub-tropical eastern Australia.  82 

 83 

(A) Methods 84 

(B) Model 85 

The correct logical structure of the problem is more accessible if we draw it as a logic tree (Fig. 1), 86 

and use frequencies instead of probabilities (Gigerenzer & Hoffrage, 1995). Remember our 87 

hypothetical species that is detected on average 50% of the time during individual surveys to 88 

occupied sites. There is a probability of (0.5)6 = 0.016 that it would remain undetected in 6 visits to a 89 

site if it is present there. Let’s say that past records indicate the species was present at about one in 90 

four sites having comparable habitat. If we imagine 1000 such sites, the species is expected to be 91 

present at 250. Of those, six repeat surveys at each site will detect the species at (1 – 0.016) × 250 = 92 

246 sites. If the species is not detected, it’s either a false absence (4/1000) or a true absence 93 

(750/1000).  The chance the species is actually present despite six surveys reporting absence is 4/(4 + 94 

750) = 0.005.  Note that this probability is conditioned by the first branch of the logic tree; the 95 

expected true rate of occupancy (or the prior belief the species is present).  If our prior belief is that 96 

the species will be present at about three in four sites of comparable habitat, the corresponding 97 

posterior probability of occupancy is 12/(12 + 250) = 0.046, almost an order of magnitude greater. 98 
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The simple calculations illustrated in the logic tree are equivalent to the solution based on Bayes’ 99 

Theorem as we now show. 100 

 101 

Let p' be a prior probability that a species that is in fact present will be detected in any single survey 102 

of a fixed effort at a single site. The likelihood of a single non-detection if the species is in fact 103 

present is 1 – p'. If Ψ' is the prior probability that the species occupies that site, then Bayes' theorem 104 

gives the posterior probability of the site being occupied given that it was not detected in a single 105 

survey (Wintle et al., 2005): 106 

 107 

 p = Ψ'(1–p')/(Ψ'(1–p') + (1–Ψ'))     (eq. 1) 108 

 109 

The posterior probability of absence is then simply 1 – Ψ.      110 

 111 

Bayes' theorem for the posterior probabilities of presence and absence can be generalised to the case 112 

where there are n sequential survey visits to a site in which the species was not detected. In this case, 113 

and given independence of detections among visits, the likelihood of observing a sequence of n non-114 

detections at a site that is occupied is (1-p')n. The posterior probability that the site is occupied (Ψ) is 115 

then (Wintle et al., 2005): 116 

 117 

Ψ = Ψ'(1–p)n/(Ψ'(1–p)n + (1–Ψ'))     (eq. 2) 118 

 119 

Note that the model ignores the possibility of false presences arising from misidentification of 120 

species, though it may be extend to do so (Bar-Hillel, 1980; Royle & Link, 2006). 121 

 122 
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Rearranging equation 2 to solve for n provides the number of sequential non-detections (n*) 123 

necessary to achieve a particular posterior probability of absence from the site (1–Ψ). This takes into 124 

account a prior belief about detectability of the species (p') and the prior (before collection of data) 125 

probability that the species is present (Ψ') (Wintle et al., 2005): 126 

 127 

𝑛∗ =>
log(

𝛹

1−𝛹
)−log(

𝛹′

1−𝛹′)

log(1−𝑝′)
 ,     (eq. 3) 128 

 129 

Plotting equation 3 highlights the non-linear interaction between the occupancy prior (Ψ') and the 130 

detection probability (p') in determining the number of sequential non-detections necessary to 131 

achieve a pre-specified posterior level of confidence in the inference of true absence (Fig. 2).  132 

 133 

Ecologists often collect repeat survey occupancy data across numerous sites in a study area, either to 134 

estimate an overall rate of habitat occupancy in the case of monitoring applications (Field et al., 135 

2005), or to statistically infer species-environment relationships in the form of species distribution 136 

models (Gu & Swihart, 2004). In both cases, it is important to account for imperfect detectability to 137 

avoid biased inference. It is therefore useful to generalize equation 2 to estimate occupancy 138 

probabilities using multi-site, multi-visit survey data, taking into account site- and visit-level 139 

variation in detectability and probability of occupancy due to environmental conditions and the 140 

observation process.   141 

 142 

At a site i occupied by a species of interest, the likelihood of observing the species in the jth visit to 143 

the site is pij and the likelihood of failing to observe the species is 1 - pij. Site- and visit-level 144 

detection probabilities may vary due to environmental influences on detectability such as vegetation 145 

density or visit-level factors such as ambient weather conditions (Wintle et al., 2005), or the survey 146 

method used on a given visit to a site (Parris et al., 1999). Let Yi represent a vector (sequence) of 147 
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observations of length vi (the number of visits to the site). Each element of the vector yij may take the 148 

value of 1 if the species was observed in the jth visit and 0 if the species was not observed in the jth 149 

visit. The likelihood of a given detection history (Yi) over v visits to a site i is therefore (MacKenzie 150 

et al., 2002): 151 

𝐿(𝑌𝑖|𝛹𝑖 , 𝑝𝑖𝑗) = 𝛹𝑖 ∏ 𝑝𝑖𝑗
𝑦𝑖𝑗𝑣𝑖

𝑗=1 (1 − 𝑝𝑖𝑗)
1−𝑦𝑖𝑗

 ,             ∑ yij > 0
vi
j=1    (eq. 4) 152 

 153 

𝐿(𝑌𝑖|𝛹𝑖 , 𝑝𝑖𝑗) = 𝛹𝑖 ∏ (1 − 𝑝𝑖𝑗)
𝑣𝑖
𝑗=1 + (1 − 𝛹𝑖) ,              ∑ 𝑦𝑖𝑗 = 0

𝑣𝑖
𝑗=1   (eq. 5) 154 

 155 

Having defined the likelihoods for multi-site, multi-visit data with respect to the site occupancy 156 

probabilities (Ψi) and the detection probabilities (pij), a Bayesian approach to generating posterior 157 

estimates of Ψi and pij requires a prior for each. If there is a reasonable expectation that 158 

environmental and observation process variables are likely to influence the pij and Ψi, such that they 159 

may vary over different sites or visits to those sites, it makes sense to model these probabilities as a 160 

function of environmental variables using an appropriate regression method (McCullagh & Nelder, 161 

1989): 162 

 163 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = α + ∑ β
𝑘

𝑋𝑖𝑘
𝐾
𝑘=1 + ∑ γ

𝑚
𝑍𝑖𝑗𝑚

𝑀
𝑚=1  ,   (eq. 6) 164 

 165 

𝑙𝑜𝑔𝑖𝑡(𝛹𝑖) = σ + ∑ δ𝑘𝑌𝑖𝑘
𝐾
𝑘=1   ,     (eq. 7) 166 

 167 

where the α, σ, βk, γm and δk are regression coefficients indicating the strength of the influence of 168 

environmental variables Yk, Xk ,and Zm on occupancy and detection probabilities. In this case, the Xk 169 

and Yk vary across sites, while the Zm vary across both sites (indexed by i) and visits (indexed by j), 170 

and could be comprised of environmental, weather and observation variables such as observer 171 

experience or observation method.   172 



8 

 

 173 

Prior probability distributions are required for all of the α, σ, βk, and γm regression coefficients.  In 174 

this case there is little basis for strong belief in any prior, so a reasonable choice would be 175 

uninformative normal distributions with a mean equal to 0 and large variance. A full Bayesian 176 

analysis of multi-visit, multi-site observation data using this model in a Bayesian modelling package 177 

such as OpenBUGS (Lunn et al., 2000) yields posterior estimates of the strength of influences of 178 

environmental, weather and observation processes on both species occupancy and species 179 

detectability.  By substituting 𝛹𝑖
′ and 𝑝𝑖𝑗

′  into Eq.3, it is then possible to estimate the required survey 180 

effort (n*), as a function of the values of site and survey conditions (i.e., as a function of the X and 181 

the Z from equations 6 and 7). Uncertainty about the 𝛹𝑖
′ and 𝑝𝑖𝑗

′  can be propagated through the 182 

calculation of n* using Bayesian software such as OpenBUGS (see Appendix S1 in supporting 183 

information for all OpenBUGS code used in our analyses).  184 

 185 

In the following section, we demonstrate the application of the models described above by analysing 186 

multi-site, multi-visit survey data for the cascade tree frog (Litoria pearsoniana) in eastern Australia. 187 

 188 

(B) Application Data 189 

Litoria pearsoniana is a tree frog that breeds in forest streams in sub-tropical eastern Australia.  190 

Surveys of 64 sites throughout its range in south-east Queensland and north-east New South Wales 191 

were conducted over an area of approximately 14,000 km2 between 1995-1999 (Parris, 2001).  Two 192 

survey methods were employed; nocturnal searches and automatic tape recording of advertisement 193 

calls. The data comprise a record of the detection or non-detection of the species on each survey 194 

night at each survey site. The only visit-level variable considered that could have influenced the 195 

probability of detection in each survey is the type of survey method used (search versus tape 196 

recording).  Variables thought most likely to influence the probability of site occupancy by L. 197 
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pearsoniana were the catchment volume of the stream, indicating the permanence and volume of 198 

stream flow, and the presence or absence of palms at the site, which indicates mesic or xeric 199 

conditions in the riparian zone (Parris, 2001). Catchment volume was calculated as the mean annual 200 

volume of rain that fell in the catchment upstream of the site and ranged from 114 to 102,000 201 

gigalitres across survey locations. 202 

 203 

(B) Application model 204 

Data of Parris (2001) were re-modelled using the freeware Bayesian modelling package OpenBUGS 205 

3.1.2 (Lunn et al., 2000). The model set-up was identical to that described in equations 4-7. The 206 

analysis of visit-level variation in detectability (pij) was simplified by having only a single 207 

categorical variable (survey method) influencing pij.  The influence of the explanatory variables 208 

catchment volume (modelled as the natural log of catchment volume: lnCV) and the presence of 209 

palms (palms) on the probability of L. pearsoniana occupancy was modelled using logistic 210 

regression (McCullagh & Nelder, 1989). A multiplicative interaction term for these two variables 211 

was also included. Uncertainty about the strength of influence of the explanatory variables on L. 212 

pearsoniana occupancy prior to data analysis was characterised using uninformative normal 213 

distributions on regression coefficients with a mean of zero and standard deviation of 1000. Prior 214 

uncertainty about the detectability of L. pearsoniana with the two survey methods was characterised 215 

using uninformative uniform prior distributions between zero and one. Posterior distributions for i) 216 

the regression model coefficients, ii) probabilities of presence over the observed range of the 217 

explanatory variables, and iii) nightly detection probabilities for the two survey methods were 218 

obtained from 50 000 Markov chain Monte-Carlo (MCMC) samples after discarding a 10 000 219 

sample burn-in (Appendix S1). 220 

 221 

(A) Results 222 
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Analysis confirmed a strong positive influence of catchment volume and a weak positive influence of 223 

palms on the occurrence of L. pearsoniana, and a strong positive interaction between the two 224 

variables (the effect of catchment volume is stronger in the presence of palms) (Appendix S1).  At 225 

the sites with the lowest catchment volumes in the study, the probability of them containing tree 226 

frogs was slightly higher in the absence of palms (~0.1) compared with sites in which palms were 227 

present (~ 0.05). However, when a site was situated in a medium or larger sized catchment, the 228 

probability of tree frog occupancy was more than tripled at sites with palms compared to sites 229 

without (0.2-0.3 small catchment versus 0.7-0.9 large catchments. The mean probability of detection 230 

using nocturnal searches was estimated to be 0.56, which is substantially higher than the mean 231 

detection probability arising from automatic recording of calls (0.35). 232 

 233 

(B) Minimum survey effort calculations 234 

By utilizing equation three in the OpenBUGS detectability and occupancy model of L. pearsoniana 235 

(computer code in supplementary material) we were able to estimate the minimum survey effort 236 

(number of repeat visits) necessary to achieve some pre-specified confidence in a conclusion that the 237 

species was truly absent from a particular location under a range of environmental and detectability 238 

conditions that may be encountered in future surveys (Fig. 3).  It is apparent from Figure 3 that the 239 

number of sequential non-detections necessary to be 95% sure that the species is absent from a given 240 

site increases as the variables that positively influence probability of L. pearsoniana occupancy 241 

increase. Under the most effective survey method (spotlighting streams), a 10-fold increase in the 242 

volume of streams with palms leads to a 2-3-fold increase in the number of non-detections necessary 243 

to be 95% certain that the species is, in fact, absent. This is because the prior probability that the 244 

species occupies larger streams is substantially higher than that for smaller streams, necessitating a 245 

greater weight of evidence (in the form of sequential non-detections) to provide the same level of 246 

(posterior; after data) confidence that the species is absent. At the highest level of catchment volume 247 
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recorded in the study, in a site containing palms, approximately 9 sequential non-detections using 248 

spotlighting surveys are required to be 95% sure the site is unoccupied, compared with the 18 non-249 

detections using tape recording that would be needed for the same level of confidence in absence 250 

(Fig 3). 251 

 252 

(A) Discussion 253 

In the models described and demonstrated here, the role of a prior belief (in the form of a prior 254 

probability of species occupancy) is central to a coherent interpretation of non-detections in survey 255 

results. While some readers may feel uneasy about the use of prior probabilities (especially 256 

subjective prior probabilities), failure to consider prior expectations, also known as 'base rates' or 257 

expected prevalence (Koehler, 1996), is likely to lead to logical flaws in data interpretation, 258 

including the 'inverse fallacy'. Utilizing previous studies or previous season's data to derive priors for 259 

the expected rate of occupancy (or prevalence of positive observations) would generally be the 260 

preferred means of estimating the prior probability of occupancy for those wishing to minimize 261 

subjectivity.   262 

 263 

However, in the design and analysis of field experiments, it is common to implicitly utilize prior 264 

information. For example, if an ornithologist is searching for the northern spotted owl in a highly 265 

productive, mature Douglas Fir forest in North America with a rich small mammal faunal 266 

assemblage, they are likely to harbour a strong prior belief that the owl is present somewhere in the 267 

area and may require a substantial number of non-detections to convince them otherwise. If the 268 

search is being conducted in marginal habitat, a lesser effort may be intuitively employed.   269 

 270 

The insights from models developed here emphasise the importance of explicit estimation and use of 271 

prior beliefs.  Estimates may be based directly on biological judgment, the predictions generated 272 
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from a habitat model, or simply the unconditional rate of occupancy (also known as expected 273 

prevalence or the 'base rate') from previous surveys of the species (MacKenzie, 2005).  An 274 

uninformative prior probability of occupancy, Ψ' = 0.5 may be difficult to justify in many instances. 275 

For example, consider a species that on the basis of historical records is estimated to be present at 276 

10% of sites within a study region of variable habitat quality. If p = 0.3 and we wish to be 99% 277 

confident of absence, then from equation 3, we require 13 sequential non-detections should we insist 278 

on use of the uninformative prior, Ψ' = 0.5.  If we use Ψ' = 0.10, then seven non-detections are 279 

required.  When surveying resources are scarce, use of an uninformative prior represents an 280 

opportunity cost.  A sophisticated approach that recognises opportunity costs would utilise biological 281 

judgment to discern areas where the species is more (or less) likely to be present than the overall 282 

10% estimate of prevalence. 283 

 284 

Despite the fundamental importance of prevalence in conditioning estimates of species absence, we 285 

could find no published examples in ecology where expected or previously observed prevalence 286 

were explicitly incorporated in the design of a survey, let alone used to determine the required survey 287 

effort. The advantage of our approach is that potentially implicit and subjective judgements are made 288 

explicit, and the consequences of those judgements can be enumerated. Equation (3) makes clear that 289 

decisions about necessary survey effort to determine the status of a species at a site depend on the 290 

suitability of the site (Ψ'), the reliability of the survey (p), and the probability of occupancy required 291 

when the survey fails to detect the species (Ψ). Scientific methods are available to estimate Ψ' and p, 292 

yet the required posterior probability of presence (Ψ) depends on social and political judgements that 293 

reflect the costs of false absences. False absences in impact assessment for endangered species or 294 

surveillance for invasive species might incur costs due to elevated risks of local or global extinction, 295 

or of establishment and spread of a pest (Regan et al., 2006). These costs need to be weighed against 296 
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the costs of additional survey effort. Our models support a framework for estimating the survey 297 

effort that will lead to least overall cost. 298 

 299 

The methods presented and illustrated here provide a basic toolkit for interpreting and dealing with 300 

non-detections in biological surveys. There are a multitude of variations on the methods we describe 301 

that will be necessary for interpreting occupancy data under survey designs and analytical constraints 302 

that we have not addressed. For example, temporal dependence in detections would violate the 303 

independence assumption necessary for using equation 3, in which case, correlations in detections 304 

might need to be accounted for explicitly. However, adopting the general approach to data 305 

interpretation and analysis presented here will increase the utility of existing methods for analysing 306 

data under imperfect detection conditions. In particular, explicit consideration of prior beliefs and 307 

analysis within a Bayesian analytical framework allows an interpretation of biological survey data 308 

that is more intuitive and more useful for decision making.  309 

 310 

(A) Acknowledgements 311 

BAW was supported by an ARC Fellowship under DP0774288. BAW, MMC, KMP were supported 312 

by funding from the National Environment Research Program Environmental Decisions Hub. TVW 313 

was supported by the Australian Centre for Excellence in Risk Analysis. Georgia Garrard, Mark 314 

Burgman and Libby Rumpff provided helpful references and comments.  315 

 316 

(A) References 317 

Bailey, L.L., Simons, T.R. & Pollock, J.H. (2004) Estimating site occupancy and species detection probability 318 

parameters for terrestrial salamanders. Ecological Applications, 14, 692-702. 319 

Bar-Hillel, M. (1980) The base-rate fallacy in probability judgments. Acta Psychologica, 44, 211 - 233. 320 

Boulinier, T., Nichols, J.D., Sauer, J.R., Hines, J.E. & Pollock, K.H. (1998) Estimating species richness: the 321 

importance of heterogeneity in species detectability. Ecology, 79, 1018-1028. 322 



14 

 

Burgman, M.A., Wintle, B.A., Thompson, C.A., Moilanen, A., Runge, M.C. & Ben-Haim, Y. (2010) 323 

Reconciling uncertain costs and benefits in Bayes nets for invasive species management Risk analysis, 324 

30, 277-284. 325 

Dorazio, R.M., Royle, J.A., Söderström, B. & Glimskär, A. (2006 ) Estimating species richness and 326 

accumulation by modeling species occurrence and detectability. Ecology, 87, 842-54. 327 

Field, S.A., Tyre, A.J., Thorn, K.H., O'Conner, P.J. & Possingham, H.P. (2005) Improving the efficiency of 328 

monitoring by estimating detectability: A case study of foxes (Vulpes vulpes) on the Eyre Penninsula, 329 

South Australia. Wildlife Research, 32, 252-258. 330 

Garrard, G.E., Bekessy, S.A., McCarthy, M.A. & Wintle, B.A. (2008) When have we looked hard enough? A 331 

novel method for setting minimum survey effort protocols for flora surveys. Austral Ecology, 33, 986-332 

998. 333 

Gigerenzer, G. & Hoffrage, U. (1995) How to improve Bayesian reasoning without instruction: frequency 334 

format. Psychological Review, 102, 684-704. 335 

Gu, W. & Swihart, R.K. (2004) Absent or undetected?  Effects of non-detection of species occurrence on 336 

wildlife-habitat models. Biological Conservation, 116, 195-203. 337 

Jackson, J.T., Weckerly, F.W., Swannack, T.M. & Forstner, M.R.J. (2006) Inferring absence of Houston 338 

Toads given imperfect dection probabilities. Journal of Wildlife Management, 70, 1461-1463. 339 

Kéry, M., Royle, J.A., Plattner, M. & Dorazio, R.M. (2009 ) Species richness and occupancy estimation in 340 

communities subject to temporary emigration. Ecology, 90, 1279-90. 341 

Koehler, J.J. (1996) The base rate fallacy reconsidered: Descriptive, normative and methodological 342 

challenges. Behavioral & Brain Sciences, 19, 1-53. 343 

Lunn, D.J., Thomas, A., Best, N. & Spiegelhalter, D. (2000) WinBUGS; a Bayesian modelling framework: 344 

concepts, structure, and extensibility. Statistics and Computing, 10, 325--337. 345 

MacKenzie, D.I. (2005) What are the issues with presence-absence data for wildlife managers? Journal of 346 

Wildlife Management, 69, 849-860. 347 

MacKenzie, D.I., Nichols, J.D., Hines, J.E., Knutson, M.G. & Franklin, A.B. (2003) Estimating site 348 

occupancy, colonization and local extinction when a species is detected imperfectly. Ecology, 84, 349 

2200-2207. 350 



15 

 

MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A. (2002) Estimating 351 

site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255. 352 

McArdle, B.H. (1990) When are rare species not there? Oikos, 57, 276-278. 353 

McCarthy, M.A. (2007) Bayesian methods for Ecology. Cambridge University Press, Cambridge. 354 

McCullagh, P. & Nelder, J.A. (1989) Generalised linear models, 2nd edn. Chapman and Hall, London, 355 

England. 356 

Olea, P.P. & Mateo-Tomas, P. (2011) Spatially explicit estimation of occupancy, detection probability and 357 

survey effort need to inform conservation planning. Diversity and distributions, online early 358 

Parris, K.M. (2001) Distribution, habitat requirements and conservation of the cascade treefrog (Litoria 359 

pearsoniana, Anura: Hylidae). Biological Conservation, 99, 285-292. 360 

Parris, K.M., Norton, T.W. & Cunningham, R.B. (1999) A comparison of techniques for sampling amphibians 361 

in the forests of south-east Queensland, Australia. Herpetologica, 55, 271-283. 362 

Pellet, J. & Schmidt, B.K. (2005) Monitoring distributions using call surveys: estimating site occupancy, 363 

detection probabilities and inferring absence. Biological Conservation, 123, 27–35. 364 

Regan, T.J., McCarthy, M.A., Baxter, P.W.J., Panetta, F.D. & Possingham, H.P. (2006) Optimal eradication: 365 

when to stop looking for an invasive plant. Ecology Letters, 9, 759-766. 366 

Richardson, D.M. & Whittaker, R.J. (2010) Conservation biogeography - foundations, concepts and 367 

challenges. Diversity and distributions, 16, 313–320. 368 

Rout, T.M., Heinze, D. & McCarthy, M.A. (2010) Optimal allocation of conservation resources to species that 369 

may be extinct. Conservation Biology, 24, 1111-1118. 370 

Royle, J.A. & Link, W.A. (2006) Generalized site occupancy models allowing for false positive and false 371 

negative errors. Ecology 87, 835-841. 372 

Royle, J.A. & Dorazio, R.M. (2008) Hierarchical modeling and inference in ecology. Academic Press, 373 

Amsterdam. 374 

Royle, J.A., M. Kéry, R. Gautier & Schmid., H. (2007) Hierarchical spatial models of abundance and 375 

occurrence from imperfect survey data. Ecological Monographs, 77, 465-481. 376 

Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293. 377 



16 

 

Tyre, A.J., Tenhumberg, B., Field, S.A., Possingham, H.P., Niejalke, D. & Parris, K. (2003) Improving 378 

precision and reducing bias in biological surveys by estimating false negative error rates in presence-379 

absence data. Ecological Applications, 13, 1790-1801. 380 

Villejoubert, G. & Mandel, D.R. (2002) The inverse fallacy: An account of deviations from Bayes's Theorem 381 

and the additivity principle. Memory & Cognition, 30, 171-178. 382 

Wintle, B.A., McCarthy, M.A., Parris, K.P. & Burgman, M.A. (2004) Precision and bias of methods for 383 

estimating point survey detection probabilities. Ecological Applications, 14, 703-712. 384 

Wintle, B.A., Kavanagh, R.P., McCarthy, M.A. & Burgman, M.A. (2005) Estimating and dealing with 385 

detectability in occupancy surveys for forest owls and arboreal marsupials. Journal of Wildlife 386 

Management, 69, 905-917. 387 

 388 

389 



17 

 

Biosketch 
 
Brendan A. Wintle is a Senior Lecturer in Conservation Science and ARC Future Fellow in the School 
of Botany at the University of Melbourne, Deputy Director of the National Environment Research 
Program Environmental Decisions Hub (EDH) and theme leader in the Australian Research Council's 
Centre of Excellence for Environmental Decisions (CEED). His research focus is in uncertainty and 
environmental decision making; including evaluating conservation investment effectiveness, 
optimal monitoring and adaptive management, systematic conservation planning, population 
viability analysis, species distribution modelling, and biodiversity sampling accounting for imperfect 
detection. All authors are members of the Quantitative and Applied Ecology group at the University 
of Melbourne (www.qaeco.com) and participate in EDH (www.aeda.edu.au) and the Australian 
Research Council's Centre of Excellence for Environmental Decisions. Author contributions: B.W., 
M.Mc., and T.W. conceived the ideas; K.P. collected the data; M.Mc. and B.W analysed the data; 
B.W. and M.Mc. led the writing. 
  



18 

 

 
Figure legends 
 

Figure 1. A logic tree describing possible outcomes of surveying for a species at1000 hypothetical 

locations with imperfect detection. (a) Prior belief of presence; Ψ' = 0.25, and probability of 

detection if the species is present; p' = 0.5. (b) The logical structure of the problem when frequencies 

are converted to probabilities. Note that in our hypothetical example, we assume that the chance of 

falsely ‘detecting’ an absent species in a single visit (b) is zero. This is a common assumption of 

most published occupancy and detection models, though this assumption can be relaxed (Bar-Hillel, 

1980; Royle & Link, 2006). Inferential outcomes can be classified according to confusion matrix 

notation (Swets, 1988) as in the last column of the logic tree.   

 

Figure 2. Observation effort required to be 95% sure that a species is absent from a particular site. 

The Y-axis represents the number of sequential non-detections necessary to be 95% sure the species 

is absent (1-Ψ = 0.05), the X-axis represents the prior (before data) belief that the species occupies 

the site (Ψ'), and the three lines correspond to three different prior assumptions about the single-visit 

detection probability (p'=0.1, 0.3, and 0.5), corresponding to the dotted, dashed and solid curves 

respectively. The prior belief in occupancy could be a subjective probability derived from expert 

elicitation or a species distribution model fitted to independent data. 

 

Figure 3. Required number of sequential non-detections (Y-axis) to ensure that the probability of 

Litoria pearsoniana absence is > 0.95 as a function of habitat conditions (defined by values of 

catchment volume [X-axis] and the presence or absence of palms), and the method of survey (solid 

line: nocturnal searches, p=0.56; broken line: automatic tape recorders, p=0.35). Plot (a) shows how 

the required number of surveys varies with catchment volume for sites in which palms are present, 

and plot (b) gives the same relationship for sites at which palms are absent. The required number of 
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surveys to be sure of absence is highest for the sites in the best habitat (large streams with palms) 

when using the least reliable method (automatic tape recorders). 
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Figure 1. 
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