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Abstract

Background: The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4+ T helper cells play a

substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis. In the past,

numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best

of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted

by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ

inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing

MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that

induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal

number of random peptides.

Results: It was observed that the peptide length, positional conservation of residues and amino acid composition

affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides

using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated

using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like

machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid

approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed

hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC.

Conclusion: Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii)

virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen (http://crdd.osdd.net/

raghava/ifnepitope/).

Reviewers: This article was reviewed by Prof Kurt Blaser, Prof Laurence Eisenlohr and Dr Manabu Sugai.

Background
The present vaccination strategies are contemplating

subunit vaccine as an alternative to traditional attenu-

ation approach. These subunit vaccines consist of a part

of the pathogen to be used as vaccine, which generally

include the peptides or proteins [1,2]. This novel strategy

of vaccination has motivated the research towards devel-

opment of subunit vaccines to combat a number of dis-

eases like tuberculosis, malaria, anthrax, cancer and

swine fever [3-7]. The major challenge in designing

subunit vaccine is identification of antigenic regions

(peptides or proteins) in the pathogen proteome that

can induce desired immune response in the host

organism, mainly human. Ideally one should experimen-

tally check immune response for each possible fragment/

peptide of pathogen proteome. In practice, it is not

possible due to two reasons i) possible fragments are in

the range of millions and ii) experimental techniques are

costly and time consuming [8-11]. There is a need to

assist experimental scientist using alternate approaches

like computational techniques.

There is a tremendous change in the field of immun-

ology in last few years due to exponential growth of new

field immunoinformatics or computational immunology.

In the last decade, numerous software, databases and

web servers have been developed to identify antigenic

regions that can activate various arms of the immune

system like humoral, cellular and innate immunity.

Broadly these in silico tools can be divided in following
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categories; i) linear/conformational B-cell epitopes for

activating humoral response, ii) MHC class I/II binders,

TAP binders, protease cleavage for understanding cell

mediated immunity and iii) pathogen associated molecu-

lar patterns for activating innate immunity [12-40].

Identification of antigenic regions that bind MHC class

II and activate T-helper cells are crucial for designing

subunit vaccine. As activated T-helper cells release cyto-

kines that activate cytotoxic T-cell and B-cells. There are

different types of T-helper cells (e.g., Th1, Th2, Th17,

iTregs) and each type of helper cell secrete specific type

of cytokine [41-44] (Figure 1). For example, Th1 cells re-

lease IFN-γ and activates macrophages that are required

to eradicate the intracellular pathogen like Mycobacter-

ium tuberculosis [45-48]. T cells, NK cells, and NKT cells

are the primary producers of IFN-γ, and it helps in fight-

ing against bacterial, viral and tumor growth by regulat-

ing immune system. In order to design subunit vaccine

or immunotherapy, one need to identify MHC class II

binders that can activate IFN-γ inducing T-helper cells.

In past numerous methods have been developed to

predict MHC class II binders that can activate T-helper

cells. Best of author’s knowledge no method has been

developed so far that can predict the type of T-helper

cells will be activated, or type of cytokine will be re-

leased. The role of epitopes in deciding the immune re-

sponse is well documented in literature [49-52]. In order

to design subunit vaccine with more precision, there is a

need to develop a method that can predict peptides that

can activate specific type of cytokine. In this study, first

time a systematic attempt has been made to predict

IFN-γ inducing MHC class II binders or peptides.

Methods
Datasets

Main dataset

We extracted 10,433 experimentally validated MHC

class II binders or T-helper epitopes from Immune Epi-

tope Database (IEDB) [53]. Out of these 10,433 MHC

class II binders, 3705 induced IFN-γ, whereas remaining

6728 unique peptides have not induced IFN-γ. Thus, our

dataset contains 3705 positive examples or IFN-γ indu-

cing peptides and 6728 negative examples or IFN-γ non-

inducing peptides.

IFNgOnly dataset

This dataset has been created to resolve the issue, if a

peptide is not inducing interferon-gamma, would it in-

duce other cytokine after binding with MHC class II?

The dataset was compiled from IEDB; we obtained 4483

MHC II binders or epitope that induce IFN-gamma only

and 2160 epitopes which induce cytokines other than

interferon-gamma. The numbers of IFN-γ inducing epi-

topes are greater in this dataset than our main dataset

due to updation of IEDB in the mean time. While creat-

ing this dataset, we have removed the redundant and the

epitopes which have induced two or more cytokines.

IFNrandom or alternate dataset

This is alternative dataset, where IFN-gamma inducing

epitope were taken positive examples and equal numbers

of peptides (3705) with same length variation from swis-

sprot were generated in random fashion for negative ex-

amples. The model developed on this dataset would be

very useful in discriminating the IFN-gamma inducing

Figure 1 The schematic representation of CD4+ T cell differentiation into three principal subsets.
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epitopes from the peptides for which MHC binding sta-

tus is not known.

Analysis of length and positional conservation of

peptides

In order to understand the preference of length in posi-

tive and negative peptides, we used R-package for creat-

ing boxplot [54]. To understand position specific

preference of each residue, we used two-sample logo

software, where we created a two-sample logo from first

15 amino acids of N-terminal of complete peptides [55].

In this case, we removed all the peptides shorter than 15

residue length and remaining 89% peptides contained

2965 and 6336 peptides of positive and negative in-

stances, respectively. On the other hand, in IFNgOnly

dataset, there were 3682 epitopes in positive examples

and 1641 epitopes remained in negative examples after

applying the above filter.

Motif based approach

Identification of functional motifs in peptides or proteins

is extremely valuable in the field for functional annotation

of proteins/peptides [56]. In this study, we used a powerful

software called MERCI for searching exclusive motifs in

positive and negative examples [57]. Although, MERCI

uses positive and negative examples simultaneously as an

input but at a time it gives motifs for the positive examples

only. Therefore, we applied two-step strategy, where first

we used IFN-γ inducing peptides dataset as positive and

non-IFN-γ inducing peptide dataset as negative input and

extracted motifs for IFN-γ inducing examples. Conse-

quently, in order to extract motifs for the non-IFN-γ indu-

cing examples, we used IFN-γ inducing examples as

negative and IFN-γ non-inducing examples as positive in-

put. In this way, we extracted motifs for both IFN-γ indu-

cing and IFN-γ non-inducing examples. We have searched

100 degenerate motifs from the following three kinds of

classification: i) None, ii) Koolman-Rohm and iii) Betts-

Russell. The Betts-Russell classification could be further

divided in to 3 categories: i) Polar, ii) Hydrophobic and iii)

Small. These different classification methods produce

different motifs in the both positive and negative pep-

tides. Thus, we selected unique motif-containing pep-

tide from both datasets, in order to calculate overall

motif coverage in the dataset. The peptides of IFN-γ in-

ducing and IFN-γ non-inducing examples containing

positive and negative motifs were assigned as true posi-

tives and true negatives respectively.

Amino acid compositions

In-house Perl scripts were used to calculate the amino

acid composition, which encapsulate the intact epitope

information in a fixed vector length as required by ma-

chine learning algorithm. The amino acid composition

(MPC) creates a vector of 20 properties for each epitope

using the following formula:

Compostition of amino acid ið Þ

¼
Total number of amino acid ið Þ � 100

Total number of all amino acid in epitope

Where i can be any amino acid

Similarly, di-peptide composition (DPC) resulted in a

vector of 400 and was computed using the formula:

Compostitionof dipeptide iþ 1ð Þ

¼
Totalnumberof dipeptide iþ 1ð Þ � 100

Totalnumberof allpossibledipeptides inepitope

Where i canbeany aminoacidand iþ 1ð Þ isdipeptide
pairwithnext residue inpeptide

Binary approach

We applied binary approach, in which positive and nega-

tive examples were converted into the binary patterns.

Each amino acid represented by an unique vector of 20 di-

mensions (e.g. Ala by 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;

Cys by 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) for different 20

standard amino acids. For example,15-residue long pep-

tide represented by the 300 (15 X 20) dimensions of a vec-

tor as an input.

Machine learning approach

In this study, SVM (Support Vector Machine) was ap-

plied for machine learning approach [58]. Based on the

features (amino acid composition and length) generated

above, the support vector machine was optimized at dif-

ferent parameters of various kernels (linear, sigmoidal

and radial basis function), and the best-optimized model

was selected for software implementation.

Hybrid approach

In the hybrid approach, we combined the predictions

from motif approach and machine learning approach.

First of all, the sequences were separated that could be

correctly predicted via motif based approach and the

remaining sequences were then predicted using SVM.

Various hybrid models were developed based on the type

of vector inputs used for SVM-based prediction. Finally,

the performance was evaluated by adding the truly pre-

dicted peptides from the motif-based method with SVM

based predictions.

Cross validation

To test the vigor of the model, it was evaluated with five

fold cross validation, where the complete dataset was di-

vided into five equal parts and out of these four parts
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were used for training and the remaining fifth part was

used for testing. This process was repeated five times in

such a way that each part was once used for testing and

four times it was a part of training. The overall perfor-

mances were calculated by averaging the result of each

test. The best model was also validated on 10 fold cross

validation. In cross validation for hybrid approach, the

results of motifs were directly added in the five or ten

fold cross validation through SVM based approach.

Evaluation parameters

The performance of the model was evaluated in terms of

sensitivity, specificity, accuracy and MCC16. These pa-

rameters were derived from the equations:

Sensitivity ¼
TP

TPþ FN
� 100

Specificity ¼
TN

TNþ FP
� 100

Accuracy ¼
TPþ TN

TPþ FNþ TNþ FP
� 100

MCC ¼
TP� TN‐FN� FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FNð Þ TPþ FPð Þ TNþ FPð Þ TNþ FNð Þ
p

TP = True Positive, FP = False Positive, TN = True

Negative, FN = False Negative.

Results
Examination of dataset

The peptides in the main dataset were obtained from

17,752 assays, where 5962 assays had shown to be posi-

tive for interferon-gamma secretion. These peptides

were derived from 281 source organisms and were pre-

sented through 153 MHC alleles from 181 different host

species/strains. On the other hand, the epitopes in IFN-

gOnly dataset were extracted from 15,778 assays. Out

of these 15,778 assays 7302 assays have induced IFN-

gamma and remaining 8476 assays have induced the se-

cretion of other cytokine except interferon-gamma. The

epitopes in IFNgOnly dataset were extracted from 394

different sources and presented through 183 MHC al-

leles in 232 host strains. The detailed analysis of epi-

topes with respect to MHC alleles, host strain and

source organisms is available in supplementary excel

sheet (Additional file 1).

Data analysis

We analyze IFN-γ inducing and non-inducing peptides

in main dataset to fish out the important features. It was

observed that the length of peptides plays a prominent

role in discriminating the IFN-γ inducing and non-

inducing peptides (Figure 2). As shown in Figure 2, ma-

jority of the negative peptides fall within the range of

15–16 amino acids while most of the positive peptide

have wide distribution from 13 to 22 residues. It can be

deciphered from the boxplot (Figure 3) that the IFN-γ

inducing and non-inducing peptides prefer different

lengths. The whiskers of the boxplot denote the range of

distribution that varies from 8 to 27 residues length in

positive dataset while negative data clumped only at the

residues length of 15. The green colored area in the box

could be inferred as the skewness of the positive dataset

toward the length more than 15 amino acid residues

which means IFN-γ inducing dataset has significant pep-

tides with length more than 15 amino acid residues. No

data skewness was observed in IFN-γ non-inducing sam-

ples. We did not find any difference in length of peptides

inducing IFN-γ from the peptides that have induced any

other cytokine than IFN-γ present in our IFNgOnly

dataset (Figure 4).

Composition analysis

We computed amino acid composition of peptides and

observed a significant difference in composition of cer-

tain residues in two types of peptides. In case of IFN-γ

inducing peptides A, E, G, P, Q, R residues are more

abundant, while residues C, L, S, T, I are more preferred

in negative peptides (Figure 5). On the other hand the

residues D, E, K and N are more abundant in IFN-γ in-

ducing dataset as compared to the residues L, V, R and

M are preferred for the induction of other cytokine than

IFN-γ as depicted from two-sample logo of IFNgOnly

dataset (Figure 6).

Positional preference of residues

Compositional analysis provides only overall preference

of a residue but no information about preference of a

particular residue at a specific position in peptide. In

order to understand positional information of each resi-

due; we created a two-sample logo for our positive and

negative peptides. We observed that amino acids are

playing an important role in discriminating the IFN-γ in-

ducing and non-inducing peptides (Figure 7). Charged

residues are preferred in positive dataset at 4th, 9th, 10th

and 13th position, on the other hand aliphatic residues

are preferred at 4th, 5th, 9th, 11th and 12th position in

negative peptides. Additionally, polar uncharged residues

are prevalent at 2nd, 3rd and 14th position in IFN-γ indu-

cing instances. In case of peptides in IFNgOnly dataset,

it was observed that glutamine is preferred at first to

third position of IFN-γ inducing peptides while for the

induction of other cytokine positively charged residues

like H and R are preferred at these position (Figure 8). It

is also clear from the Figure 8 that negatively charged

residues are not preferred at any of position in IFN-γ in-

ducing peptides but in case of induction of rest of cyto-

kine negatively charged residues are prevalent at 4th, 6th,

8th, 11th and 13th position.
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Motif search

In order to discover exclusive patterns or motif in our pep-

tides, we used the MERCI software. We have used three

kinds of amino acid classification (None, Koolman-Rohm

and Betts-Russell) to discover the 100 motifs. We observed

that Betts-Russell classification under polar root could dis-

criminate the dataset most significantly with 532 positive

peptides and 1835 negative peptides. By combining all the

motifs from different classification, 964 positive and 2827

negative peptides could be discriminated [Table 1].

The top motifs from each classification are shown in

Table 2. The most significant motifs discovered is “[ali-

phatic]-I-[aliphatic]L[aliphatic][aliphatic][aliphatic]-[ali-

phatic]”, which was repeated in 89 negative peptides

and was absent in positive peptides. The most signifi-

cant motif in positive IFN-γ inducing dataset, that is

present in 53 positive sequences and none of the nega-

tive sequence, is “Q-[aliphatic]-[neutral]-P[neutral]-Q”.

MERCI software compares positive and negative dataset

and motifs provided will be changed as we change the in-

put dataset. So in case of IFNgOnly dataset the best classifi-

cation is Betts-Russell under polar root for IFN-γ inducing

epitopes. It was observed that 37% of IFN-γ inducing

epitopes could be discriminated with this classification.

While for inducing rest of cytokine (except IFN-γ) best

discrimination was observed when no classification of

amino acid was used, where we can predict up to 384

epitopes (Table 3).

We have also extracted the best motifs for such distinc-

tion in each classification approach for our second dataset

“IFNgOnly” (Table 4) and found that “YR[aliphatic]” is the

best motif in IFN-gamma inducing epitopes to discrimin-

ate them from the epitope that have induced other cyto-

kine. This motif was present in 63 sequences. On the

other hand “PN[hydrophobic][small]-[positive]-[polar]”

was the most prevalent motif to distinguish epitopes that

Figure 2 Bar graph showing length of peptide and their frequency in our main dataset.

Figure 3 Boxplot to showing the length-wise distribution of both type of MHC II binders (IFN-γ inducing and non-inducing peptides)

in main dataset. The dots are representing the outliers; the dotted line represents to cover the data and strong line displays median.
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have induced other cytokine from IFN-γ inducing peptides

with the coverage of 32 sequences.

Model based on machine learning technique

In this study, we developed Support Vector Machine

(SVM) based models, implemented using freely available

software SVMlight that is widely used in classification

problems [21,59-61]. In this study, we developed SVM

based models using amino acid and dipeptide compos-

ition of peptides and achieved maximum MCC 0.33 and

0.49, respectively [Table 5]. It has been observed that

length of peptide play vital role in discriminating these

two types of peptides. Thus we also developed model

using amino acid and dipeptide composition of peptides

Figure 4 Boxplot to represent the distribution of epitopes in IFNgOnly dataset. Here dots are outliers. Blue box is having IFN-γ epitopes

while green box comprises of the epitopes secreting rest of cytokine (except IFN-γ).

Figure 5 Amino acid composition of both class of MHC class II binders in main dataset.
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with length as an additional feature and achieved max-

imum MCC 0.43 and 0.54, respectively. This clearly indi-

cates the role of length of peptides in discriminating two

types of peptides.

We have also built SVM models for IFNgOnly dataset

and attained maximum MCC 0.25 and 0.35 with resi-

due composition and dipeptide composition, respect-

ively (Table 6). The performance of our model was not

changed significantly when length was used as feature

with composition.

Additionally, we also developed SVM based models

using binary profile where each position is represented by

a vector of dimension of 20 (each element represent pres-

ence or absence of a specific type of residue). The perform-

ance of models developed using binary profile of N-/C-

terminal residues is shown in Additional file 2: Table S1

along with the composition variation plot for each residue

in Additional file 2: Figures SF1 and SF2.

Hybrid approach

The hybrid approach was applied to combine the predic-

tion using MERCI and SVM. In this approach, the dataset

were classified on the basis of exclusively motif search

using MERCI, where 964 IFN-γ inducing and 2827 IFN-γ

non-inducing MHC class II binders could be discrimi-

nated and the remaining 2741 positive and 3901 nega-

tive peptides were discriminated using SVM. In this

approach four different hybrid models were developed

with different input features. We observed that using

the hybrid approach the performance was increased in

each hybrid model. By this way, we achieved MCC

value up to 0.62 in combining dipeptide composition,

length and Merci motif search [Table 7]. The compara-

tive results were also plotted in threshold independent

manner using ROC plot (Figure 9). In order to check

the robustness of model, 10 fold cross validation was

performed on our best model and consistency in the

Figure 6 Residue composition plot for IFNgOnly dataset.

Figure 7 Two-sample logo of 15 N-terminal amino acids (first 15 residues) in main dataset at a p value of <0.0001.
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performance was observed. Rest of the results were

generated on 5 fold cross validation.

We have also developed the hybrid models for our

second dataset (IFNgOnly). Here the MERCI could dis-

criminate 3058 IFN-γ and 679 rest cytokine epitopes.

The remaining 1425 IFN-γ and 1485 rest cytokine epi-

topes were discriminated using SVM. The performance

of the hybrid model was 86.97%, 68.38%, 80.93% in

terms of sensitivity, specificity and accuracy [Table 8].

On the other hand, performance was slightly improved

with dipeptide composition feature. We also observed

adding length as an additional feature in residue com-

position or dipeptide composition did not improve the

performance [Table 8].

Models for discovering IFN-γ inducing peptides

All the models described above has been developed on

dataset that contain experimentally validated IFN-γ in-

ducing and non-inducing MHC class II binders. These

models only can be used for predicting IFN-γ inducing

peptides if users know that their query peptide is MHC

class II binders. In order to provide service to the com-

munity we developed models on alternate dataset “IFN-

random” (random negative dataset) that can be used to

discover IFN-γ peptides in proteins/antigens. As de-

scribed in materials and the methods section our alter-

nate dataset contain, negative set/examples are random

peptide. We developed models on alternate dataset and

achieved maximum accuracy of 73.4% and sensitivity of

69.18% (Table 9).

Discussion
In the era of computer aided vaccine design, researchers

are trying to find out the best epitope that can induce

desired immune response. To be the best vaccine candi-

date, a peptide should not only be epitope for B and T

cell, but it should also be able to evoke the desired type

of immune cells to generate the required response. For

example, in tuberculosis the vaccine candidate must be

able to induce IFN-γ to eradicate the infection [62-64].

Therefore, there is a need of a method, which could pre-

dict the peptide responsible for secreting IFN-γ. The

MHC-peptide complex may be exceptionally crucial for

deciding the type of transcription factors to be activated

after this association, which is responsible for the type of

cytokine released [65,66]. Therefore, the biasness of

MHC alleles and secretion of interferon-gamma were

analyzed. In case of main dataset, alleles were not deter-

mined for 10,767 assays out of 17,752 interferon gamma

assays; similarly in case of IFNgOnly dataset) alleles were

not determined for 6576 assays out of 15,778. Source or-

ganisms and host species/strains are also very important

in deciding the secretion of interferon gamma.

The binding affinity of these peptides with MHC was

shown to be dependent on the length of peptides [67].

Therefore we analyzed the length variation in our data-

sets. The variability in length was observed from 9 to 30

with some exceptions, which was in consistent with

previously reported by Nielsen et. al. in the analysis of

SYFPEITHI and MHCPEP [68-70]. The skewness in the

positive dataset was observed with length more than 15

amino acid residues. It has been reported that the pep-

tides having more than 15–16 amino acids showed less

affinity toward MHC class II, and this lesser affinity

might be creating an environment that lead to release

of IFN-gamma. We have also observed that length of

the peptide is not significantly different in IFN-γ, when

compared with length of peptides that have induced

other cytokine.

Besides length, the conservation of the residue at a spe-

cific position may also be beneficial. Therefore, we have

compared the positive and negative epitope data to fish

out the prime residue activating IFN-γ releasing potential.

In our observation, it was noticed that charged residues

Figure 8 Representing the Two-sample logo from 15 N-terminal residues in IFNgOnly dataset at p value of <0.05.

Table 1 Exclusive motifs of different class found in IFN-γ

inducing and non-inducing peptides

Serial
no.

Class of
motifs

No. of exclusive
pos peptide

No. of exclusive
neg peptide

1 None 71 1045

2 Koolman-Rohm 148 624

3 Betts-Russell (Hydorphobic) 501 573

4 Betts-Russell (Polar) 532 1835

5 Betts-Russell (Small) 320 1133

6 ALL class 964 2827

These motifs were discovered using MERCI software.
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are preferred in at 4, 9, 10, 13 and 14 positions whereas,

the Leucine and Iso-leucine residues are dominating in

the peptides not inducing the release of IFN-γ. The differ-

ential preference may be significant for the different acti-

vation factors activated. While in case of comparison

between IFN-γ and rest of cytokine using IFNgOnly data-

set, it was observed that at position 4th, 9th and 10th

charged residue are more prevalent in IFN-γ inducing

peptides. This observation was in consensus with the ob-

servation from our main dataset. It was also found that

negatively charged residues are dominating for induction

of other cytokine except IFN-γ at 4th, 6th ,8th ,11th and

13th position. This kind of discrimination could be utilized

for designing Th1 inducing peptides based upon amino

acid properties.

The positional feature of a sequence could be encoded

in machine learning format by generating binary feature

input. This binary feature input could only be applied at a

fixed length pattern, therefore different binary inputs were

created by varying the length of amino acids from 9 to 15

through both N and C-terminal of a peptide. The per-

formance of SVM model on these input vectors was nearly

the same in terms of MCC. The compositional vector

amino acid and dipeptide for a sequence has fixed feature

input (20 and 400 respectively) irrespective of length of

the peptide. The SVM performed better on these feature

input as compared to binary vectors.

The performance of the SVM based models increases

after adding a feature of length along with compositional

vector. This may be co-related with the earlier report of

variation in affinity of MHC-peptide binding with the

variation in length of peptide [65]. The overhanging and

short peptides may be interfering with the ternary com-

plex of peptides-MHC-T cells. The exclusive motifs in

positive or negative dataset may be a major driver for

this differential behavior; these motifs were explored

using MERCI software. The motifs could be searched

using different classification of amino acids proposed in

the literature. The best classification is Betts-Russell with

hydrophobic root for our dataset. The top 100 motifs

searching under hydrophobic root of Betts-Russell clas-

sification are able to cover 532 of positive peptides and

1835 of negative peptides. The significance of motifs

could be estimated by its coverage and hydrophobic mo-

tifs are most commonly found in negative dataset.

Conclusion
In past large number of methods have been developed

for predicting MHC Class II binders or T-helper epi-

topes. In this study, an attempt has been made to classify

MHC class II binders based on their interleukin induc-

tion. We classify MHC class II binders in two categories;

first category of binders have ability to induce IFN-γ

where as second category of binders do not have ability

to induce IFN-γ. In order to discriminate two categories

of MHC binders, models have been developed using

various features of binders/peptide sequence that include

binary pattern, compositions, and motifs. Our models

were able to predict IFN-γ inducing peptide with high

precision, it mean it is possible to design peptide that

can induce IFN-γ. This study also indicates the prefer-

ence of certain MHC alleles and host strains/species to

skew the immune response to release interferon-gamma.

Table 2 Frequency of best motifs discovered using MERCI software in IFN-γ epitopes and non-epitopes

Class of Motifs Found in IFN epitopes Frequency Found in non-epitopes Frequency

None QPQ-Q-P-Q 41 IS-L-M 40

Koolman-Rohm Q-[aliphatic]-[neutral]-P[neutral]-Q 53 [aliphatic]-I-[aliphatic]L[aliphatic][aliphatic][aliphatic]-
[aliphatic]

66

Betts-Russell (Hydorphobic) [aliphatic][polar][small][polar][aliphatic]
[polar][small]E

37 [hydrophobic]I[hydrophobic][aliphatic][aliphatic]
[hydrophobic][hydrophobic][hydrophobic]

89

Betts-Russell (Polar) [polar][hydrophobic][hydrophobic][polar]
[small][small][aliphatic][small][small]E

32 [polar][aliphatic][hydrophobic][hydrophobic]
[hydrophobic][aliphatic][hydrophobic]
[hydrophobic][charged][hydrophobic]

40

Betts-Russell (Small) [small][hydrophobic][polar][polar]
[charged]W[polar]

31 [small][aliphatic]I[aliphatic][hydrophobic]
[hydrophobic][small][hydrophobic]

51

Negative sign (−) = represents the gaps at that position.

Table 3 Exclusive motifs of different class found in IFN-γ

inducing and other cytokine (except IFN-γ) inducing pep-

tides from IFNgOnly dataset

Serial
no.

Class
of Motifs

No. of exclusive
IFN-γ peptide

No. of exclusive
rest of cytokine
inducing peptide

1 None 696 384

2 Koolman-Rohm 1481 219

3 Betts-Russell (Hydorphobic) 1731 187

4 Betts-Russell (Polar) 1318 234

5 Betts-Russell (Small) 1668 186

6 ALL class 3058 679

These motifs were discovered using MERCI software.
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In the near future, these prediction models will be useful

in the advancement of computer aided vaccine design,

where researcher will be able of designing subunit vac-

cine with the desired immune response.

Webserver for designing IFN-γ inducing peptides

In order to serve scientific community, we developed a

web server IFNepitope using PHP, Perl, HTML and Java

scripts. This web server has three major modules called

Predict, Design and Scan. Module Predict allow users to

screen peptide library for predicting best IFN-γ inducing

epitopes. Design module of IFNepitope allows to iden-

tify minimum mutations required in a peptide to make

it IFN-γ inducing epitope. In Design module, first all

possible single residue mutation peptides are generated

then module predict IFN-γ inducing epitope in mutant

peptides. Similarly, Scan module predict antigenic or

IFN-γ inducing regions in an antigen. Overall this ser-

ver will be useful for researchers working in the field of

subunit vaccines.

Reviewers’ comments
Reviewer number1: Prof Kurt Blaser

Comment: The paper is interesting and helpful for

prediction and modulation of antigenic compounds and

generation of Type I cytokine pattern mainly in protect-

ive immunizations but also for allergen-immunotherapy.

The approach, although it is based on published experi-

mental observations, on theoretical mathematical models.

Thus it is difficult for me to evaluate the value and correct-

ness of these predictions. What to my mind is missing, are

some experimental data from human in vitro experiments,

either with specific T cell clones or adequate PBMC cul-

tures that are stimulated with synthetic epitope- peptides

from these models. It is furthermore important that in

such experiments not only IFN-gamma but also a broader

pattern of the most important cytokines are measured, as

in many cases rather the ratio of IFN-gamma: other cyto-

kines (e.g. IL4) is important and not the absolute amount

of IFN-gamma.

Thus, I would strongly recommend to add such ex-

perimental data in order to prove the effectiveness of the

described models.

Response: We understand the reviewer’s concern about

the experimental validation of our model, but also its note-

worthy to mention here that we have developed this model

on experimentally proven dataset and evaluated using well-

established computational cross-validation approaches.

Quality of written English: Needs some language cor-

rections before being published.

Reviewer number2: Prof Laurence Eisenlohr

In this manuscript, Dhanda et al. describe their efforts

to develop tools to predict those MHC class II-binding

peptides that induce interferon-gamma production and

those that do not.

My concerns with this paper are as follows:

Comment: 1) The authors mined the peptide sequences

they analyzed from the Immune Epitope Database. My un-

derstanding (from communicating with IEDB staff) is that

those peptide sequences listed as “Negative” for cytokine

production have not been shown to bind any particular

MHC class II molecule (they are not “epitopes” per se, just

sequences that failed to elicit a T cell response with the

MHC class II restrictions that were tested). Thus, there

Table 4 Frequency of best motifs discovered using MERCI software in IFN-γ epitopes and Rest of cytokine inducing

epitopes from IFNgOnly dataset

Class of Motifs Found in IFN Epitopes Frequency Found in Rest-epitopes Frequency

None F-QP-Q 42 ANKIR 17

Koolman-Rohm R[basic]-R-[aliphatic] [neutral] 51 [neutral]K[aliphatic]RE 17

Betts-Russell (Hydorphobic) YR[aliphatic] 63 [hydrophobic]-N[hydrophobic][small]K-[R] 29

Betts-Russell (Polar) [polar]-YR[aliphatic] 53 [polar]-N[hydrophobic] [small]K-R 28

Betts-Russell (Small) small-YR[aliphatic] 54 PN[hydrophobic][small]-[positive]-[polar] 32

Negative sign (−) = represents the gaps at that position.

Table 5 The performance of SVM based models developed using residue (amino acid) and dipeptide composition with

and without length of peptides on our main dataset

Input feature Descriptors Sensitivity Specificity Accuracy MCC

Residue Composition 20 53.2 78.8 69.71 0.33

Residue Composition + Length 21 51.82 87.77 75 0.43

Dipeptide Composition 400 62.89 84.74 76.98 0.49

Dipeptide Composition + Length 401 66.5 86.71 79.54 0.55
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may not be much basis for comparison; if they don’t bind

MHC class II to begin with, then of course they won’t

elicit interferon-gamma.

Response: We are thankful to the reviewer for this nice

comment. To answer this comment, we have created an-

other dataset “IFNgOnly”, which comprises the peptides,

which induce any other cytokine except interferon-

gamma. We have applied the same approach and achieved

the convincing results (Tables 3, 4, 6, 8 and 9).

Comment: 2) I imagine that most of these negative se-

quences are derived from overlapping15-16-mer peptide

libraries that were comprehensively screened for immuno-

genicity. This seems to be the likely explanation for the

skewing of negative sequences toward that size range.

Response: We do agree with the reviewer and there-

fore produced results with alternative negative dataset,

and observed no peptide length-wise preference for the

induction of interferon-gamma when compared with the

peptides that have induced other cytokine (except IFN-

gamma) in IFNgOnly dataset as shown in Figure 4.

Comment: 3) There is no consideration of species ori-

gin of the class II molecule or MHC polymorphism. A

negative peptide sequence for one animal or MHC allele

could be strongly positive in other conditions if they

were to be tested.

Response: This is important issue raised by reviewer,

we examine our main dataset again after comment. We

analyzed the IFN-gamma response with respect to MHC

alleles and found that there are 38 peptides in our data-

set that elicit IFN-gamma response in one host/MHC al-

lele and did not elicit such response with another host/

MHC-allele. We have considered these epitopes in our

positive examples.

Comment: 4) As far as I can tell, there is also no con-

sideration of peptide binding register (where the peptide

is positioned with respect to the binding pockets).

Therefore, I do not know what to make of the reported

positional effects.

Response: We agree with the reviewer that positional

preference analyzed by us could not be correlated with

MHC groove because the positional information of pep-

tides. It is also fact that for most of the peptides/binders

position in MHC binding grove is not known. This is

first study and in future these points should be ad-

dressed when sufficient data is available.

Quality of written English: Needs some language cor-

rections before being published

Response: We have revised the manuscript and cor-

rections have been made to improve the English.

Reviewer number3: Dr Manabu Sugai

The authors have an idea to find ideal peptides to elicit

Th1 response for developing novel vaccination strategy.

To this end, they developed a webserver for predicting

IFN-gamma inducing peptides by analyzing the dataset

from IEDB.

Comment: The paper is interesting, and I think would

be of interest to readers of Biology Direct. However, the

validation of their program is not enough for providing

functional rationale to support their concept. Author’s

idea depends on the notion that the specific peptides

promote specific helper T cell differentiation. However,

such an idea is not easily accepted, because various cyto-

kines, but not TCR-signals, play dominant role in

instructing helper T cell differentiation.

Response: Thank you for this comment, but we would

like to draw your intention to some of references, where

Table 6 The performance of SVM based models developed using residue (amino acid) and dipeptide composition with

and without length of peptides on IFNgOnly dataset

Input feature Descriptors Sensitivity Specificity Accuracy MCC

Residue Composition 20 64.11 62.69 63.65 0.25

Residue Composition + Length 21 64.8 63.84 64.49 0.27

Dipeptide Composition 400 66.12 71.2 67.77 0.35

Dipeptide Composition + Length 401 65.31 71.9 67.45 0.35

Table 7 The performance of hybrid models that combines Motif based approach with SVM models developed using

residue and dipeptide composition with or without length on our main dataset

Features Sensitivity Specificity Accuracy MCC

Residue Composition 70.74 76.56 74.49 0.46

Residue Composition + Length 74.84 80.26 78.34 0.54

Dipeptide Composition 74.79 80.98 78.78 0.55

Dipeptide Composition + Length 77.98 84.36 82.10 0.62

Dipeptide Composition + Length (10 fold) 78.49 84.39 82.30 0.62
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substitution of single amino acid in a peptide had skewed

the immune response from Th1 to Th2 or vice-versa

[49-52]. Therefore the notion of peptide based immune

modulation is existing in literature and we are develop-

ing a prediction model for designing the peptide that

have potential to induce IFN gamma and hope that this

model would be very useful in peptide-based vaccin-

ation and therapeutics.

Comment: On the other hands, IFN-gamma inducing

activities of the peptides were usually estimated as a mem-

ory reaction, indicated by the comments from IEDB.

Therefore, we can speculate that some peptides specific im-

mune reaction occurs specifically in Th1 skewed condition.

According to this notion, we can use IFN-gamma inducing

peptides as an adjuvant to induce memory reaction in vivo.

To validate this notion, the authors need to examine

whether other cytokine-inducing-peptides, such as IL4,

IL17, TGF-b etc., are selected or not by IFN-gamma

inducing-peptides finding program. If your program ex-

cludes other cytokine-inducing-peptides, your ideas are

supported partially and provide the meaning of your

program for future use. If other cytokine-inducing-

peptides are also included in the selected IFN-gamma

inducing-peptides, author’s concept is not correct or

program itself is incomplete.

Response: We are thankful to reviewers for providing

detail information on IFN-gamma inducing peptides.

Our aim in this study is to discriminate inducing and

non-inducing peptides. In order to address issue raised

by reviewer we developed models for discriminating

IFN-gamma and non-IFN-gamma (induce other cyto-

kines except IFN-gamma). First we created a dataset

called IFNgOnly contains IFN-gamma and other cyto-

kine inducing peptides. The performance of our models

on this IFNgOnly dataset is shown in Tables 3, 4, 6 and

8. As shown in result section our models were able to

discriminate peptide which induce IFN-gamma and pep-

tides that induce other cytokines.

Quality of written English: Acceptable

Responses to reviewer’s comments after revision

Reviewer number:2 Prof Laurence Eisenlohr

This paper by Dhanda and et al. proposes both length

and sequence biases for MHC class II presented peptides

that elicit interferon-gamma responses (vs. those that do

not). I remain skeptical about the conclusions in this

paper due to lack of information on:

Figure 9 The performance of various models developed in this study in form of ROC plots on our main dataset.

Table 8 The performance of hybrid models that combines Motif based approach with SVM models developed using

residue and dipeptide composition with or without length on the IFNgOnly dataset

Features Sensitivity Specificity Accuracy MCC

Residue Composition 86.97 68.38 80.93 0.56

Residue Composition + Length 85.19 73.33 81.33 0.58

Dipeptide Composition 87.53 68.66 81.39 0.57

Dipeptide Composition + Length 87.31 68.89 81.32 0.57
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Comment: 1) the basis for lack of interferon produc-

tion. Are peptides that have been shown to bind to an

MHC class II molecule but not elicit any response

(“non-epitopes”) included in the analyses? This would be

problematic. In our hands essentially all epitopes elicit

some interferon-gamma response following natural virus

infection so the distribution of epitopes (3705 inducers

vs. 6728 non-inducers) is worrisome.

Response: Our main dataset contain 10,433 peptides ob-

tained from 17,752 IFN-gamma assays; 6,728 peptides do

not release IFN-gamma (as per IEDB) which we called

negative peptides in this study. We agree with reviewer that

all the MHC class II binders are not epitopes; thus negative

peptides in our main dataset may also include non-epitope.

In order to overcome this limitation, we created another

dataset called IFNgOnly, where negative peptides/epitopes

contain only those peptide that induce cytokine other than

IFN-gamma. In simple term negative peptides in IFNgOnly

are true non IFN-gamma inducing epitopes.

Comment: 2) inclusion/exclusion criteria. As an exer-

cise, I went to the IEDB and searched for all MHC class II

binders that do not elicit an interferon-gamma response. I

then randomly chose lysteriolysin O (LLO), residues 216-

227, described by Skoberne et al., 2002, J Immunol.,

169:1410-8. In fact, this epitope does elicit an interferon-

gamma response in BALB/c mice (because it is a CD4+ T

cell epitope in that strain) but does not elicit an interferon-

gamma response in C57Bl/6 mice (because it is not an epi-

tope in that strain). Thus, it is listed in both categories.

How did the authors deal with this? Exclude? Include in

both categories? Include in only one category? How many

other peptides in the database also fall into both categories?

Response: We followed IEDB recommendations, in

case multiple assays are performed to test a peptide, it is

considered positive even if a single assays shows positive.

There are 667 epitopes/peptides falling in both the cat-

egories and we have included them in our positive dataset.

Comment: 3) the peptide lengths that are entered into

the database.

Many epitopes are now identified via overlapping

15-mer libraries, with no subsequent attempts to map

the minimal epitope or the effects of flanking residues

due to the added expense. This seems to be the likely

reason for the predominance of peptides of that size

(Figure 2). In fact, the analysis can only be done with

peptides that have been stringently defined with respect

to the minimal core and flanking sequence effects, a

much smaller set than was analyzed.

Many of the longer peptides may not have been

identified by the library method but by the previous

method of enzymatic digestion of antigen and in vitro

assay with a T cell line, clone or hybridoma, again with

no subsequent mapping of core and flanking sequences.

Also, the longer peptides may have been deduced in

mapping a known response, and this could be the

reason for bias toward interferon-gamma production in

this cohort.o There is no discussion of the bimodal

length distribution, which, for the reasons discussed,

may have a technical vs. biological basis.

Response: Our main dataset were created without con-

sidering the epitopic information’s. Most of the peptides in

our datasets are either ‘exact epitopes’ or ‘epitope contain-

ing region’ as per mentioned in IEDB database.

Comment: 4) how several other potential biasing fac-

tors, all of which can strongly influence both parameters

(length and sequence bias) were accounted for, including:

origin of the peptide (pathogen, self-protein, natural

sequence or variant, …)

host species

method of immunization (peptide, organism-

experimental infection, organism-natural infection,

adjuvant, …)

host strain (BALB/c vs. C57Bl/6-Type I vs. Type 2)

identity of the class II molecule. Some class II

molecules are over-represented in the database and this

alone could account for the deduced sequence

preferences.

Response: We do agree with the reviewer that the is-

sues related to host species, immunization protocol and

MHC alleles should also be considered, but this is the

first study to predict the immune response of a peptide

sequence. These limitations have to be addressed in fu-

ture research. In order to address this issue we have in-

vestigated our dataset and provided the insight in the

‘Examination of dataset’ paragraph of ‘Result’ section.

Quality of written English: Needs some language cor-

rections before being published.

Reviewer number:3 Dr Manabu Sugai

The revised manuscript from Dhanda et al. has been

significantly improved. This paper is acceptable now.

Quality of written English: Acceptable

Additional files

Additional file 1: Analysis of epitopes with respect to MHC allele,

host strain and source organism. There is 6 different sheets in this

excel file: (1) The distribution of peptides with respect to (w.r.t.) source

Table 9 Performance of SVM on IFNrandom dataset with

compositional features of residues

Descriptors Threshold Sen Spec Acc MCC

AA Composition 0 64.97 69.04 67 0.34

DP Composition 0.1 69.18 77.62 73.4 0.47

Dhanda et al. Biology Direct 2013, 8:30 Page 13 of 15

http://www.biology-direct.com/content/8/1/30

http://www.biomedcentral.com/content/supplementary/1745-6150-8-30-S1.xlsx


organisms in our main dataset. (2). The distribution of peptides w.r.t. host

strains in our main dataset. (3) The distribution of peptides w.r.t. MHC

alleles in our main dataset. (4) The distribution of peptides w.r.t. source

organism in our IFNgOnly dataset. (5) The distribution of peptides w.r.t.

host strains in our IFNgOnly dataset. (6) The distribution of peptides w.r.t.

MHC alleles in our IFNgOnly dataset.

Additional file 2: Performance of SVM light on 15 residues from

N or C terminal. Table S1. The performance of various features with

SVM light on 5 folds cross validation. Figure SF1. Variation in amino

acid residue composition of residue taken from 15 N-terminus.

Figure SF2. Variation in amino acid residue composition of residue

taken from 15 C-terminus.
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