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By taking advantage of a conformal mapping technique, we propose designs for various optical elements such

as directional antennas, flat lenses, or bends. In contrast to most of the existing design approaches, the elements can

be implemented with isotropic materials, thus strongly facilitating their fabrication. We furthermore generalize the

concept and show that under certain conditions previously suggested devices consisting of anisotropic materials

may be replaced by isotropic ones using an appropriate transformation. The designs are double-checked by

full-wave simulations. A comparison with their anisotropic counterparts reveals a similar performance.
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I. INTRODUCTION

The reinterpretation of the form invariance of Maxwell’s

equations against coordinate transformations by Pendry et al.

[1] gave birth to the promising field of transformation optics.

It mainly derives its fascination from the potential to control

the mold of light at will and to open doors for applications

which contradict our general perception of light propagation. A

striking example is illusion optics where an appropriate device

may generate the illusion such that an arbitrary object appears

to be like some other object of choice [2]. Another example,

and historically the first one, is the optical cloak, which is

designed to conceal an object from an external observer.

The design of the respective elements exploits that a

spatial transformation leads only to transformed material

properties as permittivity and permeability. Once the design

for a transformational optical device is analytically found, its

functionality can be verified using full-wave electromagnetic

simulations [3]. For their practical implementation in most

cases one relies on metamaterials being artificially nanostruc-

tured media allowing one to control the dispersive properties

of a propagating wave field [4]. However, in most cases, the

anisotropic character of permittivity ε̂ and permeability µ̂ is

disadvantageous because it is difficult to implement it by using

identical metamaterial unit cells [5]. Consequently, one often

resorts to simplified material parameters which will cause a

finite scattering [6,7].

Simultaneously with the publication of Pendry et al. [1],

Leonhardt [8] introduced the concept of optical conformal

mapping. It can be regarded as a special case of Pendry’s

concept which only requires a continuous coordinate trans-

formation. In contrast, Leonhardt’s concept takes advantage

of conformal maps that allow the design of transformation

optical devices consisting of isotropic dielectric media. On

the other hand, when compared to continuous transformations

the mathematical requirements for conformal maps are much

more severe. Furthermore, most conformal maps are limited to

two-dimensional arrangements. For these reasons most of the

designs of transformation optical devices relied on Pendry’s

concept and thus on anisotropic metamaterials characterized

by effective tensors ε̂ and µ̂. Such materials are still hard to

realize and concepts that lift this limitation are looked for.

This is mainly driven by the desire to obtain transformation

optical devices consisting of more realistic and already avail-

able materials. Therefore, an increasing share of research has

been devoted to two-dimensional conformal and numerically

generated quasi-conformal maps that provide an easier to

realize isotropic transformation medium [9]. Li and Pendry

designed a ground-plane cloak by a numerical conformal

grid generation [10]. Later on this design was realized with

nonresonant metamaterial elements in the microwave regime

[11] as well as with isotropic dielectric materials in the infrared

range [12]. Both designs exhibited only low losses.

However, for a large variety of other devices that are

based on transformation optics such isotropic implementations

are not yet known. An example is a directional antenna

that converts cylindrical waves into plane waves. Such four-

and six-beam directional antennas have been studied in

Refs. [13–15]. Another example would be a beam bend.

Transformation optical structures for beam bends have been

discussed in Refs. [16–18]. However, again all of them rely

on anisotropic media with different levels of difficulty for a

practical realization.

Here we lift this restriction and present design strategies

for such antennas relying on conformal Schwartz-Christoffel

maps that remedy this disadvantage. However, we admit that

this is not the first step toward isotropic devices. Transfor-

mation optics waveguides based on isotropic materials have

been also studied with the help of numerically generated

quasi-conformal maps [19]. Our designs do not allow such

flexibility as it can be achieved by numerical methods but do

provide easy analytical solutions for the required refractive

index distribution.

The manuscript is structured as follows. Section II provides

a concise overview on directional antennas in the context

of transformation optics. It furthermore briefly reviews the

concept of finite embedded coordinate transformations. After

this we present and discuss our design relying on the conformal

mapping technique. In Sec. III we use the results from the

previous section in order to design special flat lenses and

discuss them in comparison to their anisotropic counterparts as

documented in the literature. Most of the extensive calculations

used in Secs. II and III may be found in the Appendix.

Section IV covers the issue of the beam bend and is divided

into three subsections. In Sec. IV A we start with a short

review of a known transformation for a beam bend. After

this we elaborate a concept that states how and under which

conditions an anisotropic material may be replaced by an

isotropic one. It is shown that this concept is applicable for the
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beam bend. Then we provide full-wave simulations in order to

verify the results. Furthermore we also discuss the applicability

of the concept to other known transformations. In Sec. IV B we

propose a potential practical realization of such an isotropic

beam bend where the required pemittivity distribution is

mimicked by an effective medium of densely packed dielectric

nanocylinders variable in diameter and much smaller than the

used wavelength. Such kinds of implementation would be in

principle applicable for all the designs we have in mind and

shall serve for demonstration purposes. In Sec. IV C we present

an alternative and genuine isotropic realization of a right-angle

beam bend and compare it to the one from Sec. IV A.

II. DIRECTIONAL ANTENNAS

Directional antennas were investigated in terms of trans-

formation optics in several articles [13–15]. Jiang et al.

[13,14] used for their designs finite embedded coordinate

transformations (FECTs), a concept that has been elaborated

in the work of Rahm et al. [20]. In general such transformations

result in anisotropic effective materials ε̂ and µ̂. Furthermore,

compared with continuous coordinate transformations, FECTs

possess the drawback that reflections may occur at the interface

between the outer space and the transformation medium. A

criterion for a reflectionless FECT was heuristically found in

the initial work on FECTs by Rahm et al. [20]. It states that a

FECT is reflectionless if the metric in and the metric normal

to the interface between the transformation medium and the

outer space is continuous. Later on Yan et al. [21] presented a

thorough investigation on this subject. They found as a neces-

sary and sufficient condition that a FECT is reflectionless if the

transformed interface can be represented by a combination of a

rotation and a translation of the original interface. Furthermore

it turned out that the metric criterion heuristically found in

Ref. [20] is too stringent, because only the metric components

at the interface must be continuous. The design of a four-beam

directional antenna by Jiang et al. [13] relies on a FECT that

essentially maps a disk onto a square. From simulations they

found minor reflections, which is not surprising because a

circle cannot be mapped onto a square by a combination

of rotation and translation. Furthermore Jiang et al. [14]

proposed a design for a six-beam lens antenna. They used

a continuous as well as a discrete FECT that widens a stripe

to a trapezoidal domain. For the discrete FECT the domains

were divided into layers. Finally six such trapezoidal antennas

were arranged in a hexagon, which transformed a point source

into six directed beams. The design with the continuous FECT

requires inhomogeneous anisotropic metamaterials whereas

the discrete design requires only layers of homogeneous and

uniaxial anisotropic metamaterials. Furthermore using the

concept of simplified material parameters [3], Jiang et al. [14]

showed that in contrast to the continuous design the discrete

one can even be made reflectionless. Again one can argue

that the widening of the stripes to trapezes, which results in a

stretching of a line on the interface, cannot be represented by

a combined rotation and translation.

In the following we propose directional beam antennas

designed by conformal mapping. In contrast to the designs

discussed previously they are already realizable with an

isotropic medium, which further simplifies possible practical
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FIG. 1. (Color online) Conformal transformation of a radial and

an azimuthal grid in a unit disk in (a) onto a square in (b) and a

hexagon in (c). It can be easily deduced that the transformed radial

and azimuthal grid lines remain perpendicular to each other.

realizations. For the transformation we use Schwartz-

Christoffel transformations (SCTs). SCTs are conformal maps,

which map two-dimensional polygons onto the unit disk or the

upper complex half plane. For a brief introduction to SCTs

and references for further reading, see Appendix A. First

we start with a design for a four-beam directional antenna

relying on a SCT from a unit disk onto a square. After that we

generalize the design to N -beam directional antennas (N � 3)

and discuss the case for N = 6, that is, a six-beam directional

antenna. The calculations for both designs can be found in

Appendices B and C, respectively.

For the four-beam directional antenna we start with a survey

of the properties of the SCT from a unit disk onto a square

as derived in Appendix B. There Eq. (B1) together with

Eqs. (B2) and (B5) describes the transformation from the

unit disk with coordinates w = u + iv onto the square with

coordinates z = x + iy. Applying the transformation on a grid

of constant radial and azimuthal coordinates within a unit disk,

as shown in Fig. 1(a), yields a grid inside the square as in

Fig. 1(b). The conformal character of the transformation is

clearly visible, the grid lines of the constant radial coordinates

|w| and azimuthal coordinate arg (w) remain perpendicular

after transformation. The refractive index distribution of this

transformation is given in z coordinates by Eq. (B6) together

with Eq. (B3) and is depicted in Fig. 2(a). The transformation

becomes singular at the four corners of the square. Thus the

refractive index approaches 0 there.

In order to obtain a four-beam directional antenna with

this transformation a point source must be placed at the

origin. In the untransformed w space this would result in a

cylindrical wave. In the transformed z space the transformation
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FIG. 2. (Color online) Refractive index distribution according to

the transformations from the unit disk onto the square (a) and the

hexagon (b). The refractive index approaches 0 at the corners due to

the singular behavior of the conformal maps there.

medium transforms this cylindrical wave continuously into

four directed beams with a predominantly plane phase front.

At the interface with the outer untransformed free space where

the square is embedded, the square-shaped wave fronts can

cross without refraction due to the fact that they are parallel

with the interface. However, due to impedance mismatch with

the outer space, reflections do occur. The reflection coefficient

R can be estimated by using Fresnel’s law for normal incidence

R =
(

n′ − 1

n′ + 1

)2

, (1)

where n′ assumes all values 0 � n′ � 1.311 at the edge of the

square. Over a wide range of segments of the square, R is

less than 0.1 (0.5 <≈ n′ � 1.311). R tends toward 1 at the four

corners where n′ vanishes.

To verify the functionality of this four-beam directional an-

tenna we proceed by showing results of full-wave simulations.

For this purpose we rely on the finite element method (FEM)

using Comsol Multiphysics. Since Maxwell’s equations

are scalable and only dielectric materials will be involved,

we perform the simulation in the GHz regime. However,

an appropriate scaling translates the design to an arbitrary

spectral domain as long as materials are on hand having

the respective properties. Since a refractive index close to

zero is hard to realize we use more realistic conditions.

For this purpose we assume that the antenna is embedded

in an isotropic background medium with a refractive index

of n′ = 1.5. Therefore according to Fig. 2(a) the refractive

index distribution for the square must be scaled by a factor

of 1.5. Furthermore, we restrict the lower limit of the scaled
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FIG. 3. (Color online) Simulation of the four-beam directional

antenna. (a) The refractive index distribution n′ that is used and

obtained from the one in Fig. 2(a) by scaling with a factor of 1.5

and restricted to n′ > 0.5. This medium transforms the cylindrical

waves emerging from the line source at the origin of panel (b) to

quadratic wave fronts that finally form four collimated beams leaving

the antenna. Panel (c) shows the corresponding total energy density.

refractive index to n′ = 0.5. The refractive index distribution

obtained by this procedure is depicted in Fig. 3(a). By placing

a line source in the origin with an amplitude of 1V/m that

emits a transverse-electric (TE)-polarized field (electric field

perpendicular to the plane of interest) and choosing a free space

wavelength of λ = 0.2 m, the electric field perpendicular to

the plane, Ez, and the total energy density, Wav, are obtained as

shown in Figs. 3(b) and 3(c), respectively. As can be seen, the

cylindrical wave fronts emerging from the line source become

quadratic with increasing distance. Finally the radiation from

the antenna consists of four collimated beams. Only a very

minor amount of energy is radiated toward the four corners.

As a generalization from the four-beam antenna to the

N -beam antennas, similar SCTs can be found for regular

N -gons (see Appendix C) for N � 3. Equation (C2) together
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with Eq. (C3) transforms a unit disk (coordinates w = u + iv)

onto the regular N -gon (coordinates z = x + iy). The corre-

sponding refractive index distribution is given by Eq. (C4).

For example—and also for a comparison with the design in

Ref. [14]—we restrict ourself to the case of a regular hexagon,

that is, N = 6. The transformation and the corresponding

refractive index distribution are depicted in Figs. 1(c) and 2(b),

respectively. They show a very similar behavior as in the case

of the square. The same simulations as for the square were

carried out for the hexagon using directly the refractive index

distribution from Eq. (C4) without any scaling and limiting.

The results for the electric field perpendicular to the plane

and the total energy density are plotted in Figs. 4(a) and 4(b),

respectively.

Eventually we briefly compare the isotropic antenna with

their anisotropic counterparts from Refs. [13] and [14],

respectively. Of course the need for a merely isotropic

metamaterial poses a striking simplification for a possible

practical realization especially as compared with the design in

Ref. [13]. With respect to the problem of impedance mismatch

at the outer interface, the design proposed here does not

offer any improvements, especially not as compared with the

reflectionless design in Ref. [14]. However, the reflection in

the isotropic case is very weak and can be theoretically limited

to less than 10% over a wide range of beam waists.
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FIG. 4. (Color online) Simulation of an N -beam directional

antenna for N = 6. Using the refractive index distribution from

Fig. 2(b) the cylindrical waves that are emitted from the line source at

the origin are transformed to hexagonal wave fronts that finally form

the six beams of the antenna. Panel (b) shows the corresponding total

energy density.

III. FLAT LENSES

The FECT for a flat lens design from Kwon and Werner [18]

transforms a segment of a disk with a plane convex shape to a

rectangle. The plane boundary is not modified and is the lower

boundary of the rectangle. The convex part of the boundary is

mapped onto the upper boundary of the rectangle. Besides the

width and the height of the rectangle there is a parameter g

that controls the distance of the focus from the lower boundary

of the rectangle. One major drawback of this design is again

a quite complicated material distribution for the anisotropic ε̂

and µ̂.

Using the concept of simplified material properties as in

Ref. [4], one can reduce the problem to nonmagnetic materials.

Therefore for transverse magnetic polarization, ε′
xx , ε′

xy , and

ε′
yy are multiplied by µ′

zz and renamed to ε̄′
ij , while µ̄′

zz is

set to 1. Maxwell’s equations, and therefore the path of the

light wave in the lens too, remain unchanged when using the

simplified material parameters ε̄′
ij and µ̄′

ij . But the intrinsic

impedance matching at the lower interface of the lens with the

outer space (where the transformation is continuous) is lost.

Simulations (not shown here) using a line source at origin for

illumination and the simplified material parameters ε̄′
ij and µ̄′

ij

show that remarkable reflections occur at the lower boundary

of the rectangle, compared with the case of using ε′
ij and µ′

ij . At

the upper boundary of the rectangle there can be principally

reflections. This is due to the fact that the transformation is

discontinuous there and the criterion for a reflectionless design

as given in Ref. [21] is not fulfilled.

Using results of the previous section one can also design a

special flat lens exhibiting a major advantage but also a few

disadvantages compared with the design described previously.

For a four-beam antenna the unit disk was conformally mapped

onto a square. Due to the symmetry, the upper half of the

unit disk is mapped onto the upper half of the square, that

is, a rectangle with a ratio of width to height of 2 : 1. As

can be seen from Fig. 3(b), a beam with small divergence

impinging on the upper boundary of the square is focused to

the origin and would be transformed back to a beam within

the lower rectangular part of the square. Hence, if for example

only the upper half of the square is used, the plane wave

fronts of the beam would be focused onto the origin and from

there cylindrical wave fronts would be emitted into the free

space in the lower half-plane. The advantage of this design

is again an isotropic refractive index distribution (that can be

further simplified by the aforementioned scaling and limiting

procedure to n′ > n′
min > 0) compared with the anisotropic

one in Ref. [18]. On the other hand several drawbacks emerge

from this design compared to the one in Ref. [18]. The most

severe one is that the focus is not situated in free space. Instead

the focus lies directly on the lower boundary of the flat lens

to the outer free space (this corresponds to the case of a focus

distance g = 0 in the design of Ref. [18]). Another drawback

is that reflections may also occur at the lower boundary of the

rectangle due to impedance mismatch to the outer free space

(n′ �= 1 at the boundary). This is a similar problem as already

discussed in the case of using simplified anisotropic material

properties.

FEM simulations have been carried out to probe this flat lens

design. In Fig. 5(a) the flat lens is illuminated by a Gaussian
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FIG. 5. (Color online) Illumination of the isotropic flat lens from

the top by a TE-polarized Gaussian beam with an almost plane phase

front. The beam is focused into the origin lying on the lower boundary

of the flat lens. From there cylindrical waves emerge and propagate

in the lower half-plane. Panels (a) and (b) show the electric field and

the corresponding total energy density, respectively.

beam with an almost plane phase front. Remarkably the beam

is focused at the lower boundary of the flat lens and from

there cylindrical waves propagate into the lower half plane.

Furthermore in Fig. 5(b) the corresponding total energy density

and Poynting vectors are plotted. The focusing and defocusing

effect are obvious.

While the focusing of a plane wave as in Fig. 5 works

properly, the reverse case unveils several drawbacks. In Fig. 6

a line source is placed at the boundary, that is, the focus of the

flat lens. For an anisotropic flat lens in Ref. [18] with a focus

distance g = 0 almost the complete energy that is emitted

from the line source into the upper half-space is directed into

a beam with a plane phase front, leaving the flat lens through

the upper boundary. But using this isotropic flat lens, energy

is also transported through the side edges of the rectangle as

can be seen from Fig. 6. This is due to the fact that the half

circle is mapped onto the upper edge as well as on the two

side edges of the rectangle, while in the case of Ref. [18]

the half circle is mapped only onto the upper edge of the

rectangle. Furthermore from Fig. 6(b) it can be seen that the

aforementioned reflections at the lower boundary occur and

most of the energy is re-emitted into the lower half-plane. This

reduces significantly the efficiency.

Besides the zero focus distance another drawback of this

design is that it requires a fixed width to height ratio of

2 : 1. This restriction can be theoretically lifted by computing

conformal maps from a rectangle with an arbitrary aspect ratio

onto the unit disk (due to symmetry the upper part of such

a rectangle is again the image of one half of a unit disk).

Such a conformal Schwartz-Christoffel map is already known

in the literature (see, e.g., Ref. [22], p. 280, and especially
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FIG. 6. (Color online) Transformation of a line source placed in

the focus of the isotropic flat lens at the bottom edge. The cylindrical

waves emitted into the upper half are transformed into plane waves

leaving the flat lens via its upper edge but also through its two

side edges. The anisotropic flat lens design from Ref. [18] does not

suffer from this drawback. Panels (a) and (b) show the electric field

perpendicular to the plane and the total energy density, respectively.

exer. 5 on p. 297) and is briefly derived in Appendix D. The

transformation again involves elliptic functions. One issue that

could emerge is that even for aspect ratios, RA, not in excess

[for the definition of RA and its mathematical expression

see Appendix D and Eq. (D2)], for example, RA = 9 or

RA = 10, the modulus k of the elliptic functions are very

close to 1 (deviations in the order of 10−12 are found, e.g.,

for RA = 9 or RA = 10). A similar behavior occurs for small

aspect ratios, where the modulus k becomes very close to 0.

Hence possibly numerical problems with the evaluation of

the elliptical functions should be taken into account when

computing the map and its refractive index distribution at very

high aspect ratios.

The map from the unit disk with coordinates w onto a

rectangle with coordinates z is given by Eq. (D3). Figure

7(a) shows the transformed grid lines of half the unit disk of

Fig. 1(a). The corresponding refractive index distribution n′ of

this transformation is given in z coordinates by Eq. (D5) and

is shown in Fig. 7(b) for the same rectangle as in Fig. 7(a).

Both graphs are similar to those for the transformation of the

square as in Figs. 1(b) and 2(a). As expected the 90◦ symmetry

is reduced to a 180◦ symmetry.

IV. BENDS

Another example of an optical device for which an isotropic

version can be found is beam bends. In Sec. IV A at first we

review a known transformation of a beam bend from Ref. [18].

After this we elaborate a concept that allows one to replace the
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FIG. 7. (Color online) Transformation from the unit disk onto

a rectangle. The grid of one half of the unit disk in Fig. 1(a) is

transformed by Eq. (D3) to the grid in the half rectangle in panel

(a). The corresponding refractive index distribution from Eq. (D5) is

shown in panel (b) and shows a form very similar to that of the one

for the square in Fig. 2(a).

anisotropic material parameters of this bend by an isotropic

medium. After having discussed this isotropic version and the

applicability of the concept to other known transformations

we proceed in Sec. IV B with a concrete design for this

isotropic beam bend based on the effective medium theory for

densely packed dielectric nanocylinders. This is exemplarily

done as a possible implementation of all the structures we have

investigated in this article. Finally, in the Sec. IV C we show

an alternative approach to realize an isotropic perpendicular

bend. In contrast to the one in Sec. IV A this approach does

not rely on the transformation optics concept. We complete

the section with a comparison of this beam bender especially

to the one from Sec. IV A.

A. Bends made of isotropic media

Kwon et al. [18] presented a finite embedded coordinate

transformation of a bend that transforms a rectangular grid

within a square domain of width w [Fig. 8(a)] into a

curved grid [Fig. 8(b)]. For such a perpendicular bend the

respective rotation angle amounts to β = π/2. Following the

transformation rules from Ref. [18],

ρ ′ = y, ϕ′ =
π

2w
(w − x) , z′ = z, (2)

the Jacobian matrix can be computed in primed Cartesian

coordinates as

J =

⎛

⎝

Ĵ 0

0

0 0 1

⎞

⎠ , Ĵ =

⎛

⎝

αy ′ x ′

ρ ′

−αx ′ y ′

ρ ′

⎞

⎠ , (3)

where ρ ′2 = x ′2 + y ′2 and α = β/w. To obtain a bend with

an isotropic medium later on in this section we use a useful

property of this transformation. The transformation is not

conformal in the x-y plane at all (the Cauchy-Riemann

differential equations are not fulfilled or equivalently it holds

Ĵ T / det Ĵ �= Ĵ −1). This can be also seen from the fact that

the vertical lines of constant x in Fig. 8(a) are transformed to

radial lines of constant ϕ′ in Fig. 8(b), which are not parallel

x

y

x′

y
′

(a) (b)

FIG. 8. (Color online) Transformation of the bend from Ref. [18]

and used in Sec. IV A for an angle of β = π/2. The Cartesian x-y grid

within the quadratic subdomain in panel (a) is transformed in such a

way that grid lines of constant y transform into lines of constant radial

coordinate ρ ′ in panel (b) and similarly lines of constant x transform

into lines of constant azimuthal coordinate ϕ′.

anymore. On the other hand for the horizontal lines of constant

y in Fig. 8(a), one can see that the transformation shares one

characteristic with a conformal map. The lines of constant ρ ′

remain parallel after transformation and are still perpendicular

to the transformed lines of constant x, that is, lines of constant

ϕ′. In the following we refer to these lines of constant y or ρ ′

as the “pseudo-conformal directions” in the bend.

Prior to proceeding with the bend, we present a route of

how and under which conditions for the transformation an

isotropic medium can be derived from a given anisotropic

transformation medium and used as an appropriate alternative.

We discuss this procedure with respect to conformal maps

and the transformation that possesses a pseudo-conformal

direction.

Schurig et al. [23] derived a Hamilton formalism for ray

tracing in transformation media. The dispersion relation in the

anisotropic transformation medium they found is given by

H =
1

det η̂
[k′T η̂k′ − det η̂]2 = 0, (4)

with

η̂ = ε̂′ = µ̂′ =
JJ T

detJ
, (5)

where it was assumed that the untransformed space is vacuum,

that is, ε̂ = µ̂ = 13. Furthermore k0k′ denotes the wave vector

in the transformation media where k0 = 2π/λ0 with λ0 as the

free space wavelength.

One can show that this formalism is analogously applicable

for an inhomogeneous and dispersive but still isotropic distri-

bution of ε = ε(r, ω) and µ = µ(r, ω) in the untransformed

space. Therefore, one only has to replace η̂ in Eq. (4) by
√

εµ ·
η̂. With n(r, ω) = √

εµ as the isotropic, but inhomogeneous

refractive index in the untransformed space, one gets

1

det (n · η̂)
[k′T (n · η̂) k′ − det (n · η̂)]2 = 0. (6)

Equation (6) can be simplified to

n2

detJ
[(J Tk′)2 − n2]2 = 0. (7)
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Assuming that J is nonsingular and setting k′ = n′ · k̄′,
where k̄′ is a dimensionless unit vector, the refractive index

distribution n′ as a function of the transformed coordinates r′

and k̄′ can be written as

n′(r′, k̄′) = ‖J T k̄′‖−1 · n(r′). (8)

Due to the fact that the wave vector (−ω/c, k) is a four-

vector it transforms under coordinate transformations (in space

and time) just by applying the 4 × 4 Jacobian matrix. For

purely spatial coordinate transformations, the (spatial part of

the) wave vector in the untransformed frame k0k transforms

to k0k′ in the transformed frame via k′ = J k. Therefore, k̄′ is

linked with k via the expression

k̄′ =
J k

‖J k‖
. (9)

The quantity n′ in Eq. (8) can be considered as the refractive

index that light experiences at a point r′ in the direction of k̄′

inside the anisotropic transformation medium of ε̂′ and µ̂′.
Hence for a desired spatial distribution of propagation

directions k̄′ in the transformation medium, one can compute

for every point the refractive index n′.
But it is important to state that in general one would

not obtain the same light ray trajectories along the desired

k̄′ distribution if one would simply replace the anisotropic

material by ε̂′ and µ̂′ with the isotropic one of n′.
Two-dimensional conformal maps are an exception. One

can show that in this case Eq. (7) reduces to the known

result as in Ref. [8] [Eq. (A2)]. For a two-dimensional

conformal map z(w) with z = x + iy and w = u + iv it holds

that Ĵ T Ĵ = det Ĵ 12 = |dz/dw|212 because of the Cauchy-

Riemann differential equations (ux = vy and uy = −vx). For

propagation in the untransformed two-dimensional plane with

an in-plane wave vector k = k‖ (kz = 0), Eq. (8) can be written

as

n′ =

∥

∥

∥

∥

∥

J
T J k‖

∥

∥J k‖
∥

∥

∥

∥

∥

∥

∥

−1

· n =

√

kT
‖ J

TJ k‖
∥

∥J TJ k‖
∥

∥

· n

(10)

=

√

kT
‖ k‖

∥

∥k‖
∥

∥

·
n

√
|detJ |

=
∣

∣

∣

∣

dz

dw

∣

∣

∣

∣

−1

· n,

which is in accordance with Eq. (A2). Hence for a conformal

map it is possible to use the easier isotropic refractive index

distribution n′ instead of the anisotropic ε̂′ and µ̂′ without

changing the ray path in the transformation medium.

However, in particular for the bend this replacement is only

possible along the pseudo-conformal direction [k = (1, 0, 0)T

in the untransformed space]. With the bend’s Jacobian in

Eq. (3) and a light propagation direction of k = (kx, ky, 0)T in

the untransformed free space (‖k‖ =
√

k2
x + k2

y = 1), n′ can

formally be calculated by Eqs. (8) and (9) as

n′ =

√

α2ρ ′2k2
x + k2

y

α2ρ ′2kx + ky

. (11)

For the pseudo-conformal direction of k = (1, 0, 0)T it

simplifies to

n′ = (αρ ′)−1. (12)
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FIG. 9. (Color online) (a) Refractive index distribution for the

isotropic perpendicular bend of width w = 0.3 m from Eq. (12) in

Sec. IV A. For better visual perception, the shown refractive index is

limited to n′ = 10. (b) Propagation of a TE-polarized Gaussian beam

at a free space wavelength of λ0 = 0.05 m that impinges from the left

on the bend.

To double-check the performance of the isotropic bend

we again perform full-wave simulations. In Fig. 9(b) a TE-

polarized Gaussian beam with a free space wavelength of

λ0 = 0.05 m impinges on the bend from the left-hand side

with a width of w = 0.3 m. Most of the electric Ez field

in Fig. 9(b) is smoothly perpendicularly bent in a clockwise

direction and leaves the bend through the lower interface

into free space. Nevertheless one issue that arises when

using the isotropic n′ instead of the anisotropic material as

in Ref. [18] is the impedance mismatch at the interface to

the free space. Using the anisotropic medium no reflections

occur at the left interface L′ = {(x ′, y ′)|x ′ = 0, y ′ ∈ [0, w]}
because there the transformation is continuous and hence the

transformation medium is intrinsically impedance matched

to the free space. By contrast, at the bottom interface

B ′ = {(x ′, y ′)|x ′ ∈ [0, w], y ′ = 0} where the transformation is

discontinuous with the outer free space, no reflections occur,

too. This can be explained by the aforementioned criterion

from Ref. [21], because the transformation of the right-hand

interface R = {(x, y)|x = w, y ∈ [0, w]} in the original space

to B ′ in the transformed space can be regarded as a combination

of a clockwise rotation of 90◦ degrees and a translation of −w

along the x direction.

It is important to note that the functionality of the isotropic

beam bender is limited to normal incidence. First, this is due

to the fact that n′ was calculated under this assumption, and

second, only for normal incidence does refraction vanish at

L′ and B ′. This also means that the bend can only be used

033837-7



SCHMIELE, VARMA, ROCKSTUHL, AND LEDERER PHYSICAL REVIEW A 81, 033837 (2010)

for beams with a sufficiently small divergence (ky ≪ kx ≈ 1

for the incident beam in our geometry). For the anisotropic

bend these limitations do not apply; that is, it works also for

obliquely incident and divergent beams.

For a possible practical realization the refractive index

distribution as in Eq. (12) is still inappropriate due to its

singular behavior for small radii ρ which causes the index

to approach zero. This problem can be lifted by introducing

upper and optionally also lower limits for n′ (the lower limit

may not be necessary since n′ approaches 2/π = 0.637 at

ρ ′ = w). Furthermore w must be adjusted in such a way that

the ring segment that is not affected by the limiting procedure

fits to the waist of the impinging beam. Figure 10(a) shows the

refractive index distribution for a bend with w = 0.8 m and the

restriction 2 � n′ � 4. In Fig. 10(b) this bend is illuminated

by a TE-polarized Gaussian beam with a suitable beam waist

of 0.16 m and a free space wavelength of 0.05 m. Figure 10(c)

shows the corresponding total energy density. It is obvious that

for a given beam waist the necessary refractive index range

can be adjusted by changing the bend radius, that is, w. The

larger w is the smaller the refractive index range is. Reducing

the index range and using a refractive index in the outer

space that lies in this index region can also be utilized to reduce

reflections at the interface to the outer space to acceptable

values.

Before we proceed with the next section the applicability of

the concept, presented previously for nonconformal maps, is

discussed. However, to make it clear from the very beginning,

besides the beam bender we did not succeed in finding

any other nontrivial transformations among the many ones

suggested in the literature, where pseudo-conformal directions

do exist and are also relevant for the functionality of the

transformation optical device. A trivial example is squeezing

a rectangle to half of its width, that is, x ′ = x/2. According

to Eqs. (8) and (9) this would require n′ = 2n for light

propagating into the x direction.

For two-dimensional cylindrical cloaks with transforma-

tions of the kind ρ ′ = ρ ′(ρ) and θ ′ = θ the coordinate lines

along ρ and θ remain orthogonal after transformation; that is,

they are pseudo-conformal directions. But this does not help.

To cloak an object that is illuminated by a plane wave (or a

beam with low divergence) propagating along the x direction,

the pseudo-conformal direction must be the x direction too, in

order to use the corresponding isotropic media. But one can

easily show that the coordinate lines along the transformed

x ′ and y ′ directions will never be orthogonal as for the

untransformed x-y grid for any function ρ ′(ρ). Making use of

the chain rule, one obtains the following for the scalar product

of the unit vectors along the x ′ and y ′ coordinate lines:

ex ′ · ey ′ ∼
∂r

∂x ′ ·
∂r

∂y ′

=
(

eρ

∂ρ

∂ρ ′
x ′

ρ ′ − eθ

ρ

ρ ′
y ′

ρ ′

)

·
(

eρ

∂ρ

∂ρ ′
y ′

ρ ′ + eθ

ρ

ρ ′
x ′

ρ ′

)

=
x ′y ′

ρ ′2

[ (

∂ρ

∂ρ ′

)2

−
(

ρ

ρ ′

)2 ]

!= 0.

The condition requiring that the obtained differential

equation ∂ρ/∂ρ ′ = ρ/ρ ′ for ρ ′(ρ) shall hold together with

the boundary condition, that ρ ′(ρ) must be continuous at least
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FIG. 10. (Color online) Simplified model of the isotropic bend

from Fig. 9. The large refractive index for small radii can be avoided

by increasing the bend radius. This can be achieved by increasing

w, considerably exceeding the waist of the incoming beam, as well

as by ensuring that the beam propagates in a ring segment with a

sufficiently large radius. This has been done in Fig. (a) for the bend

with w = 0.8 m. The ring segment between the radii of 0.318 and

0.637 m provides a refractive index in the range n′ ∈ [2,4]. Finally,

panels (b) and (c) show the electric field and the total energy density

of a TE-polarized Gaussian beam with a beam waist of 0.16 m and

a free space wavelength of 0.05 m, respectively, impinging from the

left at the center of the ring segment (y ′ = 0.477 m).

across the outer boundary of the cloak, gives merely the trivial

solution ρ ′ = ρ, that is, the identity transformation. Hence for

such types of cloaks no equivalent isotropic alternative can be

used.

Another problem that arises is that even if one has found

a usable pseudo-conformal direction, the intrinsic impedance

matching at the interface between transformed and untrans-

formed space is not automatically fulfilled if the anisotropic

quantities ε̂′ and µ̂′ are replaced by the isotropic n′ one. In the

bend light enters and leaves it normal to the interfaces, which

“only” results in reflections at the interfaces and diminishes

033837-8



DESIGNING OPTICAL ELEMENTS FROM ISOTROPIC . . . PHYSICAL REVIEW A 81, 033837 (2010)

the performance. But in general, theses interface problems

can be more severe. For oblique incidence, refraction and

total reflection can occur at the interface preventing the use

of the isotropic device. These problems do not occur if the

transformation is continuously differentiable at the interface,

because then n′ will be continuous there.

B. Implementation of the bend by using dielectric nanocylinders

To outline a possible bend implementation and to evaluate

its performance beyond a description that is based on an

effective refractive index we have rigorously simulated such

bends where the index distribution is realized by spatially

distributed dielectric cylinders of varying size [24].

In particular, we started from the index distribution of a

bend as given by Eq. (12), assumed a width of w = 0.27 m,

and discretized the index profile on a grid where each grid point

had a size of a tenth of the wavelength. The design wavelength

was again 0.05 m. At each grid point we located a dielectric

cylinder whose radius was adjusted to evoke the required

effective index. We mention that the size of the cylinder was

sufficiently small for the effective medium model to hold.

Since the dielectric cylinder is nonresonant in the spectral

domain of interest, the effective permittivity can be assigned, in

principle, by computing the spatial average of the permittivity

in the unit cell. Nevertheless, rigorous simulations were used

to verify this assumption [25,26]. For the dielectric material

of the cylinder we assumed a semiconductor with ε = 13.

The cylinders were surrounded by air. The refractive index

distribution was strictly limited to values obtainable within

this material system, for example, no index lower than unity

or larger than ≈3.6 was possible.

The ensemble of cylinders was illuminated by a Gaussian

beam (beam width corresponds to the wavelength) whose waist

was placed at the entrance facet of the bend. With the above

design constraints the bend consisted of 1553 cylinders and

the entrance facet had a width of 26 cylinders. For the rigorous

simulations a multiple scattering formalism was used [27]. The

evolving amplitude distribution for this device can be seen in

Fig. 11(a). Nearly all light is bent within the structure. The only

loss mechanisms are back reflections at the interface since the

impedance is not matched to the outer domain and some light

that leaks out of the device since the width of the bend is too

small and the wave nature of light does not allow for a perfect

confinement.

To access in more detail the properties, the bent, the

reflected, and the maximum amount of bent light for negligible

reflection are shown in Fig. 11(b) as a function of the bend

width. This width was continuously increased and quantified

by the number of cylinders that form the entrance facet. Two

things can be seen. First, Fabry-Perot oscillations of the light

inside the bend cause a sinusoidal modulation of the amount

of bent and reflected light. The geometry with 26 cylinders

was chosen since it corresponds to a maximum in the bent

energy at negligible reflection. Therefore, despite being not

impedance matched, reflection may be strongly suppressed.

Second, the larger the bend width and the smoother the

index profile, the larger the maximum possible bent efficiency

which asymptotically converges toward 100%. The smoother

the index gradient and the larger the bend when compared

100
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FIG. 11. (Color online) (a) Amplitude distribution upon illumi-

nating a bend consisting of periodically arranged dielectric cylinders

of spatially varying radius to cause an effective index according to

that shown in Eq. (12) with a width of w = 0.27 m. The cylinders are

made of a semiconductor with ε = 13 and are embedded in air. The

index distribution is limited to those values that can be obtained with

this material basis. The structure is illuminated by a Gaussian beam

of a width of 0.05 m and which propagates in the negative y direction.

For the specific example 26 cylinders form the entrance facet of the

bend. The cylinders are indicated by green circles, though they are

hardly discernible since their density is large. (b) Share of bent light

[blue (black) solid line], reflected light [red (dark gray) dotted], and

the maximum attainable bend efficiency [green (light gray) dashed

line], shown in percent, as a function of the bend size. The size is

quantified by the number of cylinders that form the entrance facet.

Lines are only a guide to the eye since the size cannot be adjusted

continuously.

to the wavelength, the smaller is the leakage of the light

out of the structure and the more light can be efficiently

transmitted.

This potentially practical realization of a bend has exem-

plarily proven that the translation of a device that was designed

by transformation optics and where only an isotropic index was

required can be obtained with such a simple nanostructured

system.

C. An alternative isotropic perpendicular bend

An alternative approach for a two-dimensional beam splitter

was derived in terms of an appropriate refractive index

distribution already more than 15 years ago [28]. This beam

splitter is a disk with a radius R. A collimated beam that

symmetrically impinges on the disk’s center is symmetrically

split such that either outgoing beam leaves the splitter at

an angle of qπ/2 (0 � q � 4) with respect to the incident

beam. Variable beam division can be achieved by displacing

033837-9



SCHMIELE, VARMA, ROCKSTUHL, AND LEDERER PHYSICAL REVIEW A 81, 033837 (2010)

the incident beam transversely with respect to the radial axis

pointing to the origin.

Here we use this beam splitter as a bend, which is possible

if the beam thickness is less than the disk radius R and the

beam is sufficiently transversely displaced that it will not hit

the origin anymore. Considering a coordinate system with

radial coordinate ρ and the dimensionless variable r = ρ/R,

the radially symmetrical refractive index distribution n(r) of

this beam splitter is determined by

r2(1 +
√

1 − (rn)2)q−2 = (rn)q, (13)

where q controls the bending angle. This equation for the

refractive index distribution was derived in Ref. [28] (see

Eq. III.6.12 on p. 599) without using transformation optics

methods, which were unknown at that time. For a cylindrically

symmetric refractive index distribution n(r) the ray equations

can be written as a separable first-order differential equation

in r and the azimuthal coordinate. Integration of the r-

dependent side leads to an Abelian integral that must be solved

(for a more comprehensive description see Chap. 4.7 and

Appendix III.6 in Ref. [28]). In order to proceed, after some

calculations Eq. (13) for n(r) can be rewritten in the form

rν

(

1 −
2

r
n

ν
2
−1 + nν

)

= 0, (14)

where ν = 4/(2 − q). For q = 0, or equivalently q = 4, that

is, for a 2π retro reflector, it can be shown that the solution

for the refractive index law n(r) in Eq. (14) is that of an Eaton

lens [28].

From now on we focus on the bend. The easiest case—and

maybe the only one with an analytical solution for n(r)—

is the one of a perpendicular bend, that is, q = 1 (ν = 4)

or equivalently q = 3 (ν = −4). Either value of ν simplifies

Eq. (14) to

1 − 2
n

r
+ n4 = 0. (15)

Equation (15) provides four solutions for n(r), but only one

of them is physically relevant. With the help of a computer-

algebra system like Wolfram Mathematica a solution for

n(r) can be easily derived and can be expressed as

n (r) =
µ (r)

3
√

2

(

1 +

√

1

r · µ (r)3
− 1

)

,

µ (r) =
1

4
√

3 · 6
√

2

√

1


 (r)
+ 
 (r), (16)


 (r) =
√

3
3
√

4
r−2/3

(

1 +
√

1 −
16

27
r4

)1/3

.

This refractive index is plotted in Fig. 12(a). It diverges

to +∞ if r approaches 0 and converges toward 1 for r = 1,

that is, ρ = R, so that there is a continuous transition at the

interface to the outer domain.

To verify the functionality of this kind of bend, full-wave

simulations have been carried out. In Fig. 12(b) a TE-polarized

Gaussian beam of the form Ez = exp[−(y − y0)2/w2
0]V/m

(y0 = 0.5 m, w0 = 0.25 m) with a free space wavelength of
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FIG. 12. (Color online) (a) Radial refractive index profile n(r) for

the perpendicular bend according to Eq. (16). While the refractive

index diverges for small radii ρ = rR, it exhibits a continuous

transition to the outer space at the interface, that is, for r = 1.

(b) Propagation of a TE-polarized Gaussian beam through a bend

with a radius of R = 1 m confirming its functionality.

λ0 = 0.1 m impinges at a bend with a radius of R = 1 m and

experiences a π/2 turn to the left side.

To conclude on this kind of bend in the following we com-

pare some key parameters with the other bend types. Compared

to its anisotropic versions [16–18] it is advantageous with

respect to its simpler realization in an isotropic medium. Like

the anisotropic devices it is perfectly impedance matched at

both ends.

Compared with the other isotropic bends as presented in

Sec. IV A, it exhibits a similar though more complicated re-

fractive index distribution. But compared with the numerically

computed isotropic bend of Ref. [19] it lacks from a singular

behavior of n(r) for small radii, similar to the bend from

Sec. IV A. A striking advantage against both other isotropic

counterparts is impedance matching.

A general drawback of this bend is its low flexibility with

regard to bending angles other than π/2. Analytical solutions

for n(r) from Eq. (14) for bending angles qπ/2 with q �= 1, 3

are not expected to exist. None of the anisotropic bends or the

other isotropic bends suffer from this restriction.

V. CONCLUSIONS

To sum up, we significantly reduced the requirements for

the transformation medium of directional antennas and flat

lenses. Our designs, relying on conformal Schwarz-Christoffel

transformations, work already with isotropic dielectric media.

Furthermore, if certain conditions regarding the transformation

hold, we put forward a concept to replace the anisotropic
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material, usually required in transformation optics designs,

by an isotropic refractive index distribution where a similar

optical behavior can be obtained. We showed that this concept

is applicable for a known transformation of a bend and that

it provides a simple analytical expression for the refractive

index distribution.

In the present work we focused on an analytical approach

in the designs. However, for a greater flexibility in the design

process of transformation optical devices the use of numerical

conformal grid generators like CONFPACK [29], Zipper [30],

or those used in the papers of Li and Pendry [10] and

Landy and Padilla [19] are inevitable. With regard to future

practical implementations of transformation optical devices

it may be anticipated that the use of conformal mapping

techniques is a much more promising approach despite their

more sophisticated calculation.
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APPENDIX A: SCHWARZ-CHRISTOFFEL

TRANSFORMATIONS

In this section we provide a concise introduction to

conformal Schwarz-Christoffel transformations (SCTs), for a

more detailed introduction see, for example, Ref. [22] or other

textbooks on conformal mapping. SCTs allow one to map

two-dimensional polygons onto the upper complex half-plane

or the unit disk (which is conformally equivalent to the

half-plane). For a polygon with N vertices the SCT can be

written as

z (w) = A

∫ N
∏

k=1

(w − wk)−(1−αk/π) dw + B. (A1)

Here w denotes the coordinates in the upper complex half-

plane or in the unit disk and z denotes those in the polygon. The

αk denotes the polygon’s interior angles and the wk = w(zk)

are the images of the polygon’s vertices zk . In the case of

mapping to the upper complex half-plane the wk lie on the

real axis whereas for the unit disk they lie on the unit circle

|w| = 1. A and B are (complex) constants that represent two

degrees of freedom for an overall rotation (A) and translation

(B) of the map. It can be shown that it is always possible to

drop one of the N factors (i.e., one vertex) in the integrand’s

product series without changing the SCT.

The transformed refractive index distribution n′ for a SCT

is given like for conformal maps by [8]

n′ =
∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

n, (A2)

where n is the refractive index distribution in the untrans-

formed space.

In the following three appendices we give the results for the

SCTs and their associated refractive index distributions that are

used in Secs. II and III. To perform symbolic integrations of

the SCT integrals, as in Eq. (A1), the computer-algebra system

Wolfram Mathematica was used.

APPENDIX B: SCT FROM A SQUARE ONTO THE UPPER

COMPLEX HALF-PLANE AND THE UNIT DISK

In this section a SCT from a square (coordinates z) onto the

upper half-plane (coordinates q) is derived via Eq. (A1). By

another conformal map the upper half-plane is subsequently

mapped onto the unit disk (coordinates w). As mentioned

in Appendix A only three of the four vertices of a square

must be considered. Setting the angles αk = π
2
, k = 1, 2, 3,

and choosing the points q1 = −1, q2 = 0, q3 = 1 on the real

axis of the upper half-plane, the SCT from a square onto the

upper complex half-plane can be written with Eq. (A1) as

z (q) = A

∫

(q2 − 1)−
1
2 q− 1

2 dq + B,

which leads after integration to

z (q) = A · 2i · F

(

i sinh−1

(

1
√

q − 1

)
∣

∣

∣

∣

2

)

+ B. (B1)

Here F (ϕ|m) denotes the incomplete elliptic integral of

the first kind with the elliptic modulus m. With the constraints

z(−1) = −1 − i and z(1) = 1 + i the square is fixed to an edge

length of 2 and in an upright position. Thus the coefficients A

and B are obtained as

A = −
2 + 2i

2K(−1) + i
√

2K
(

1
2

) , B = −1 + i, (B2)

where K(m) denotes the complete elliptic integral of the first

kind. The inverse transformation of Eq. (B1) is given by

q (z) = 1 −
1

sn

(

2i
√

2π3/2[z+(1−i)]

Ŵ(− 1
4 )

2

∣

∣

∣

∣

2

)2
, (B3)

where sn(ϕ|m) denotes the Jacobi elliptic function (it holds

sn[F (ϕ|m) |m] = sin ϕ) and Ŵ the Gamma function. Thus the

transformed refractive index distribution can be written as a

function of z as

n′ (z) =
∣

∣

∣

∣

dz

dq

∣

∣

∣

∣

−1

n (q) =

∣

∣

∣

∣

∣

[q (z)2 − 1]
1
2 q (z)

1
2

A

∣

∣

∣

∣

∣

. (B4)

Here and in the following we assume a constant refractive

index distribution n(q) = 1 in the q or w space. The map from

the square onto the unit disk can be obtained comparatively

easily. Due to the fact that the upper half-plane and the unit

disk (coordinates w) are connected by the invertible conformal

map,

q (w) = i
1 + w

1 − w
, (B5)

a combination of Eqs. (B1) and (B5) gives the desired

transformation between the square and the unit disk. The

refractive index distribution of this combined transformation

is obtained by using the chain rule and can be written in the

square’s z coordinates as

n′ (z) =
∣

∣

∣

∣

dz

dq

dq

dw

∣

∣

∣

∣

−1

=

∣

∣

∣

∣

∣

2[q (z)2 − 1]
1
2 q (z)

1
2

A [i + q (z)]2

∣

∣

∣

∣

∣

. (B6)
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Thereby the coordinates w in the expression for dq/dw have

been replaced by the coordinates q = q(z) using the inverse

of Eq. (B5).

APPENDIX C: SCT FROM A REGULAR N-GON ONTO

THE UNIT DISK

It can be shown (see, for example, exer. 4 on p. 196 in

Ref. [22]) that the transformation

z (w) = A

∫

(1 − wN )−2/Ndw + B (C1)

maps a regular N -gon (coordinates z) onto the unit disk

(coordinates w). Integration gives

z (w) = A · w ·2 F1

(

1

N
,

2

N
; 1 +

1

N
; wN

)

+ B, (C2)

where pFq

(

a1, . . . , ap; b1, . . . , bq ; ϕ
)

denotes the general

hypergeometric function. With the constraints z(0) = 0 and

z(1) = d the center of the N -gon is fixed to the origin and

one vertex lies on the real axis at a distance d from the origin.

Hence, A and B are obtained as

A =
4

1
N d

√
π

Ŵ
(

1
2

− 1
N

)

Ŵ
(

1 + 1
N

) , B = 0, (C3)

and the transformed refractive index distribution is given by

Eqs. (A2) and (C1) as

n′ (w) =
∣

∣

∣

∣

(1 − wN )−2/N

A

∣

∣

∣

∣

. (C4)

Here, it is more difficult to evaluate n′ in z coordinates as in

Appendix B because an invertible transformation of Eq. (C2)

for all N is not at hand. For a square, that is, a regular 4-gon,

the route as proposed in the previous subsection can be used,

but for a regular hexagon the invertible map of Eq. (C2) must

be numerically computed.

APPENDIX D: SCT FROM A RECTANGLE ONTO

THE UNIT DISK

It can be shown (the result can be found in Ref. [22]) that

the SCT

z (w) =
∫ w

0

[(

1 − κ

1 + κ
− w2

) (

1 + κ

1 − κ
− w2

)]−1/2

dw

(D1)

maps a rectangle in the z plane onto the unit disk in the w plane.

There, κ is defined by κ =
√

1 − k−2 as the complementary

modulus, where the modulus k itself controls the aspect ratio

of the rectangle. The SCT transforms the points w(1,2),(3,4) =
±2

√
(1 ∓1 κ)/(1 ±1 κ) on the edge of the unit disk onto

the four vertices z(1,2),(3,4) = ±2(K ±1 iK ′) of the rectangle,

where K = K(k) and K ′ = K(
√

1 − k2) (the function K

again denotes the complete elliptic integral of the first kind).

Furthermore ±2 distinguishes between the two index groups

(1, 2) and (3, 4), whereas ±1 distinguishes between the indices

within one of these groups, for example, between 1 and 2 in

the first group. Note that the points w(1,2),(3,4) are the four

roots in the denominator of the integrand in Eq. (D1). The

corresponding points z(1,2),(3,4) can be obtained by evaluating

later on the solution of Eq. (D1), Eq. (D3), at w = w(1,2),(3,4).

The aspect ratio RA between the rectangle’s height and width

is given as a function of k by

RA(k) =
2K ′ (k)

2K (k)
=

K(
√

1 − k2)

K(k)
. (D2)

The integral in Eq. (D1) can be written with the coordinate

transformation ω =
√

1 − [(1 − w2)/(1 + w2)]2 as an elliptic

integral of the first kind as

z (w) =
∫ ω=

√

1−
(

1−w2

1+w2

)2

0

dω
√

1 − k2ω2
√

1 − ω2
.

Hence the SCT, and also after a short calculation its inverse,

is given by

z (w) = sn−1

⎛

⎝

√

1 −
(

1 − w2

1 + w2

)2

∣

∣

∣

∣

∣

∣

k

⎞

⎠ , (D3)

w (z) =

√

1 − cn (z| k)

1 + cn (z| k)
, (D4)

where Eq. (D3) for the inverse transformation w(z) is in

accordance with the result given in exer. 5 on p. 297 in

Ref. [22]. The transformed refractive index distribution is

given in z coordinates by the modulus of the derivative of

Eq. (D3) with respect to z as

n′ (z) =
∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

=
∣

∣

∣

∣

dn (z| k)

1 + cn (z| k)

∣

∣

∣

∣

. (D5)

Here cn and dn denote two other Jacobi elliptic functions,

which are related to sn (see, e.g., Ref. [31]).
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