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Designing Optimal Bandwidth Synthesis
Arrays for VLBI

P. W. Gorham1

An approach toward choosing optimal sets of frequency channels for band-
width synthesis in radio interferometry is presented and applied to 14-channel
2.2-/8.4-GHz (S-/X-band) very long baseline interferometry (VLBI) observations.
It is shown that arrays with nonredundant autocorrelations in general have a higher
ratio of the delay resolution function central maximum to the nearby side lobes than
do arrays with partially or fully redundant channel spacings.

Results from an algorithm that selects such arrays are presented, and delay res-
olution functions for a variety of channel sequences are documented. A proposed
near-optimal sequence for mode-A S-/X-band VLBI observations (which use both
upper and lower side bands as compared with the single-side-band mode-C obser-
vations) is presented and shown to give significantly improved side-lobe behavior as
compared with a commonly used mode-C sequence adapted to mode A.

I. Introduction

The measurement precision of group delay achieved in very long baseline interferometry (VLBI) ob-
servations depends strongly on the bandwidth of the observation. Thus, the widest possible bandpass
should be used. However, because of limitations in recording rate, it usually is necessary to synthesize
a large effective bandwidth from a set of much narrower frequency channels that are spread out across
the band. This technique is called bandwidth synthesis (BWS) and was first described in detail for VLBI
observations by Rogers [8].

In simplified terms, the relative delay between two antennas on an interferometer baseline is determined
by sampling the delay resolution function (DRF) of the two antenna signals as a function of time delay
until the central maximum is found above the noise. The delay precision will depend upon the width of this
delay function’s central maximum, and the confidence level of the detection of the maximum will depend
upon the degree to which the highest side lobe, or secondary maximum of the delay function, is confused
with the central peak. This in turn depends on the signal-to-noise ratio (SNR) of the observations.

Thus, the problem of optimizing the BWS array centers on getting the highest resolution with the
minimum side lobes. Actually, side lobes that are large, but far enough from the central maximum that
they can be rejected by other considerations (such as a priori knowledge of the delay), may be allowed.
It is only those side lobes that may be confused with the central maximum that are problematic.

1 Tracking Systems and Applications Section.
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In what follows, we describe the delay function and its relation to the autocorrelation of the bandwidth
synthesis channel array. This will provide an analytical framework to understand further the role that
redundant channel spacings play in influencing the characteristics of the delay function. After arguing
that nonredundant arrays are to be preferred for bandwidth synthesis, we show results of an algorithm
to construct such arrays and compare the arrays with other results. We conclude with an Appendix
summarizing analysis of some arrays recently used in geodetic VLBI observations by JPL and Goddard
Space Flight Center (GSFC).

II. Delay Function

This section will present analysis of the delay function in terms of the autocorrelation of the frequency
channel array. The purpose will be to argue that nonredundant filter-bank channel spacings are optimal
for achieving the best global signal-to-noise ratio in the amplitude of the DRF. Since the analysis is
somewhat detailed, readers who are willing to accept the premise that nonredundant configurations are
preferable may wish to skip to the next section, which describes the algorithm that was implemented.

The DRF γ(τ) is the Fourier transform of the spectral bandpass response (cf., [3]). Thus,

γ(τ) =
∫ F

0

G(ν)e−2πiντdν (1)

where F is the upper frequency limit and G(ν) is the normalized spectral density for frequency ν, which
is zero for ν > F . Here we have assumed that G(ν) is nonzero only for ν ≥ 0.

For an array of N square-bandpass filters centered at frequencies νj ,

G(ν) = b(ν)⊗
N∑
j=1

δ(ν − νj) (2)

where δ(ν) is the Dirac delta function, ⊗ indicates convolution, and b(ν) provides the shape of the single
channel bandpass, which, for a square bandpass of width ∆f , implies

b(ν) = 1, ν ≤ ±∆f
2
, b(ν) = 0 otherwise (3)

Making use of Eq. (1), and applying the Fourier convolution theorem, we find

γ(τ) = | sin c(∆fτ)| ×
N∑
j=1

e−2πiνjτ (4)

where the sin c function is defined as

sin c(x) ≡ sin(πx)
πx

(5)

Equation (4) shows that the delay function is a sum of complex phasors, with an overall envelope modu-
lated by Fourier transform of the individual filter channel bandpass shape.
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A. Autocorrelation of G (ν)

Although the phase of γ(τ) may be of interest for determining the effects of channel phase errors, we
consider only the amplitude here. Equation (4) may be used to determine |γ(τ)| directly; however, it is
instructive to estimate |γ(τ)| by determining first the autocorrelation function (ACF) A(f) of G(ν). The
amplitude spectrum can be determined from A(f), since the square of the amplitude spectrum and the
ACF are related as a Fourier transform pair. Thus,

|γ(τ)|2 =
∫ F

−F
A(f)e−2πifτdf (6)

where f is the frequency lag in the ACF A(f). The integration limits have now been extended to both
positive and negative values of the frequency lag f since A(f) is symmetric in f by definition:

A(f) =
∫ F

0

G(ν)G∗(ν − f)dν (7)

and

A(−f) = A(f) (8)

Substituting Eq. (2) into Eq. (7), we find

A(f) = Λ(∆f)⊗
N∑
i=1

N∑
j=1

δ(νi − νj − f) (9)

where Λ(∆f) is the ACF of the bandpass function b(ν), which is triangular with base width 2∆f for a
square bandpass of width ∆f .

Equation (9) shows that the ACF depends on the intervals νi− νj between filter-bank channels rather
than on the absolute value of the channel frequency. The functional form of A(f) can be determined by
inspection. At f = 0, the ACF value will equal the number of channels (assuming b(ν) is normalized to
unit amplitude) since they will all self-correlate. At any other frequency lag f , the magnitude of A(f)
will depend on how many pairs of channels satisfy νi − νj = f .

There are three cases here to consider: (1) the case when all channel spacings are equal, or the case of
complete redundancy; (2) the nonredundant case; and (3) the intermediate case of partial redundancy.

B. Complete Redundancy

In the completely redundant case, we have a uniform interval between adjacent frequency channels,
e.g.,

νi − νi−1 =
F

N − 1
(10)

where F is the total bandwidth over which the channels are spread and N is the number of channels.
The entire set of differences will be characterized by
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νi − νj =
kF

N − 1
, k = 0, · · · , N − 1 (11)

which means that all intervals will be multiples of the basic interval.

For this case, Eq. (9) gives

A(f) = Λ(∆f)⊗
[
Nδ(f) +

N−1∑
k=1

(N − k)
(
δ(

kF

N − 1
− f) + δ(

kF

N − 1
+ f)

)]
(12)

In this case, A(f) consists of a single central maximum at f = 0 with amplitude N and a symmetric
series of secondary peaks spaced at intervals of F/(N − 1), and amplitude that falls off linearly at larger
frequency intervals.

An example of this for 9 channels distributed evenly over a range of 73 possible frequency values is
shown in Fig. 1. Here the ACF is shown without the individual channel bandpass convolution; thus, each
entry in the plot indicates the number of times that interval occurs in the channel array.

Using Eq. (6) for the completely redundant case, evaluating the Fourier transform, and using Euler’s
relation, we have

Fig. 1.  The channel array for (a) the even spacing case and
(b) the corresponding autocorrelation function.
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|γ(τ)|2 = sin c2(∆fτ)

[
N + 2

N−1∑
k=1

(N − k) cos
(

2π
kF

N − 1
τ

)]
(13)

where sin c2(∆fτ) is the Fourier transform of the triangular channel ACF Λ(∆f) (cf., [3]), which provides
a modulated envelope to |γ(τ)|2. Thus, |γ(τ)|2 here consists of a sum of fringes, all with integer multiples
of one basic frequency, plus a constant term proportional to N , which arises from the k = 0 terms.

The central maximum of this function has an amplitude

|γ(0)|2 = N2 (14)

Since all of the fringes represented by this equation will have local maxima at integer multiples of τ =
(N − 1)/Fk, they will constructively interfere in the amplitude spectrum, with a central maximum of
this amplitude at τ0 = 0 and secondary maxima at intervals of

τm =
m(N − 1)

F
, m = 1, 2, · · · (15)

which will occur with an amplitude

|γ(τm)| = N sin c
(

∆f
m(N − 1)

F

)
(16)

Since the phase angles in the cosine terms are all multiples of 2π, the amplitude of these side lobes is
equal to that of the central lobe apart from the effect of the envelope of the individual channel bandpass
function. The first null of this envelope occurs at

τ =
1

∆f
(17)

Since the total bandpass F typically is much larger than the individual channel bandpass ∆f , the envelope
of the | sin c| modulation will only slowly reduce the amplitude of the side lobes for this completely
redundant case.

For example, if F = 370 MHz, ∆f = 4 MHz, and N = 9 channels, the first large side lobe near the
central maximum will occur at a delay of

τ1 =
8

370× 106
∼ 22 ns (18)

at an amplitude relative to the central maximum of

sin(π(4× 106)τ1)
π(4× 106)τ1

= 0.99 (19)

which shows that evenly spaced channels produce a delay function in which nearby side lobes are very
easily confused with the central maximum for typical values of the frequency parameters.
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Figure 2 shows an example of this effect, with a delay function calculated for 8210 to 8575 MHz
(X-band), using 9 equally spaced filter channels of 4-MHz bandpass. (Here the individual channel band-
pass function actually was an 8-pole Butterworth filter rather than a rectangular shape, so the secondary
maxima do not follow Eq. (19) exactly.) Figure 2(a) shows the overall envelope of modulation in the
delay function, due to the channel bandwidth, and Fig. 2(b) shows the region near the central maximum.
Clearly the usefulness of this type of array is low due to the problem of side-lobe confusion.
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Fig. 2.  The delay spectrum for (a) a filter channel array with even
spacing across the band (i.e., a completely redundant
autocorrelation) and the resulting side-lobe series in the delay
amplitude spectrum and (b) a different magnification on the same
spectrum.  The assumed total bandpass was 370 MHz, and the
individual channels were 4-MHz wide.  The effects of the global
sin c modulation are also evident in Fig. 2(a), with its first null
at   (4 MHz)−1 =   250 ns.

C. The Nonredundant and Partially Redundant Cases

In the nonredundant case, all of the spacings between individual spectral channels are unique, e.g.,
νi − νj = f is only satisfied for one pair of channels (i, j) for each f . The ACF thus consists of a central
peak and N(N − 1) secondary peaks of unit amplitude, half of which are the mirror images of the other
half. Thus, there are

M =
N(N − 1)

2
(20)

independent spacings. For this ACF, the square of the delay function from Eqs. (6) and (9) is
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|γ(τ)|2 = sin c2(∆fτ)
∫ F

−F

N∑
i=1

N∑
j=1

δ(νi − νj − f)e−2πifτdf (21)

The integral over the delta functions yields a term at each point where ±f = νi − νj . Thus,

|γ(τ)|2 = sin c2(∆fτ)
N∑
i=1

N∑
j=i

[
e−2πi(νi−νj)τ + e2πi(νi−νj)τ

]
(22)

which can be written (using Euler’s equation) as a sum of cosine fringes:

|γ(τ)|2 = sin c2(∆fτ)

N + 2
N−1∑
i=1

N∑
j>i

cos(2π(νi − νj)τ)

 (23)

The constant background term N comes from the self-correlation of each channel. The amplitude of the
central maximum again is

|γ(0)|2 = N2 (24)

as expected.

The important physical aspect of Eq. (23) is that it represents a sum of phasors, each of which has
unit amplitude and whose frequency is determined by the channel spacing νi − νj . If all of the spacings
are unique, then we are in the nonredundant regime; if any of the spacings are repeated, we are in the
partially redundant regime.

1. Peak-to-Side-Lobe Ratios for Nonredundant and Partially Redundant Arrays. In
Appendix A, we present analysis that gives an analytical estimate of the rms side-lobe value of |γ(τ)|2
with respect to the central maximum. The results are stated here:

σ2(|γ|2;K) = N2 −N + 4K (25)

where σ2(|γ|2;K) is the variance of the side lobes and the factor K expresses the level of redundancy
as the number of pairs of channels that have equal spacings (to within the resolution of the individual
channel width ∆f).

The peak-to-rms-side-lobe ratio (PSR) for the power spectrum then can be expressed as

PSR(N,K) =
|γ(0)|2 − 〈|γ(τ)|2〉√
N2 −N + 4K

=
N2 −N√

N2 −N + 4K
(26)

For the nonredundant case (K = 0), this reduces to
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PSR(N, 0) =
√
N2 −N (27)

It is evident from these results that the nonredundant case always will have the highest PSR in general,
and that the difference for moderate N can be significant, even for low levels of redundancy.

For detection of the central maximum at a high confidence level, the relevant quantity is not necessarily
the rms side-lobe level, but rather the maximum side lobe that may be confused with the central peak.
For low-to-moderate levels of redundancy, the resulting distribution of side lobes is known once the mean
and rms are known, since the variance is approximately equal to the mean. This corresponds to the
well-known case of a power spectrum of impulsive or Poisson events, as mentioned above. For this case,
the distribution function of side-lobe peak values is given by

P (Z ≥ µ) ∝ exp
(−Z

µ

)
(28)

where Z is the measured peak value of a given side lobe that exceeds the mean power spectrum value
(or variance) µ. This result strictly applies only to a stationary Poisson process but indicates that the
behavior of the maximum side lobe in a DRF will tend to correlate to the rms side-lobe level. Although
this does not prove that nonredundant arrays will yield maximum side lobes that are always lower than
those of any given partially redundant array, it suggests that restricting the choice to nonredundant arrays
generally will yield improved peak-to-side-lobe results.

Figure 3 plots an example of the behavior of the PSR as a function of increasing redundancy for a
9-channel array, for which there are 36 possible independent spacings. From the plot, it is evident that
the loss in PSR is steepest at low levels of partial redundancy.
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Fig. 3.  The normalized PSR in the DRF spec-
trum plotted as a function of the redundancy
parameter, K, which counts the number of
repeated channel pair spacings (a nine-
channel array assumed).
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2. Other Considerations: Delay Resolution. Given that the highest PSR in general will be
achieved for nonredundant configurations of channel spacings in a frequency channel array, there is one
other significant consideration in choosing among such arrays: the delay resolution, or precision with
which the delay can be measured once the central maximum of the delay resolution function has been
found. This precision is determined mainly by the width of the central maximum of the DRF, and this
width is a function of the particular configuration of the channel spacings and of the individual channel
width.

This article has focused primarily on achieving the best peak-to-side-lobe ratio in the DRF, but given
two nonredundant configurations with equal PSRs, the choice of configurations also must consider delay
precision, and the present analysis does not provide any insight into which nonredundant arrays will have
the best delay precision. In fact, under some circumstances, partial redundancy may be tolerable if the
loss in PSR is offset by an improvement in the delay precision. However, we do not attempt to analyze
such conditions here, since it requires a detailed consideration of the SNR of the observations that go into
producing the DRF as well as the PSR of the DRF itself.

A later section will describe an empirical method by which the width of the central peak of the DRF
was included in the choice of channel configurations, but an analytical framework for this is beyond the
scope of this article.

D. Example of a Nonredundant ACF and Its Delay Function

Figure 4(a) shows an example of a nonredundant set of frequency channels, again at X-band with
9 channels. The positive half of the ACF appears in Fig. 4(b), and the delay function for this is shown
in Fig. 5. Figure 5(a) gives a broad view of the delay amplitude spectrum, and Fig. 5(b) zooms in to the
neighborhood of the central maximum. Here we also have plotted, in dashed lines, the spectrum from
the completely redundant case (cf., Fig. 2) to show the difference near the central maximum. In the
immediate neighborhood of the peak, the completely redundant case gives much lower side lobes, but the
proximity of the large peaks in the redundant DRF produces a much reduced global PSR compared with
the redundant case. It also is worth noting that the delay precision of the nonredundant configuration is
about 30 percent better than that of the redundant case at the half maximum point.

III. Generating Nonredundant Arrays

Nonredundant configurations are of interest in other areas of interferometry, particularly aperture
synthesis. Golay has provided a tree-search algorithm for generating two-dimensional nonredundant
arrays that could be adapted to a one-dimensional case [4]. Moffet presents some aperture synthesis arrays
with low levels of redundancy that are of interest as partially redundant cases [7]. Recently, Kopilovich and
Sodin presented analysis of aperiodic antenna arrays for interferometry that utilize nonredundant spacing
of elements [6]. We have as yet found no comparable treatment of nonredundant arrays for bandwidth
synthesis in the literature, so the techniques proposed for the aperture synthesis cases represent the only
experience that we can draw on at present.

Methods exist for generating nonredundant configurations through the use of cyclic difference sets [1];
such techniques have been used in two dimensions to produce arrays for coded-aperture imaging [2,5].
In general, these methods are adaptable to generating bandwidth synthesis arrays when there are no
other constraints on channel spacings other than the nonredundancy requirement. However, it has not
yet been proven that cyclic difference set generators produce complete groups of such arrays. In the
present case, there are a number of practical constraints that led to adopting a more empirical approach
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Fig. 4.  An array example:  (a) a nonredundant set of channels
generated for X-band with 9 channels, 4-MHz wide, spanning a
370-MHz total synthesized band and (b) the positive side of the
autocorrelation of this array, with the single-channel convolution
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there are no overlapping intervals.
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to generation of the BWS arrays. For example, there are constraints that come from electronic noise in
the video downconverters, such as a requirement that the individual channel bandpass avoid multiples
of 5 MHz and other troublesome resonance frequencies within the system. For these reasons, we have
chosen simply to select the nonredundant arrays from numerically generated random patterns. These are
initially sifted by inspection of their ACFs for redundancy and application of the additional frequency–
noise constraints. This approach is inefficient but straightforward, using a computer, and allows many
thousands of possible arrays to be inspected for optimal characteristics, including arrays that might not be
generated using analytical approaches, if the set of such arrays is found to be mathematically incomplete.

A similar approach was used by Rogers [8] but without the additional constraint of nonredundancy,
which significantly narrows the search. As Moffet has noted, this trial-and-error approach is feasible at
present only for N ≤ 10, since the number of possible configurations grows factorially, and for N = 9,
M ∼ ε109 where ε ≤ 10−2 is the ratio of the number of nonredundant configurations to the total, which is
a strong function of N [7]. To generate optimal arrays with much larger numbers will require a refinement
of the algorithm, perhaps through use of generators of cyclic difference sets as noted above.
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A. Algorithm

Our approach to finding and characterizing optimal filter-bank arrays was as follows:

(1) Generate a frequency channel pattern by randomly distributing the channels across the
aperture. Two channels are initially fixed at the edges of the band to ensure high central-
lobe resolution; this fixes the maximum bandwidth, F , that is synthesized.

(2) Calculate all intervals between channels to determine the ACF. Reject any array pattern
that has redundant spacings. Reject any patterns that do not satisfy the constraints on
frequency multiples as noted above.

(3) Estimate the delay spectrum for the nonredundant array pattern using a discrete Fourier
transform over a suitable window (cf., within the initial few lobes of the envelope of the
channel bandpass sin c function) near the central maximum. Normalize the spectrum to
the central maximum.

(4) Determine the highest side lobe, Smax, in the window.

(5) Determine the full width at half maximum (FWHM), W , of the central lobe to estimate
the delay resolution.
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(6) Form a figure of merit, Φ, which is defined as

Φ = Smax ×W z (29)

where z is chosen to weight the resolution requirement to the desired degree over the
minimum side-lobe requirement.

(7) The sequence above is repeated for a large number of trials, and the array with the
smallest value of Φ is selected.

B. Testing

The code that performed the spectrum estimation was checked by reproducing Rogers’ spectrum
for a 6-channel array that he recommended for bandwidth synthesis over a 7.47-MHz bandpass with
60-kHz channels [8]. Then, to ensure that the algorithm could find comparable or improved arrays, these
parameters were used in the search algorithm, and an array was chosen after 1000 trials (requiring about
2 min on a Sparc Ultra-2), using a FWHM weighting of z = 0.5, with somewhat improved characteristics
over Rogers’ array. The array generated is the sequence (0, 9, 14, 71, 101, 123) × 60 kHz, which may be
compared to Rogers’ original array of (0, 1, 3, 7, 15, 31) ×240 KHz.

A comparison of the spectra appears in Fig. 6. Figure 6(a) shows the same range as shown in [8], with
Rogers’ delay function in dashed lines. The side lobes are comparable in both spectra. Figure 6(b) shows
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the region near the central maximum, where the array function generated in the present work can be
seen to have approximately 15 percent better delay resolution, measured at 80 percent of the maximum.
This is due primarily to the resolution weight provided by the figure of merit in the algorithm. Rogers’
approach did not emphasize delay resolution as compared with side-lobe performance.

IV. Results

One of the goals of this effort was to produce an algorithm for generating BWS arrays for the
14-channel system for VLBI observations, using both the upper and lower side bands (this is known
as a mode-A observation), which increases the channel bandwidth from 2 to 4 MHz. This improves the
measurement SNR significantly. However, the increase from 2 to 4 MHz in channel bandwidth introduces
problems for existing arrays, because the issues of channel spacing redundancy become more critical for
wider channels, as also do the related issues of avoiding resonance frequencies and similar concerns. Thus,
simply using channel arrays designed for 2-MHz channels without consideration of DRF PSR resulting
from the channel array likely will lead to suboptimal improvement in the final result.

For the following, we have assumed that nine channels are used in X-band (8.4 GHz) and five in S-band
(2.2 GHz). The bandwidth at X-band is restricted to ∆F = 370 MHz because of edge effects on the band.
Channels are 4-MHz wide but are spaced in 5-MHz windows to avoid interference with local oscillators,
and the center frequencies are offset slightly to give the best arrangement of calibration tones within the
0.5-MHz subbands of each channel.

In Appendix B, we document the delay resolution functions (DRFs) for some existing BWS arrays in
recent use in 14-channel VLBI at S-/X-band. Appendix B also looks at the issue of channel dropouts and
the effect they have on the DRF.

A. X-band (8.2 to 8.6 GHz)

We present here one example of a near-optimal array generated for X-band. The array has a DRF
with improved side lobes as compared with a reference delay function obtained from a BWS array used
for 1990 VLBI observations at 2 MHz. Many other comparable arrays can be obtained for various forms
of the figure of merit Φ above, but this one is representative of the best of them. Improved delay precision
also can be obtained, but never (for the X-band constraints imposed) more than about 5 percent in the
runs performed to date, and at the expense of a typically 50 percent higher side-lobe amplitude.

Figures 7(a) and 7(b) show the array pattern and ACF obtained from the sequence:

fi = (8212 + νi × 5) MHz (30)

νi = (0, 2, 6, 26, 41, 54, 63, 70, 73) (31)

which gives center frequencies as shown in Table 1. In Table 1, only the upper side band was used for
the reference mode-C sequences, so the channel starts at the tabulated frequency and extends 2-MHz
above it. For the new sequences, intended to be mode-A (upper and lower side bands), the channel is
centered on the tabulated frequency, with a 4-MHz total width. The offsets from the nominal 8200- and
8600-MHz edges of X-band are to avoid edge effects of the video converters. The shift of 3 MHz in the
center frequencies as compared with the reference array is due to the need to offset the upper and lower
side bands from multiples of 5 MHz to avoid resonant interference from the local clocks. This array was
chosen for its low side lobes near the main peak combined with its good resolution characteristics.
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Figures 7(c) and 7(d) show the reference array and its ACF, which arise from the sequences:

fref = (8215 + νref × 5) MHz (32)

νref = (0, 2, 6, 15, 44, 63, 69, 72, 73) (33)

which also are expressed in channel frequencies in Table 1.

Figure 8 shows the delay functions for these two array patterns, with the reference delay function in
dotted lines, estimated by directly transferring the 2-MHz array sequence to one with 4-MHz mode-A
channels. The plots show that, near the central maximum, the reference spectrum has approximately
40 percent higher side lobes than the spectrum generated from the array in Eq. (30).

The measured average PSR of the newly generated spectrum is 7.10 within the region shown, whereas
the reference spectrum has a PSR of 5.68, a reduction of approximately 20 percent. This is consistent
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Fig. 7.  Two X-band cases:  (a) the filter-bank pattern for a near-optimal array generated from Eqs. (30) and (31),
(b) the ACF for the same near-optimal pattern, (c) the filter-bank pattern from a reference array used in previous
observations and adapted to the mode-A channel size of 4 MHz rather than its original 2 MHz, and (d) the ACF of
the reference pattern.  The ACFs show that the reference pattern has some redundancy (K = 8), which generates
the higher side lobes, but gains higher density near the edges of the band and, thus, slightly higher resolution.
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Table 1. Channel frequency values for new mode-A sequences,
and reference sequences (mode-C) for comparison, with the center
frequency given for each channel.

Reference New Reference New
Channel X-band, X-band, S-band, S-band,

MHz MHz MHz MHz

1 8215.76 8212.23 2200.24 2202.24

2 8225.24 8222.24 2206.26 2207.26

3 8245.23 8242.26 2232.74 2232.74

4 8300.24 8342.24 2280.23 2282.23

5 8437.76 8417.24 2297.76 2297.76

6 8530.24 8482.24 — —

7 8562.24 8527.24 — —

8 8576.26 8562.26 — —

9 8580.77 8577.77 — —
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Fig. 8.  The DRFs for (a) the X-band patterns shown in Fig. 7 and
(b) the region near the central maximum.

−10 0

(b)

0.2

0.0

A
M

P
LI

T
U

D
E

0.4

0.6

0.8

1.0

DELAY, ns

−100 0 100

(a)

DELAY, ns

10

Fig. 7
REFERENCE

with expectations from the previous section, which discussed the PSR (cf., Fig. 3). For the reference
array, the redundancy parameter, K = 8, and the corresponding expected decrease in average PSR (for
the power spectrum) is approximately 18 percent. This suggests a direct correspondence of PSR from
power spectral density to the absolute value of the amplitude spectrum, although the effects of the sin c
function also must be considered here.

The slightly higher resolution of the reference spectrum comes from the higher density of channels near
the edges of the bandpass; however, this comes at the expense of a higher local level of side lobes near
the central maximum. This is expected, since the Fourier transform relationship between the channel
frequency and fringe delay regimes here ensures that the largest channel spacings (highest spectral sep-
aration) will have the largest effect on the smallest delay regime, that region near the central maximum
at zero delay.

B. S-Band (2.2 to 2.3 GHz])

Since, for the typical configurations for VLBI observing, the S-band filter bank uses only 5 to 6 channels,
and two of these are fixed at the band edges, this algorithm does not add much additional information.
Almost any choice of patterns is nonredundant, and the inner three channels typically must be placed
away from the edges to avoid large side-lobe problems. Since S-band observations typically are used only
for ionosphere charged-particle calibration, the quality of the S-band BWS array is much less critical to
the group delay estimation as compared with X-band (8.2 to 8.6 GHz).

A reference S-band sequence in recent use for geodetic and astrometric VLBI observations and an
adapted version that accommodates the larger 4-MHz channel bandwidth for mode-A observations are
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included in Table 1. The reference spectrum in this case was already nonredundant, and Fig. 9 shows a
comparison between the channel bandpass effects, in contrast to the previous figure, where both spectra
were evaluated for mode-A (4-MHz) channels. Thus, the dotted lines show the reference spectrum with
2-MHz channels, and the solid line the adapted spectrum (with frequencies that can be seen in Table 1
to be only slightly changed, primarily to adapt to the larger channels). It is evident that increasing the
channel bandwidth results in significant improvement in the peak-to-side-lobe ratio of the DRF, and this
applies equally to any type of array that is used. Appendix B also presents some additional analysis of
the S-band array characteristics.
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Fig. 9.  The DRFs for (a) the S-band arrays in Table 1 and (b) the
region near the central maximum.  The spectrum was generated
using the mode-C individual channel bandwidth of 2 MHz to
show the change in the spectrum due to the change in channel
bandwidth.  The solid line shows the slightly modified five-
channel array adapted for mode-A observations.  Here it is the
sin c modulation of the channel bandpass that affects the local
PSR rather than the choice of channels since the reference array
already is nonredundant.
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V. Conclusions

Significant improvement can be made in the choice of filter-bank channels for bandwidth synthesis if
the array chosen also has a nonredundant autocorrelation. Combining this with methods to search for
those configurations that have the highest possible resolution has yielded some improved filter-bank array
patterns that can be used with 4-MHz-wide channels at X-band. The method easily is adapted to other
configurations and could be used to design channel arrays for larger channel bandwidths as they become
technically feasible.
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Appendix A

Signal-to-Noise Ratios for Nonredundant

and Partially Redundant Cases

Equation (23) may be used to construct an estimate of the variance of the square of the DRF, |γ(τ)|.
The variance is determined from the standard estimator:

σ2(|γ|2) = 〈|γ(τ)|4〉 − (〈|γ(τ)|2〉)2

=

∫ τ1
0
|γ(τ)|4dτ∫ τ1
0
dτ

−
(∫ τ1

0
|γ(τ)|2dτ∫ τ1
0
dτ

)2

= ∆f
∫ τ1

0

|γ(τ)|4dτ −∆f2

(∫ τ1

0

|γ(τ)|2dτ
)2

(A-1)

where τ1 = 1/(∆f).

Since the amplitude of the central maximum is fixed, the precision of the measurement of the delay
from the DRF will depend only on σ2(|γ|2). In this Appendix, we will show that this function is at a
minimum for the nonredundant case, and, therefore, the resulting peak-to-side-lobe ratio for the DRF
is maximized. Although this will be demonstrated only for the average side-lobe level of the DRF, it
suggests that the peak-to-maximum-side-lobe level also will be maximized in general.
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For clarity, we have chosen here to estimate the variance of the power spectral density, |γ(τ)|2, rather
than the amplitude, |γ(τ)|, since the integration over the square-root term again adds complexity without
changing the result. (The power spectrum also is positive definite for all τ , whereas the amplitude
spectrum must be defined using an absolute value function if negative values are to be avoided; this
function is not continuously differentiable.)

To evaluate the integrals in Eq. (A-1), we have restricted the intervals to 0 ≤ τ ≤ 1/(∆f). This
interval is of interest since it represents the positive half of the region of the DRF within the first null of
the sin c function due to the individual channel bandpass, and a priori knowledge almost always constrains
the true delay to fall within this range of the DRF. Using only the positive limit is acceptable since the
DRF is symmetric around τ = 0. For clarity, we also will ignore the effect of the channel bandpass
function on the variance σ2(|γ|2). Although the variance is reduced by the sin c function away from the
central maximum (and in fact vanishes at the first null), its modulation is the same for any set of channel
spacings, whether redundant or not, and thus adds complexity without changing the result.

Consider the second term on the right-hand side of Eq. (A-1), which is the square of the mean value
of the power spectrum |γ(τ)|2:

(〈|γ(τ)|2〉)2 = ∆f2

[∫ τ1

0

|γ(τ)|2dτ
]2

= ∆f2

∫ τ1

0

N + 2
N−1∑
i=1

N∑
j>i

cos(2π(νi − νj)τ)

 dτ

2

= ∆f2

 N

∆f
+ 2

N−1∑
i=1

N∑
j>i

1
2π(νi − νj)

sin
(

2π(νi − νj)
∆f

)2

(A-2)

where we have interchanged the order of integration and summation and evaluated the resulting integral
term by term.

Now we assume that

νi − νj = mij∆f (A-3)

where the mij are all integers. This means that all channel spacings can be expressed as multiples of the
individual channel bandpass. This requirement nominally is always satisfied for ∆f << F , which is true
by assumption here, and implies no significant restriction to typical channel array design. Given this, the
sine terms in Eq. (A-2) all vanish, since the arguments are multiples of 2π. The result is

(〈|γ(τ)|2〉)2 = N2 (A-4)

This result is well known, since it also is obtained when one considers the mean of a power spectrum of
a Poisson impulsive process of N events, which is analogous to the case of N narrow-frequency channels
randomly arranged that we have considered here.

Now consider the mean of the second moment of the power spectrum [the first term in Eq. (A-1)]:
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〈|γ(τ)|4〉 = ∆f
∫ τ1

0

|γ(τ)|4dτ

= ∆f
∫ τ1

0

N + 2
N−1∑
i=1

N∑
j>i

cos(2π(νi − νj)τ)

2

dτ

= N2 + 4N∆f
∫ τ1

0

N−1∑
i=1

N∑
j>i

cos(2π(νi − νj)τ)dτ

+ 4∆f
∫ τ1

0

N−1∑
i=1

N∑
j>i

cos(2π(νi − νj)τ)

2

dτ

= N2 + 4N∆f
N−1∑
i=1

N∑
j>i

1
2π(νi − νj)

sin
(

2π(νi − νj)
∆f

)

+ 4∆f
∫ τ1

0

N−1∑
i=1

N∑
j>i

cos(2π(νi − νj)τ)

2

dτ (A-5)

If we now make the same assumption as above, that all channel spacings are integer multiples of the
channel width, the double sum involving only sine terms [the second of three terms in Eq. (A-5)] again
vanishes, and only the integral over the square of the sum of cosine terms (the third term) remains to
be evaluated. To do this, first convert the double sum to a single sum over M = N(N − 1)/2 terms,
cf., Eq. (20), each of which represents a single possible channel spacing, eg.,

∆νp = νi − νj , p = 1, 2, · · · ,M (A-6)

Then we can rewrite the integrand of the third term in Eq. (A-5) as

(
M∑
p=1

cos(2π∆νpτ)

)2

=
M∑
p=1

cos2(2π∆νpτ)

+
M−1∑
p=1

M∑
q>p

2 cos(2π∆νpτ) cos(2π∆νqτ) (A-7)

for which there are M terms involving cos2 and M(M − 1)/2 terms involving the cross-product of the
cosines of differing arguments.

Evaluating this term by term [and multiplying through the scale factor 4∆f in Eq. (A-5)], we have
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4∆f
M∑
p=1

∫ τ1

0

cos2(2π∆νpτ)dτ = 4∆f
M∑
p=1

[
1

2∆f
+

1
8πνp

sin
(

4πνp
∆f

)]

= 2M +
M∑
p=1

[
∆f
2πνp

sin
(

4πνp
∆f

)]
(A-8)

The second set of terms in Eq. (A-7), involving the double sums over cross-products of cosine terms,
can be evaluated in similar fashion (again including the scale factor):

4∆f
M−1∑
p=1

M∑
q>p

∫ τ1

0

2 cos(2π∆νpτ) cos(2π∆νqτ)dτ =

4∆f
M−1∑
p=1

M∑
q>p

 sin
(

2π(∆νp−∆νq)
∆f

)
(∆νp −∆νq)

+
sin
(

2π(∆νp+∆νq)
∆f

)
(∆νp + ∆νq)

 , ∆ν2
p 6= ∆ν2

q (A-9)

where the restriction is imposed to avoid the singularity in the first sine term in the double sum. In fact,
the restriction is not necessary for a purely nonredundant set of channel spacings, since by assumption it
is satisfied.

However, suppose there are K such redundant pairs of channel spacings such that ∆ν2
r = ∆ν2

s for
some set {r, s}. For each of these K terms, the integrand can be rewritten:

2 cos(2π∆νrτ) cos(2π∆νsτ) = 2 cos2(2π∆νrτ) (A-10)

which thus reduces the double sum to only a single sum over r of these K terms. Thus, Eq. (A-9) becomes

4∆f
M−1∑
p=1

M∑
q>p

∫ τ1

0

2 cos(2π∆νpτ) cos(2π∆νqτ)dτ = 4K +
K∑
p=1

[
∆f
2πνp

sin
(

4πνp
∆f

)]
+

4∆f
M−1∑
p=1

M∑
q>p

 sin
(

2π(∆νp−∆νq)
∆f

)
(∆νp −∆νq)

+
sin
(

2π(∆νp+∆νq)
∆f

)
(∆νp + ∆νq)

 , ∆ν2
p 6= ∆ν2

q (A-11)

Once again we apply the requirement that the channel spacings be integral multiples of the channel
width, eg, ∆νp = mp∆f . Then, as before, all of the sine terms in these equations vanish. What remains
can be collected from Eqs. (29), (30), (33), and (36) to yield

σ2(|γ|2)(K) = N2 + 2M + 4K −N2

= N2 +N(N − 1) + 4K −N2

= N2 −N + 4K (A-12)
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where the factor K expresses the level of redundancy as the number of pairs of channels that have equal
spacings (to within the resolution of ∆f). The peak-to-rms-side-lobe ratio (PSR) for the power spectrum
then can be expressed as

PSR(N,K) =
|γ(0)|2 − 〈|γ(τ)|2〉√
N2 −N + 4K

=
N2 −N√

N2 −N + 4K
(A-13)

For the nonredundant case (K = 0), this reduces to

PSR(N, 0) =
√
N2 −N (A-14)

Appendix B

Delay Resolution Functions of BWS Arrays

Used in Recent VLBI Observations

This appendix documents a number of S-/X-band BWS arrays used in recent geodetic VLBI obser-
vations. These arrays were used in mode-C observations, when the individual channel bandpass is the
2-MHz upper side band relative to the center frequency. In Table B-1, the channel frequency values
(lower end of the 2-MHz channel) are noted for the sequence commonly used for geodetic observations
at JPL and GSFC. Note that JPL commonly uses a 5/9 S-/X-band configuration, whereas GSFC uses a
6/8 configuration.

Table B-1. Bandwidth synthesis arrays used in recent mode-C VLBI
observations by JPL or GSFC.

JPL GSFC JPL GSFC
Channel X-band, X-band, S-band, S-band,

MHz MHz MHz MHz

1 8215.76 8210.49 2200.24 2217.49

2 8225.24 8220.49 2206.26 2222.49

3 8245.23 8250.49 2232.74 2237.49

4 8300.24 8310.49 2280.23 2267.49

5 8437.76 8420.49 2297.76 2292.49

6 8530.24 8500.49 — 2302.49

7 8562.24 8550.49 — —

8 8576.26 8570.49 — —

9 8580.77 — — —
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I. Sequence Design Philosophy

The philosophy of the sequences also is somewhat different: the JPL sequences have been designed
toward achieving the highest possible resolution, with only moderate concern for main-lobe SNR, since
the ambiguities almost always are resolvable, even if the side-lobe level is approximately 60 percent or so.
Because X-band provides a larger bandpass and usually better SNR in geodetic observations than does
S-band, the channel division is weighted toward X-band (nine channels versus five).

The GSFC philosophy has emphasized a sequence with more even spacings, which produces a very
high side lobe (approximately 90 percent or more) at a position with a fixed delay, ±100 ns. This delay
ambiguity is resolved easily by external considerations for normal data sets. The central lobe delay
resolution is not emphasized as much. The channel division also is more even (8/6), which provides a
greater level of immunity to channel dropouts at S-band, but less strength in the X-band delay resolution.

II. Delay Resolution Functions for the Sequences

A. S-Band

Figure B-1 shows the S-band DRF for the standard JPL sequence, which uses only five channels. The
maximum side lobe is at about 65 percent of the main lobe. In Fig. B-2, the DRF is shown for the case
when one channel has dropped out, leading to a maximum side lobe that is much higher (80 percent) and
very near the main lobe. It is evident that channel dropouts from the JPL S-band sequence easily could
lead to misidentified solutions in S-band.
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Fig. B-1.  The DRF for (a) the S-band JPL nominal mode-C
sequence and (b) the region near the central maximum.
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Fig. B-2.  The DRF for (a) the S-band nominal JPL sequence with
one of the central channels missing in order to look at the degra-
dation of the DRF and (b) the region near the central maximum.
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Figures B-3 and B-4 show the same pair of plots for the GSFC sequence: first the nominal sequence
DRF, and then the DRF with one of the central channels missing. It is evident that the GSFC S-band
sequence has superior SNR as compared with the JPL sequence, but this is due in part to the fact that
six channels are used instead of five. The loss of a channel is also much less of a problem for the GSFC
sequence at S-band.

Figure B-5 shows a comparison of the time resolution of the JPL and GSFC delay resolution functions.
The JPL DRF has approximately 20 percent better resolution (at 90 percent of the maximum), in spite
of the fact that one less channel is used. This is due mainly to the fact that the JPL sequence tends to
put the channels near the band edges, while the GSFC sequence uses a more even channel spacing.

B. X-Band

Figures B-6 through B-10 show the same series of plots for the X-band sequences. Again, in each case
the DRF of the sequence is shown both for the nominal sequence and for the case of one of the central
channels missing. Here the GSFC sequence again is seen to have a higher immunity to channel dropouts
(at least near the central channels) than does the JPL sequence, even though it utilizes one less channel
to begin with.

The series of DRF plots concludes with a comparison of the time resolution, where the JPL sequence
shows approximately 10 percent better resolution (at 90 percent of the maximum) for the same reason
as in the S-band case: more emphasis on placing channels near the band edges. Thus, in summary, the
two sequences show distinct advantages or disadvantages depending upon the data quality. For data that
are robust with respect to channel dropouts, and of high SNR, the JPL sequence probably is better in all
respects, but for data with dropout problems, the JPL sequence runs a risk of higher levels of ambiguity,
and the GSFC sequences are more robust at the expense of delay resolution in the central lobe.
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Fig. B-3. The DRF for (a) the S-band nominal GSFC sequence and
(b) the region near the central maximum.  (Similar to Fig. B-1.)
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Fig. B-4.  The DRF for (a) the S-band nominal GSFC sequence
with one of the central channels missing and (b) the region near
the central maximum.  (Similar to Fig. B-2.)
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Fig. B-5.  Comparison of time resolution for
the JPL and GSFC nominal sequences for
mode-C operation at S-band.
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Fig. B-6.  The DRF for (a) the X-band JPL nominal mode-C
sequence and (b) the region near the central maximum.  (Similar
to Fig. B-1.)
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Fig. B-7.  The DRF for (a) the X-band nominal JPL sequence with
one of the central channels missing and (b) the region near the
central maximum.  (Similar to Fig. B-2.)
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Fig. B-8.  The DRF for (a) the X-band nominal GSFC sequence
and (b) the region near the central maximum. (Similar to Fig. B-3.)
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Fig. B-9.  The DRF for (a) the X-band nominal GSFC sequence
with one of the central channels missing and (b) the region near
the central maximum.  (Similar to Fig. B-4.)
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Fig. B-10.  Comparison of time resolution for
the JPL and GSFC nominal sequences for
mode-C operation at X-band.
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