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Abstract—We consider the problem of designing an optimal quantum de-
tector to minimize the probability of a detection error when distinguishing
among a collection of quantum states, represented by a set of density oper-
ators. We show that the design of the optimal detector can be formulated as
a semidefinite programming problem. Based on this formulation, we derive
a set of necessary and sufficient conditions for an optimal quantum mea-
surement. We then show that the optimal measurement can be found by
solving a standard (convex) semidefinite program. By exploiting the many
well-known algorithms for solving semidefinite programs, which are guar-
anteed to converge to the global optimum, the optimal measurement can be
computed very efficiently in polynomial time within any desired accuracy.
Using the semidefinite programming formulation, we also show that the
rank of each optimal measurement operator is no larger than the rank of
the corresponding density operator. In particular, if the quantum state en-
semble is a pure-state ensemble consisting of (not necessarily independent)
rank-one density operators, then we show that the optimal measurement is
a pure-state measurement consisting of rank-one measurement operators.

Index Terms—Duality, quantum detection, semidefinite programming.

I. INTRODUCTION

In a quantum detection problem, a transmitter conveys classical in-
formation to a receiver using a quantum-mechanical channel. Each
message is represented by preparing the quantum channel in a quantum
state represented by a density operator, drawn from a collection of
known states. At the receiver, the information is detected by subjecting
the channel to a quantum measurement in order to determine the pre-
pared state. If the quantum states are mutually orthogonal, then the
state can be determined correctly with probability one by performing
an optimal orthogonal (von Neumann) measurement [1]. However, if
the given states are not orthogonal, then no measurement will distin-
guish perfectly between them. Our problem is, therefore, to construct
a measurement that minimizes the probability of a detection error.

We consider a quantum state ensemble consisting ofm density op-
eratorsf�i; 1 � i � mg on ann-dimensional complex Hilbert space
H, with prior probabilitiesfpi > 0; 1 � i � mg. A density operator
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� is a positive semidefinite (PSD) Hermitian operator withTr(�) = 1;
we write� � 0 to indicate� is PSD. A pure-state ensemble is one in
which each density operator�i is a rank-one projectorj�iih�ij, where
the vectorsj�ii, though evidently normalized to unit length, are not
necessarily orthogonal.

For ourmeasurement, we consider general positive operator-valued
measures [2], [3], consisting ofm PSD Hermitian operatorsf�i; 1 �
i � mg that form a resolution of the identity onH. A pure-state mea-
surement is one in which each measurement operator�i is a rank-one
operator1 j�iih�ij, where the vectorsj�ii are not necessarily orthog-
onal or normalized. An orthogonal measurement (i.e., a von Neumann
measurement) is one in which the measurement operators�i are mu-
tually orthogonal projection operators.

Necessary and sufficient conditions for an optimum measurement
minimizing the probability of a detection error have been derived [4],
[5]. However, except in some particular cases [2], [6]–[10], obtaining a
closed-form analytical expression for the optimal measurement directly
from these conditions is a difficult and unsolved problem. Thus, in prac-
tice, iterative procedures [11] orad hocsuboptimal measurements are
used. A detection measurement that has many desirable properties and
has been employed in many settings is the least-squares measurement
[9], also known as the square-root measurement [12], [13].

Holevo [4] derives the necessary and sufficient conditions by consid-
ering infinitesimal transformations of the measurement operators�i

that preserve their character as elements of a measurement. The draw-
back of this approach is that it does not readily lend itself to efficient
computational algorithms. Yuenet al. [5] use the principle of duality
in vector space optimization to derive the same necessary and suffi-
cient conditions. Specifically, they show that the problem of finding the
measurement that minimizes the probability of a detection error can be
formulated as a generalized linear programming problem, with the pos-
itive orthant being replaced by the positive cone of PSD matrices. Al-
though their approach leads to the same conditions derived by Holevo
[4], their apparent suggestion that this formulation produces a standard
finite-dimensional linear programming problem is not correct, because
the cone of PSD matrices cannot be described by a finite set of linear
inequalities.

In this correspondence, we derive the necessary and sufficient
conditions for an optimal quantum measurement in a self-contained
manner, again by exploiting duality arguments. The primary advantage
of our formulation is that it readily lends itself to efficient computa-
tional methods. Specifically, we show that the optimal measurement
can be found by solving a standard convex semidefinite program. By
exploiting the many well-known algorithms for solving semidefinite
programs [14]–[17], the optimal measurement can be computed very
efficiently in polynomial time within any desired accuracy. Further-
more, in contrast to the iterative algorithm proposed by Helstrom [11]
for solving the quantum detection problem, which is only guaranteed
to converge to a local optimum, algorithms based on semidefinite
programming are guaranteed to converge to the global optimum.

After a statement of the problem in Section II, we derive, in Sec-
tion III, the necessary and sufficient conditions for the optimal mea-
surement that minimizes the probability of a detection error, by for-

1In this correspondence, when we say rank-one operator we mean an operator
that can be expressed in the form� = j� ih� j for somej� i 2 H. Note,
however, thatj� i may be equal to0 in which case the operator actually has
rank zero.
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mulating our problem as a semidefinite program. Using this formu-
lation, in Section IV, we prove that if the quantum state ensemble is
a pure-state ensemble consisting of rank-one density operators�i =
j�iih�ij, then the optimal measurement is a pure-state measurement
consisting of rank-one measurement operators�i = j�iih�ij. This
generalizes a previous result by Kennedy [18], which establishes that
for linearly independentvectorsj�ii the optimal measurement is a
(necessarily orthogonal) pure-state measurement. We also show that
for a mixed quantum state ensemble, the rank of each optimal measure-
ment operator�i is no larger than the rank of the corresponding density
matrix �i. In Section V, we consider efficient iterative algorithms that
are guaranteed to converge to the globally optimum measurement.

Throughout the correspondence, we use the Dirac bra-ket notation
of quantum mechanics. In this notation, the elements ofH are “ket”
vectors, denoted, e.g., byjxi 2 H. The corresponding “bra” vectorhxj
is the conjugate transpose ofjxi. The inner product of two vectors is
a complex number denoted byhxjyi. An outer product of two vectors
such asjxihyj is a rank-one matrix, which takesjzi 2 H to hyjzijxi 2
H.

II. OPTIMAL DETECTION OFQUANTUM STATES

Assume that a quantum channel is prepared in a quantum state drawn
from a collection of given states. The quantum states are represented
by a set ofm PSD Hermitian density operatorsf�i; 1 � i � mg on
an n-dimensional complex Hilbert spaceH. At the receiver, a mea-
surement is constructed, comprisingm PSD Hermitian measurement
operatorsf�i; 1 � i � mg onH. The problem is to choose the mea-
surement operators to minimize the probability of detection error, i.e.,
the probability of incorrect detection of the transmitted state.

We assume without loss of generality that the eigenvectors of the
density operatorsf�i; 1 � i � mg span2 H. In this case, to constitute
a measurement, the measurement operators�i must satisfy

m

i=1

�i = I (1)

whereI is the identity operator onH.
We seek the PSD measurement operatorsf�i; 1 � i � mg satis-

fying (1) that minimize the probability of a detection error, or equiv-
alently, maximize the probability of correct detection. Given that the
transmitted state is�j , the probability of correctly detecting the state
using measurement operatorsf�i; 1 � i � mg isTr(�j�j). There-
fore, the probability of correct detection is given by

Pd =

m

i=1

piTr(�i�i) (2)

wherepi > 0 is the prior probability of�i, with
i
pi = 1. Denoting

by B the set of Hermitian operators onH and defining�0i = pi�i, our
problem reduces to the maximization problem

max
� 2B

m

i=1

Tr(�0i�i) (3)

subject to the constraints

�i � 0; 1 � i � m (4)
m

i=1

�i = I: (5)

2Otherwise, we can transform the problem to a problem equivalent to the one
considered in this correspondence by reformulating the problem on the subspace
spanned by the eigenvectors off� ; 1 � i � mg.

Denoting by� the set of all ordered sets� = f�ig
m
i=1; �i 2 B,

satisfying (4) and (5), and definingJ(�) = m

i=1
Tr(�0i�i), we can

express our maximization problem as

max
�2�

J(�): (6)

We refer to� as the feasible set, and to any� 2 � as a feasible point.
Since� is a compact set andJ(�) is a continuous linear functional,
there exist an optimal̂� 2 � and an optimal valuêJ defined by

Ĵ = J(�̂) � J(�); 8� 2 �: (7)

Equipped with the standard operations of addition and multiplica-
tion by real numbers,B is ann2-dimensionalreal vector space. By
choosing an appropriate basis forB, the problem of (3)–(5) can be put
in the form of a standard semidefinite programming problem, which
is a convex optimization problem; for a detailed treatment of semidefi-
nite programming problems see, e.g., [15]–[17], [14]. By exploiting the
many well-known algorithms for solving semidefinite programs [14],
e.g., interior point methods3 [17], [15], the optimal measurement can
be computed very efficiently in polynomial time.

Recently, methods based on semidefinite programming have been
employed in a variety of different problems in quantum detection and
quantum information [19]–[24]. The fact that the optimal quantum de-
tector can be found by solving a semidefinite program was pointed out
independently in [19]. Here we provide a more general development.
In particular, rather than relying on results that are scattered throughout
the literature in various forms, in what follows we present a self-con-
tained and direct derivation of the necessary and sufficient conditions
for the optimal measurement. As we will see, this derivation also leads
to efficient methods for computing the optimal measurement in cases
in which an analytical solution is not known.

In the next section, we derive the necessary and sufficient conditions
on the measurement operators by formulating adual problem. The dual
problem will also be used in Section V to develop efficient computa-
tional algorithms.

III. D UAL PROBLEM FORMULATION

Our objective is to formulate adual problemwhose optimal value
serves as a certificate for̂J . Specifically, we will formulate a mini-
mization problem of the formminX T (X) for some linear functional
T such that for all feasible values ofX 2 B, i.e., values ofX 2 B

that satisfy a certain set of constraints, and for any� 2 �, we shall
haveT (X) � J(�). The dual problem, therefore, provides an upper
bound on the optimal value of the original (primal) problem. In addi-
tion, we would like the minimal value ofT , denoted̂T , to be equal tôJ .
The equalityĴ = T̂ will then lead to conditions of optimality on the
measurement operators. Furthermore, in this case, instead of solving
the primal problem, we can find̂J and the optimal measurement by
solving the dual problem, which turns out to have far fewer decision
variables.

A. Constructing the Dual Problem

A general method for deriving a dual problem is to invoke the sepa-
rating hyperplane theorem [25], which states that two disjoint convex
sets4 can always be separated by a hyperplane. We will take one convex
set to be the point0, and then carefully construct another convex set

3Interior point methods are iterative algorithms that terminate once a prespec-
ified accuracy has been reached. A worst case analysis of interior point methods
shows that the effort required to solve a semidefinite program to a given accu-
racy grows no faster than a polynomial of the problem size. In practice, the
algorithms behave much better than predicted by the worst case analysis, and in
fact in many cases the number of iterations is almost constant in the size of the
problem.

4A setC is convex if for anyx; y 2 C,�x+(1��)y 2 C for all� 2 [0; 1].
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that does not contain0. This set will capture the equality constraints in
the primal problem and the fact that for any primal feasible point, the
value of the primal function is no larger than the optimal value. The
dual variables will then emerge from the parameters of the separating
hyperplane.

In our problem, we have one equality constraintm
i=1

�i = I , and
we know thatĴ � J(�). Our constructed convex set will accordingly
consist of matrices of the form�I + m

i=1
�i where�i 2 B and

�i � 0, and scalars of the formr � J(�) wherer > Ĵ . We thus
consider the(n2 + 1)-dimensional real vector space

L = B �R = f(S; x): S 2 B; x 2 Rg

whereR denotes the reals, with inner product defined by

h(W; y); (S; x)i = Tr(WS) + yx: (8)

Note that sinceW; S 2 B, Tr(WS) 2 R.
We now define the subset
 of L by


 = �I +

m

i=1

�i; r �

m

i=1

Tr(�i�
0
i) :

�i 2 B; �i � 0; r 2 R; r > Ĵ : (9)

It is easily verified that
 is convex, and0 62 
. Therefore, by the
separating hyperplane theorem, there exists anonzerovector(Z; a) 2
L such thath(Z; a); (Q; b)i � 0 for all (Q; b) 2 
, i.e.,

Tr Z �I +

m

i=1

�i + a r �

m

i=1

Tr(�i�
0
i) � 0 (10)

for all �i 2 B andr 2 R such that�i � 0, r > Ĵ . It will turn out
that the hyperplane parameters(Z; a) define the optimal dual point.
We first show that these parameters have to satisfy certain constraints,
which lead to the formulation of the dual problem.

Note that (10) with�i = 0, r ! Ĵ implies

aĴ � Tr(Z): (11)

Similarly, (10) withr = Ĵ+1,�j = 0 for j 6= i,�i = tjxihxj where
jxi 2 n is fixed andt! +1 yieldshxjZ � a�0ijxi � 0. Sincejxi
andi are arbitrary, this implies

Z � a�0i; 1 � i � m: (12)

With �i = 0, r ! +1, (10) impliesa � 0. If a = 0, then (12)
yieldsZ � 0, and (11) yields0 � Tr(Z), which together meansZ =
0. However, this would contradict the assumption that(Z; a) 6= 0.
Therefore, we conclude thata > 0, and defineX̂ = Z=a. Then (11)
implies that

T (X̂) � Ĵ (13)

whereT (X) = Tr(X), and (12) implies that̂X � �0i for 1 � i � m.
Let � be the set ofX 2 B satisfyingX � �0i; 1 � i � m. Then, for
anyX 2 �, � 2 �, we have

T (X)� J(�) =

m

i=1

Tr(�i(X � �0i)) � 0: (14)

SinceX̂ 2 �, from (13) and (14) we conclude thatT (X̂) = Ĵ .
Thus, we have proven that the dual problem associated with (3)–(5)

is

min
X2B

T (X) (15)

whereT (X) = Tr(X), subject to

X � �0i; 1 � i � m: (16)

Furthermore, we have shown that there exists an optimalX̂ 2 � and
an optimal valueT̂ defined by

T̂ = T (X̂) � T (X); 8X 2 � (17)

such that

T̂ = Ĵ : (18)

B. Optimality Conditions

Let �̂i denote the optimal measurement operators that maximize (3)
subject to (4) and (5), and let̂X denote the optimalX that minimizes
(15) subject to (16). Then from (18) it follows that

m

i=1

Tr �̂i(X̂ � �0i) = 0: (19)

SinceX̂ � �0i and�i � 0, (19) is satisfied if and only if

(X̂ � �0i)�̂i = �̂i(X̂ � �0i) = 0; 1 � i � m: (20)

Once we find the optimal̂X that minimizes the dual problem (15),
the constraint (20) is a necessary and sufficient condition on the optimal
measurement operatorŝ�i. We have already seen that this condition is
necessary. To show that it is sufficient, we note that if a set of measure-
ment operators�i satisfies (20), then m

i=1
Tr(�i(X̂ � �0i)) = 0 so

thatJ(�) = T (X̂) = Ĵ .
Note that the dual problem involves many fewer decision variables

than the primal maximization problem. Specifically, in the dual
problem, we haven2 real decision variables while the primal problem
hasmn2 real decision variables. Therefore, it is advantageous to solve
the dual problem and then use (20) to determine the optimal measure-
ment operators, rather than solving the primal problem directly. In
Section V, we develop efficient algorithms that follow this strategy.

Using (1), (20), and (16) leads to the conditions
m

i=1

�0i�̂i =

m

i=1

�̂i�
0
i (21)

m

i=1

�0i�̂i � �0j ; 1 � i � m: (22)

Thus, any optimal measurement�̂ = f�̂ig
m
i=1 must satisfy (21) and

(22). These conditions are also derived in [5], [4]. However, as noted
in the Introduction, the approach taken here lends itself to fast iterative
algorithms, as we will see in Section V, and also provides additional
insight into the optimal measurement operators, as we show in Sec-
tion IV.

In [5], it was established that the conditions (21) and (22) together
with (4) and (5) are also sufficient. For completeness, we repeat the
argument here. Suppose that the measurement operators�̂i satisfy (21)
and (22). ThenX̂ = m

i=1
�̂i�

0
i 2 �. It then follows from (14) that

for any set of measurement operators�i 2 �

m

i=1

Tr(�i�
0
i) � Tr(X̂) =

m

i=1

Tr(�̂i�
0
i) (23)

with equality for�i = �̂i. Therefore, the measurement operators�̂i
are optimal.

We summarize our results in the following theorem.

Theorem 1: Let f�i; 1 � i � mg denote a set of density opera-
tors with prior probabilitiesfpi > 0; 1 � i � mg, and letf�0i =
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pi�i; 1 � i � mg. Let � denote the set of all ordered sets of Her-
mitian measurement operators� = f�ig

m
i=1 that satisfy�i � 0 and

m

i=1
�i = I , and let� denote the set of Hermitian matricesX such

thatX � �i; 1 � i � m. Consider the problemmax�2� J(�) and
the dual problemminX2� T (X), whereJ(�) = m

i=1
Tr(�0i�i) and

T (X) = Tr(X). Then

1) for anyX 2 � and� 2 �, T (X) � J(�);

2) there is an optimal�, denoted̂�, such thatĴ = J(�̂) � J(�)
for any� 2 �;

3) there is an optimalX, denotedX̂, such that̂T = T (X̂) � T (X)
for anyX 2 �;

4) T̂ = Ĵ ;

5) given X̂, a necessary and sufficient condition on the optimal
measurement operatorŝ�i is (X̂ � �0i)�̂i = 0; 1 � i � m.

IV. RANK-ONE ENSEMBLES

Suppose now that the density operators�i are rank-one operators of
the form�i = j�iih�ij for somej�ii 2 H. In this case, it seems intu-
itively plausible that the optimal measurement will consist of rank-one
measurement operators of the form̂�i = j�iih�ij for somej�ii 2 H.

There are some particular cases in which an analytical solution to
the quantum detection problem is known [2], [6]–[10]. In all of these
cases, when the density operators are rank-one operators, the optimal
measurement also has rank one. In the special case in which the vectors
j�ii are linearly independent, Kennedy [18] showed that the optimal
measurement is always a rank-one measurement. However, this impli-
cation has not been proven in the general case. Using the conditions
for optimality we derived in the previous section, we now prove this
implication for an arbitrary rank-one ensemble.

We have seen that the optimal measurement operators�̂i can be de-
termined by solving (20), wherêX is the optimal matrix that mini-
mizes (15) subject to (16). Thus, the measurement operators�̂i must
lie in the null space of̂X��0i, denotedN (X̂��0i), and consequently,
rank(�̂i) � dim(N (X̂ � �0i)).

SinceX̂ � �i; 1 � i � m, it follows thatX̂ is positive definite on
H. Indeed, since the eigenvectors of the matrices�i spanH, for any
h 2 H there exists ani such thathhj�0ijhi > 0, which implies that
hhjX̂jhi > 0 for anyh 2 H, so thatN (X̂) = f0g. Now, for any two
matricesZ1 andZ2, rank(Z1+Z2) � rank(Z1)� rank(Z2), so that

dim(N (Z1 + Z2)) � dim(N (Z1)) + rank(Z2): (24)

With Z1 = X̂ andZ2 = ��0i, (24) yields

dim(N (X̂ � �
0

i)) � rank(�0i) = rank(�i) (25)

and

rank(�̂i) � dim(N (X̂ � �
0

i)) � rank(�i); 1 � i � m: (26)

In the special case in which the operators�i = j�iih�ij have
rank-one, it follows immediately from (26) that the optimal mea-
surement operators also have rank-one, so that they have the form
�̂i = j�iih�ij for somej�ii 2 H.

If, in addition, the vectorsfj�ii; 1 � i � mg are linearly inde-
pendent, then the vectorsfj�ii; 1 � i � mg must also be linearly
independent since m

i=1
j�iih�ij is equal to the identity onH, where

nowH is them-dimensional space spanned by the vectorsj�ii. Then,
for 1 � j � m

j�ji =
m

i=1

h�ij�jij�ii: (27)

Since the vectorsj�ii are linearly independent, we must have that
h�ij�ji = �ij so that the vectorsj�ii are mutually orthogonal. We,

therefore, recover the statement by Kennedy [18], that for a pure-state
ensemble with linearly independent vectors, the optimal measurement
is an orthogonal pure-state measurement.

We summarize our results in the following theorem.

Theorem 2: Let f�i; 1 � i � mg be a quantum-state ensemble
consisting of density operators�i with prior probabilitiespi > 0.
Then, the optimal measurement consists of measurement operators
f�i; 1 � i � mg with rank(�i) � rank(�i). In particular, if
f�i = j�iih�ij; 1 � i � mg is a pure-state quantum ensemble, then
the optimal measurement is a pure-state measurement consisting of
measurement operators of the formf�i = j�iih�ij; 1 � i � mg.

V. COMPUTATIONAL ASPECTS

In the general case, there is no closed-form analytical solution to
the maximization problem (3) or the minimization problem (15). How-
ever, since (3) and (15) are convex optimization problems, there are
very efficient methods for their solution. In particular, the optimal ma-
trix X̂ and the optimal measurement operators�̂i can be computed in
Matlab using the linear matrix inequality (LMI) toolbox. A convenient
interface for using the LMI toolbox is the Matlab package5 IQC�. The
algorithm is guaranteed to converge to the global optimum within any
desired accuracy in polynomial time.

Since (15) involves fewer decision variables than (3), in many cases
it is computationally more efficient to first find the optimal matrix̂X
minimizing Tr(X) subject to (16), and then determine the optimal
measurement operatorŝ�i using (20), (4) and (5). Following this
strategy, in the next section, we develop a procedure for computing
the optimal measurement operators for rank-one ensembles. The case
of mixed state ensembles is considered in Section V-C.

A. Rank-One Ensembles

If the density operators�i have rank one, then, from Theorem 2, the
optimal measurement operators�̂i also have rank one. From (20) and
(4) it then follows that̂�i can be expressed as

�̂i = aijqiihqij (28)

whereai � 0, andjqii is a normalized vector that spansN (X̂ � �0i).
To determine the vectorjqii we may use the eigendecomposition of
X̂ � �0i.

To satisfy (5) we must have

m

i=1

aijqiihqij = I: (29)

Let jei = vec(I) and jyii = vec(jqiihqij), wherejvi = vec(V )
denotes the vector obtained by stacking the columns ofV . Then we
can express (29) as

Y jai = jei (30)

whereY is the matrix of columnsjyii andjai is the vector with compo-
nentsai. If the matrixY has full column rank, then the unique solution
to (30) is

jai = (Y �
Y )�1Y �jei: (31)

In the general case,Y will not have full column rank and there will be
many solutionsjai to (30). Each such vector defines a corresponding
set of optimal measurement operators�̂i via (28). To find a unique

5This software was created by A. Megretski, C.-Y. Kao, U. Jönsson, and A.
Rantzer and is available at http://web.mit.edu/ameg/www/index.html.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 4, APRIL 2003 1011

solution we may seek the vector6 jai � 0 that satisfies (30), and such
that

m

i=1

Tr(�̂i) =

m

i=1

ai

is minimized. Our problem therefore reduces to

minh1jai (32)

wherej1i denotes the vector with components that are all equal1, sub-
ject to

Y jai = jei;
jai � 0: (33)

The problem of (32), (33) is just a standard linear programming
problem that can be solved very efficiently using standard linear
programming tools [26], for example, the LMI toolbox in Matlab.

B. Example

We now consider an example illustrating the computational steps
involved in computing the optimal measurement for a rank-one en-
semble.

Consider the case in which the ensemble consists of three rank-one
density operators�i = j�iih�ij; 1 � i � 3, where

j�1i =
1

0
; j�2i = 1p

2

1

1
; j�3i =

0

1
(34)

with prior probabilities

p1 = 0:1; p2 = 0:6; p3 = 0:3: (35)

To find the optimal measurement operators, we first find the optimal
matrix X̂ that minimizesTr(X) subject toX � �0i with �0i = pi�i.
The matrixX̂ is computed using the IQC� toolbox on Matlab. To this
end, we generate the following code (see the bottom of this page). The
optimalX̂ is given by

X̂ =
0:352 0:217

0:217 0:434
: (36)

Using the eigendecomposition of̂X��0i, we conclude that, as expected
from Theorem 2,N (X̂��0i) has dimension1 for eachi and is spanned
by the vectorjqii where

jq1i = �0:833
0:554

; jq2i = 1p
2

0:850

0:527
; jq3i = �0:525

0:851
:

(37)

The optimal measurement operators are therefore given by

�̂i = aijqiihqij = j�iih�ij
6The inequality is to be understood as a component-wise inequality.

with j�ii = p
aijqii andai denoting theith component ofjai. From

(30), jai must satisfy

0:693 0:722 0:276

�0:461 0:448 �0:447
�0:461 0:448 �0:447
0:306 0:278 0:724

a1

a2

a3

=

1

0

0

1

: (38)

Since the matrix in (38) has full column rank, there is a unique solution

jai =
0:007

0:999

0:994

: (39)

The optimal measurement vectors are then given byj�ii = p
ai jqii

which yields

j�1i =
�0:067
0:046

; j�2i =
0:849

0:527
; j�3i =

�0:524
0:849

:

(40)

We can immediately verify that the measurement operators�̂i =
j�iih�ij with j�ii given by (40) together witĥX given by (36) satisfy
the necessary and sufficient conditions (4), (5), and (20). Furthermore,
we have that the probability of correct detection is given by

Tr(X̂) =

m

i=1

piTr(�̂�i) = 0:78: (41)

In Fig. 1, we plot the weighted state vectorsj ii = p
pi j�ii given

by (34) and (35), together with the optimal measurement vectorsj�ii
given by (40). For comparison, we also plot the least-squares measure-
ment vectorsj�ii which are given by [9]

j�ii = (		�)�1=2j ii (42)

where	 is the matrix of columnsj ii and(�)1=2 is the unique sym-
metric square root of the corresponding matrix. Note, that since the
vectorsj�ii spanH, 		� is invertible. The probability of correct de-
tection using the least-squares measurement vectors is

m

i=1

pijh�ij�iij2 = 0:71:

As expected, this probability is smaller than the probability of correct
detection using the optimal measurement vectors which from (41) is
equal to0:78.

>> abst init lmi % Initializing the LMI toolbox
>> X = symmetric(2); % Defining a symmetric2� 2 variableX
>> X > p1 � R1; % Imposing the inequality constraints:
>> X > p2 � R2; % Herep1 = p1; p2 = p2; p3 = p3 and
>> X > p3 � R3; % R1 = �1; R2 = �2; R3 = �3

>> lmi mincx tbx(trace(X)); % Minimizing Tr (X) subject to the constraints
>> X=value(X) % Getting the optimal value ofX.
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Fig. 1. Illustration of the optimal measurement vectors. The weighted state
vectors arej i = p

p j� i where the vectorsj� i and the probabilitiesp are
given by (34) and (35), respectively. The optimal measurement vectorsj� i are
given by (40). The least-squares measurement vectorsj� i are plotted in dashed
lines for comparison, and are given by (42).

C. Mixed State Ensembles

We now consider the case in which at least one of the density oper-
ators�i has rank larger than1. From (20) and (5), it follows that given
X̂, the optimal measurement operators�̂i that maximize (3) must sat-
isfy

X̂ � �0

1 0 0 � � � 0

0 X̂ � �0

2 0 � � � 0

...

0 0 � � � 0 X̂ � �0

m

I I � � � I I

�̂1

�̂2

...

�̂m

=

0

0

...

0

I

:

(43)

Conversely, any set of operators�̂i that satisfy (43) and in addition are
Hermitian and PSD, maximize (3).

If the left-hand matrix in (43) has full column rank, then there are
unique operatorŝ�i that satisfy (43). In this case, we are guaranteed
that �̂i are Hermitian and PSD and are, therefore, the optimal mea-
surement operators. If, on the other hand, the left-hand matrix in (43)
does not have full column rank, then there are many possible operators
satisfying (43), some of which may not be Hermitian and PSD. Thus,
in this case, from all possible operators satisfying (43), we need to find
a set of operators that is Hermitian and PSD. Alternatively, in this case,
we may solve the primal problem directly.
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