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Correspondence

Designing Optimal Quantum Detectors Via Semidefinite  , is a positive semidefinite (PSD) Hermitian operator Withp) = 1;

Programming we write p > 0 to indicatep is PSD. A pure-state ensemble is one in
which each density operatgr is a rank-one projectdw; )(¢;|, where
Yonina C. Elday Member, IEEEAlexandre Megretski, and the vectorg¢;), though evidently normalized to unit length, are not
George C. Verghesé&ellow, IEEE necessarily orthogonal.

For ourmeasurementve consider general positive operator-valued
measures [2], [3], consisting @t PSD Hermitian operatordl;, 1 <
tector to minimize the probability of a detection error when distinguishing i< mj th{.ﬂ form.a re;olhutlonhof the identity GH. A pu.re-statekmea-
among a collection of quantum states, represented by a set of density oper- SUrément is one in which each measurement operhtes a rank-one
ators. We show that the design of the optimal detector can be formulated as operato¥ [u;){u.|, where the vectorf.;) are not necessarily orthog-
a semidefinite programming problem. Based on this formulation, we derive  onal or normalized. An orthogonal measurement (i.e., a von Neumann

a set of necessary and sufficient conditions for an optimal quantum mea- measurement) is one in which the measurement operHtoase mu-
surement. We then show that the optimal measurement can be found by tually orthogonal projection operators.

solving a standard (convex) semidefinite program. By exploiting the many e " .
well-known algorithms for solving semidefinite programs, which are guar- Necessary and sufficient conditions for an optimum measurement

anteed to converge to the global optimum, the optimal measurement can be minimizing the probability of a detection error have been derived [4],
computed very efficiently in polynomial time within any desired accuracy. [5]. However, except in some particular cases [2], [6]-[10], obtaining a
Using the semidefinite programming formulation, we also show that the s form analytical expression for the optimal measurement directly
rank of each optimal measurement operator is no larger than the rank of f h diti is a difficult and ved bl hus. i
the corresponding density operator. In particular, if the quantum state en-  fomM these conditionsis adifficult and unsolved problem. Thus, in prac-
semble is a pure-state ensemble consisting of (not necessarily independentjice, iterative procedures [11] ad hocsuboptimal measurements are
rank-one density operators, then we show that the optimal measurement is used. A detection measurement that has many desirable properties and
a pure-state measurement consisting of rank-one measurement operators. has been employed in many Settings is the Ieast-squares measurement
Index Terms—Duality, quantum detection, semidefinite programming.  [9], also known as the square-root measurement [12], [13].
Holevo [4] derives the necessary and sufficient conditions by consid-
ering infinitesimal transformations of the measurement operaiors
. INTRODUCTION that preserve their character as elements of a measurement. The draw-

In a quantum detection pr0b|em’ a transmitter conveys classical h‘ﬁCk of this approach is that it does not readily lend itself to efficient
formation to a receiver using a quantum-mechanical channel. E&@mnputational algorithms. Yueet al. [5] use the principle of duality
message is represented by preparing the quantum channel in a quaifuMgctor space optimization to derive the same necessary and suffi-
state represented by a density operator, drawn from a collectionGgnt conditions. Specifically, they show that the problem of finding the
known states. At the receiver, the information is detected by subjectifigasurement that minimizes the probability of a detection error can be
the channel to a quantum measurement in order to determine the fipemulated as a generalized linear programming problem, with the pos-
pared state. If the quantum states are mutually orthogonal, then i orthant being replaced by the positive cone of PSD matrices. Al-
state can be determined correctly with probability one by performirigough their approach leads to the same conditions derived by Holevo
an optimal orthogonal (von Neumann) measurement [1]. However 4. their apparent suggestion that this formulation produces a standard
the given states are not orthogonal, then no measurement will disfiifite-dimensional linear programming problem is not correct, because
guish perfectly between them. Our problem is, therefore, to constri¢e cone of PSD matrices cannot be described by a finite set of linear
a measurement that minimizes the probability of a detection error. inequalities.

We consider a quantum state ensemble consisting dénsity op- In this correspondence, we derive the necessary and sufficient
erators{p;. 1 < i < m} on ann-dimensional complex Hilbert spaceconditions for an optimal quantum measurement in a self-contained
H, with prior probabilities{p; > 0, 1 < i < m}. A density operator Manner, again by exploiting duality arguments. The primary advantage

of our formulation is that it readily lends itself to efficient computa-
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mulating our problem as a semidefinite program. Using this formDenoting byA the set of all ordered sel$ = {II;};”,, II; € B,
lation, in Section IV, we prove that if the quantum state ensemblesatisfying (4) and (5), and definin§(IT) = " | Tr(p;I1;), we can
a pure-state ensemble consisting of rank-one density opeyatees express our maximization problem as
|oi){(¢;], then the optimal measurement is a pure-state measurement
o . max .J(1T). (6)
consisting of rank-one measurement operaibrs= |u;){p:|. This TeA
generalizes a previous result by Kennedy [18], which establishes thaé refer toA as the feasible set, and to aliye A as a feasible point.
for linearly independenvectors|¢;) the optimal measurement is aSinceA is a compact set andi(Il) is a continuous linear functional,
(necessarily orthogonal) pure-state measurement. We also show thate exist an optimdl € A and an optimal valud defined by
for a mixed quantum state ensemble, the rank of each optimal measure- . -
ment operatoll; is no larger than the rank of the corresponding density J = J(I) > (). VILEA. ™)
matrix p;. In Section V, we consider efficient iterative algorithms that Equipped with the standard operations of addition and multiplica-
are guaranteed to converge to the globally optimum measurement.tion by real numbersi3 is ann?-dimensionalreal vector space. By
Throughout the correspondence, we use the Dirac bra-ket notat@roosing an appropriate basis frthe problem of (3)—(5) can be put
of quantum mechanics. In this notation, the elements{aire “ket” in the form of a standard semidefinite programming problem, which
vectors, denoted, e.qg., ly) € H. The corresponding “bra” vectds| is a convex optimization problem; for a detailed treatment of semidefi-
is the conjugate transpose |afy. The inner product of two vectors is nite programming problems see, e.g., [15]-{17], [14]. By exploiting the
a complex number denoted Ky|y). An outer product of two vectors many well-known algorithms for solving semidefinite programs [14],
such agz) (y| is a rank-one matrix, which také¢s) € Hto(y|z)|z) € e.g., interior point methods[17], [15], the optimal measurement can
H. be computed very efficiently in polynomial time.
Recently, methods based on semidefinite programming have been
Il. OPTIMAL DETECTION OFQUANTUM STATES employed in a variety of different problems in quantum detection and
) ) quantum information [19]-[24]. The fact that the optimal quantum de-
Assume thata quantum channel is prepared in a quantum state drg¥lor can be found by solving a semidefinite program was pointed out

from a collection of given states. The quantum states are represenfgfbpendently in [19]. Here we provide a more general development.
by a set of PSD Hermitian density operatofg:, 1 < < m} On |n particular, rather than relying on results that are scattered throughout
an n-dimensional complex Hilbert spade. At the receiver, a mea- the |iterature in various forms, in what follows we present a self-con-
surement is constructed, comprisingPSD Hermitian measurement ained and direct derivation of the necessary and sufficient conditions
operators(Il;, 1 < i <m} on. The problem is to choose the meao the optimal measurement. As we will see, this derivation also leads
surement operators to minimize the probability of detection error, i.€y efficient methods for computing the optimal measurement in cases
the probability of incorrect detection of the transmitted state. in which an analytical solution is not known.

We assume without loss of generality that the eigenvectors of the, the next section, we derive the necessary and sufficient conditions
density operatorgp;. 1 < i < m} spart 7. Inthis case, to constitute o, the measurement operators by formulatidgal problem The dual

a measurement, the measurement operatorsust satisfy problem will also be used in Section V to develop efficient computa-
m tional algorithms.
domi=1 @
i=1 IIl. DUAL PROBLEM FORMULATION

wherel is the identity operator ofi. Our objective is to formulate dual problemwhose optimal value

We seek the PSD measurement operafdis 1 < i < m} satis- serves as a certificate fok. Specifically, we will formulate a mini-
fying (1) that minimize the probability of a detection error, or equivimization problem of the fornmin x 7'(X') for some linear functional
alently, maximize the probability of correct detection. Given that tHE such that for all feasible values &f € 5, i.e., values ofX € B
transmitted state ig;, the probability of correctly detecting the statethat satisfy a certain set of constraints, and for Hn§g A, we shall
using measurement operatdi;, 1 < i < m} is Tr(p;II;). There- haveT (X) > J(II). The dual problem, therefore, provides an upper
fore, the probability of correct detection is given by bound on the optimal value of the original (primal) problem. In addi-
tion, we would like the minimal value d&f, denotedf, to be equal to.

The equality.] = T will then lead to conditions of optimality on the
measurement operators. Furthermore, in this case, instead of solving
the primal problem, we can find and the optimal measurement by
wherep; > 0 is the prior probability op;, with )", p; = 1. Denoting solving the dual problem, which turns out to have far fewer decision
by B the set of Hermitian operators @t and defininge; = p,p;, our variables.

problem reduces to the maximization problem

Pu=" piTr(p:ll) )
=1

’ A. Constructing the Dual Problem
max Tr(pﬁ;lL) 3) A general method for deriving a dual problem is to invoke the sepa-
€8 = rating hyperplane theorem [25], which states that two disjoint convex
setd can always be separated by a hyperplane. We will take one convex

subject to the constraints set to be the point, and then carefully construct another convex set

II; >0, 1<i<m (4) 3Interior point methods are iterative algorithms that terminate once a prespec-
m ified accuracy has been reached. A worst case analysis of interior point methods
Z I, =1. (5) shows that the effort required to solve a semidefinite program to a given accu-
— racy grows no faster than a polynomial of the problem size. In practice, the

algorithms behave much better than predicted by the worst case analysis, and in

20therwise, we can transform the problem to a problem equivalent to the daét in many cases the number of iterations is almost constant in the size of the
considered in this correspondence by reformulating the problem on the subs;ﬁ@@'em-
spanned by the eigenvectors{of;, 1 < ¢ < m}. 4AsetC is convexifforany:, y € C,ax+(1—a)y € Cforalla € [0, 1].
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that does not contait. This set will capture the equality constraints irwhereZ'(X) = Tr(X), subject to
the primal problem and the fact that for any primal feasible point, the
value of the primal function is no larger than the optimal value. The

dual variables will then emerge from the parameters of the separatingrthermore, we have shown that there exists an optithal I’ and

X>p,  1<i<m. (16)

hyperplane. , an optimal valuel’ defined by
In our problem, we have one equality constrdint’ , II; = I, and . . } )
we know that/ > J(II). Our constructed convex set will accordingly T'=TX)<T(X), VXeTl 7

consist of matrices of the formI + " II; wherell; € B and
I; > 0, and scalars of the form — J(IT) wherer > J. We thus
consider thén? + 1)-dimensional real vector space T=1J. (18)

L=BxR={(S x):5€b, xR}

such that

whereR denotes the reals, with inner product defined by B. Optimality Conditions

- o LetIl; denote the optimal measurement operators that maximize (3)
(Woy), (5, 2)) = Te(WS) +ya. (8)  subject to (4) and (5), and Ief denote the optimak’ that minimizes
Note that sincd¥, S € B, Tr(WWS) € R. (15) subject to (16). Then from (18) it follows that
We now define the subsét of £ by

Q= {(—I—i— i I, r— Z Tr(Hzp2)> :
i—1 i=1

Z Tr (ﬂ,-(;\“’ - p;.>) = 0. (19)
i=1

SinceX > p! andIl; > 0, (19) is satisfied if and only if
. OV = (% — ) = i
ILeB I, >0,reR, r> J} . (9 (X = p)IL; = I;(X — p;) =0, 1<i<m.  (20)
Once we find the optimaK that minimizes the dual problem (15),
It is easily verified that2 is convex, and) ¢ (2. Therefore, by the the constraint (20) is a necessary and sufficient condition on the optimal
separating hyperplane theorem, there existsrezerovector(Z, a) € measurement operatdis. We have already seen that this condition is
L suchthat(Z, a), (Q, b)) > 0forall (Q, b) € Q,i.e., necessary. To show that it is sufficient, we note that if a set of measure-
. . ment operator$l; satisfies (20), thei}"", Tr(II;(X — p;)) = 0 so0
Te (2 (-1+3 10 ) | +a(r =3 Te(ip) | >0 (o) that/() =T(X)=J. o
< < ; )) < ; (L )> - (10) Note that the dual problem involves many fewer decision variables
. than the primal maximization problem. Specifically, in the dual
forall II; € B andr € R such thafll; > 0, > J. Itwill turn out  problem, we have? real decision variables while the primal problem
that the hyperplane parametdts, «) define the optimal dual point. hasmn? real decision variables. Therefore, it is advantageous to solve
We first show that these parameters have to satisfy certain constraigie, dual problem and then use (20) to determine the optimal measure-

which lead to the formulation of the dual problem. ment operators, rather than solving the primal problem directly. In
Note that (10) withll; = 0, » — J implies Section V, we develop efficient algorithms that follow this strategy.
. , Using (1), (20), and (16) leads to the conditions
ad > Te(Z). (12)
Similarly, (10) withr = .J + 1,11, = 0 for j # 4, II; = t|z) (x| where > il = g (21)
=1 =1

|#) € C" is fixed andt — +oo yields(z|Z — ap}|z) > 0. Since|z)
and: are arbitrary, this implies A ,
oz 1<i<m. (22)
Z > apl, 1<i<m. (12) i=1

With I, = 0, » — o0, (10) impliesa > 0. If a = 0, then (12) Thus, any optimql .measuremdﬂ']t: .{Hi}.?;l must satisfy (21) and
yieldsZ > 0, and (11) yield® > Tr(Z), which together meang = _(22). These co_ndltlons are also derived in [5], [4]._However, as not_ed
0. However, this would contradict the assumption that a) # 0. in the_ Introduction, the appr_oach ta_lken here lends |tself_to fast |tt_a_rat|ve
Therefore, we conclude that> 0, and define¥ = Z/a. Then (11) glgprlthrns, as we YVI|| see in Section V, and also provides addlltlonal
implies that |_nS|g|r\1/t into the optimal measurement operators, as we show in Sec-
tion IV.
T(f() <J (13) In [5], it was established that the conditions (21) and (22) together
with (4) and (5) are also sufficient. For completeness, we repeat the
whereT(X) = Tr(X), and (12) implies thak” > o} for1 <i <m. argumenthere. Suppose that the measurement opelfatsasisfy (21)
LetT be the set ofY € B satisfyingX > pi, 1 < i < m. Then, for and (22). ThenX = > 7 II;p; € I. It then follows from (14) that

anyX € I', I € A, we have for any set of measurement operatllrse A
T(X) - J(M) = 3 Te(IL(X - p})) > 0. (14) > Te(Miph) < Te(X) =Y Tr(ILip}) (23)

= =1 =1
SinceX €T from (13) and (14) we conclude thE(X) - with equality forIl; = 1I,. Therefore, the measurement operaﬁ{s

Thus, we have proven that the dual problem associated with (3)_%$voptlmal. . . .
is 'e summarize our results in the following theorem.

] _ Theorem 1:Let {p;, 1 < i < m} denote a set of density opera-
an T(X) (15)  tors with prior probabilities{p; > 0,1 < ¢ < m}, and let{p; =
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pipi, 1 < ¢ < m}. Let A denote the set of all ordered sets of Hertherefore, recover the statement by Kennedy [18], that for a pure-state
mitian measurement operatdis= {II;};~, that satisfyll, > 0 and ensemble with linearly independent vectors, the optimal measurement
>, II; = I, and letl’ denote the set of Hermitian matricASsuch is an orthogonal pure-state measurement.

thatX > p;, 1 < i < m. Consider the problemmaxmea J(II) and We summarize our results in the following theorem.

the dual problenmin x cr T(X '), whereJ (IT) = 37" | Tr(p;1I;) and

T(X) = Tx(X). Then = Theorem 2: Let {p;, 1 < i < m} be a quantum-state ensemble

consisting of density operatogs with prior probabilitiesp; > 0.

1) foranyX € T'andIl € A, T(X) > J(IT); Then, the optimal measurement consists of measurement operators
2) there is an optimdll, denoted, such that/ = J(II) > J(II) {I;, 1 < i < m} with rank(II;) < rank(p;). In particular, if

foranyIl € A; {pi = |oi}{di], 1 < i < m}is apure-state quantum ensemble, then
3) thereisan optimak’, denoted, suchthaf” = T(X) < T(X) the optimal measurement is a pure-state measurement consisting of

forany X € I measurement operators of the foffi; = ;) (], 1 < i < m}.
4T =1,

. B - . . V. COMPUTATIONAL ASPECTS

5) given X, a necessary and sufficient condition on the optimal

measurement operatd& is (X — ﬂﬁ)ﬁz‘ =0,1<i<m. In the general case, there is no closed-form analytical solution to

the maximization problem (3) or the minimization problem (15). How-
IV. RANK-ONE ENSEMBLES ever, since (3) and (15) are convex optimization problems, there are

] very efficient methods for their solution. In particular, the optimal ma-
Suppose now that the density operajarare rank-one operators of iy X and the optimal measurement operafrscan be computed in
the formp; = [¢:)(¢:| for somel|¢:) € . In this case, it seems intu- patjab using the linear matrix inequality (LMI) toolbox. A convenient
itively plausible that the optimal measurement will consist of rank-ongierface for using the LMI toolbox is the Matlab packad@®Cg3. The
measurement operators of the foftn = [u){y.:| for somely.;) € H.  aigorithm is guaranteed to converge to the global optimum within any
There are some particular cases in which an analytical solutiondgsijreq accuracy in polynomial time.
the quantum detection problem is known [2], [6]-[10]. In all of these gjnce (15) involves fewer decision variables than (3), in many cases
cases, when the density operators are rank-one operators, the optjmalcomputationally more efficient to first find the optimal matrk
measurgment a{so has rank one. In the special case in which thg VediQHimizing Tr(X) subject to (16), and then determine the optimal
|d:) arellnearly independentKennedy [18] showed that the Opt!m_alm_easurement operatof$; using (20), (4) and (5). Following this
measurement is always a rank-one measurement. However, this imgliateqy, in the next section, we develop a procedure for computing
cation has not been proven in the general case. Using the conditigis optimal measurement operators for rank-one ensembles. The case

for optimality we derived in the previous section, we now prove thig; mixed state ensembles is considered in Section V-C.
implication for an arbitrary rank-one ensemble.

We have seen that the optimal measurement operﬁtoman bede- A Rank-One Ensembles
termined by solving (20), wher& is the optimal matrix that mini-

mizes (15) subject to (16). Thus, the measurement operHtonsust If the density operators; have rank one, then, from Theorem 2, the
lie in the null space ok — p/, denotedV' (X — o), and consequently, optimal measurement operatdfs also have rank one. From (20) and

1‘ank(f[i) < dim(/\"(X — ). (4) it then follows thafll; can be expressed as

SinceX > pi, 1 < i < m, it follows thatX is positive definite on
‘H. Indeed, since the eigenvectors of the matrigespan?, for any
h € 'H there exists ai such that(lz,|€§|13) > 0, which implies that wherea; > 0, and|¢;) is a normalized vector that span X — ).
(h|X[h) > 0 foranyh € 7, so thatV'(X) = {0}. Now, for any tWo 14 yetermine the vectdy;) we may use the eigendecomposition of
matricesZ, andZz, rank(Z, + Z>) > rank(Z;) —rank(Z;),sothat ¢ _ o

dim(N(Z1 + Z»)) < dim(N'(Z1)) 4 rank(Z). (24)  To satisfy (5) we must have

ILi = ailg:){qil (28)

With Z, = X andZ, = —p!, (24) yields Z e @l = T (29)
ailgi){qi| = I.
dim(N (X — p})) < rank(p}) =rank(p;) (25) i=1
and Let |e) = vec(I) and|y:) = vec(|qi)(qi]), where|v) = vec(V)

rank(f[i) < dim(,/\"()i’ —pi)) <rank(p;), 1<i<m. (26) denotes the vector obtained by stacking the columri .cThen we

. . . 29
In the special case in which the operatgrs = |#.){#;| have can express (29) as

rank-one, it follows immediately from (26) that the optimal mea- Yia) = |e) (30)
surement operators also have rank-one, so that they have the form
I = |ui) (i for someju;) € H. whereY is the matrix of columngy;) and|a) is the vector with compo-

If, in addition, the vectorg|¢:). 1 < ¢ < m} are linearly inde- pents,, . If the matrixy” has full column rank, then the unique solution
pendent, then the vectofgy;), 1 < 7 < m} must also be linearly (30) is

independent sincg."" | |p:){p:| is equal to the identity ofi/, where

now is them-dimensional space spanned by the vecliors. Then, la) = (YY) 'Y " Je). (31)
fort <j<m
In the general cas@&; will not have full column rank and there will be
lpy) = Z (il s pes ) (27) many solutionga) to (30). Each such vector defines a corresponding
i=1 set of optimal measurement operatdks via (28). To find a unique

Since the vectorgy;) are linearly independent, we must have that sthjs software was created by A. Megretski, C.-Y. Kao, U. Jénsson, and A.
{pilp;) = 6:; so that the vectorf;) are mutually orthogonal. We, Rantzer and is available at http://web.mit.edu/ameg/wvww/index.html.
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solution we may seek the vectoju) > 0 that satisfies (30), and suchwith |u;) = /ai]¢;) anda; denoting the'th component ofa). From

that (30), |a} must satisfy
Z Tr(1I,) = Z 0.693 0722  0.276] . 1
=1 —0.461 0.448 —0.447 ! 0 (38)
- a = .
is minimized. Our problem therefore reduces to —0.461 0.448 —0.4471 | - 0
0.306 0278  0.724] -° 1

min(l|a) (32)

Where|1> denotes the vector with Components that are all eqmb_ Since the matl’iX in (38) haS fU” C0|Uml‘l rank, there iS a unique SO|uti0n
ject to

0.007
Yia) =le);
la) = | 0.999 | . (39)
la) >0. (33)
0.994

The problem of (32), (33) is just a standard linear programming

problem that can be solved very efficiently using standard lineghe optimal measurement vectors are then givefuby = Vi |4:)
programming tools [26], for example, the LMI toolbox in Matlab.  which yields

B. Example —0.067 0.849 0.524

We now consider an example illustrating the computational stepdit1) = [ } o pe) = [ y } o lns) = [ } .

involved in computing the optimal measurement for a rank-one en- 0.046 0.527 0.849

semble. (40)
Consider the case in which the ensemble consists of three rank-one

density operators; = [:)(¢:], 1 < i < 3, where We can immediately verify that the measurement operdiors=

1 1 [1 0 |11:) (| with |12;) given by (40) together witlk™ given by (36) satisfy
lo1) = R EVES 7 los) = (34)  the necessary and sufficient conditions (4), (5), and (20). Furthermore,
we have that the probability of correct detection is given by
with prior probabilities
pr=01, p2=06, p3=03. (35) Tr(X) =) piTr(Tlpi) = 0.78, (41)

To find the optimal measurement operators, we first find the optimal =t

matrix X that minimizesIr(X) subject toX > p! with p! = p;p;.
The matrixX is computed using the 1Q€toolbox on Matlab. To this
end, we generate the following code (see the bottom of this page).
optimal X is given by

N 0.352  0.217
X = .
0.217 0.434

In Fig. 1, we plot the weighted state vectdes) = |/pi |¢:) given
.H,}/ (34) and (35), together with the optimal measurement ve¢iofs
given by (40). For comparison, we also plot the least-squares measure-
ment vectorgy;) which are given by [9]

36
%) i) = (BT~ (42)

Using the elgendecomposmonm pi, we conclude that, as expected

from Theorem 2V (X — p) has dimension for eachi and is spanned whered is the matrix of columngy;) and(-)'/* is the unique sym-
by the vectorg;) where ' metric square root of the corresponding matrix. Note, that since the

vectors|¢;) spanH, T¥™ is invertible. The probability of correct de-
) = {—0.833] o) = 1 {0.850] lgs) = {—0-525} tection using the least-squares measurement vectors is

0.554 2 10.527 0.851
37 m ’ . i
37) S pillndon = 071
The optimal measurement operators are therefore given by =1
0= aslad o] = N As expected, this probability is smaller than the probability of correct
i = ailqi){gil = [pi) (il . . ; : \
detection using the optimal measurement vectors which from (41) is
6The inequality is to be understood as a component-wise inequality. equal to0.78.
>> abst_init_lmi % Initializing the LMI toolbox
>> X = symmetric(2); % Defining a symmetri@ x 2 variableX
>> X > pl * Ri; % Imposing the inequality constraints:
>>X > p2 * R2; % Herepl = p1, p2 = p2, p3 = ps and
>> X >p3 * R3; % R1 = p1, R2 = p2, R3 = p3

>> 1lmimincx_tbx(trace(X)); % Minimizing Tr (X) subject to the constraints
>> X=value(X) % Getting the optimal value ok .



1012

[7]
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N
\ [8]
\ %2)  |xo)
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\Zn [10]
m) T
1 [x1) [11]
[12]

Fig. 1. lllustration of the optimal measurement vectors. The weighted statél 3l
vectors argy; ) = /p; |¢:) where the vectorf;) and the probabilities; are
given by (34) and (35), respectively. The optimal measurement vegtgrare

given by (40). The least-squares measurement velotoysire plotted in dashed  [14]
lines for comparison, and are given by (42).

[15]
C. Mixed State Ensembles

[16]

We now consider the case in which at least one of the density oper-
atorsp; has rank larger thah. From (20) and (5), it follows that given
X, the optimal measurement operattrsthat maximize (3) must sat-

isfy [17]
X [18]
rX - p) 0 0 0o 1 . 10T
. o,
0 X—pp 0 .- 0 X 0 [19]
1T,
) : ' [20]
0 0 e 0 X =yl X 0
Mo ,
L T I v T I RPN
[22]

Conversely, any set of operatdis that satisfy (43) and in addition are
Hermitian and PSD, maximize (3).

If the left-hand matrix in (43) has full column rank, then there are[23]
unique operatorﬁli that satisfy (43). In this case, we are guaranteed
thatI1; are Hermitian and PSD and are, therefore, the optimal mea-
surement operators. If, on the other hand, the left-hand matrix in (43[)24]
does not have full column rank, then there are many possible operatok%]
satisfying (43), some of which may not be Hermitian and PSD. Thus,
in this case, from all possible operators satisfying (43), we need to fingbg]
a set of operators that is Hermitian and PSD. Alternatively, in this case,
we may solve the primal problem directly.
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