
Designing Parallel Algorithms for
SMP Clusters

Dissertation

der Fakultät für Informations- und Kognitionswissenschaften
der Eberhard-Karls-Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Dipl.-Inform. Martin Schmollinger

aus Reutlingen

Tübingen

2003

Tag der mündlichen Qualifikation: 29.10.2003
Dekan: Prof. Dr. Martin Hautzinger
1. Berichterstatter: Prof. Dr. Michael Kaufmann
2. Berichterstatter: Prof. Dr. Wolfgang Rosenstiel

Danksagungen

Es gibt Momente im Leben, in denen man wichtige und richtungweisende
Entscheidungen treffen muss. Man sollte sich glücklich schätzen, wenn
man rechtzeitig bemerkt, dass ein solcher Moment vorliegt. Ich möchte all
denen danken, die mich ermuntert haben, mir die Zeit für die Promotion
zu nehmen.

Vor allem möchte ich meinem Betreuer Prof. Dr. Michael Kaufmann
danken, der mir die Möglichkeit gegeben hat diese Arbeit anzufertigen und
mich dabei in allen Belangen unterstützt hat.

Bedanken möchte ich mich auch bei Prof. Dr. Wolfgang Rosenstiel für
seine Arbeit als zweiter Berichterstatter.

Mein Dank gilt auch meinen aktuellen und früheren Kollegen des Ar-
beitsbereichs Paralleles Rechnen für die gute Atmosphäre und die vielen
Unternehmungen wie Betriebssport, “Besseressen” oder Boule.

Zu guter Letzt bedanke ich mich auch bei meinen Freunden und El-
tern, die im Gegensatz zu mir immer an den erfolgreichen Abschluss der
Promotion geglaubt haben.

iii

iv

Zusammenfassung

In der vorliegenden Dissertation untersuchen wir Entwurfs- und Optimier-
ungsmethoden für die Entwicklung von parallelen Algorithmen für SMP
Cluster. Dabei handelt es sich um eine spezielle Architektur von Parallel-
rechnern, die zwei verschiedene Konzepte in einem System vereint. SMP
Cluster bestehen aus Rechenknoten, deren Prozessoren speichergekoppelt
sind (shared-memory). D.h. die Prozessoren innerhalb eines Rechenkno-
tens können über den gemeinsamen Speicher kommunizieren und syn-
chronisieren. Die Rechenknoten selbst werden durch ein Verbindungsnet-
zwerk miteinander verknüpft. Die Kommunikation und Synchronisation
von Prozessoren in verschiedenen Rechenknoten erfolgt über dieses Netz-
werk und entspricht einem nachrichtengekoppeltem System bzw. einem
System mit verteiltem Speicher (distributed-memory). Diese Organisation
führt zum einen zu einer parallelen Hierarchie, denn Parallelität gibt es
sowohl innerhalb als auch zwischen den Rechenknoten. Zum anderen
entsteht eine Hierarchie bezüglich der Kommunikation. Im Allgemeinen
ist die Kommunikation innerhalb eines Rechenknotens bei der ein gemein-
samer Speicher verwendet wird schneller, als die Kommunikation über
ein Verbindungsnetzwerk. Es existieren demnach mindestens zwei Hier-
archiestufen. Durch moderne Entwicklungen wie hierarchische Strukturen
von Verbindungsnetzwerken, Metacomputing Technologien, bei der mehr-
ere Parallelrechner verbunden werden oder Grid Computing Technologien,
die das Internet verwenden um weltweit verteilte Rechenressourcen zu
vereinen, kann es jedoch weitere Hierarchiestufen geben. Auch hier gilt,
je “niedriger” die Ebene in der Netzwerkhierarchie, desto schneller ist die
Kommunikation.

Aus diesem Grund müssen effiziente Algorithmen in der Art gestaltet
werden, dass sowohl die parallele Hierarchie als auch die Kommunikati-
onshierarchie berücksichtigt werden. Im Allgemeinen werden beim Ent-
wurf von Algorithmen die Hierarchien vernachlässigt und die Maschine
als nicht hierarchisch angesehen. Darüber hinaus ist die allgemeine Vorge-
hensweise bei der Erstellung von Programmen dominiert durch das je-
weils verwendete Programmiermodell. Der Entwickler verlässt sich häufig
auf die Effizienz der verwendeten Bibliotheken. Die Verwendung opti-
mierter Bibliotheken führt sicherlich ebenfalls zu sehr schnellen Program-

v

vi

men, doch um wirklich das Optimum zu erreichen ist es nötig auch die Al-
gorithmen an die hierarchische Umgebung anzupassen. Ein weiteres Prob-
lem ist, dass der Entwurfprozess paralleler Algorithmen in der Regel nicht
gestützt ist durch die Verwendung von Methoden. Sicherlich kann die
Entwicklung eines parallelen Algorithmus nicht auf ein einfaches Rezept
reduziert werden, dennoch kann die Verwendung allgemeiner Methoden
die Menge berücksichtigter Alternativen erhöhen und fehlerhafte Ansätze
vermeiden.

In den folgenden Kapiteln zeigen wir einen alternativen Weg auf, der
die Zusammenhänge zwischen theoretischen Kostenmodellen, Program-
miermodellen und SMP Clustern aufzeigt und es dadurch ermöglicht eine
theoretische Analyse eines Algorithmus in eine effiziente Implementierung
für SMP Cluster münden zu lassen. Neben dieser Brücke von einer theo-
retischen Analyse zur effizienten Implementierung stellen wir verschiedene
Methoden für den Entwurf und die Optimierung von parallelen Algorith-
men für SMP Cluster vor. Anhand verschiedener Fallbeispiele erklären wir
die Methoden und die Verwendung des Kostenmodells bei der Analyse der
entwickelten Algorithmen.

Kapitel 1 ist eine Einführung in die Problematik der Entwicklung von
parallelen Algorithmen. Neben einem motivierenden Beispiel wird der
Zusammenhang zwischen theoretischen Kostenmodellen, Programmiermo-
dellen und Architekturen dargestellt.

Kapitel 2 gibt dann eine Übersicht über parallele Architekturen, Kosten-
und Programmiermodelle und zeigt ihre mögliche Verwendung für den
Entwurf von Algorithmen für SMP Cluster auf.

Wir beginnen mit der Formulierung eines theoretischen Kostenmodells
für SMP Cluster (κNUMA) in Kapitel 3 und zeigen seine Verwendung an-
hand der Analyse von broadcast Problemen, bei denen ein Prozessor eine
(individuelle oder einheitliche) Nachricht an jeden anderen Prozessor über-
mitteln muss. Wir betrachten das vorgestellte Modell als eine Obermenge
für die Analyse von Algorithmen auf SMP Clusters. In Abhängigkeit der
Eigenschaften eines speziellen SMP Cluster und aufgrund der Beschaffen-
heit des zu untersuchenden Problems kann die Verwendung eines redu-
zierten Modells ausreichend sein und macht die Analyse leichter.

Kapitel 4 stellt Methoden zur Entwicklung von parallelen Algorithmen
und zur Optimierung für SMP Cluster vor. Die Methoden können auf
den verschiedenen Ebenen des Entwicklungsprozesses angewendet wer-
den, beginnend bei einer fein-granularen Zerlegung des gegebenen Prob-
lems bis hin zur Optimierung einzelner Aspekte paralleler Algorithmen für
SMP Cluster.

Die weiteren Kapitel sind Fallstudien für die Verwendung der Meth-
oden bei der Algorithmusentwicklung und die Verwendung des Kosten-
modells bei der Analyse.

In Kapitel 5 zeigen wir anhand der parallelen Matrix-Vektor Multipli-

vii

kation, wie ein paralleler Algorithmus auf die SMP Cluster Architektur
übertragen wird, wie redundante Daten genutzt werden können um Kom-
munikationsoperationen einzusparen und wie eine unnötige Verwendung
von redundanten Daten vermieden wird. Dazu werden verschiedene Daten-
verteilungen untersucht.

Kapitel 6 stellt anhand des Problems der Transponierung von verteilten
Matrizen in paralleler Umgebung eine Optimierungsmethode vor, die ver-
sucht existierende Kommunikationsmuster durch geschickte Datenvertei-
lung an die jeweilige Struktur des SMP Clusters anzupassen um die Kom-
munikationskosten zu reduzieren. Wir stellen eine Verteilung vor, durch
die das Transponieren einer verteilten Matrix keine Kommunikation über
das Netzwerk benötigt und gleichzeitig den Speicherbedarf je Prozessor
minimiert.

Kapitel 7 ist eine Fallstudie für den Entwurf eines hierarchisch-sensi-
tiven Algorithmus. Die Methode schlägt vor ein Problem durch Informa-
tionsaustausch in immer niedrigere Ebenen der Hierarchie zu verschieben,
bis am Ende lediglich lokale Berechnungen nötig sind. Als Beispiel wird
das Radix Sort Verfahren untersucht. Dieses Verfahren ermöglicht es ganze
Zahlen anhand ihrer Binärdarstellung in mehreren Iterationen zu sortieren.
Dabei werden in jeder Iteration die Zahlen anhand eines Teils ihrer binären
Darstellung in eine Reihenfolge gebracht. Wir zeigen den Weg von der se-
quentiellen Version bis zu einer hierarchisch sensitiven parallelen Version
auf, die mit einem Minimum an Kommunikation auskommt und daher
exzellent für SMP Cluster geeignet ist.

Die Ergebnisse der Arbeit sind in Kapitel 8 zusammengefasst. Der An-
hang A gibt eine Übersicht der begutachteten Publikationen, die zu den
einzelnen Kapiteln veröffentlicht wurden.

viii

Preface

In the following thesis, we observe methods for designing and optimizing
parallel algorithms for SMP clusters. This particular architecture for par-
allel computers combines two different concepts. SMP cluster consist of
computing nodes that are shared-memory systems, because the processors
have access to common resources and especially to the local memory sys-
tem. Hence, the processors within the same node are capable to commu-
nicate and synchronize using the shared-memory. An interconnection net-
work connects the nodes. Communication and synchronization of proces-
sors from different nodes is done over this network and thus, correspond
to a distributed memory system. In the first place, this organization leads
to a parallel hierarchy, because parallelism is involved within and between
the nodes. Secondly, a hierarchy is created concerning communication. In
general, communication within a node is faster than communication be-
tween the nodes due to the use of shared-memory. Therefore, there are at
least two levels of hierarchy. Due to modern trends like hierarchical inter-
connection structures, Metacomputing technology, where several parallel
machines are connected, or Grid computing technology that use the In-
ternet to unify distributed computing resources in the whole world, there
might be even more levels of hierarchy. Basically, the lower the level of the
network for a communication operation, the faster the communication can
be done.

On this account, efficient algorithms have to be designed in the way that
the parallel as well as the communication hierarchy is considered. Usually,
this is not the case, and the SMP clusters are regarded as non-hierarchic.
Moreover, the general approach for the design of a parallel application is
dominated by the use of a particular programming model. The program-
mer relies on the efficiency of the implementation of the model for the re-
spective platform. Of course, this strategy does also lead to fast programs,
but in order to reach the optimum, it is additionally important to adapt the
algorithms to the hierarchical environment. Another problem is that the
design process of parallel algorithms is in general not supported by meth-
ods. Obviously, the design of a parallel algorithm cannot be reduced to a
simple recipe, however, the consideration of general design methods maxi-
mizes the amount of considered options and minimizes the threat of wrong

ix

x

algorithm design approaches.
In the following chapters, we show an alternative way that shows the

dependencies between theoretical cost models, programming models and
SMP clusters. It enables the developer to convert a theoretical analysis of
an algorithm into an efficient implementation for SMP clusters. Besides
the bridge from a theoretical analysis to an efficient implementation, we
present several methods for designing and optimizing parallel algorithms
for SMP clusters. With the help of case studies, we explain the design meth-
ods and the usage of the cost model for the algorithm analysis.

Chapter 1 is an introduction to the issues of developing parallel algo-
rithms. Besides a motivating example for parallel algorithms, the connec-
tions between theoretical cost models, programming models and parallel
architectures are depicted.

Chapter 2 gives an overview on parallel architectures, cost- and pro-
gramming models and shows their capability for the development of par-
allel algorithms for SMP clusters.

After that, we start with the formulation of a theoretical cost model for
SMP clusters (κNUMA) in Chapter 3 and show its usage by the analysis of
broadcast problems, where one processor has to send one (individual or gen-
eral) message to each of the other processors. The model can be regarded
as a super-set for the analysis of algorithms for SMP clusters. Depending
on the properties of a certain SMP cluster and because of the character of
the analyzed problem, the usage of a reduced model may be sufficient and
makes the analysis more feasible.

Chapter 4 introduces methods for designing and optimizing parallel al-
gorithms for SMP clusters. The methods can be applied to different stages
of the design process, beginning at the stage of a fine-grained problem par-
titioning and ending with the optimization of single aspects of parallel al-
gorithms for SMP clusters.

Further chapters are case studies for the usage of the methods for algo-
rithm design and for the usage of the cost model for the analysis.

In Chapter 5, we show by means of the parallel dense matrix-vector-
multiplication how a parallel algorithm is transferred to an SMP cluster,
how redundant data can be used to reduce the number of communica-
tion operations and how an unnecessary usage of redundant data can be
avoided. For that purpose, we analyze several data-distributions.

Chapter 6 presents an optimization method that tries to adapt exist-
ing communication patterns to the respective structure of an SMP cluster.
Communication patterns of algorithms can often be influenced by data dis-
tribution. We attempt to distribute the data in order to reduce the commu-
nication cost maximally. The method is explained using the problem of
transposing distributed matrices in a parallel setting. We present a data
distribution with which an algorithm is able to transpose a distributed ma-
trix without communication over the network. At the same time, the data-

xi

distribution minimizes the amount of memory per processor.
Chapter 7 is a case study for the design of a hierarchic-sensitive algo-

rithm. The method suggests moving a problem in lower and lower levels
of the hierarchy by exchanging informations, until only local computation
remains. As an example, the Radix Sort algorithm is observed. This method
enables to sort integer values by their binary representation within several
iterations. In each iteration, the integers are sorted according to a certain
part of their binary representation (the radix). We show the way from a se-
quential to hierarchical sensitive parallel algorithm that works with a min-
imum of communication operations and hence, is very suitable for SMP
clusters.

The results of the thesis are summarized in Chapter 8. The Appendix
A gives an overview on refereed publications that build the base for the
chapters.

xii

Contents

1 Introduction 1

1.1 Motivation for Parallel Computation 1

1.2 Levels of Parallelism in Computer Programs 5

1.3 Design Chain for Efficient Parallel Applications 6

1.4 The Contribution of the Thesis 8

1.5 Structure of the Thesis . 10

2 Architectures, Models, Libraries 11

2.1 Architectures . 11

2.1.1 Motivation and Technological Perspective 18

2.2 Computational Cost Models 20

2.3 Parallel Bridging Models . 21

2.3.1 The Bulk Synchronous Parallel Model 22

2.3.2 LogP Model . 25

2.3.3 QSM model . 26

2.3.4 A Comparison of Parallel Bridging Models 26

2.3.5 Parallel Bridging Models and Hierarchical Parallelism 27

2.4 Programming Models . 30

2.4.1 Parallel Programming Libraries 30

2.4.2 Parallel-Hierarchical Programming 36

2.5 Summary . 46

3 A Model for Hierarchical SMP Clusters 49

3.1 Design Decisions for the Model 49

3.2 κNUMA Model . 52

3.2.1 The Set of κNUMA-Parameters 52

3.2.2 Execution of Parallel Algorithms 53

3.2.3 One-to-All Broadcast Problem 55

3.2.4 Remarks and Conclusions to the Broadcast Problem . 63

3.3 Summary . 64

xiii

xiv CONTENTS

4 Designing Parallel Algorithms 67

4.1 PCAM . 69

4.2 Transferring Parallel Algorithms 73

4.3 Hierarchical Sensitive Design 75

4.4 Adaptation of Communication Patterns 76

4.5 Usage and Avoidance of Redundant Data 77

4.6 Summary . 79

5 Exploitation of Data Redundancy 81

5.1 Adapting κNUMA to the Target Platform 81

5.2 Dense Matrix-Vector-Multiplication 82

5.2.1 Basic Parallel Algorithm 83

5.2.2 Data Distribution . 84

5.2.3 Analysis . 87

5.2.4 Problems Involved with a Non-Hierarchical Approach 89

5.3 Experimental Tests . 91

5.4 Summary . 93

6 Adaptation of Communication Patterns 95

6.1 Problem Definition . 98

6.2 On-the-Fly Algorithm . 98

6.2.1 Mirror Scheme . 99

6.2.2 Algorithm and Analysis 101

6.3 Reducing the Initial Memory Space 102

6.3.1 Lower Bound . 103

6.3.2 Snake-like Scheme . 104

6.3.3 Optimizing the Number of Blocks 107

6.3.4 Comparison of the Bounds 107

6.4 Summary . 109

7 Hierarchical Sensitive Design 111

7.1 Sequential Radix Sort . 111

7.2 Parallel Radix Sort Algorithms 113

7.2.1 Straight Parallel Radix Sort 113

7.2.2 Load Balanced Parallel Radix Sort 114

7.2.3 Hierarchical-Sensitive Design 114

7.2.4 Communication Sensitive Parallel Radix Sort 116

7.2.5 An Alternative Approach: Sample Sort 117

7.3 Further Improvements . 118

7.4 Experimental Tests . 123

7.4.1 Standard Data Distributions 123

7.4.2 Worst-Case Data Distributions 126

7.5 Summary . 127

CONTENTS xv

8 Summary, Conclusions and Outlook 129

A Related Publications 135

A.1 Conferences . 135
A.2 Journals . 136
A.3 Book Chapters . 136

xvi CONTENTS

Chapter 1

Introduction

1.1 Motivation for Parallel Computation

Parallel computing is based on the simple real world observation that gen-
erally several workers can finish a job much faster than only one. The speed-
up that can be achieved by parallelism mainly depends on the structure of
the job. If we consider a set of products, which has to be carried from a
warehouse into a van, then it is clear that several workers can accelerate
this job optimally by their number. In the following analysis of the exam-
ple, we neglect the arithmetic precision and assume that the products can
be assigned evenly to the workers. If we have n products and p workers,
then every worker carries n/p products to the van. Since each worker has
to do the same amount of work, we can say that the work is balanced in an
optimal manner. In computer science, the problem of distributing the work
evenly is called load balancing. If t is the time a worker needs to carry one
product to the van, then the total time for loading the van is tn/p. If only
one worker (p = 1) loads the van, then the total time is tn. In computer sci-
ence, the speed-up of a parallel algorithm is defined as the quotient between
the running time of the fastest sequential algorithm for a problem and the
running time of the parallel algorithm. Hence, if we use p workers then
the job has a speed-up of tn/(tn/p) = p. This can be regarded as optimal,
because we invest p workers and the job runs p times faster, see Fig. 1.1.

The described problem can be extended easily in the way that it is not
possible to achieve an optimal speed-up. We simply introduce the rule that
each product has to be unregistered in a global registry, and that only one
worker in each time step can unregister one product, see Fig. 1.2.

Now, the time for carrying one product to the van is t1 and the time for
the unregistering process is t2. If we simply transfer the above algorithm
then the van is completely loaded as soon as the last worker has loaded the
n-th product. Hence, the total time is n/p(pt2+ t1) = nt2+nt1/p, because
for each of his n/p products the last worker has to wait (p−1)t2 until he can

1

2 CHAPTER 1. INTRODUCTION

Warehouse

Van!

n products

t...1 p2

Figure 1.1: Simple warehouse example: Each worker has to carry n/p prod-
ucts from the warehouse to the van.

unregister his current product, which costs an additional time t2. However,
the optimal time would be n/p(t1 + t2). Clearly, in this case, the registry is
the bottleneck. Each worker has to unregister its actual product, carries it
to the van and then returns to fetch the next product. If the time needed for
the unregistering process is much bigger than the time to carry the product
to the van and to fetch a new one (and there are many complex warehouse
programs around) then the total time needed gets close to the time only
one worker would need. As we can see in this worst-case scenario, the in-

Queue

Warehouse

Registry

Van!

t2

t1

Figure 1.2: Simple warehouse example: Each worker has to carry n/p prod-
ucts from the warehouse to the van. Additionally, each product has to be
unregistered.

1.1. MOTIVATION FOR PARALLEL COMPUTATION 3

vestment in p workers might be useless depending on the structure of the
job. On the other hand, a smart warehouse manager would try to invest
in his warehouse software to reduce the time t2 or he would spend money
in several registry workstations (e.g. p) to break the bottleneck and to in-
crease the speed-up. Actually, the described process is nothing else than
designing a parallel algorithm.

Now, the example does only cover the problem of distributing the work
on several workers. After the distribution, the workers can do their job in-
dependently. Unfortunately, in the majority of problems it is necessary that
the workers have to communicate during the execution of their job. They
need partial results produced by the other workers, or knowledge only one
worker has. Hence, the minimization of communication cost is a crucial issue
for the design of a parallel algorithm. Assuming, that in our example there
is one worker who has to tell all the other workers each time they come
back to the warehouse which product they have to fetch next (perhaps be-
cause he is the only person who has the product list). We call this worker
the boss. Let us denote the time needed for this communication as t3. Then
the total time for loading the van is nt1/p+nt2+nt3/p, because in each of
the n/p steps such a communication operation has to be done. Therefore, it
is obvious that t3 has great influence on the total time. Now the questions
are, which way of communication reduces t3 maximally? Moreover, how
much time does the communication take?

One possibility is that the boss tells each worker separately the next
product he has to fetch. Let c be the time needed to tell a worker which
product he has to take next. Hence, in this algorithm t3 = pc, if we assume
that he has to tell himself the next product, too (see Fig. 1.3).

1

2 3 4 5 6 7 8

1 2 3
4

5 6 7

0

Figure 1.3: Simple Communication Strategy (p = 8): The boss (node 1) tells
each worker separately which product he has to fetch next. The numbers
at the directed edges denote the time step at which the call is done.

Another possibility is that the boss tells only one worker what they and
the rest have to do. Then again each of the workers who know which
products have to be fetched next (incl. the boss) chooses one additional

4 CHAPTER 1. INTRODUCTION

worker and tells him what he and the rest have to do. This is repeated until
all workers know which product to take next. The described communica-
tion pattern resembles a tree with p nodes and is illustrated in Fig.1.4. The
height of the tree represents the number of time steps needed to perform
the communication operation. Since in each step, the number of proces-
sors that know which products have to be fetched is doubled and each step
takes time c, the total time for this operation is c⌊log p⌋, which is better than
the time for the last method.

1

2 3

4

5

6 7

8

1 2

2

3

3

3

3

0

Figure 1.4: Tree Communication Strategy (p = 8): The boss (node 1) starts
telling the next products to another worker. Then each worker (incl. the
boss) tells another innocent worker which product to fetch. This is repeated
until all workers know what to fetch next. The numbers at the directed
edges denote the time step at which the call is done.

Although the example seemingly has nothing to do with computers, it
introduces some main concepts of parallel computing as there is the prob-
lem of load balancing, the problem of achieving as much speed-up as possible,
and last but not least, the problem of minimizing communication cost.

Looking at the area of computer science, there is no unique mapping for
the workers to a certain object. For example concerning parallel algorithms,
the workers would have been denoted as processors. However, a processor
is just a piece of hardware which can be used to make calculations. Hence,
it may be better to say that a worker is a process which works on a pro-

1.2. LEVELS OF PARALLELISM IN COMPUTER PROGRAMS 5

cessor. Nevertheless, perhaps the processor itself is not just one piece of
hardware it may consist of several smaller units which are able to perform
micro-operations of the process in parallel. Therefore, within a certain part
of each process, again we have workers. Further, on a higher level, workers
can also be regarded as applications consisting of multiple processes and
working on sets of processors or computers. Again, the workers appear
on a different level. In the following, we show in which levels parallelism
can be exploited by computer programs and outline which is the level of
interest for the thesis.

1.2 Levels of Parallelism in Computer Programs

Concerning the execution of computer programs, the use of parallelism can
be recognized in all levels, starting from applications down to microproces-
sor instructions [74].

1. Application level: Several applications can be executed in parallel on
a set of computers. They all have their own working environment
and do not know anything from each other. Normally, they even do
not work on the same problem. Operating systems are responsible
for the parallel or scheduled execution of such applications.

2. Process level: Applications may consist of several processes. Largely
simplified a process can be seen as running program with a set of
resources, which includes a private memory space. Parallelism in this
level means that the processes try to solve the same problem together.
In order to speed-up the application, they are executed on different
processors at the same time. While their execution they are able to
communicate with each other which is generally necessary to solve
the common problem.

3. Thread level: Processes may have several threads of execution. A
thread is an activity within a process and has its own control flow
but shares resources and memory space with other threads in the
same process. With the help of the operating system, it is possible
to map the threads to different processors. Hence, several threads are
executed in parallel and are able to communicate using the shared-
memory space of the process.

4. Microprocessor instruction level: Microprocessor instructions can be
executed in parallel, if the processor provides multiple pipelines for
the execution of instructions (super-scalar). Optimizing compilers for
super-scalar processors can analyze the instruction stream and are
able to organize parallel executions by reordering of the instructions

6 CHAPTER 1. INTRODUCTION

in the streams. Another example for parallelism of instructions in
this level are vector processors. They are able to perform the same
operation on a vector of arguments at the same time. Consecutive
vector operations can be executed in an overlapping parallel manner
by the vector pipeline.

In the first level, operating systems are responsible for the execution
and scheduling of applications. Parallelism is not used to reduce the time to
solve a common problem; it is used to provide multitasking on computers
which is a very important feature for workstations and servers.

The fourth level is a very low-level parallelism and is therefore nor-
mally done by compilers.

Hence, the levels of interests for developers of parallel programs are
two and three, and this is the topic of this thesis. In these levels, it is possi-
ble to reduce the time for solving a problem by using several processes and
threads on multiple processors or computers.

In the following sections, we will discuss the elements involved in the
process of building a parallel application and we will show their interac-
tions and interfaces.

1.3 Design Chain for Efficient Parallel Applications

The development of parallel algorithms and applications is based on sev-
eral assumptions on the existing environment. The elements that play a
key-role for the design of an efficient parallel application are illustrated in
Fig. 1.5 and explained next.

Parallel Architectures

Parallel Algorithms

Cost Models
Programming Models

Figure 1.5: Elements of the parallel design process

• First, there is the parallel computer or supercomputer itself. There are
many different architectures for parallel computers. Each parallel ar-
chitecture has its own characteristics, which should be considered by a
program. Critical issues are how the processors are connected to the
memory banks, what kind of processors are used, or how fast they
can communicate. We give a detailed overview in Chapter 2.

1.3. DESIGN CHAIN FOR EFFICIENT PARALLEL APPLICATIONS 7

• Second, there are several programming models for the design of paral-
lel programs. A programming model defines the way processes or
threads can communicate or synchronize on the parallel computer.
For each model, there might be several different libraries and each li-
brary has to be implemented for each parallel computer. Several pro-
gramming languages can be used, but the focus in the area of high-
performance computing is on C/C++ and FORTRAN. The closer a
programming model fits to the underlying hardware the more effi-
cient the implementation of the programming model can be realized.

• Third, a more abstract representation of the programming model is
necessary with which algorithms can be designed and analyzed theo-
retically. We call these models cost models. They try to reflect the main
characteristics of the underlying programming model and parallel ar-
chitecture in a way that a significant cost analysis of an algorithm
is possible. Hence, algorithms are getting comparable and running
times are getting predictable only by the results of their theoretical
analysis.

• The fourth key-role element are parallel algorithms. They are the
building blocks of parallel libraries and applications. It is very im-
portant to develop efficient algorithms for problems, which appear
very often, in order to offer a large collection for the development of
complex applications.

Ideally, algorithms are designed on top of cost models. These cost mod-
els reflect the main characteristics of the underlying parallel architecture
and therefore the analysis is a good estimate for the running time of fol-
lowing implementations. In order to implement algorithms developed on
cost models, appropriate programming models must exist that implement
the cost models. The programming models themselves consist of program-
ming languages and libraries, and should fit to the underlying architecture
as much as possible. In practice, programmers very often develop and im-
plement algorithms using programming models directly. In this case, the
usage of a cost model is implicitly done through the programming model.
Hence, there is no accurate analysis of the algorithm, which implies the risk
of being inefficient.

Obviously, in this chain from the algorithm to the architecture there
might be loss of performance if the various levels do not fit properly. For
example if the cost model is inadequate towards the architecture because
it assumes an infinite memory space or an infinite number of processors,
then the resulting algorithms might be useless or at least inefficient in prac-
tice for the underlying architecture. There might also be problems if the
programming model does not fit to the architecture. If it assumes a shared-
memory for all processors but the underlying architecture consists of dis-

8 CHAPTER 1. INTRODUCTION

tributed memories, then there will be a loss of performance because the im-
plementation of the programming model has to simulate a shared-memory.

Hence, there is a gap between parallel algorithms and real parallel ma-
chines and the models should try to build a bridge. A lot of important
work has been done in order to build general-purpose cost models to over-
come this gap. These models were called parallel bridging models. We will
describe the most popular in Chapter 2.3.

Nearly independent of this process a huge variety of programming mod-
els were developed. The most important will be reviewed in Chapter 2.4.

1.4 The Contribution of the Thesis

In the center of the thesis, there is a parallel architecture called Clusters of
Symmetric Multi-Processors (SMP Clusters). This is a hybrid architecture
concerning the way processors are connected to each other. The build-
ing blocks are multiprocessor nodes with shared-memory. These nodes
are connected by an interconnection network. Hence, there is parallelism
within the nodes exploiting shared-memory and between the nodes using
the interconnection network, which creates a parallel hierarchy (see Fig. 1.6).
Basically, the communication between nodes is more expensive than within
the nodes which leads to a hierarchical communication architecture.

interconnection network

processor

to memory

interconn.

M M M

P P P P

processor

to memory

interconn.

M M M

P P P P

processor

to memory

interconn.

M M M

P P P P

Figure 1.6: Outline of the SMP Cluster architecture

There has been an enormous trend towards this architecture in the last
years because of economical and performance reasons. Together with the
emerging of this architecture a debate has been started which program-
ming model is the best for it. There are several approaches, which will be
reviewed in Chapter 2.4.2. Most of these approaches just ignore the new
communication hierarchy and make it transparent to the algorithm and
application developer. One advantage of such a strategy is that existing
programs can easily be ported by more or less recompiling. Another ad-
vantage is that a huge variety of programming models and libraries are

1.4. THE CONTRIBUTION OF THE THESIS 9

thus available for the architecture.
On the other hand stopping the consideration of the architecture at the

programming model level means to waste the chance of optimizing on
the algorithmic level and thus, to get the maximal performance possible.
Hence, the main part of the thesis it to show possibilities for algorithmic
optimization on SMP Clusters. As explained above, the main difference of
SMP Clusters is based in the communication hierarchy and the parallel hi-
erarchy. Therefore, all optimizations presented in the thesis are based on
communication operations and different data distributions.

According to the design chain for parallel applications depicted in Sec-
tion 1.3, we define a cost model for SMP Clusters. This cost model reflects
the main characteristics of SMP Clusters and of the hybrid-programming
model that will be presented in Chapter 2.4.2. This model suggests using
one process per SMP node. The processes can communicate over the inter-
connection network. Within the processes, multiple threads are responsi-
ble for the parallel execution. As mentioned earlier, there has been a lot of
work in finding a general-purpose cost model for all architectures. Indeed,
these models reflect the most important characteristics of parallel comput-
ers but not the communication hierarchy and the hybrid memory model of
SMP Clusters. Despite of that our approach is to extend the most accepted
general-purpose cost model named bulk synchronous parallel (BSP) model
[76] with the characteristics of SMP Clusters.

The described design chain provides a quantitative basis for the analy-
sis of algorithms and guarantees by the similarity of cost model, program-
ming model and architecture that a transfer to an efficient implementation
is possible. Although this is a pre-condition for developing parallel appli-
cations, it is not a methodology how parallel algorithms can be designed.
Hence, there is a need for design methods that help the developer to cre-
ate parallel algorithms for given problems. With the help of the methods
parallel algorithms can be developed. By using the cost model for the anal-
ysis, different approaches can be evaluated and compared. In [31], a gen-
eral methodology for developing parallel algorithms is presented. We use
this methodology as a framework for the over-all design process of parallel
algorithms for SMP clusters. We will review this methodology, show its
usage for SMP clusters and present additional methods

• for the design of parallel algorithms from scratch,

• for an efficient transfer of parallel algorithms to SMP clusters and

• for optimizing distinct aspects of these algorithms.

All these methods can be regarded as additional modules of the over-all
design methodology. They can be applied at different stages of the whole
design process from the problem to a highly optimized algorithm for SMP

10 CHAPTER 1. INTRODUCTION

clusters. Some only assume the problem definition (or a sequential algo-
rithm) as an input, some a parallel algorithm and others can be applied to
optimize SMP cluster algorithms. Hence, in order to design an optimized
parallel algorithm for SMP clusters, the methods can be applied consecu-
tively one after the other, which corresponds to a path through the set of
methods.

We will explain generally all methods whereby the explanation is sup-
ported by simple examples. Further, we present case studies for more com-
plex algorithms that present several paths through the design methods.

In each case study, we present theoretical, and if necessary, practical
evaluations of the algorithms. The cost model serves as a super-model for
the analysis. It is not always necessary to use the whole model for the
analysis of the sample algorithms. For each case study, another reduced
instance of the cost model is sufficient, which makes the analysis more fea-
sible.

In this sense, the thesis is an attempt to show the possibility of unifying
the theoretical and the practical aspects of developing parallel applications
considering SMP Clusters as example.

1.5 Structure of the Thesis

• In Chapter 2, we will give an overview on parallel architectures, moti-
vations for building SMP-Clusters, parallel bridging models and pro-
gramming models for SMP-Clusters.

• We proceed in Chapter 3 with a theoretical cost model for SMP Clus-
ters called κNUMA and show an analysis for broadcast problems.

• In Chapter 4, we review and present several methods for designing
and optimizing parallel algorithms for SMP clusters.

• Chapter 5 is the first case study for designing algorithms for SMP
Clusters. After using a method for transferring well-proven parallel
algorithms, it is observed how data redundancies can be exploited in
order to improve the performance of the algorithm. Hence, the case
study is called exploitation of redundant data. The sample problem is
the parallel dense matrix-vector-multiplication.

• Chapter 6 illustrates the second case study called adaptation of commu-
nication patterns using the example of parallel matrix transpose.

• In Chapter 7, the case study presents the method of hierarchical-sensitive
design. We address to the problem of integer sorting using parallel
radix sort.

• General conclusions can be found in Chapter 8.

Chapter 2

Overview on Parallel
Architectures, Models and
Libraries

2.1 Architectures

Computer architectures are classified according to their ability to realize the
parallel program execution. Flynn’s taxonomy [29] divides computer ar-
chitectures into four categories depending on how the instruction streams
and the data streams are implemented. A more actual interpretation of this
taxonomy is given in [77].

1. Single instruction stream and single data stream (SISD): These are
systems containing one CPU and therefore are able to execute one
instruction stream serially. Large mainframes that consist of multiple
processors do also belong to this class, because each processor exe-
cutes unrelated instruction streams. Hence, they can be regarded as a
couple of SISD machines working on different data spaces.

2. Single instruction stream and multiple data stream (SIMD): Systems
of this class are characterized by a huge number of processors, rang-
ing from thousands to ten-thousands. There is a global clock and in
each lock-step all processors execute the same instruction on different
data. In one lock-step, one instruction works on many data items in
parallel.

3. Multiple instruction stream and single data stream (MISD): Theoret-
ically, in such a machine different instructions are executed on the
same data at the same time. Until now, no practical machine of this
type has been constructed.

11

12 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

4. Multiple instruction stream and multiple data stream (MIMD): Sev-
eral instructions are executed in parallel on different data. In contrast
to the multi-processor SISD machines, the instruction streams and the
data streams are related. They are all parts of a global program and
hence work on the solution for a common problem. MIMD systems
are used for running sub-tasks in parallel with the aim to reduce the
time to solve the global problem. Most systems belong to this class
and hence a further criteria will be introduced later to make a more
accurate classification.

Although Flynn’s taxonomy is very useful, it does not cover how pro-
cessors are connected to each other and to memory units. However, parallel
architectures are made up from multiple processors and memory units.

Networks that are connecting processors with memory units are called
dynamic networks [52] , because they are built using switches and commu-
nication links. Paths among processors and memory banks are established
by connecting communication links dynamically using the switching el-
ements. Extreme but realistic examples of these networks are the n × n

crossbar, see Fig. 2.1 , and the bus connection, see Fig. 2.2. The former is a
common hardware channel that can link only a pair of modules at a time.
It has the least circuital complexity and cost. The latter is a square matrix
of switches that can connect up to n non-conflicting pairs of modules. It
achieves the highest connectivity at the highest circuital cost.

M0 M1 M2 M3

P0

P1

P2

P3

Figure 2.1: n × n crossbar switch, with n = 4.

Many systems use structures that are in between these two, as a com-
promise between practical scalability and performance. These networks
are called multi-stage crossbars. They are networks made of smaller inter-
connected crossbars. The omega network is illustrated in Fig. 2.3 as an exam-

2.1. ARCHITECTURES 13

P0 P1 P2 P3

Global memory

BUS

Figure 2.2: Bus-based architecture with no cache

ple for a multi-stage network. The advantage of such networks in contrast
to complete crossbar is that it only needs (n/2) log n switching elements
instead of n2.

00

01

10

11

00

01

10

11

Processors Memory banksStage 0 Stage 1

Figure 2.3: Example for a multi-stage crossbar: A complete omega network
connecting four processors with four memory banks.

Networks which are connecting processors are called static networks,
because they consist of point-to-point communication links among pro-
cessors. Typical structures for these networks among others are the Fat-
tree, Hypercube, 2D or 3D Meshes, and multi-stage networks like Butterfly,
Omega, or Clos networks. Fig. 2.4 shows eight processors connected by a
4D hypercube interconnection network. These and derived networks are in
use within a wide range of parallel computers and network elements like
e.g. hi-speed-switches. Detailed descriptions and design issues of static
and dynamic networks are discussed in [52, 53].

Efficiency of communication is measured by two parameters, latency
and bandwidth. Latency is the time taken for a communication to complete,
and bandwidth is the rate at which data can be communicated. Latency
can also be imagined as the time needed to communicate zero data. In a

14 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

0000

0001

0010

0011

0100 0110

0101 0111

1000 1010

1001 1011

1100 1110

11111101

Figure 2.4: Example for a static network: A 4D hypercube connected archi-
tecture.

simple world, these metrics are directly related. For communication over a
network, however, we must take into account several factors like physical
limitations, communication start-up and clean-up times, and the possible
performance penalty from many simultaneous communications through
the network. A rule of thumb is that latency depends on the network ge-
ometry and implementation, and bandwidth increases with the length of
the message, because of the decreasing influence of fixed overheads.

As already mentioned above, almost all modern parallel computers be-
long to the MIMD class of parallel architectures. Basically, this means that
processing nodes can execute independent programs over possibly differ-
ent data. The MIMD class is subdivided in [77] according to the character-
istic of the physical memory, into SM MIMD (shared-memory MIMD) and
DM MIMD (distributed-memory MIMD).

The memory banks of a SM MIMD machine form a common address
space, which is actively supported by the network hardware (see Fig. 2.5a).
Different processors can interfere with each other when accessing the same
memory module, and race conditions may show up in the behavior of the
programs. Therefore, hardware lock and update protocols have to be used
to avoid inconsistencies in memory and among the caches 1. Choosing the
right network structure and protocols are critical design issues, which drive
the performance of the memory system. Larger and larger shared-memory

1We do neither analyze in depth here cache coherence issues, nor multi-stage networks,
nor cache-only architectures [52].

2.1. ARCHITECTURES 15

processor

to memory

interconn.

C C C C

M M M M

network

interprocessorM M M

P P P P

M M M M

M M M M

processor

to memory

interconn.

P P P P
P P P P

(a) (b) (c)

Figure 2.5: Overall structure of DM and SM MIMD architectures. (a)
Generic SM MIMD machines have multiple processors and memory banks
(not necessarily the same number) – (b) example of NUMA SM MIMD with
multiple local and global memory banks, and a bus interconnection – (c) ex-
ample of a MIMD architecture composed of single-processor nodes and a
more sophisticated interconnection network. Depending on the network
implementation, this can be either a DM-MIMD or a NUMA SM-MIMD
architecture.

machines lead to difficult performance problems.
Multi-stage crossbars are getting more and more important with an in-

creasing number of processors in shared-memory machines. If a multi-
stage crossbar connects the processors and each processor has some local
memory banks, there is a memory hierarchy within the shared-memory of
the system (see Fig. 2.5b).

Systems in which the access from a processor to some of the mem-
ory banks, e.g. its local one, is faster than access to the rest of the mem-
ory are called NUMA systems (Non-Uniform Memory Access), in contrast
with UMA systems. Shared-memory architectures (both UMA and NUMA
ones) are often called Symmetric Multiprocessors (SMP), because the archi-
tecture is fully symmetric from the point of view of the running programs.

In contrast to the shared-memory machines, in a distributed-memory
machine each processing node has its own address space. Therefore, it is
up to the user to define efficient data decompositions and explicit data ex-
change patterns for the applications. Each processing node has its own
local memory, so distributed memory architectures obviously belong to the
NUMA architectural class (see Fig. 2.5c). The network is inherently slower
than local memory; hence, we have a memory hierarchy in DM MIMD ma-
chines, too. However, distributed-memory architectures are less demand-
ing with respect to the interconnection network 2 , so they are much more

2For instance, coherence and locking problems are not dealt with at the hardware level.
This removes some design constraints, and reduces communication overheads.

16 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

Classification count share

MPP 211 42.2 %

Cluster 149 29.8 %

Constellations 139 27.8 %

SMP 1 0.2 %

Table 2.1: Summary of the TOP500 list (June 2003) of the fastest supercom-
puters according to the architectural classification.

scalable than the shared-memory ones.

In recent years, a strong trend has emerged in the field of high perfor-
mance computers towards two kinds of architectures, (1) clusters of vector
computers and (2) clusters of scalar uni- and multiprocessors. Looking at
the list of the fastest 500 supercomputers in the world [60], the majority
of them belongs to these two classes, with the latter steadily gaining more
share.

Especially clusters of SMP nodes (SMP clusters) are a more and more
emerging architecture for building parallel computers. In the latest list of
the fastest 500 supercomputers (June 2003), 29.8 % of the supercomputers
were classified as clusters, whereby de facto all these systems are clusters of
SMP nodes. Additionally, SMP clusters are also found in the other classes
of the summary of the TOP500 list depicted in Table 2.1. Bell and Gray [8]
define constellations as clusters of nodes with larger shared-memory mul-
tiprocessor nodes, where each node is more powerful than the casual PC
uni- or dual-processor nodes. Additionally, clusters of vector processors
do also belong to this class, because the performance of modern vector
processors is comparable to that of larger SMP nodes. Massively parallel pro-
cessing systems (MPP) can be characterized roughly by a very large number
of processors with local memory that are connected by a special intercon-
nection network. Nevertheless, despite of that, systems that clearly have
the SMP cluster structure were classified as MPP systems in the list. For
example, the number four in the current list, the IBM ASCI White, is an
IBM RS/6000 SP system that consists of 512 nodes and each node has 16

Power3 processors. Probably this system was classified as a MPP system,
because the number of 8192 processors is very high and typical for MPP
systems. Hence, much more than 30% of the supercomputers in the list are
SMP clusters. Further, 8 out of the fastest 10 supercomputers are SMP clus-
ters, too. We did not count the number one of the list, the Earth-Simulator,
because its 640 8-way nodes consist of vector processors. However, despite
of that, these numbers clearly underline the importance of the SMP cluster
architecture.

2.1. ARCHITECTURES 17

At different scales, these SMP cluster systems can be classified both as
DM and as SM MIMD architectures, because SM MIMD processing nodes
are connected together to form a larger DM machine. The result is a pow-
erful parallel architecture, which combines the high effectiveness of small
shared-memory computing nodes with the scalability of the distributed
memory parallelism among the nodes.

In principle, we could classify SMP clusters either as SM or as DM
MIMDs depending on the existence of a common address space abstraction
for all the processors, eventually provided by firmware or software layers.
However, even if a shared space is provided this way, algorithms that ex-
ploit memory locality within SMP nodes incur much fewer communication
overheads, and can achieve a better performance. Thus, SMP clusters have
a parallel hierarchy of at least two levels. The number of levels may actually
be higher, depending on the topology of the intra- and inter-node networks.

Grid or meta-computing technologies, where supercomputers or clus-
ters of workstations are connected with each other to run applications, re-
sult in even more levels and a less regular parallel hierarchy. Broadband
connections, ranging from local area networks to geographic ones, add
more levels to the hierarchy, with different communication bandwidth and
latency [32].

Summing up, in modern parallel architectures we have the following
hierarchy of memory and communication layers.

• shared-memory

• distributed-memory

• local area network

• wide area network

Each one of these layers may exhibit hierarchical effects, depending on its
implementation choices.

The effects on latency and bandwidth of the parallel hierarchy are sim-
ilar and combine with those of the ordinary memory hierarchy, consisting
of several levels starting at the processor’s registers up to the hard disks. A
crucial observation is that there is no strict order among the levels of these
two hierarchies, which we can easily exploit to build a unitary model. For
instance in some systems, we can see that the communication layers (both
SM and DM based ones) provide a bandwidth lower than main memory,
and in some cases lower than that of local I/O. However, their latency is
usually much lower than that of mechanical devices like disks. Thus, dif-
ferent access patterns lead to different relative performances of communi-
cation and I/O.

Assessing the present and future characteristics of the parallel hierarchy
[19] and devising appropriate cost and programming models to exploit it

18 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

are among the main open issues in modern parallel/distributed computing
research.

2.1.1 Motivation and Technological Perspective

As we explained in the last section, parallel computing architectures em-
ploy memory and parallel hierarchies. In the following, we summarize
arguments that explain the trend towards even more hierarchical architec-
tures than SMP clusters, and we discuss possible future developments.

In [48] some main advantages of SMP cluster architectures are found,
most of them being technological and economical considerations.

• Standard off-the-shelf processors are getting faster and faster, even
with respect to special purpose architectures. Because of their quan-
tity, development and production costs are getting lower and lower.
Special purpose processors (e.g. vector processors) are no longer able
to achieve significant advantages over the commercial product lines,
so architectures employing multiple commodity processors are go-
ing to be preferred for massively parallel processing machines (MPP),
SMP and cluster machines.

• A similar effect shows up due to mass-production of network and
architecture components. For clusters of small SMP, which employ
standard network and structural components, there will be a very
fast capability growth. This will lead to cheaper and more scalable
networks, which can compete with the special purpose connection
structures of MPPs. As soon as the performance advantages of the
special purpose networks will disappear, the SMP clusters will get
into the position of the MPPs.

• SMP clusters are scalable and expandable. Their architecture is in-
trinsically more scalable, and it is practically expandable by adding
more nodes and/or upgrading processing nodes. While it is usually
not possible to add processors in a SMP or MPP, it is easy to build a
SMP cluster step by step.

• The size of memory, disk subsystem capacity and bandwidth are crit-
ical resources in a supercomputer. A greater total memory size and
number of disks characterize SMP clusters. Hence, it is possible to
have more active jobs, which even have larger data storage available.

• Most software for MPPs or SMPs can easily be ported to SMP clus-
ters achieving similar efficiency. With the knowledge of software for
SMP machines and the already existing software for MPPs, it should
be possible to provide a powerful environment for parallel software

2.1. ARCHITECTURES 19

development and execution. We will give an overview of the efforts
in this direction in Section 2.4.

Some of the preceding considerations have been recognized years ago, while
others are a more recent discovery. According to Bell and Gray [8], the trend
will last for more than a while. They depict a scenario of the evolution of
parallel computer and computing grid architectures, which is described be-
low.

Users of supercomputers and proprietary software will turn to propri-
etary clusters using standard software. The clusters themselves are built
from commodity hardware and software. There will be an era of super-
computing mono-culture where every company or research institute will
build its own supercomputer.

As a downside, applications that need a large shared-memory perform
poorly on distributed-memory systems. For that reason, computing centers
will migrate to super-application centers. They will provide application
centric vector- or cellular supercomputers for special research areas.

Computing centers will have the role of fully distributed computation
brokers. The centers will decide where, when and on which platform a job
is executed, exploiting Grid [32] or meta-computing techniques to manage
clusters of supercomputers. Furthermore, computing centers will become
super-data centers. They will provide, through a faster Internet, storage
for peta-scale data sets with efficient access methods. With the increased
Internet bandwidth, cluster and Grid technologies will merge in the next
decade. Hence, all LAN-based workstations will become part of clusters,
all of them together are forming the Grid.

According to this prediction, hierarchical parallel systems will be the
principal computing structure in the future. Therefore, investments and
research in programming environments and in understanding hierarchical
parallelism are very important. In this sense, this thesis can be regarded as
one step in this effort.

20 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

2.2 Computational Cost Models

In sequential computing algorithms were designed using the classical ran-
dom access machine (RAM) model which is based on the Von Neumann
computer. Due to the more complex structure of modern computers, con-
cerning memory hierarchy this model does not properly account with the
cost of memory access. Hence, more complex multi-level computational
models have been suggested to obtain better predictions of the algorithm’s
practical behavior. The most known of them is the PDM model [78].

In parallel computing, we have a similar situation. A first approach of
modeling a parallel computer was to extend the RAM model with multi-
ple processors using a shared-memory. The resulting computational cost
model is called the parallel random access machine (PRAM) model [30]. It
is based on several precise assumptions on the parallel computer:

• There is an unlimited number of processors (simple processing units
with local memories) that run the same program. They are connected
by an unlimited global shared-memory where they can read and write
in parallel.

• PRAM machines can be differentiated according to their capability
of accessing the shared-memory. Read and write operations can be
either exclusive or concurrent. In case of a concurrent write rules are
defined what happens to the memory location if several processors
manipulate it in the same time step.

• The execution of a program is done synchronously. There is a global
clock and in each time step, all active processors always complete one
instruction.

Hence, the PRAM model assumes the same costs for a computation
step, a local memory access and a global memory access. Practical as-
pects like the memory hierarchy and bandwidth constraints due to certain
interconnection networks are completely ignored. The focus is solely set
on concurrent program execution. These assumptions cause the model to
be very independent of the properties of a specific architecture, and hence
the PRAM model can be used as an effective model for analyzing the ab-
stract computational complexity of problems. On the other hand, these
assumptions are not realistic for the majority of architectures described in
Section 2.1. Real MIMD machines are much more complex and hence us-
ing the PRAM model contains the risk of getting misguiding results with
respect to real computational costs.

Several extensions have been developed for the PRAM model in order
to get the theoretical computational cost closer to real performance. A sur-
vey on these derived models is given in [35].

2.3. PARALLEL BRIDGING MODELS 21

A second research part in parallelism considers efficiency of communi-
cation in interconnection networks. Different network structures are com-
pared according to their ability to perform communication operations and
costs concerning hardware elements. It is possible to embed certain net-
work structures into others and hence to simulate efficient networks algo-
rithms in the environment of other structures. Despite of that, network-
specific algorithms are often too tied to the geometry of the network and
show a sub-optimal behavior when running on a different network struc-
ture.

A third research track started in the 1990s introducing the class of par-
allel bridging computational cost models. These models try to describe the
main properties of complex parallel architectures without being too com-
plex or being too imprecise. On the one hand, these models do not want to
be architecture-specific, but on the other side they want to predict the real
performance of a program as accurate as possible. These models are subject
of the following section.

2.3 Parallel Bridging Models

Computational cost models have to find the right balance between abstrac-
tion and accuracy. They should reflect the real behavior of parallel algo-
rithms without making the analysis too complex. A parallel cost model can
be regarded as useful, if the results of analyses can be confirmed in practice.
A model that achieves this aim without being limited to a special architec-
ture is called parallel bridging model. A PBM separates the development of
efficient algorithms and software from the underlying architecture. Several
models of this class have been developed in the 1990s. They use a more
abstract approach in modeling the interconnection architecture.

The most well-known and accepted PBM was introduced by Valiant
[76]. The following goals of a PBM were formulated in the context of its
initial definition.

Cost measure A PBM has to define a cost measure that describes the in-
dividual operation costs and hence, guides the development of algo-
rithms. In fact, the cost measure is the main element of the model
because it defines which characteristic of a parallel computer is con-
sidered. The model should be independent of a specific architecture
and technology, but it should reflect the fundamental constraints of
parallel machines.

Efficient universality Implementations of PBM algorithms on real machines
should not lead to great loss of performance. While logarithmic sim-
ulation losses have to be avoided, constant bounded inefficiency is
within the tolerance.

22 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

M M MM

. . .

interconnection network

PP1 P2 3 Pp

Figure 2.6: The BSP abstract architecture.

Neutrality A PBM has to be neutral concerning the number of processors.
Although the results are expressed asymptotically, they should be ap-
plicable to ranges from only a few to millions of processors. Hence,
an approximate result is justified if the factors are small.

Portability The programmer should not have to care about low-level prob-
lems like explicit memory management, complex communication op-
eration or synchronizations. Thus, there has to be a programming
model, which is close to the PBM supporting high-level functions.

Parallel slackness A PBM algorithm designed for v virtual processors should
be optimally simulated on p physical processors if p is smaller than v

(e.g. v = p log p). This enables to overlap communication and com-
putation of different virtual processors on a wide range of intercon-
nection networks.

2.3.1 The Bulk Synchronous Parallel Model

The bulk synchronous parallel model (BSP) (as described in [3]) is a set of pro-
cessors with local memories and a complete interconnection network, see
(Fig. 2.6). A router delivers messages between pairs of processors. The
model uses three parameters to describe a BSP computer, see Fig. 2.7. The
number p of processors, a latency parameter L, which is the maximum la-
tency of a message or synchronization in the network, and a parameter g,
which is the basic throughput of the network or the bandwidth inefficiency.

A BSP computation consists of supersteps. During a superstep, proces-
sors can do computations on their data in local memory and can send and
receive a certain amount of messages with each other. Messages sent dur-
ing superstep t are received only at the beginning of superstep t+1. Fig. 2.8
shows the phases of a superstep. Each superstep consists of computation

2.3. PARALLEL BRIDGING MODELS 23

p number of processors
L message latency / synchronization
g cost parameter for message-passing

for processor i in superstep t

wi,t local computation
λi,t num. of sent messages
µi,t num. of received messages
wt = maxi wi,t global work in t

ht = maxi max{λi,t, µi,t} global routing in t

wt + g · ht + L cost of superstep t

Figure 2.7: BSP symbols and parameters.

phase (gray stripes), a communication phase with varying communication
pattern, and the constant bounded synchronization time L (white stripes).

The table of Fig. 2.7 summarizes the composition of the costs in the BSP
model for a superstep t and a processing node i.

Let hi,t = max(λi,t, µi,t) be the largest number of messages sent or re-
ceived by processor i during the current superstep t. The communication
pattern (set of all point-to-point communications in a superstep) has size
ht = maxi hi,t for superstep t, and is called h-relation.

With these parameter definitions, wt and ht are the largest w and h

values in superstep t.

Hence, the total time of a superstep is wt+g·ht+L, because , this can be
regarded as an upper bound, if we assume that synchronization after each
superstep is only enforced when actually needed for the correctness of the
algorithm. We can analyze a BSP algorithm by computing wt and ht for
each superstep. If the algorithm terminates in T supersteps, the local work

P1

P3

P2

Pp

w t g h t L

...

superstep t+1

Figure 2.8: BSP superstep execution

24 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

W =
∑

t wt and the communication volume H =
∑

t ht of the algorithm lead
to the cost estimate W + g · H + L · T .

Another useful criterion for judging BSP algorithms is the c-optimality.
If Tseq is the time of the best known sequential algorithm then a BSP algo-
rithm is called c-optimal, if W = c · Tseq/p and g · H + L · T = o(Tseq/p) for
a small constant c ≥ 1.

In the next section, we will address to other parallel bridging models.
We will present the CGM model, which is the closest to the BSP, the LogP
and the QSM model.

The Coarse-Grained Multicomputer

The coarse-grained multicomputer (CGM) model is similar to the BSP model
concerning the superstep-based execution scheme of a parallel algorithm.
In contrast to BSP, there are only two parameters. The number of proces-
sors p, and the problem size, n. Each node has O(n/p) local memory. No
assumptions are made for the network structure. Algorithms exploit a re-
duced number of fixed, parallel primitives for computation and communi-
cation, which can be efficiently implemented over various interconnection
networks.

Each CGM algorithm has a parametric cost depending on n and p. Fur-
ther, the costs for the used primitives depending on the problem size n are
added. In Fig. 2.9, they are represented by f, g, s. Depending on the net-
work topology the time for each primitive can be inserted (e.g. complexity
of exchanging O(n/p) keys in a hypercube of diameter log2 p, see Fig. 2.4
for an example of an hypercubic structure).

A CGM superstep consists of three phases. The decomposition phase
(the work is distributed using parallel primitives), the local computation
phase, and a merge phase (results of local computation are communicated)
also exploiting the parallel primitives. The task of formulating a CGM al-

P1

P3

P2

Pp

f(n) g(n) f(n)work

co
m

m
.
/

m
er

g
e

d
ec

o
m

p
o
si

ti
o
n

co
m

m
.
/

m
er

g
e

s(n)

co
m

m
.
/

m
er

g
e

...

Figure 2.9: CGM supersteps

2.3. PARALLEL BRIDGING MODELS 25

gorithm is to decompose the problem into coarse-grain independent sub-
problems using these global portable parallel primitives. The algorithm,
which needs the smallest number of supersteps is the best.

During the years, in the common use CGM has become close to BSP. In
recent works (e.g. [25, 26]), CGM algorithms are often defined as a special
class of BSP algorithms.

2.3.2 LogP Model

The LogP model [24] ignores the network geometry like the BSP model.
The processors communicate through point-to-point messages. The model
defines four parameters. An upper bound on communication latency L,
the overhead involved in a communication (for sending and receiving mes-
sages) o, a gap parameter g (the time a processor has to wait before the next
communication can be started), and the number of processors P. As we can
see the notion of the parameters are responsible for the name LogP. In the
original model (stalling LogP) an explicit capacity constraint is assumed for
the network. No processor can have more than ⌈l/g⌉ messages in transit to
it at the same time. Senders that hurt the constraint are assumed to stall.
Non-stalling LogP dismisses the network capacity constraint. Therefore, in
the stalling model the messages are considered to be of small fixed length.

The design and analysis of LogP algorithm is more complex than for
other models, because of the unstructured and asynchronous nature and
the capacity constraint requirement. There are comparably fewer results
with LogP, even if most basic algorithms (e.g. broadcasts or summing)
have been analyzed in great detail. An outline of the LogP-broadcast is
presented in Fig. 2.10.

P6

P7

P5

P4

P3

P2

P1

P0
o o o o

o

o

o

o

o

o o o

o o

g

g g g

L

L

L

L

L

L

L

time
4 6 8 10 12 14 16 18 20 2622 24 282

Figure 2.10: LogP-Model: Optimal broadcast tree for P = 8, o = 2, g = 4

and L = 6. Processor P0 is the initiator of the broadcast.

26 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

2.3.3 QSM model

The queuing shared-memory (QSM) [34] model can be seen both as a PRAM
evolution and as a shared-memory variant of the BSP. Each processor has
a local memory. The processors communicate by reading and writing to
a shared global memory. The execution of an algorithm is divided into
phases, with reads and writes. The reads and writes to the shared-memory
are posted at the end of each phase. Concurrent read (or writes, but not
both) to a memory location are allowed.

Each processor performs a certain amount of local computation within
each phase. The cost of each phase is defined as max(mop, g·mrw, κ), where
mop is the largest amount of local computation in the phase, mrw is the
largest number of read and writes from the same processor, and κ is the
maximum contention of the phase, i.e. the maximum number of colliding
accesses on any location in that phase. The gap parameter g has the same
meaning as in the LogP model , whereas latency is not explicitly consid-
ered, and it is substituted by the contention. A large number of algorithms
designed for variants of the PRAM can be easily mapped on the QSM.

2.3.4 A Comparison of Parallel Bridging Models

It is possible to compare the models by emulating one model on the other.
Emulations are work-preserving if the product p · t (processors per execution
time) on the emulating machine is the same (within a constant factor) as
that on the machine being emulated. If the emulating machine has fewer
processors than the emulated one, the emulation is characterized by a cer-
tain slowdown. This slowdown is O(f), if we are able to map an algorithm,
running in t time on p processors, to one running on p ′ ≤ p/f processors
in time t ′ = O(t · (p/p ′)). If the slowdown is O(1) then the emulation has
at most a constant factor of inefficiency.

Ramachandran [62] presents asymptotic slowdown results in a recent
survey. If there are several work-preserving emulations with small slow-
down, this indicates that these models are equivalent in their use as cost
models for real parallel machines.

But despite of that, some models are preferable since there exist ade-
quate programming models for them and since a more abstract view of the
algorithm’s structure and communication patterns allows an easier design
and analysis.

From this point of view, the LogP and the QSM are less suitable, be-
cause they provide too much low-level analysis concerning communication
behavior and memory access. It is very difficult to analyze complex algo-
rithms with these models. The QSM can be used to evaluate the practical
performance of many existing PRAM algorithms. A disadvantage of QSM
is that it disregards hierarchical structures of the computation, and it has

2.3. PARALLEL BRIDGING MODELS 27

an abstract but fine-grain approach to communication cost.
In contrast, the BSP and the CGM can be used easier for the design of

parallel algorithms, because of their coarse grain nature and their abstrac-
tion of complex communication patterns. Further, several programming
models and software tools have been designed with which it is possible to
implement BSP algorithms directly. The two main libraries are the Pader-
born University BSP library (PUB) [15] and the Oxford BSPlib [42]. These
are special libraries, which pretend to close the gap between the BSP model
and real parallel machines. Unfortunately, these programming models do
not play a major role in practical parallel programming. However, BSP al-
gorithms can also be implemented using more “standard” programming
models, which we will describe in section 2.4.

In the following section, we will have a look on extensions of the BSP
model with respect to hierarchical network structures.

2.3.5 Parallel Bridging Models and Hierarchical Parallelism

After the introduction of PBMs, research in this area focused on enhencing
their accuracy. This is done by exploiting the concepts of processor locality
and block-oriented communications.

In Section 2.1, we showed that parallel architectures consist of regular
hierarchical structures. These architectures reward accesses to local data.
The closer the data is to the processor, the faster is the access. Parallel Bridg-
ing models can be extended by introducing parameters that indirectly re-
flect actual communication behavior without making explicit assumptions
on the underlying architecture like e.g. geometry.

In the following two extensions of the BSP model are presented. Its
abstract and simple communication model is extended first by caring about
effects on the message length and second by considering the relationship
between network size and parallel overhead in communications.

The BSP* model.

In contrast to the BSP communication model, communication in real in-
terconnection networks is dependent of the message length. BSP does not
account for this characteristic of communication. BSP roughly considers
congestion effects in networks by involving the number of exchanged mes-
sages. The combination of bandwidth constraints, start-up costs and la-
tency effects is often modeled as a linear affine function of message length.
To model the practical constraint of efficiency for real communications, the
BSP* model [3] has been introduced in 1996. BSP* adds a critical block size
parameter b, which is the minimum size of data for a communication to
fully exploit the available bandwidth. This parameter is integrated in the
cost function of communication. The function has to account for both,

28 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

the number of messages in a superstep ht, and the communication vol-
ume st (the sum of all sizes of all messages). Each message is charged a
constant overhead, and a time proportional to its length in blocks. The
costs of a superstep are defined as wt + g(st/b + ht) + L, often written as
wt+g∗ ·(st+ht ·b)+L , where g∗ = g/b. This has the effect that algorithms
that produce high communication volumes and long messages are not re-
warded. Nevertheless, due to the parameter b, too many small messages
do also have a negative impact on performance. Both aspects are close to
real communication behavior.

Summarized, BSP* encourages block-organized communication and a
reduced amount of data transfers.

D-BSP model.

The behavior of the BSP model is independent of the size of the BSP ma-
chine. Thus, the model’s behavior is adapted if parameter values are chang-
ing (e.g. adding processors to a bus interconnection leads to larger values
of g and L). On the other hand, there is no way we can model situations
that are more complex where the network properties change according to
the part of it that we are using. This is an intentional trade-off of the BSP
model, but it can lead to inaccurate cost estimates in some cases. We men-
tion two examples.

• Networks with a regular geometry, like meshes or hypercubes, can
behave quite differently if most of the communication traffic is local,
in comparison to the general case.

• Modern cluster of multiprocessors and multiple-level interconnec-
tions cannot be properly modeled with any value of g, L, as shared-
memory and physical message-passing communications among dif-
ferent kinds of connections imply very different bandwidths and over-
heads.

The decomposable BSP model (D-BSP) was introduced by De La Torre
and Kruskal [73]. D-BSP rewards locality of computation by allowing hier-
archical decomposition of the machine into smaller BSP-sub-machines.The
g and L parameters of BSP are replaced with two functions, Gm and Lm, of
the sub-machine size m.

During algorithm execution, the computation can be recursively split,
and smaller sub-problems can be assigned to different sub-machines. The
sub-computations are still D-BSP computations, which proceed indepen-
dently until they merge again. Their computational cost is the maximum
of the costs of the sub-computations, and each is evaluated with the appro-
priate g, L values. The actual shape of Gm,Lm controls the advantage of
decomposing the computation into local sub-computations.

2.3. PARALLEL BRIDGING MODELS 29

Measuring communication cost in this abstract way has the advantage
that D-BSP does not have to deal with the geometry of the interconnection
structure directly. It only deals with characteristic functions that are rep-
resenting the interconnection structures. Hence, D-BSP adds the ability to
consider architectural effects on communication due to the network.

A first comparison among the D-BSP and BSP models can be found in
[11]. Meyer auf der Heide and Wanka [3] investigated the relationships
among the BSP* and the D-BSP models. Bilardi and others [12] also exam-
ine the D-BSP model, concluding that it offers the same design advantages
of BSP, but has higher effectiveness and portability over realistic parallel
architectures. They show results for the family of functions Gm,Lm of the
form C · (n/2i)α, where m = 2i, (0 ≤ i ≤ log n) and (0 < α < 1).
These functions capture a wide family of commonly used interconnection
networks with n nodes, including multidimensional arrays.

30 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

2.4 Programming Models

In this section, we will survey a set of programming models and software
tools that can be used to exploit parallel hierarchical architectures. We will
start with libraries used for parallel programming, and we will show im-
provement of these libraries that try to exploit the hierarchical structure of
SMP Clusters. As we will see in the various approaches, writing programs
that fully exploit hierarchical parallel architectures is a difficult and error-
prone task, where a large part of the effort is spent in tuning and debugging
activities.

2.4.1 Parallel Programming Libraries

There are two main parallel programming paradigms, which fit the two
extremes of the MIMD architectural class, the message-passing paradigm
for distributed-memory machines and the shared-memory paradigm for
the shared-memory machines.

In the message-passing paradigm, each process has its local data and ad-
dress space, and it communicates with other processes by exchanging mes-
sages. This shared-nothing approach corresponds to the abstraction of a DM
MIMD architecture, if we map each process to a distinct processor.

In the shared-memory programming paradigm, all the data is accessible to
all processes or threads, hence this shared-everything approach fits perfectly
the SM-MIMD class of architectures. The programmer, however, has to
formulate race-conditions to avoid deadlocks or inconsistencies.

For both paradigms, there is one de facto standard library, respectively
the message-passing interface (MPI) standard, and the OpenMP program-
ming model for shared-memory programming.

Message-Passing-Interface MPI

In 1994, the MPI-Forum unified the most important concepts of message-
passing-based programming interfaces into the MPI standard [56]. The cur-
rent, upward compatible version of the standard is known as MPI-2 [58],
and it specifies primitive bindings for languages of the C and FORTRAN
families.

In its simplest form, an MPI program starts one process per processor
on a given number of processors. Each process executes the same program
code, but it operates on its local data, and it receives a rank (a unique iden-
tifier) during the execution that becomes its address with respect to com-
munications. Subject to the rank, a process can execute different parts of
the program, thus the SPMD (Single Program Multiple Data) structure of
the execution actually allows a generic MIMD programming model.

2.4. PROGRAMMING MODELS 31

There are MPI implementations for nearly all platforms, which is the
prerequisite for program portability. Key features of the MPI standard in-
clude the following:

• Point-to-point communication. The basic MPI communication mech-
anism is to exchange messages between pair of endpoint processes, regard-
less of the actual network structure that delivers the data. One pro-
cess initiates a send operation and the other process has to start a
receive operation in order to start the data transfer.

Several variants of the basic primitives are defined in the standard,
which differ in the communication protocol and the synchronous/asyn-
chronous behavior. For instance, we can choose to block or not until
communication set-up or completion, or to use a specific amount of
communication buffers.

These different options are needed both to allow an optimized imple-
mentation of the library and to allow the application programmer to
overlap communication and computation.

• Collective operations. Collective communications involve a group of
processes, each one having to call the communication routine with
matching arguments, in order for the operation to execute.

Well-known examples of collective operations are the barrier synchro-
nization (processes wait for each other at a synchronization point), the
broadcast (spreading a message to a group of processes), the scan op-
eration, scatter (data items are distributed from one processor to all
others) and gather (one processor gets data items from all others) op-
erations. Some collective communication operations are presented in
Fig. 2.11.

• One-sided Communications. With one-sided communication all com-
munication parameters for both, the sender and the receiver side,
are specified by one process, thus avoiding explicit intervention of
the partner in the communication. This kind of remote memory ac-
cess separates communication and synchronization, but the user is
responsible for the correct synchronization of the remote memory ac-
cesses. Remote write, read and update operations are provided this
way, together with synchronization primitives to support the differ-
ent synchronization styles.

• MPI-IO. The MPI-2 standard includes the specification of a parallel
I/O programming interface. Programs written using MPI-IO can ex-
ploit message-passing parallelism and a shared disk space, while re-
maining largely portable. A full discussion of parallel file systems is

32 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

not appropriate here, so we summarize the MPI-IO approach and its
rationale.

A typical parallel I/O scenario is that of multiple processors in a
MIMD machine (Fig. 2.5b,c) trying to access different parts of a single
large file. SM architectures often use centralized I/O subsystems, and
the target is to minimize contention due to this bottleneck. DM archi-
tectures on the other hand, usually have local disks in each processing
node. In order to exploit these disks as a single storage support, data
blocks are sent through the network from hosting nodes to the re-
questing ones. In both cases, the solution to the performance problem
of I/O lies in aggregating several requests to serve them efficiently.
The well-known UNIX-like semantics of most file systems does not
allow this transformation [72]. Indeed, the gain is even higher if the
program explicitly gives information about collective I/O (parallel,
logically synchronized I/O requests from a set of processors).

• MPI derived data types. are a portable mechanism to specify the
memory layout of a data structure. They allow MPI functions to
minimize communication overheads, and to compact non-contiguous
data structures automatically. MPI-2 has extended the use of MPI
data types from communication to parallel I/O. Since MPI-IO also
offers collective and asynchronous I/O functions, there is plenty of
room for optimizations.

Object-oriented Message-Passing with TPO++ Object-oriented program-
ming is an important concept for sequential programming and will increas-
ingly influence parallel programming in the future. The MPI-2 standard de-
fines C++ language bindings for MPI-1 and MPI-2. However, the bindings
do not provide enough concepts for real object-oriented message-passing
programs. For example, interfaces are not type-safe, objects cannot be used
as arguments for communication calls and the calls themselves were not
simplified. TPO++ (Tübingen Parallel Objects) [38] is an object-oriented
message-passing library written in C++ on top of MPI. The main design
goals were:

• Integration of the STL (Standard Template Library).

• Capability of transmitting objects in a type-safe manner.

• Account for all recent C++ features like the usage of exceptions for
error handling.

• Thread-safety, although this depends on the underlying MPI imple-
mentation.

2.4. PROGRAMMING MODELS 33

P3

P2

P1

P0

P3

P2

P1

P0

P3

P2

P1

P0

P3

P2

P1

P0

P3

P2

P1

P0

P3

P2

P1

P0

Broadcast (MPI_Bcast)

D1

D1

D1

D1D1

D4

D3

D2

D1 D1 D2 D3 D4

D4D3D2D1 D1

D2

D3

D4

Scatter (MPI_Scatter)

Gather (MPI_Gather)

Figure 2.11: Examples for collective communication operations. Based
on these operations, there are further operations where all processors are
senders and receivers (Allgather, Allscatter, etc.).

Of course, all that is achieved without degenerating the communication
and memory efficiency of MPI dramatically. For our experimental tests in
Chapter 5 and 7, we used TPO++.

OpenMP

The OpenMP-API [61] is a standard for parallel shared-memory program-
ming. Directives are a way to parameterize a specific compiler behavior.
The directives are ignored if they are unknown to the compiler. OpenMP
defines a set of program directives, with which it is possible to mark par-
allel regions in a sequential program without changing their semantics.
While in C and C++ #pragma statements are used for the implementation
of the directives, FORTRAN uses comments. It facilitates an incremental
approach to the parallelization of sequential programs. The sequential part
of the code is executed by one thread (master thread) that forks new threads
as soon as a parallel region starts and joins them at the end of the parallel

34 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

region (fork-join model). There are three types of directives3:

• Parallelism/Work sharing directives mark parallel regions in the pro-
gram. A certain number of threads execute the code within a parallel
region. A work sharing directive may appear within the parallel re-
gion that divides the computation among the threads. There are three
different work sharing directives.

(1) for Construct; the iterations of an associated loop can be executed
in parallel and are thus distributed across the threads that already
execute the parallel construct to which the for construct binds. Further
it is possible to influence the distribution by the schedule clause.
Among other possibilities, the iterations can be assigned statically , or
dynamically. A static schedule divides the number of iterations into
chunks of equal size. The chunks are statically assigned in a round-
robin-fashion to the threads. In contrast, a dynamic schedule divides
the iterations into a series of chunks of a given size. Each chunk is
assigned to a thread waiting for an assignment. The thread executes
its chunk and then waits for its next assignment. This is repeated
until no chunk of iterations remains.

#pragma omp for [clause[[,]clause] ...]

for-loop

(2) sections Construct; this defines a non-iterative work-sharing con-
struct. A set of sections can be defined that are executed once by one
thread of the parallel region.

#pragma omp sections [clause[[,]clause] ...]

{

[#pragma omp section]

structured block

#pragma omp section

structured block

#pragma omp section

structured block

...

}

(3) single Construct; this directive defines that a given structured block
is executed only by one thread.

3We use the syntax for the directives as defined in the OpenMP specification for C/C++
[61].

2.4. PROGRAMMING MODELS 35

#pragma omp single [clause[[,]clause] ...]

structured block

• Data environment clauses control the sharing of program variables
that are defined outside a parallel region. They are used within the
declaration of the work-sharing directives explained above. The clauses
are private, firstprivate, lastprivate, shared, default, reduction, copyin
and copyprivate. We just explain three of them in more detail. The
private clause requests each thread to create a new instance of the
variable within the context of each thread. The variable can be mod-
ified by each thread without being visible to other threads. Variables
defined inside a parallel region are implicitly private to each thread.
In contrast, the shared clause defines that variables are really shared
by all threads. Modifications on these variables are visible for the
other threads. With the reduction clause, it is possible to compute
a given operation in parallel for scalar variables. At the end of the
region for which the reduction was specified, the original variable is
updated with the value that results from the reduction made by all
threads with the given operation.

• Master and synchronization directives are responsible for synchro-
nized execution of several threads. Synchronization is necessary to
avoid deadlocks and data inconsistencies. There is the master, crit-
ical, barrier, atomic, flush and ordered constuct. The master con-
struct marks a structured block of code that is only executed by the
master thread. A critical block is only executed by one thread at
the same time. At a barrier, the threads stop their execution until
all threads reach this point, too. With the atomic construct, it is pos-
sible to edit a shared variable without the risk of inconsistencies. The
flush directive leads to a consistent view of the common data for all
threads. Finally, the ordered construct can be used as clause in the
for work-sharing directive and leads to an ordered execution of the
iterations of the loop. Additionally to explicit synchronization calls,
barrier is always called implicitly after a work-sharing directive.

• Run-time library functions The run-time library functions of OpenMP
can be divided into two types. Several functions can be used to con-
trol the parallel execution, and lock functions for a synchronized ac-
cess to shared data. An example for the first type is the omp get thread num

function. With this function, it is possible for each thread to request
its own identity number. In dependence of this number, it is for ex-
ample possible to execute different code blocks on different data like
in MPI.

36 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

This section is only a brief overview of the possibilities for parallel pro-
gramming with OpenMP. More detailed informations can be found in the
actual specification [61].

In both, MPI and OpenMP, possible hierarchies in the parallel target
machine are not considered. Both paradigms assume independent proces-
sors that are connected either by an interconnection network or by shared-
memory. Of course, there are approaches to incorporate hierarchy sensitive
methods in both libraries. We will present some of them in the next section.

2.4.2 Parallel-Hierarchical Programming

Hierarchical Optimizations for MPI

The message-passing paradigm does not consider the hierarchical archi-
tecture of SMP clusters. In the following, we present two approaches for
adapting MPI to SMP clusters that avoid this inefficiency.

Shared-Memory Communication This approach improves the commu-
nication between processors that reside in the same node by using the faster
shared-memory instead of the network for the point-to-point communica-
tion. When a message is sent, the system has to detect if the target process
works on a processor that resides in the same node. If this is the case, the
message will be delivered through shared-memory, otherwise over the net-
work. Since the access cost to main memory is the significant factor of the
performance of this inner-node communication, it is important to reduce
the number of copies necessary to deliver the message.

In [71] optimizations of inter- and inner-node communication for a free
MPI implementation called MPICH [37, 36], that works on PC-based SMP
clusters, are presented. Initially, the library needs two shared-memory
copy operations to perform the inner-node communication using features
of a UNIX kernel. The two copies are necessary, because the sending pro-
cessor writes the message in the shared-memory, and the receiving proces-
sor reads out of the shared-memory to make a local copy. By building a
kernel primitive, that writes the message directly into the receiver’s mem-
ory, only one copy operation is necessary.

In order to test the library, the authors made experiments using the NAS
Parallel Benchmark 2.3 (NPB) [7]. The NPB is a set of 8 programs designed
to help evaluate the performance of parallel supercomputers.

The authors compared the results of an SMP cluster with that of a uni-
processor-cluster (UP-cluster), having the same number of processors. The
SMP cluster achieved 70-100% of the performance of the UP-clusters. In-
tuitively, the SMP clusters should perform better, because of the advanced
inner-node communication. In general, the latency for each process in a
SMP cluster is higher than in a UP-cluster, because multiple processors

2.4. PROGRAMMING MODELS 37

share the network interface. Since synchronization mechanisms are real-
ized by messages, the costs are dominated by communication costs be-
tween the nodes. If an application has to synchronize a lot, the advantage
of the faster inner-node communication is wasted. The programs of the
NPB are examples of such applications.

Though the point-to-point communication between processors in the
same node can be improved by this approach, it is not guaranteed to im-
prove the overall performance compared to that of a UP-cluster. Indeed,
the programmer is not forced to consider the SMP cluster architecture dur-
ing the design of an application. The SMP cluster can be treated like a non-
hierarchic MPP machine, and the efficiency of the resulting program only
depends on the MPI implementation and on the general program structure.

Threads Only MPI — The threads only MPI (TOMPI) [27] is an MPI im-
plementation for uni-processor and SMP workstations. The idea is to make
the development of MPI programs on workstations less time-consuming.
It is inefficient to use standard MPI implementations, because for the sake
of portability they use UNIX processes and UNIX domain sockets for in-
terprocess communication. Both methods involve a large and unneeded
overhead on a single workstation. An implementation using threads and
shared-memory would perform much better. TOMPI rewrites an MPI pro-
gram using a source code translator. The result is a program, using multi-
ple threads on an SMP node or workstation. This approach seems to have
the potential to be more efficient than the one based on shared-memory
communication, because it does not only use a faster shared-memory com-
munication within the nodes, it even avoids large memory overhead us-
ing processes. Messages between processes are copied only once, which is
very efficient. With TOMPI, it is possible to execute MPI programs with
hundreds of MPI processes on a single workstation, without bringing the
system down. Even though there is no implementation of the approach
for SMP clusters yet, an automatic conversion of processes to threads is an
interesting opportunity for this kind of architectures.

Distributed Shared-Memory Programming with OpenMP

In the following, we present two approaches how OpenMP can be adapted
to SMP clusters. The main issue for this approach is that there is a need
either for a global shared-memory in physical distributed environment or
OpenMP has to be extended with data distribution facilities.

Software distributed shared-memory SDSM systems provide a global
address space for physically distributed-memory machines via a software
library. We can translate OpenMP directives into appropriate calls to the

38 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

SDSM system. An example of this approach is described in [43]. The re-
sult of the source-to-source translation is a standard C/C++ or FORTRAN
program , which can be compiled and linked with the SDSM system Tread-
Marks [2]. Further, the TreadMarks system is modified to exploit the hard-
ware shared-memory within the SMP nodes. Experimental testing with
several algorithms showed that the performance of the modified SDSM
system got much better compared to the version not using shared-memory
inside a node. However, compared to equivalent MPI implementations the
performance is still worse. The speedups obtained were only within 7-30%
of the speed-ups achieved by the MPI versions. Performance suffers too
much from coherence-maintenance network traffic. Further, SDSM systems
do not exploit application specific data access patterns, because communi-
cation in shared-memory is unknown until run time. Hence, more promis-
ing is the compiler directed SDSM approach [63], which is a two-step opti-
mization. In a first step, the OpenMP compiler inserts memory coherence
code, called check code primitives, to keep the node-distributed-memory
consistent. There are three types of check codes, two of them ensure that
the data is valid before a read or write of shared data, the third is respon-
sible to inform the other nodes that data has been changed after a shared
write. In the second step, the compiler analyzes parallel regions in order
to optimize communication and synchronization by removing unnecessary
check codes. The following optimization strategies are applied:

• Parallel extent detection. Memory coherence code only has to be
used in parallel regions. Therefore, the compiler can remove the check
codes outside parallel regions and in the static extend of parallel re-
gions.

• Redundant check code elimination. Flush directives are responsi-
ble for giving all threads a consistent view of the memory. They are
executed implicitly at barrier synchronizations, at the end of work
sharing constructs and at references to volatile variables. Therefore,
check codes after a write may be delayed until the thread reaches a
flush directive and check codes before a read or write may be redun-
dant if the data is already available by the preceding read check at the
same location. The compiler has to do a data-flow analysis for each
statement in the parallel region to determine the earliest possible read
check code and the latest possible write check code. All others are re-
dundant and can be removed.

• Merging multiple check codes. Arrays are very often accessed con-
tiguously within a loop structure. The corresponding check codes
may be moved outside the loop and simultaneously converted into
one check code. This reduces the number of check code calls. In the
following example a and b are shared arrays.

2.4. PROGRAMMING MODELS 39

for (i=0; i<n;i++) a[i]=c*b[i];

The compiler inserts the check codes into the loop as follows.

for (i=0; i<n;i++) {

check_before_read(&b[i], size);

check_before_write(&a[i], size);

a[i]=c*b[i];

check_after_write(&a[i], size);

}

Since the loop does not contain any flush directive, the check codes
can be moved outside the loop.

check_before_read(&b[0], n*size);

check_before_write(&a[0], n*size);

for (i=0; i<n;i++) a[i]=c*b[i];

check_after_write(&a[0], n*size);

• Data-parallel communication optimization. Besides the reduction
of check codes, it is possible to improve the program by using data-
parallel compilation techniques. For example, the compiler should
determine data mappings of arrays that are accessed contiguously in
a loop in the way that the iterations of the loop can be done locally
on the nodes where the data is stored. Since the number of threads
is not known during compile time, the compiler has to insert calls
to data mapping runtime library primitives that determine the loop
bounds and data that must be communicated. The check codes can
be removed because the data is stored locally on each node.

• Collective communication optimization. Inter-node communication
is necessary to implement a reduction operation on variables defined
in the data scope attribute of a parallel region. It can be performed
efficiently using a collective communication library. The execution
starts after the local reduction at the end of parallel regions or after
work-sharing directives.

Distributed OpenMP — A different approach to adapt OpenMP to SMP
clusters is suggested in [55]. The authors propose the distributed OpenMP.
This extension of OpenMP with data locality features provides a set of new
directives, library routines and environment variables. One data-distribu-
tion extensions is the distribute directive with which it is possible to
partition an array over the node memories. For performance reasons, the

40 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

threads should work on local array elements. Hence, the user must dis-
tribute the data in order to minimize remote data accesses. Another pro-
posed extension is the on home directive in a parallel region. With this
directive, it is possible to perform a parallel loop over a distributed array
without redistributing the array. The threads of a node perform the itera-
tions for the array elements that reside in their local memory. Further exten-
sions are library routines and environment variables that provide specific
numbers of the run-time instance of the SMP cluster, like for example the
number of involved nodes or processors per node. Disadvantages are that
programs get more complex, and the user still has to take care about effi-
cient data decomposition. Therefore, after adding the new directives to an
OpenMP program, the user probably has to do performance tuning again.

Hybrid-Programming with MPI and OpenMP

The idea of the hybrid-programming model is to use message-passing be-
tween the SMP nodes, and shared-memory programming inside the SMP
nodes. The structure of this model fits exactly to the architecture of SMP
clusters, therefore, the model has potential to produce programs with sig-
nificant performance improvement. However, it is also obvious that the
model is more complicated to use, and that there may arise unpredicted
performance problems, because of the simultaneous usage of the two pro-
gramming models. There are several possibilities for choosing libraries for
each model, but it is straightforward to combine the de facto standards MPI
and OpenMP. The following section will give an overview of the different
approaches to the production of hybrid programs, with no emphasis on
technical details. We also survey some performance evaluations that com-
pare hybrid programs with pure MPI ones.

The general execution scheme is as follows. In each node there is one
MPI process. Communication between the nodes is done by the MPI pro-
cesses. Inside the process, multiple threads are responsible for doing the
parallel computation. The number of threads spawned within a node is
equal to the number of processors in that node. The base for the design
of an efficient hybrid program is an efficient MPI program. According to
[16], there are two approaches to incorporate OpenMP directives into MPI
programs, the fine-grain and the coarse-grain approach.

Fine-Grain Parallelization The hybrid fine-grain parallelization is done in-
crementally. The computational part of the MPI code is examined, and
the loop nests are parallelized with OpenMP directives. Therefore, the ap-
proach is also called loop-level parallelization. In order to avoid an unnec-
essary increase in programming effort, the loop-nests of a program must be
profiled according to their contribution to the global execution time. Only

2.4. PROGRAMMING MODELS 41

loop nests with a significant contribution are selected for OpenMP paral-
lelization. Some loop-nests cannot be parallelized directly. Nevertheless,
if these loop-nests contribute significantly to the global execution time, the
developer can try to transform them into parallel ones, to avoid false shar-
ing or to reduce the number of synchronizations. Techniques for paralleliz-
ing non-parallel loop-nests are loop permutations or exchanges and the use
of temporary variables.

Coarse-Grain Parallelization In this approach an SPMD programming
style is used to incorporate OpenMP into MPI programs. OpenMP is used
to spawn threads immediately after the spawn and initialization of the MPI
processes in the main program. Each thread itself is acting similar to an
MPI process. For threads, there are several issues to consider:

• The data distribution between the threads is different from that of
MPI processes. Because of the shared-memory, it is only necessary to
calculate the bounds of the arrays for each thread. There has to be a
mapping from array regions to threads.

• The work distribution between the threads is made according to
the data distribution. Instead of an automatic distribution of the it-
erations, some calculations of the loop boundaries depending of the
thread number define the schedule.

• The coordination of the threads means managing critical sections
by either the usage of OpenMP directives, like MASTER or thread
library calls like omp get thread num(), to construct conditional
statements.

• Communication is still done by only one thread.

As far as we know, until now, there has been no work on the coarse-
grain approach. If we remember the idea of TOMPI, it seems that the result
of TOMPI for SMP clusters is a coarse-grain hybrid program, because the
MPI processes are converted to threads. An important thing that has to
be incorporated in a TOMPI for SMP clusters is the usage of common data
structures within the nodes as proposed by the coarse-grain approach.

Performance of Fine-Grain Hybrid Programs Compared to Pure MPI Pro-

grams — Besides knowing how to develop hybrid programs for SMP
clusters, it is necessary to look at the achieved performance of the pro-
grams. In [16, 17, 18, 22] investigations to measure performance of fine-
grain hybrid programs are presented. They try to measure which program-
ming model performs better on an SMP cluster by comparing the perfor-
mance achieved by a hybrid and a pure MPI version of NPB. An impor-

42 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

tant subject of the papers is the interpretation of the performance measure-
ments. The authors try to explain the behavior of the various programs on
SMP clusters in order to understand performance of hybrid programs. Ex-
periments were made on a PC-based SMP cluster with two processors per
node and on IBM SP cluster systems with four processors per node.

According to the mentioned papers, the comparison between the two
kinds of models for SMP clusters shows no general advantage of one over
the other. Depending on the characteristics of the application, some bench-
marks perform better with the hybrid version; others perform better with
the pure MPI version. The following aspects have influence on the perfor-
mance of the models.

• Level of shared-memory parallelization. The more of the total com-
putation can be parallelized, the more interesting is the hybrid ap-
proach. The size of the parallelized sections (OpenMP) compared to
the whole computation section must be significant.

• The communication time depends on the communication pattern of
an application. To be more precise it depends on the differences be-
tween the two models concerning latency, bandwidth, and synchro-
nization time. If more processes share one network interface, then
the latency for network accesses increases, but the per process band-
width increases too. If there is only one process per node, the latency
is low, but the process cannot transfer the data fast enough to the net-
work interface to achieve the maximum bandwidth of the network.
Therefore, the pure MPI approach performs better if the application
is bandwidth limited. Otherwise, for latency limited applications the
pure MPI approach is worse.

• Memory access patterns. The memory access patterns are different
for the two models. Whereas MPI allows expressing multi-dimensional
blocking, it is not natural for OpenMP to do so. To achieve the same
memory access patterns, rewriting of loop nests is necessary, which
may be very complex.

• Performance balance of the main components (processors, memory

and network). If the processors are so fast that communication be-
comes the bottleneck, then the communication pattern decides which
model is best. Otherwise, if computation is the most significant part,
then MPI seems to be always the best.

Besides the programming libraries and paradigms above, there are some
programming models for SMP clusters that try to build a higher level of
abstraction for the programmer. All these models are based on the hybrid-
programming paradigm where threads are used for the internal compu-

2.4. PROGRAMMING MODELS 43

tation and message-passing libraries are used to perform communication
between the nodes.

SIMPLE Model

The significant difference between SIMPLE [5] and the manual hybrid-
programming approach above lies in the provided primitives for commu-
nication and computation.

The computation primitives comprise data parallel loops, control prim-
itives to address threads or nodes directly, and memory management prim-
itives.

• Data parallel loops. There are several parallel loop directives for ex-
ecuting loops concurrently on one or more nodes of the SMP cluster,
assuming no data dependencies. The loop is partitioned implicitly
to the threads without need for explicit synchronization or commu-
nication between processors. Both block and a cyclic partitioning is
provided.

• Control. With this class of primitives, it is possible to control which
threads are involved in the computation context. The execution of a
code can be restricted to one thread per node, all threads in one node,
or to only one thread in the SMP cluster.

• Memory management. The allocation of memory from the heap can
be done by each thread using the node malloc primitive. As an ar-
gument, the primitive gets the number of bytes needed and it returns
a pointer to the memory address. In order to free memory space the
threads can use the node free primitive.

SIMPLE provides three libraries for communication. There is an inter-
node-communication library, an SMP node library for the thread synchro-
nization, and a SIMPLE communication library build on top of both. The
SMP node library implements the three primitives reduce, barrier and broad-
cast using POSIX threads. Together with the functionality of the inter-node-
communication library, it is possible to implement the primitives barrier, re-
duce, broadcast, allreduce, alltoall, alltoallv, gather, and scatter that are assumed
to be sufficient for the design of SIMPLE algorithms. The use of these
top-level primitives means using message-passing between and shared-
memory communication within the nodes.

High Performance FORTRAN for Hybrid-Parallel Programming with HPF

High Performance FORTRAN (HPF) is a set of extensions to FORTRAN that
enables users to develop data-parallel programs for architectures where the

44 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

distribution of data affects performance. Main features of HPF are direc-
tives for data distribution within distributed-memory machines and prim-
itives for data parallel and concurrent execution. HPF can be employed on
both distributed and shared-memory machines and it is possible to compile
HPF programs on SMP clusters. However, HPF does not provide primi-
tives or directives to exploit the parallel hierarchy of SMP clusters. Most
HPF compilers just ignore the shared-memory within the nodes and treat
the target system as if it is a distributed-memory machine.

One exception is presented in [10]. Therein, HPF is extended with the
concept of processor mappings and the concept of hierarchical data mappings.
With these two concepts, it is possible for the programmer to consider the
hierarchical structure of SMP clusters. The VFC compiler [9] is extended
in the way that it creates fine-grain hybrid programs using MPI and OpenMP
out of an extended HPF program.

• Processor mappings. Beside the already existing abstract processor ar-
ray that is used as the target of data distribution directives, abstract
node arrays are defined. Together with an extended version of the
distribute directive it is possible to construct the structure of an
SMP cluster.

• Hierarchical data mapping. In addition to the processor mappings,
it is necessary to assign data arrays to nodes and processors. The
distribute directive is extended in the way that node arrays may
appear as distribution target. This defines an explicit inter-node map-
ping of the data. In contrast, the share directive is introduced in
order to define an explicit intra-node mapping. The intra-node map-
ping controls the work sharing between the processors within a node.

• Intrinsic functions. Two new functions are provided. The first one
returns the number of nodes and the second one returns the number
of processors in the SMP clusters. The functions are provided in or-
der to support abstract node arrays whose sizes are determined upon
start of a program.

The following is a sample code fragment for the use of the new direc-
tives and mappings. It defines a SMP cluster with four processors per node
and distributes an array A equally over the nodes and processors.

!hpf$ processors P(2,8) !abstract processor array

real, dimension(32,16)::A !array of real

!hpfC nodes N(4) !abstract node array

!hpfC distribute P(*, block) onto N !processor mapping

!hpfC distribute A(*, block) onto N !inter-node mapping

!hpfC share A (block,*) !intra-node mapping

...

2.4. PROGRAMMING MODELS 45

block is a standard HPF distribution format and divides the concerned
dimension into equal parts with respect to the distribution target. The as-
terisk defines that the whole dimension of the array will be mapped to the
target elements, see also Fig. 2.12.

16

32

!hpfC distribute P(*,block) onto N

!hpfC distribute A(*,block) onto N

P00 P01 P02 P03 P04 P05 P06 P07

P10 P11 P12 P13 P14 P15 P16 P17

!hpfC share A(block,*)

16

32Array A Array A

(a) (b)

N0 N1 N2 N3N0 N1 N2 N3

Figure 2.12: In (a) the partitioning of the processor array P(2,8) onto the
node array N(4) is provided. Further, the decomposition of the array A

onto the node array is shown. Vertical slices from array A of equal size are
assigned to each node. In (b) it is shown how the share primitive divides
the vertical slice onto the processor in each node. Only the mapping for
node N0 is shown as an example.

KeLP2 Model

The Kernel Lattice Parallelism 2 Model (KeLP2) [4] is a runtime infrastruc-
ture in C++ that implements a methodology for implementing (irregular)
block-structured numerical applications on SMP clusters. KeLP2 provides
mechanisms to coordinate data decomposition, data motion and parallel
control flow similar to HPF. As HPF, it hides low-level details like message-
passing, processes, threads, synchronization and memory allocation from
the programmer. There is no analysis of the code in order to make high-
level restructuring and there is no automated data decomposition. The

46 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

programmer can do the decomposition best and KeLP2 provides a frame-
work to construct partitioning libraries. However, in comparison to HPF,
it is possible to overlap computation and communication. In contrast to
KeLP2, SIMPLE provides lower-level primitives, does not support data-
decomposition, and it does not overlap communication and computation.
Nevertheless, it is not as narrow in scope as KeLP2, concerning the appli-
cation domain. KeLP2 supports three levels of control, the collective level
(SMP cluster), the node-level, and the processor-level. Programs express
parallelism at the node- and processor-level while communication takes
place in the collective- and node-level. Both levels, the collective- and the
node-level, have their own data-layout and -motion. The KeLP2 program-
ming abstractions help to manage this. There are three classes of KeLP2
programming abstractions.

1. The Meta-Data represents the abstract structure of some facet of the
calculation. It describes the data decomposition and the communica-
tion patterns.

2. Instantiators execute the program according to the information con-
tained in the meta-data.

3. The primitives for parallel control flow are iterators, which iterate over
all nodes or over all processors of a specified node.

KeLP2 enables a parallel specification that is less dependent on the imple-
mentation.

2.5 Summary

In Section 2.1, we showed that there is a trend to hierarchical parallel ar-
chitectures and especially to SMP clusters. Hence, it is clear that there is a
need for theoretical cost models, programming models and new software
tools to exploit these hierarchical architectures.

Concerning the cost-models, we showed the evolution from PRAM to
extensions for the BSP model. The concept of the BSP model is based on
a more abstract definition of communication cost, and it introduces the su-
perstep concept. Although this was a big advance in modeling parallel
computers, it does not consider hierarchical structures of parallel machines.
Several approaches try to make the BSP model more precise and accurate
for real machines. In this context, we presented the BSP* and the D-BSP
model.

The D-BSP model might be a candidate for modeling SMP Clusters.
However, although it does support hierarchical structures with the con-
cept of BSP sub-machine, it does not support the conceptual difference
between shared-memory and message-passing communication needed for

2.5. SUMMARY 47

SMP Clusters. Further, it seems to be also very difficult to find an appro-
priate and practically accepted programming model for D-BSP.

Concerning programming models, we introduced the two main streams
of parallel programming models. OpenMP is the de facto standard for
shared-memory programming and MPI is used for message-passing-based
programming. We presented optimized versions for SMP clusters of both
models. It is obvious that the shared-memory-based approach with OpenMP
has performance drawbacks, because of the underlying distributed mem-
ory architecture of SMP clusters.

As we saw in Section 2.4.2, most of the efforts in parallel software de-
velopment are spent in maintaining existing programming models and op-
timizing them for new architectures.

In general, this approach is not efficient enough for hierarchical par-
allel architectures. SMP cluster-enabled implementations of both MPI and
OpenMP libraries are quite far from exploiting the potential performance of
these machines. When programmers and algorithm developers completely
disregard the existence of a hierarchy, and we try to hide all optimizations
in the library, it is often impossible for the compilation and support tools to
achieve implementations with optimal performance. Hence, it is better to
give the programmer or algorithm developer the control over the hierarchy.
Based on these two programming models a new model was suggested that
is a combination of both. OpenMP (or threads) is used for the parallel com-
putation within the nodes and MPI is used as the communication library
between the nodes. The idea is to use the respective model in that part
of the machine where the physical architecture is closer to it. The hybrid
model is the only parallel and hierarchical programming model accepted
in practice.

It has the driving advantage of using existing, available tools, but has
numerous drawbacks: programs are more complex to design, implement,
debug and maintain. Implementation and debugging are also complicated
by the need for extensive performance analysis and tuning. The complexity
of the structure and the amount of hidden interactions among the architec-
ture, the algorithm and the different software tools exploited, make it quite
difficult to devise performance models for the resulting programs. On the
other side, using this model might be a bridge from a cost model to SMP
Clusters and it seems to have the most potential concerning programs per-
formance.

Therefore, what we want to do in the following is to examine if there are
possibilities or methods for algorithmic optimizations, which exploit the hi-
erarchical architecture. We start by formulating a cost model that reflects
hierarchical SMP clusters and the hybrid-programming model. The cost
model is the basis for the optimization and analysis of algorithms through-
out this work.

48 CHAPTER 2. ARCHITECTURES, MODELS, LIBRARIES

Chapter 3

A Computational Cost Model
for Hierarchical SMP Clusters

As we have explained in Chapter 2, there is a trend to a small number of
classes of parallel architectures. Since the architectures of each class are
completely different, like for example the classes of PC-based SMP clusters
and vector-processors, it seems to make no sense to formulate a common
cost model for all kinds of supercomputers, because the characteristics are
too different. In contrast, we propose the strategy to take the parallel bridg-
ing model (PBM) that fits best to the class of the target architecture and ex-
tend it with the characteristics that the PBM does not reflect. Consequently,
there will be separate models for the few classes of architectures. In the fol-
lowing, we will define a model for the class of SMP clusters. An advantage
of starting on top of PBMs is that there are many algorithms, which can be
adapted to the extended model.

3.1 Design Decisions for the Model

The main issues for the development of computational models in the past
were generality, reality and simplicity. The aim was to cover all kinds of
parallel computers and to predict the running time of algorithms as exact
as possible. Despite of these high demands, the use of the model should
be as simple as possible. This led more or less to a discussion about which
and how many parameters are necessary for a general-purpose cost model.

It is obvious that building a general-purpose cost model means to make
compromises. Special features of certain machines have to be ignored in or-
der to be general enough. On the other hand, very important features have
to be considered although this might decrease the set of covered machines.

The usage of a general-purpose cost model comprises the risk of not
considering relevant elements. Hence, the algorithm analysis may lead to
results that cannot be confirmed practically on the target machine.

49

50 CHAPTER 3. A MODEL FOR HIERARCHICAL SMP CLUSTERS

This danger is given for SMP clusters because there are several charac-
teristics that are not considered in most PBMs.

• There are different communication styles concerning communication
within the SMP node and between SMP nodes. It is more expensive
to communicate over the network than by shared-memory.

• Looking at the basic operations of the inter- and inner-node commu-
nication differences can be recognized. While between SMP nodes the
point-to-point communication is clearly the basic operation, within
an SMP node a one-to-all operation is the more natural basic opera-
tion, because of the shared-memory.

• Concerning the communication over the network, there might be even
differences between the costs of communication operations depend-
ing on the number of network hierarchies between the sending and
receiving processor.

• Several processors have direct access to the same memory space. Hence,
redundant data usage in an SMP-node may also lead to improve-
ments. Using less data per processor or SMP node improves the pro-
cess performance, because memory is a critical resource.

Another argument for a more detailed model is given by the fact that
SMP clusters build a big and increasing fraction of the family of supercom-
puters and therefore can be regarded as an own class.

Together with the more detailed model, there should be a methodology
to transfer well-known and practically proven algorithms from general-
purpose cost models. This does not only lead to a solid base of algorithms
for the new model, it does also improve the understanding of the new ma-
chine and creates ideas for the design of more efficient algorithms. How-
ever, in this chapter, we concentrate on the model as a quantitative base
for algorithm design. In Chapter 4, we address to general design methods.
In the following, we design a model for SMP clusters based on parame-
ters and ideas of more general cost models like BSP, and extend it by the
main features of actual SMP clusters. In the following, we will outline and
shortly discuss the main features:

• Inner- and inter-node communication. The most important charac-
teristic of SMP clusters is the division into shared-memory and net-
work connected processors. The difference between an inner- and
an inter-node communication has to be considered in the model. The
inner-node communication should not be based on point-to-point con-
nections because the shared-memory should be exploited for collec-
tive operations.

3.1. DESIGN DECISIONS FOR THE MODEL 51

• Hierarchical inter-node connection. With the help of special fast net-
work switches, it is possible to build huge clusters of SMP nodes.
Generally, these switches are connected in the way that they build
a tree-like hierarchical network. The more switches are involved in
a message-passing operation the more overhead is involved for get-
ting a way through each switch. Hence, for each switch we pass, a
constant overhead of time should be added to the latency while we
assume only one bandwidth for the network.

On the other hand, due to Metacomputing and Grid computing tech-
nologies further levels of hierarchy have to be considered that pro-
vide different bandwidths. Hence, in order to be general enough
for all situations the model should define a level dependent latency
and bandwidth. Unfortunately, this increases the amount of param-
eters, and decreases the ease of use of the model. One assumption
of the network hierarchy is that the higher the level of communica-
tion within the hierarchy, the higher the latency and the lower the
bandwidth. Due to this observation, it is enough to consider different
latencies for each level, but only one bandwidth. The model rewards
algorithms that communicate in lower levels by a lower latency for
communication. The faster bandwidth of these levels is implicitly re-
warded. Hence, for algorithm design it is sufficient that the model
considers different latencies and we can reduce the set of parameters.
Despite of that, bandwidth has to be considered too, in order to as-
sess message lengths for network communication and memory copy
operations. Thus, we can compare the communication behavior of
algorithms by their over-all latency, their over-all time for network
bandwidth and their over-all time for shared-memory bandwidth.

• Asynchronous Communication. The communication hardware of
many computers is capable to send several messages one after the
other without having to wait for the end of the transition of the pre-
ceding send operation. This can be exploited by communication li-
braries like MPI, and hence should be considered in the model.

• Homogeneity of architecture. Due to the high scalability of SMP
clusters, it is foreseeable that SMP clusters will not stay homoge-
neous. Despite of that we do not think it is necessary to incorporate
heterogeneity in the model. The algorithms are developed in SPMD
style. Therefore, heterogeneity of the SMP nodes will have influence
on the data distribution between the nodes. This can be done later
according to the performance ranking of the nodes, and will not in-
fluence the algorithm.

52 CHAPTER 3. A MODEL FOR HIERARCHICAL SMP CLUSTERS

3.2 κNUMA Model

Under consideration of these features, we define the κNUMA model, a
computational model for SMP clusters. The κ in the name stands for num-
ber of the levels in the hierarchy of the interconnection network between
the SMP nodes. The second part of the name, NUMA, accounts for the
non-uniform access that exists because the local memories are separates by
the network hierarchy.

The structure of a κNUMA-machine resembles a complete tree. The
leaves of the tree are the processors and the inner nodes correspond to the
levels of the network. The inner nodes are connected by edges that cor-
respond to inter-network interfaces or switches. The tree of a κNUMA-
machine has the height κ + 1 and the degree of all inner nodes with the
same height is equal. Fig. 3.1 is an example for a 2NUMA-machine. The
computational cost model will be described by its parameters. There are
parameters, which describe the κNUMA-architecture and others, which are
necessary for modeling the κNUMA-communication.

3.2.1 The Set of κNUMA-Parameters

Architectural Parameters

• κ is the number of hierarchies in the network. Level 0 is the internal
dynamic interconnection network between processors and memory
banks. of an SMP node. Hence, the distance from a SMP node to the
root of the tree is κ and the distance from a processor to the root is
κ + 1.

• α(l) is the number of the (l − 1)NUMA sub-machines in level l (sub-
trees of height l) with 0 ≤ l ≤ κ. α(0) is the number of proces-
sors in an SMP node. Thus, the numbers of processors p is not re-
ally necessary as a parameter, because p =

∏κ
k=0 α(k). All lNUMA

sub-machines of the same level l + 1 consist of the same number of
(l − 1)NUMA sub-machines. For example, a 0NUMA-machine is a
single SMP computer.

Communication Parameters

• si is the latency. Every time during the transmission when the data
changes the level of network (upward or downward in the tree), there
is an overhead of at most si (latency), whereby 0 ≤ i ≤ κ. To be more
precise, s0 is the latency for local memory access and si, with 1 ≤ i ≤
κ, represents the overhead incurred by the transmission through the
levels of the network (switches).

3.2. κNUMA MODEL 53

• glocal is the local bandwidth in bytes per unit of time (Bytes/sec) for
transferring data within the SMP node.

• gglobal is the global bandwidth in bytes per unit of time (Bytes/sec)
for transferring data through the levels of the network.

IONIM

g

P2 P3P0 P1

N0 N1 N2 N3 N4 N5 N6 N7

global

g
lo
ca
l

s1

s2

Figure 3.1: Example for a 2NUMA-machine, where α(2) = 4, α(1) =

2, α(0) = 4.

3.2.2 Execution of Parallel Algorithms

The model behaves similar to the BSP model of Valiant [76]. Algorithms
consist of consecutive supersteps. To simplify presentation, every super-
step is either purely computation on local data or purely communication.
After each superstep, there is a virtual barrier synchronization between
the processors. In practice, barrier synchronization is very expensive and
should be avoided if possible. Hence, the barrier synchronization in the
model is defined implicitly. No processor can continue his execution with-
out finishing the communication superstep, because it needs the incoming
data. In this sense, the barrier is virtual, because some processors might get
the data earlier than others might and can immediately start with the next
computational superstep.

The total cost of a parallel algorithm can be calculated by aggregating
the costs of all supersteps required. The costs for computation supersteps
are estimated using asymptotic analysis like in the other computational
cost models. In the following, the costs for communication supersteps are
presented.

54 CHAPTER 3. A MODEL FOR HIERARCHICAL SMP CLUSTERS

Communication Operations

The costs for a communication superstep are the maximum of all costs of
communication operations performed by the processors in that superstep.
The communication between two processors can be divided into two parts.
There is the inter-node communication where both processors are situated
in different SMP nodes, and there is the inner-node communication where
the engaged processors are in the same SMP node.

SMP1 SMP2 SMP3 SMP4

s2

s0

P1 P2

s0

s1s1

s2

Figure 3.2: Inter-node communication in the κNUMA model, where κ =

2 = l.

Inter-node Communication Let P1 be the sending and P2 be the receiving
processor of data of size L. P1 and P2 are situated in different SMP nodes.
The highest level of network the data has to traverse is l (1 ≤ l ≤ κ). The
communication is illustrated in Fig. 3.2. The time needed for the operation
is charged as

Tput := s0 +
L

gglobal
︸ ︷︷ ︸

Tblock

+2

l∑

i=1

si + s0 =
L

gglobal

+ 2

l∑

i=0

si (3.1)

This time consists of the latency of the local memory of P1, the writing of
the data in the network, the latency of the network itself and the latency
of the access to the local memory of the remote processor P2. Tblock is the
time after which P1 can continue doing other work if the operation is non-
blocking. After Tblock P1 can start the next operation. Hence, Tblock is com-
parable with the gap parameter g of the LogP model, although it depends
on the message length.

Inner-node Communication The basic idea to model the communication
between two processors in the same SMP node is as follows. On each SMP

3.2. κNUMA MODEL 55

node, there is one process with multiple threads (one thread for each pro-
cessor). The threads have private data as well as shared data. A thread can
communicate with the others by making shared data out of private data.
The other threads make local copies of the new shared data for their use.
Shared-memory models like the QSM model [34] that was briefly described
in Section 2.3.3 on page 26, typically divide the memory into a private and
a shared part. Communication can be done in one-to-all fashion and con-
sists of two internal steps. First, the sending processors write their data to
the shared-memory. Second, all processors make local copies of the new
shared data, which they need, see Fig. 3.3.

SMP

s0

Shared Memory

Private Part of Shared Memory

SMP

s0

Shared Memory

Private Part of Shared Memory

Figure 3.3: The two steps of an inner-node communication operation in the
κNUMA model.

Let Wi be the size of data which will be written from processor pi to
shared-memory and Ri the size of data read by processor pi in the second
step. The runtime for the operation in one SMP node, where multiple pro-
cessors may communicate, can be calculated as follows.

s0 +
max1≤i≤α(0) Wi

glocal︸ ︷︷ ︸
new shared data

+
max1≤i≤α(0) Ri

glocal

+ s0

︸ ︷︷ ︸
parallel copy

(3.2)

3.2.3 One-to-All Broadcast Problem

In order to introduce the model, we will analyze the casual broadcast prob-
lem and the personalized broadcast problem, which is the same as the scatter
operation in MPI, see Fig. 2.11. In the latter problem, one processor sends
(p − 1) different messages each of length M to the other (p − 1) processors,
while in the former problem all (p − 1) processors will receive the same
message. Each processor gets exactly one message.

56 CHAPTER 3. A MODEL FOR HIERARCHICAL SMP CLUSTERS

Looking at the BSP model, it is obvious that the problem can be solved
in T = logd p supersteps by executing a logical d-ary tree. In each super-
steps, d messages are sent by the involved processors until all processors
received a message. The total cost for the broadcast in the BSP model is
(dg + L) logd p. The choice of d is very important and depends on the ca-
pability of the router, the number of processors and the ratio between g

and L in the BSP machine. Further, there is no difference concerning the
communication costs whether we perform the casual or the personalized
broadcast, because the BSP model does not account for message lengths.

We are interested how the broadcast algorithm can be adapted to a
κNUMA machine. As in the BSP model, the choice of d depends on the
actual values of the parameters that are different in each system. Thus, we
cannot determine a general best value for d, however, we can show possi-
bilities for the adaptation of the algorithm independent of d. Hence, in the
following, we will present, analyze and compare two different algorithms
for the problems that represent an extreme of the BSP approach. The first
one is called Direct 1-level broadcast which is derived from the BSP-approach
by setting d = p. Additionally, by setting d = p, we can show the use
of asynchronous communication operations best. The second algorithm is
called κ-level broadcast. Here, the broadcast is adapted to the architecture of
the SMP cluster by applying the Direct 1-level broadcast algorithm to each
level of the hierarchy. In both descriptions, Pi is the initiating processor of
the broadcast. Since we are not only interested in the hierarchical structure,
but also in the difference between inner- and inter-node communication,
we assume that α(0) > 1.

Direct 1-level broadcast

Processor Pi sends (p − 1) messages, each of length M, to the (p − 1) pro-
cessors directly. Hence, with this algorithm we can solve the casual as well
as the personalized broadcast problem. In both cases the cost for the algo-
rithm is equal, because it does not matter if the messages for each processor
are different or not.

Assuming the router of the BSP-machine is able to perform this oper-
ation in one superstep (h ≥ p for the h-relation of the BSP machine) and
g is much smaller than L (synchronizing an SMP cluster over the network
is expensive compared to sending p messages), this algorithm is optimal
in the BSP-model, because only one communication step and thus, only
one barrier synchronization with cost L is necessary. In the following, only
non-blocking communication operations are used in the algorithm. There-
fore, the times of the consecutive operations can overlap. It is clear that the
order in which the messages are sent is decisive for the resulting runtime,
because the distance to the receiving processor varies for each message.
In the following, we present the two extreme running times subject to the

3.2. κNUMA MODEL 57

order in which the messages are sent.

• In order to overlap the operations maximally, the messages with the
largest distance should be sent first, and the messages with the small-
est distance should be sent last. The optimal running time of the algo-
rithm can be achieved if the latencies of all messages can be hidden
by subsequent operations. A sample is illustrated in Fig. 3.4. The
best-case runtime of the direct 1-level broadcast can be charged as:

(p − α(0))(s0 +
M

gglobal

)

︸ ︷︷ ︸
Inter-node Communication

+ 2s0 +
α(0)M

glocal︸ ︷︷ ︸
Inner-node Communication

= (3.3)

= (p − α(0) + 2)s0 +
(p − α(0))M

gglobal

+
α(0)M

glocal

(3.4)

T
block

T
block

T
block

T
block

T
block

T
block

inner−node

communication

P6

P7

P5

P4

P3

P2

P1

P0

time
4 6 8 10 12 14 16 18 20 2622 24 282

Figure 3.4: An example for the best-case of the direct 1-level broadcast
algorithm. The target SMP clusters is depicted in Fig. 3.6, where α(0) =

α(1) = α(2) = 2. Further, we assume that glocal = 2, gglobal = 1,M =

2 and si = 1 with ∀i : 0 ≤ i ≤ κ. P0 is the initiating processor. The time
needed for the broadcast is 22.

• The worst-case of the algorithm occurs if the order in which the mes-
sages are sent is vice versa. First, Pi sends the messages to the pro-
cessors in the same SMP node, and then it sends the messages to the
processors with ascending distance. Fig. 3.5 shows an example. The
worst-case has, therefore, the following running time:

58 CHAPTER 3. A MODEL FOR HIERARCHICAL SMP CLUSTERS

2s0 +
α(0)M

glocal︸ ︷︷ ︸
Inner-node Communication

+ (p − α(0))(s0 +
M

gglobal

) + 2

κ∑

i=1

si + s0

︸ ︷︷ ︸
Inter-node Communication

=

(3.5)

= (p − α(0) + 3)s0 + 2

κ∑

i=1

si +
(p − α(0))M

gglobal

+
α(0)M

glocal

(3.6)

T
block

T
block

T
block

T
block

T
block

T
block

P6

P7

P5

P4

P3

P2

P1

P0

time
4 6 8 10 12 14 16 18 20 2622 24 282

Inner−node

communication

Figure 3.5: An example for the worst-case of the direct 1-level broadcast al-
gorithm. The target SMP cluster is depicted in Fig. 3.6. Further, we assume
the same parameter setting for glocal, gglobal,M, si, α(i) as in Fig. 3.4. P0 is
the initiating processor. The time needed for the broadcast is 27.

As we can see from the analysis, the order in which the messages are
sent is very important for the running time. Models like BSP do not con-
sider this, but good implementations have to. The next algorithm tries to
use a broadcast tree that has the same structure as the underlying κNUMA-
machine.

κ-level broadcast

The algorithms consists of two phases. In the first phase, the messages
for all processors in the same SMP node are sent to one of them using the
following algorithm. The highest level of the network hierarchy consists of
α(κ) (κ−1)NUMA sub-machines. In every sub-machine, we determine one
processor which represents the whole sub-machine. Pi sends all messages
for the processors of the sub-machines to its representative. Pi itself is the
representative for its sub-machine. This procedure is the first superstep

3.2. κNUMA MODEL 59

s2 s2

s1s1 s1 s1

P0 P1 P2 P3 P4 P5 P6 P7

Figure 3.6: A sample architecture for the illustration of the broadcast algo-
rithms of Fig. 3.4, 3.5, 3.7. The architectural parameters are set to κ = 2,
α(2) = α(1) = α(0) = 2.

of the algorithm. The next supersteps are executed in the same manner.
Every representative does the same job for its sub-machines as Pi did in the
first step. This procedure is repeated as long as there is one processor in
each SMP node, which has all the messages for the processors in the block.
Phase 1 consists of κ supersteps.

Then in the second phase, the processor uses inner-node communica-
tion to broadcast the messages in the block. Hence, phase 2 consists of 1

superstep. Every processor has its message after phase 2. Phase 1 is similar
to the broadcast algorithms presented in [49, 12]. In the following we show
the analysis of the two phases.

Phase 1: κ supersteps

step 1 The sending of α(κ) − 1 messages of length M costs:

(α(κ) − 1)(s0 + M
gglobal

) + 2
∑κ

k=1 sk + s0

step 2 The sending of α(κ − 1) − 1 messages of length M costs:

(α(κ − 1) − 1)(s0 + M
gglobal

) + 2
∑κ−1

k=1 sk + s0

· · ·

step κ The sending of α(1) − 1 messages of length M costs:

(α(1) − 1)(s0 + M
gglobal

) + 2s1 + s0

If we aggregate the costs of the κ steps, we get:

s0

κ∑

i=1

(α(i) − 1) +

κ∑

i=1

(

(α(i) − 1)
M

gglobal

)

+ 2

κ∑

i=1

i∑

j=1

sj + κs0 (3.7)

60 CHAPTER 3. A MODEL FOR HIERARCHICAL SMP CLUSTERS

Phase 2: 1 superstep: Distributing the message within the SMP node
costs two copies in the shared-memory:

2s0 +
2M

glocal

(3.8)

The overall running time can be calculated by adding times for (3.7) and
(3.8).

T
block

T
block

T
block

inner−node

communication

inner−node

communication

inner−node

communication

inner−node

communication
P6

P7

P5

P4

P3

P2

P1

P0

time
4 6 8 10 12 14 16 18 20 2622 24 282

Figure 3.7: An example for the κ-level broadcast algorithm. Further, we
assume that glocal = 2, gglobal = 1,M = 2 and si = 1 with ∀i : 0 ≤ i ≤ κ.
The time needed for the broadcast is only 18. Again, P0 is the initiating
processor in the cluster of Fig. 3.6.

Comparison of Running Times

To simplify the comparison of running times, we make the following as-
sumptions.

1. α(i) = α with ∀i : 0 ≤ i ≤ κ. That means that we assume a symmetri-
cal architecture. In particular p =

∏κ
i=0 α(i) = ακ+1.

2. s0 = si with ∀i : 0 ≤ i ≤ κ. The costs for changing the levels in the
network are the same as the latency of the local memory.

According to this assumptions, we can simplify the formula 3.7 by ex-
changing si with the constant s0 and α(i) with the constant α. These mod-
ifications helps to eliminate the nested sums.

s0

κ∑

i=1

(α(i) − 1) +

κ∑

i=1

(

(α(i) − 1)
M

gglobal

)

+ 2

κ∑

i=1

i∑

j=1

sj + κs0 =

3.2. κNUMA MODEL 61

= κ(α − 1)s0 +
(α − 1)M

gglobal

κ∑

i=1

1 + 2s0

κ∑

i=1

i∑

j=1

1 + κs0

= κ(α − 1)s0 +
(α − 1)M

gglobal

κ + 2s0

κ∑

i=1

i + κs0

= κ(α − 1)s0 +
κ(α − 1)M

gglobal

+ 2s0

κ(κ + 1)

2
+ κs0

= (κ(α − 1) + κ + κ(κ + 1))s0 + κ(α − 1)
M

gglobal

= (κα + κ(κ + 1))s0 + κ(α − 1)
M

gglobal

(3.9)

Additionally, we add the result of 3.8 (inner-node broadcast) to 3.9 and
divide the formula into the categories latency (s0), local bandwidth (M/glocal)
and global bandwidth (M/gglobal). The results are illustrated in Table 3.1.
As we can see in table, concerning the local bandwidth, both algorithms are
equal. The κ-level algorithm is clearly better concerning the global band-
width. When we consider the latency, we can remark that the κ-level broad-
cast gets better for a more distinct κNUMA architecture. The higher the
hierarchy of the network, the bigger is the difference between the running
times.

algorithm latency s0 M/glocal M/gglobal

κ-level κα + κ(κ + 1) + 2 2 κ(α − 1)

Direct 1-level (best) ακ+1 − α + 2 2 ακ+1 − α

Direct 1-level (worst) ακ+1 − α + 2κ + 3 2 ακ+1 − α

Table 3.1: Running times of the casual broadcast algorithms divided into
the categories latency (s0), local bandwidth (M/glocal) and global band-
width (M/gglobal)

κ-level personalized broadcast

In the following, we show the analysis of the κ-level algorithm for the per-
sonalized broadcast problem. The main difference to the analysis of the
casual broadcast is that in each step the length of the messages vary, be-
cause the representative processor of a sub-machine gets all messages for
all processors it presents. Hence with each step, the lengths of the mes-
sages decrease until they have length M in the last step. We will see that

62 CHAPTER 3. A MODEL FOR HIERARCHICAL SMP CLUSTERS

the algorithm has the same costs for latency and local bandwidth as in for
the casual broadcast, but it has a higher cost for global bandwidth.
Phase 1: κ supersteps

step 1 The sending of α(κ) − 1 messages of length M
∏κ−1

k=0 α(k) costs:

(α(κ) − 1)(s0 + M
gglobal

∏κ−1
k=0 α(k)) + 2

∑κ
k=1 sk + s0

step 2 The sending of α(κ − 1) − 1 messages of length M
∏κ−2

k=0 α(k) costs:

(α(κ − 1) − 1)(s0 + M
gglobal

∏κ−2
k=0 α(k)) + 2

∑κ−1
k=1 sk + s0

· · ·

step κ The sending of α(1) − 1 messages of length Mα(0) costs:

(α(1) − 1)(s0 + M
gglobal

α(0)) + 2s1 + s0

If we aggregate the costs of the κ steps, we get:

s0

κ∑

i=1

(α(i)−1)+

κ∑

i=1

(α(i) − 1)
M

gglobal

i−1∏

j=0

α(j)

+2

κ∑

i=1

i∑

j=1

sj+κs0 (3.10)

Phase 2: 1 superstep: Distributing the messages within the SMP node costs:

2s0 +
α(0)M

glocal

(3.11)

The overall running time can be calculated by adding times for (3.10)
and (3.11). Again, according to the assumptions above, we can simplify the
formula 3.10.

s0

κ∑

i=1

(α(i) − 1) +

κ∑

i=1

(α(i) − 1)
M

gglobal

i−1∏

j=0

α(j)

+ 2

κ∑

i=1

i∑

j=1

sj + κs0 =

= κ(α − 1)s0 +
(α − 1)M

gglobal

κ∑

i=1

αi + 2s0

κ∑

i=1

i + κs0

= (κ(α − 1) + κ + κ(κ + 1))s0 +

(

κ∑

i=1

αi+1 −

κ∑

i=1

αi

)

M

gglobal

= (κα + κ(κ + 1))s0 + (ακ+1 − α)
M

gglobal

(3.12)

3.2. κNUMA MODEL 63

Again, we add the value of 3.11 (inner-node personalized broadcast) to
3.12 and divide the formula into the categories latency (s0), local bandwidth
(M/glocal) and global bandwidth (M/gglobal). The results are illustrated in
Table 3.1. As we can see in the table, concerning the local and global band-
width, both algorithms are equal. When we consider the latency, we can
remark that the κ-level broadcast gets better for a more distinct κNUMA
architecture. The higher the hierarchy of the network, the bigger is the dif-
ference between the running times.

algorithm latency s0 M/glocal M/gglobal

κ-level κα + κ(κ + 1) + 2 α ακ+1 − α

Direct 1-level (best) ακ+1 − α + 2 α ακ+1 − α

Direct 1-level (worst) ακ+1 − α + 2κ + 3 α ακ+1 − α

Table 3.2: Running times of algorithms divided into the categories latency
(s0), local bandwidth (M/glocal) and global bandwidth (M/gglobal)

3.2.4 Remarks and Conclusions to the Broadcast Problem

• Basically, the BSP model suggests one algorithm for the one-to-all-
broadcast problem. In this algorithm the messages are distributed by
a balanced d-ary tree [76]. In fact, there are p possibilities to imple-
ment this algorithm by setting d in the range from 1 to p. Hence, it
is up to the parameters for the real machine which instance of this
algorithm is best. The BSP model only gives an estimate how the al-
gorithm works, but a more accurate description can only be achieved
by analyzing the problem on the target architecture.

In order to present the κNUMA model and its possibilities, we de-
cided to analyze a certain instance of this algorithm that uses d = p.
With the help of the κNUMA model, it was possible to analyze the ex-
tremes of this algorithm First, we analyzed the algorithm’s behavior
by applying it directly, just considering the order in which the pro-
cessors are addressed by the initiating processor. We showed that the
running time of the algorithm depends on this order, and presented
best- and worst-case behaviors.

In a second step, we constructed a new algorithm called κ-level broad-
cast by applying the direct algorithm to each level of the κNUMA
machine, and analyzed it on the model, too. The comparison of these
different algorithms showed that the κ-level is the best for typical val-
ues of the κNUMA parameters.

64 CHAPTER 3. A MODEL FOR HIERARCHICAL SMP CLUSTERS

Hence, this is not only an example how algorithms can be analyzed
using the κNUMA model, it does also show, how more efficient al-
gorithms for SMP clusters can be derived from BSP algorithms and
the model served as a quantitative basis for a comparative algorithm
analysis.

• We do not claim that the κ-level algorithm is the best broadcast al-
gorithm for the κNUMA model in general, but we showed how it
was constructed out of an BSP algorithm and that it performs better
than this algorithm. In general, the direct broadcast algorithm is not
the fastest despite of using asynchronous communication operations.
However, the fastest algorithm could be constructed in the same way
as the κ-level algorithm by choosing the right d-ary tree for each level
of the κNUMA machine.

• We can retain that the BSP model makes no statement about the order
in which the messages should be sent. Nevertheless, as we showed,
this point influences the running time on this architecture very much,
because of the possibility to overlap the execution of consecutive asyn-
chronous communication operations. Hence, a good implementation
should take care of the sending order.

• The BSP model does not differentiate between a casual and a person-
alized broadcast, because it just account for the number of messages
and not for their lengths. But as we showed, this makes a difference
for algorithms with tree-like communication patterns. The sizes of
the messages for each level in the tree are different and hence, the
communication costs for these messages are different.

3.3 Summary

In this chapter, we defined a computational cost model for hierarchical SMP
clusters denoted as κNUMA model. The model is based on concepts of
widely used general-purpose cost models, like BSP, but is more accurate
concerning communication in SMP clusters. In contrast to other models,
κNUMA supports the hybrid nature of SMP clusters by differentiating be-
tween inner- and inter-node communications. Further, κNUMA considers
asynchronous communication operations that are widely supported by ac-
tual message-passing libraries and allow overlapping consecutive commu-
nication operations. As an example for the use of the model, we analyzed
the casual and the personalized broadcast problem, which is the same as
the scatter-operation in the MPI library.

We presented and analyzed an algorithm derived from a BSP algorithm
for the problem and compared the theoretical results with each other. We

3.3. SUMMARY 65

showed that the running times of the algorithms could vary depending on
the order in which they are sent. This is important for implementations
and is not considered in the BSP model. On the base of this algorithm, we
constructed a new broadcast algorithm by applying the BSP algorithm to
each level of the hierarchy. The comparison of the results of the analysis
showed that the new algorithm performs better.

Hence, algorithms, which might behave optimal in the BSP model, are
not necessarily optimal for the κNUMA model if they are applied directly.
The BSP model is too coarse and therefore may lead to inefficient algo-
rithms for SMP clusters. Despite of that, BSP algorithms are a good base
for the development of efficient algorithms for SMP clusters, and with the
κNUMA model it is possible to make a comparative algorithm analysis.

The formulation of the κNUMA model includes some compromises.
The aim was to define a model that is general, but also accurate enough to
account for the characteristics, we want to research for SMP clusters. An
even more general model could e. g. use different bandwidth rates for each
level in the hierarchy. Our approach is coarser because we use the same
bandwidth for the whole network (implicitly assuming that the bandwidth
is dominated by the lowest in the network). However, despite of that,
κNUMA rewards communication in lower levels of the network by level
individual constant costs. Because of that, algorithms try to avoid commu-
nication operations over high levels and by that they simultaneously use
higher bandwidth rates, because generally the lower the level, the higher
the bandwidth.

Another more general approach is to consider the (memory) hierarchy
within the SMP nodes (registers, caches, memory). The κNUMA model just
defines costs for shared-memory communication and assumes that compu-
tation on local data considers the respective memory hierarchy of the node.
A κNUMA algorithm consists of computation and communication steps.
In the computation steps, each processor computes on local data. Hence,
the behavior of this sequential computation could be analyzed using se-
quential memory hierarchy-aware models and is therefore out of scope for
the parallel analysis.

Due to these compromises, the κNUMA model can be regarded as a
special case of general heterogeneous hierarchical systems that reflects the
very common class of homogeneous SMP clusters. On the other side, de-
spite of this specialization, it is already difficult enough to analyze algo-
rithms with the κNUMA model. Even for the comparably simple broad-
cast and scatter operation, large formula had to be mastered. Hence, in
the following, the κNUMA model can be also regarded as a super-model
for the class of SMP clusters. It seems to be rational to reduce the model
in dependence of the considered problem and the underlying architecture.
Possibilities to improve the ease of use of the model are the fixing or reduc-
ing of parameters.

66 CHAPTER 3. A MODEL FOR HIERARCHICAL SMP CLUSTERS

Another problem is that we have not verified the theoretical results in
practice, yet. Thus, we will address to more practical examples for special
cases of the κNUMA model in other chapters. However, before we can do
this, it is necessary to deal with the design of parallel algorithms. The pre-
sented broadcast algorithms were developed straightforward and without
a methodical approach. For problems that are more complex, design meth-
ods can help to observe a given problem systematically and hence, max-
imize the amount of considered options for the design. However, many
parallel algorithms have already been developed, thus it is not always nec-
essary to start from scratch. Methods that transfer existing parallel algo-
rithms to a certain class of parallel computers, as SMP clusters are very
important. Further, another class of methods describe optimization strate-
gies that are often successful, because the structure of many problems is
similar. As we can see, methods for the design of parallel algorithms can
have several shapes. In the following chapter, we present several methods
and make a classification with respect to their position in an overall design
process.

Chapter 4

Methods for Designing Parallel
Algorithms for SMP Clusters

The design chain for parallel applications, introduced in Chapter 1, is an
analytical framework for developing efficient parallel programs. It is pos-
sible to analyze and compare different algorithms theoretically and it is
guaranteed by the respective programming model that implementations
for the target platform behave according to the theoretical prediction. In
the last chapter, we presented the κNUMA model, which was the missing
element for the design chain for SMP clusters.

In addition to this quantitative basis for the design, we need methods
for (1) developing new parallel algorithms from scratch, (2) for transfer-
ring parallel algorithms to SMP clusters and (3) for optimizing parallel al-
gorithms with respect to the communication hierarchy of SMP clusters.

With the help of the methods, parallel algorithms can be designed and
optimized for SMP clusters. With the κNUMA model it is possible to show
the improvement and the efficiency of the resulting algorithms by a theo-
retical analysis and due to to the corresponding programming model, it is
possible to produce efficient implementations. Hence, in order to develop
efficient programs, the methods, models and architectures have to be ad-
justed to each other.

In general, the design of parallel algorithms is a complex task and can-
not be reduced to simple recipes. The designer has to deal intensively with
the given problem and needs a large portion of intuition, creativity and ex-
perience. However, the design profits from a more methodical approach
that helps in studying the given problem systematically. According to Fos-
ter [31], the aim of such a method should be to maximize considered op-
tions, to provide mechanisms to evaluate alternatives and to reduce costs
of backtracking from bad choices.

Foster introduced a design methodology that creates a parallel algo-
rithm from a fine-grained problem decomposition. The methodology con-

67

68 CHAPTER 4. DESIGNING PARALLEL ALGORITHMS

sists of 4 steps named partitioning, communication, agglomeration and
mapping (PCAM). In Section 4.1, we will review this methodology briefly,
and will sketch how SPMD algorithms for SMP clusters can be designed
using this method.

It is not always necessary to create parallel algorithms from scratch.
Many parallel algorithms have been developed for the most computational
problems. They were designed under several assumptions like for example
a certain cost- or programming model. Hence, the task is to observe these
algorithms if they have the capability to perform well on SMP clusters or if
they can be changed with respect to the SMP cluster architecture.

Method

Communication
Pattern

Redundant
Data

STARTING POINTS

PCAM

"Creativity"

Parallel
Algorithm

SMP Cluster
Algorithm Algorithm

SMP ClusterProblem

Transfer

Optimized

M
E

T
H

O
D

S

Sensitive
Hierarchical

Figure 4.1: Overview on methods for the design of parallel SMP cluster
algorithms. The methods have different starting points and may be applied
one after the other.

The PCAM methodology is the base for developing parallel algorithms.
It builds the frame for the over-all design process. We will show refine-
ments and additional methods that enable the design of efficient parallel
algorithms for SMP clusters.

We will present two methods that start on existing parallel algorithms.
The first method is a general approach to transfer parallel message-passing
algorithms to the hierarchical structure of SMP clusters as described by the
κNUMA model. This method is mainly applicable to divide-and-conquer
algorithms and is generally explained in Section 4.2. The second method is
called hierarchical sensitive design and tries to reduce communication costs of

4.1. PCAM 69

a parallel algorithm by dynamically improving the locality of the algorithm
during execution, see Section 4.3.

During the transfer of a parallel algorithm to SMP clusters, optimiza-
tions that are more detailed are possible. We present two methods that can
be applied during the creation of parallel SMP cluster algorithms in order
to reduce communication costs and to avoid unnecessary redundant data
usage. These methods are generally presented in Section 4.4 and 4.5.

Fig. 4.1 depicts the methods with their respective starting point. In or-
der to create an algorithm for SMP clusters the methods can be applied one
after the other. This is not a must, but an opportunity. For certain problems
it might not be necessary or even possible to apply all methods and despite
of that the resulting algorithm is optimal. Hence, the set of methods can
be regarded as a set of guidelines or control points for the overall design
process.

4.1 PCAM - Partitioning, Communication, Agglomer-

ation and Mapping

The PCAM method can be applied to a general problem definition. The
methodology suggests developing a parallel algorithm for the problem by
the following 4 steps.

Partitioning The problem is divided into a number of tasks. Concerning the grain
of the tasks, it is suggested to prefer fine-grained tasks, because the
method does not want to overlook any possibility for concurrent exe-
cution. Either the partitioning can be done by functionality or by data
domain. Domain decomposition is the foundation for most parallel
algorithms, but functional decomposition is an opportunity to look at
the problem in a different way.

Communication The set of tasks, which was created in the last step, is connected by
directed edges. Each edge represents dependency from one task to
the other. If there is an edge from one task to another, then it is not
possible to execute these tasks in parallel, because one task needs the
results of the other to perform its computation. After this step, we
have already designed a fine-grained algorithm that is represented
by a directed acyclic graph whose nodes represent the tasks of the
algorithm and the edges represent communication operations.

Agglomeration The preceding steps are architecture independent, because they do
not consider architectural parameters that influence performance, like
e. g. the number of processors. Now, we review the partitioning
into tasks and the resulting communication patterns made in the first

70 CHAPTER 4. DESIGNING PARALLEL ALGORITHMS

steps and take some class of parallel computer into account. In partic-
ular, it is observed if it is useful with respect to the target architecture
to combine fine-grained tasks in order to provide fewer but coarser
tasks. Further, we have to observe, if it is worth replicating data or
computation, because sometimes redundant computation is less ex-
pensive then getting the result by communication.

Mapping In the final phase, we have to define where each task will be executed.
The number of tasks defined by the agglomeration phase may still be
greater than the number of processors. Otherwise, the mapping is
obvious. The mapping of tasks to processors is a difficult problem.
We try to satisfy two conditions that conflict in general. (1) We assign
tasks that can be executed in parallel to different processors. (2) We
assign tasks that communicate frequently to the same processor in
order to increase locality. The mapping problem is known to be NP-
complete, hence special strategies and heuristics have to be used.

The agglomeration and mapping steps of the methodology is respon-
sible for optimizing the parallel algorithm that was created by the parti-
tioning and communication phase to a certain class of parallel computer. If
we want to adapt the fine-grained algorithm to a SPMD algorithm for SMP
clusters, then the agglomeration and mapping phase consists of the follow-
ing two phases. Like in the κNUMA model, p is the number of processors
and N is the number of nodes.

1. We try to create several times p tasks of equal size that do not have
data dependencies and hence, can be executed in parallel. Ideally,
these tasks can be arranged in levels, where there are always p tasks
of equal size per level, and there are only edges of the same direction
between the levels.

2. In each level, the p tasks are reduced to N tasks. This second ag-
glomeration is done with respect to minimize the edges and by that
communication between the levels.

In the following, we will give a simple example. The problem of mak-
ing a reduction on n numbers is a basic problem in parallel computation,
see e.g. [44]. A set of numbers is reduced to one number by applying a
certain operation. In our example, we use the sum of numbers as reduction
operation. According to the partitioning phase, we decompose the problem
into several smaller tasks. In the most fine-grained decomposition, a task
comprises two numbers that have to be added. Hence, this is a functional
as well as a domain decomposition.

The communication phase defines the dependencies between the oper-
ations. If we regard the tasks as nodes and the dependencies as edges, the

4.1. PCAM 71

resulting graph is a binary tree with height log n/2. In each leaf, one add
operation is performed on the initial numbers, and the result is forwarded
to their parent node in the tree. Each inner node adds the results of its chil-
dren and sends the result to its parent node. Finally, the last operation is
performed in the root node of the tree and the over-all result is stored there,
too (see Fig. 4.2).

0..3

sum

4..7

sum

sum

0..1

sum

2..3

sum

4..5

sum

6..7

sum

8..9

sum

10..11

sum

12..13

sum

14..15

8..11

sum

12..15

sum

0..7

sum

8..15

sum

0..15

sum

Figure 4.2: Problem decomposition after applying the partitioning and the
communication phase to the problem of summing 16 numbers.

If the agglomeration and mapping steps assign the tasks directly to the
processors, we have the problem that due to the tree structure only one
processor knows the result in the end. Hence, solving the problem this
way means to perform an additional broadcast operation of the result. If
we want to avoid the broadcast, we could replicate computation and ac-
cept more communication operations per level. Hence, in the first phase of
the agglomeration step for adapting algorithms to SMP clusters, we use a
communication structure called Butterfly.

In Fig. 4.3, the resulting algorithm is depicted for 8 processors summing
16 numbers. In each level, each processor performs at least one addition
operation and one communication operation. The algorithm terminates
after 1 + log p computation and log p communication steps.

According to the second step of the agglomeration for SMP clusters, we
have to reduce the number of task per level from p to N. In Fig. 4.3, the
dashed rectangles show the best agglomeration. The resulting graph of the
algorithm is illustrated in Fig. 4.4.

72 CHAPTER 4. DESIGNING PARALLEL ALGORITHMS

4..7 4..7 8..118..11 12..15 12..15

0..7 0..7 0..7 0..7 8..15 8..158..15

0..15 0..15 0..15 0..15 0..15 0..15 0..15 0..15

P0 P1 P2 P3 P4 P5 P6 P7

0..3 0..3

4..5 14..1512..1310..118..96..72..30..1

sumsumsum sum sum sum sum sum

sum sum sum sum sum sum sum sum

sum sum sum sum sum sum sum

8..15

sum sum sum sum sum sum sumsum

sum

Figure 4.3: Parallel algorithm after the agglomeration and mapping phase
for the problem of summing 16 numbers with 8 processors.

sumsumsumsum

sumsumsum

sum sumsumsum

0..3 4..7 8..11 12..15

sum

0..7 0..7 8..15 8..15

0..15 0..15 0..15 0..15

N0 N1 N2 N3

Figure 4.4: Parallel algorithm for summing 16 numbers on an SMP cluster
with 4 nodes where each consists of 2 processors. The nodes are denoted
with N0, N1, N2 and N3.

The main problem with this methodology is that usually the algorithm
designer has a sequential algorithm for the problem in mind. In general, the
best parallel algorithm might differ from a parallel algorithm derived from
the best sequential one. Hence, there is no guarantee to get the most effi-
cient algorithm, but the method helps in studying the problem deeply and
therefore also supports “creativity”. The PCAM method is one possibility
to design a parallel algorithm, but it is not a precondition for designing
efficient parallel algorithms.

4.2. TRANSFERRING PARALLEL ALGORITHMS 73

The following methods can be applied to any parallel algorithm, inde-
pendent on how it was designed and aim to optimize the algorithm to SMP
clusters.

4.2 Transferring Parallel Algorithms to Hierarchical

SMP Clusters

In SMP clusters, inter-node communication costs are a magnitude higher
than accessing local memory. Thus, algorithmic design must attempt to
minimize inter-node communication. This is a similar optimization crite-
rion as for designing pure message-passing algorithms. Hence, a successful
strategy is to first design an efficient message-passing algorithm, and then
adapt the algorithm to the hybrid-programming model. This methodology
is a first approach to transfer parallel message-passing algorithms to SMP
clusters and is described in [6, 16].

The adaptation is an incremental process, where the computational work
that is assigned to each SMP node is mapped into an efficient SMP algo-
rithm. The sequential code is examined for independent operations like
IO operations or computational tasks that can be executed by independent
threads. The most successful case for multi-threaded execution is the con-
current execution of loop-nests. Each thread executes its part of the itera-
tions independently. Loop transformations may be necessary to reduce the
data dependencies between the threads and thus to increase parallelism.
In [41], two sorting algorithms are presented that were transferred to SMP
clusters using this method.

As we know from Section 2.4.2, the result of this strategy in contrast
of using a pure message-passing based algorithm depends on several pa-
rameters. The most success can be achieved if the algorithm belongs to the
class of divide-and-conquer algorithms and there are several levels of hi-
erarchy between the computing nodes. Therefore, we want to reformulate
the method for the κNUMA model and for divide-and-conquer algorithms.

It seems to be easy to apply message-passing algorithms to SMP clus-
ters because, ultimately, the system is also only a set of processors, which
are connected by a network or shared-memory. However, this assumption
is not optimal, because of the differences between inner- and inter-node
communication. This difference even increases for larger hierarchies. The
communication hierarchy enlarges the internal memory hierarchy of SMP
nodes and has great influence on the performance of parallel algorithms.

Thus, algorithms should be developed in a way that communication
takes place inside the SMP nodes or in the lowest level possible of the net-
work. In contrast to κNUMA, the other models have the same costs for all
inter-processor communication, independent of where they are situated.

In order to achieve the best running time on κNUMA, it is obvious to

74 CHAPTER 4. DESIGNING PARALLEL ALGORITHMS

minimize the communication in each level of the machine and therefore
the total communication. We suggest a top-down approach, because the
higher the level of hierarchy in the network, over which we have to com-
municate, the more expensive communication will be. First, we have to de-
velop an efficient message-passing algorithm for the virtual machine with
α(κ) (κ−1)NUMA-sub-machines. This algorithm consists of several partial
problems, which all have to be solved by efficient message-passing algo-
rithm for the virtual machine of the next level (with α(κ−1) (κ−2)NUMA-
sub-machines). This procedure has to be continued until the level of the real
SMP nodes is reached. The problems on the SMP nodes have to be solved
by an efficient shared-memory algorithm. An efficient SMP-algorithm con-
sists of parts that will be executed sequentially on each processor and on
synchronized shared-memory operations. Only if we use efficient sequen-
tial code and data structures we will have optimal SMP-algorithms. Using
this method guarantees an efficient transfer from non-hierarchic systems to
κNUMA machines, hence, it is called κNUMA method.

The design of an optimal algorithm and its analysis gets easier if it is
possible to use the same message-passing algorithm for all κNUMA-sub-
machines. This is possible, as soon as the algorithm divides the input prob-
lem into a smaller instance of the same problem (divide-and-conquer).

As an example for this approach, we review the problem of summing
n numbers again. Obviously, this problem can be solved by a divide-and-
conquer algorithm. The starting point for the method is the parallel algo-
rithm explained in the previous section, see Fig. 4.3. The complete algo-
rithm can be constructed by recursively applying this algorithm in a top-
down fashion to all levels of the κNUMA machine. That means that we
first apply the algorithm to the α(κ) sub-machines of level κ. These sub-
machines have to sum n/α(κ) numbers and use their α(κ−1) sub-machines
to solve this problem (call of recursion). The end of the recursion is reached
if the algorithm can be applied to the SMP nodes. Each SMP node has to
build the sum of n/N numbers with its α(0) processors.

Basically, we get the same SMP cluster algorithm as with the PCAM
method. However, the methods are totally different. While PCAM suggests
a fine-grained bottom-up strategy starting with the problem partitioning,
the κNUMA-method uses a recursive top-down approach applying well-
proven parallel message-passing algorithms to each level.

We have already presented another example for the method in Chap-
ter 3. The κ-level algorithm was constructed by applying the direct broad-
cast algorithm from the top level of the hierarchy to the SMP nodes. The
analysis showed that this version is superior to the original algorithm.

4.3. HIERARCHICAL SENSITIVE DESIGN 75

4.3 Hierarchical Sensitive Design

What we learned from the κNUMA model is that in hierarchical SMP clus-
ters, algorithms should attempt to split their work into more and more in-
dependent pieces in order to reach higher locality during the execution. For
non-hierarchic distributed-memory systems, it does not matter which pro-
cessors have to communicate, because the costs are the same. In hierarchic
systems, we should attempt to minimize the communication operations for
each level in the network.

SMP1 SMP2 SMP3 SMP4

s0

s1

s2 s2

s1

s0

SMP1 SMP2 SMP3 SMP4

s0

s1

s2 s2

s1

s0

SMP1 SMP2 SMP3 SMP4

s0

s1

s2 s2

s1

s0

Figure 4.5: Hierarchic sensitive broadcast algorithm for hierarchic SMP
clusters. The algorithm needs three communication steps to perform the
broadcast. The level of hierarchy involved in the communication decreases
with every step.

An algorithm can be called hierarchical sensitive, if it minimizes the com-
munication operations per level and prefers local computation instead. In
consecutive communication steps, only levels of equal or lower height should
be used. Normally, the algorithm terminates with a final local computation.

As an example, we revisit the broadcast problem for a κNUMA ma-
chine. In the first step, the message is transferred over the highest level of
the network. This splits the task into several tasks (α(κ) tasks) that can be
solved by the receiving processors concurrently. For all following commu-

76 CHAPTER 4. DESIGNING PARALLEL ALGORITHMS

nication steps, it is guaranteed that the height of the actual level is lower
than the height of the level of the previous communication step. Finally,
the algorithm terminates by a local memory copy of the message, compare
Fig. 4.5.

The broadcast example is straightforward for the method, because the
problem can be easily partitioned into several independent tasks. In gen-
eral, such decomposition is not achieved easily for the general case. Gen-
erally, the method can be applied to problems that can be solved by the
iteration of two steps. First, informations about local data are exchanged
between groups of processors. By exchanging these informations, a global
knowledge of the distributed data is created. Second, due to the global
knowledge the data can be redistributed. Further iterations of the two
steps will involve smaller and smaller groups of processors. With decreas-
ing group sizes, the level used for the communication operations will get
lower and lower. This is repeated until only local computation remains.

4.4 Adaptation of Communication Patterns

In non-hierarchic distributed-memory machines, a certain communication
pattern leads to the same costs independent of which processors are in-
volved in the operation. As we saw by the analysis of the broadcast prob-
lem on the κNUMA model, in hierarchic systems, this has great influence
on the communication costs.

Looking at the broadcast algorithm again, despite of using the same
communication pattern, it is possible to deteriorate the running time by
not adapting the pattern efficiently to the architecture. In Fig. 4.6, we use
the same pattern as in the example presented in Fig. 3.1. The difference is
the second communication step that is done inefficiently, because the two
communication operations have to cross the highest level in the network
again which is unnecessary.

In the example, the communication pattern is static; the only thing we
can change is the order in which the processors are considered during the
execution. By choosing a distinct order, we get a more or less efficient in-
stance of the broadcast algorithm. Hence, the example is very limited con-
cerning the influence on the communication pattern. Generally, in SPMD
algorithms, a processor makes computations on local data and after that a
certain communication pattern is executed. Normally this pattern depends
on the respective data distribution that was chosen for the computation.
Hence, the task is to find a data-distribution that influences the next com-
munication pattern in the way that it is maximally adapted to the underly-
ing SMP cluster architecture.

4.5. USAGE AND AVOIDANCE OF REDUNDANT DATA 77

SMP1 SMP2 SMP3 SMP4

s0

s1

s2 s2

s1

s0

SMP1 SMP2 SMP3 SMP4

s0

s1

s2 s2

s1

s0

SMP1 SMP2 SMP3 SMP4

s0

s1

s2 s2

s1

s0

Figure 4.6: Broadcast algorithm for a hierarchic SMP clusters with a non-
adapted communication pattern. The algorithm needs three communica-
tion steps to perform the broadcast. The level of hierarchy involved in the
communication does not decreases with every step.

4.5 Usage and Avoidance of Redundant Data

In general, an algorithm should avoid storing data redundantly. On the
other side, an algorithm can also profit from redundant data. For example,
an algorithm has the possibility to make computations on these data that
normally are done by other processors, too. Instead of receiving the results
by communication, it can compute the results locally. Whether such a strat-
egy is successful depends on the ratio between the extra computation and
the saved communication costs.

A more attractive situation is reached, if it is possible to use redundant
data in the way that the number of local computations stays the same, but
the structure of the algorithm leads to a reduction of communication oper-
ations in further steps. This may arise, if due to the redundant data final,
or at least less partitioned intermediate results can be computed.

For example, the algorithm for the parallel reduction of n numbers pre-
sented in Fig. 4.3 stores intermediate results of the sum redundantly in each
processor. Due to this investment, it is possible for each node to compute

78 CHAPTER 4. DESIGNING PARALLEL ALGORITHMS

the final result step by step and by that an expensive broadcast operation of
the final result is avoided. The additional computation each processor has
to do can be hidden by parallelism. Although we save a complete broad-
cast operation and do not need any additional computation that increases
the running time, the situation is not optimal. We have more point-to-point
communication operations per iteration in order to make the redundant in-
termediate results accessible to the processors. Despite of that the example
shows the potential of the method.

In general, optimal situations exist for algorithms that work on multi-
dimensional data grids. Usually, the grid is distributed evenly among the
processors. Each processor stores a multi-dimensional block of the whole
grid of the same size. The shape of this part can be changed by increasing
and decreasing its dimensions. The amount of computation is normally
directly dependent on the size of this local block. Hence, the amount of
computation per processor can be preserved, if the increase of one dimen-
sion is compensated by the decrease of another dimension. The compensa-
tion does not lead to redundant data, but in general, more than one multi-
dimensional grid is involved in the computation. The shape and size of
these additional blocks depends on the shape of the main block and the
operation that is performed. Hence, redundant data is very likely concern-
ing the additional blocks. In general, such operations produce intermedi-
ate results that have to be reduced to the final result by at least one more
communication and computation step. Hence, the initial data distribution
has effect on the preceding communication step, because it defines which
processor computes which intermediate results and thus defines the com-
munication pattern. An investment in redundant data may result in a more
efficient communication operation without increasing computation time.

Another aspect of the method is that we want to avoid unnecessary
usage of redundant data. In general, data is distributed evenly among
the processors in order to reach a good load balance. For non-hierarchic
machines this is done in an anonymous fashion, because it does not mat-
ter to which processor the data is assigned. In contrast to that, if we look
at κNUMA machines the assignment has great importance. Basically, the
whole data for one processor consists on several structures. The aggrega-
tion of these structures over all processors is normally not a disjoint set
of the whole data, because there is data that is used by all or a sub-set of
all processors. Hence, in order to reduce the over-all amount of data in
each SMP node, we should assign jobs that need mostly the same data to
processors of the same SMP node. By assigning the data this way, it is pos-
sible to store the data structures that are needed for multiple processors
only once per SMP node by using an appropriate programming model like
e.g. the hybrid-programming model that uses threads within the nodes
that have a common memory space. Despite an appropriate programming
model, without the grouping of the processors according to the data they

4.6. SUMMARY 79

use, such a minimization of the amount of memory is not possible. There-
fore, the usage of redundant data on SMP clusters is not as expensive as
for distributed-memory systems where each processor has its own mem-
ory space. If we assume that an amount of data has to be accessed by all
processors then we only have to store it once per SMP node. Depending on
the number of processors per node α(0), this might even become insignifi-
cant. Hence, algorithms that use redundant data profit from the SMP clus-
ter structure. The total amount of memory per node can be reduced which
is especially important for large-scale applications.

STARTING POINTS

Chapter 5

Chapter 6

Chapter 7

PCAM

Redundant

Communication

"Creativity"

Parallel
Algorithm

SMP Cluster
Algorithm Algorithm

SMP Cluster

Data

Pattern

Problem

Transfer

Method

Optimized

M
E

T
H

O
D

S

Sensitive
Hierarchical

Figure 4.7: Overview on methods for the design of parallel SMP cluster
algorithms.

4.6 Summary

In the last sub-sections, we introduced and reviewed several methods for
designing parallel algorithms and for optimizing them with respect to hier-
archical SMP clusters. The general design process for a parallel algorithm
for SMP clusters has several entry or starting points for the application of
the methods. While some methods assume nothing else than the problem
definition, others start on well-proven parallel algorithms.

Fig. 4.7 summarizes the different starting points of the methods. The
gray shaded region illustrates the scope of the remaining part of the thesis.

80 CHAPTER 4. DESIGNING PARALLEL ALGORITHMS

All these methods are applicable on parallel algorithms in order to create
efficient parallel algorithms for SMP clusters. The usage of these meth-
ods is therefore independent on the way these parallel algorithms were
developed. The designer is free to use the methodical approach PCAM, his
“creativity” or if possible already existing parallel algorithms. While in the
last sections we explained the methods using simple examples and gen-
eral explanations, in the following, we will show the use of the methods
by detailed case studies for more complex problems. The verification of
the efficiency of the resulting algorithms is done by analyses on base of the
κNUMA model where necessary. The theoretical predicted results are veri-
fied practically by experimental tests. The individual path of development
for these case studies is visualized by the directed edges in Fig. 4.7.

Chapter 5

Exploitation of Data
Redundancy

One observation made from looking at the SMP cluster architecture is that
data can be used redundantly by multiple processors within the SMP nodes.
Using the parallel dense matrix-vector-multiplication as an example, we
show the possibility to reduce communication cost of algorithms by stor-
ing data redundantly but without increasing the per processor amount of
memory in an unacceptable way. On the other side, sometimes the mini-
mization of memory is more necessary than reducing communication costs.
For this case, we show that the use of the κNUMA model together with the
appropriate hybrid-programming model avoids the storage of unnecessary
redundant data.

5.1 Adapting κNUMA to the Target Platform

Parameter Description

N = α(1) Number of SMP-nodes

α(0) Number of processors per node

s0 Access time to local memory

s1 Access time to the network

gglobal Bandwidth of the network

glocal Bandwidth within SMP-node

Table 5.1: Reduced set of parameters for a 1NUMA machine

Since we want to make the theoretical analysis more feasible, we adapt
the κNUMA model to our target platform, called Kepler-Cluster. The Kepler-
Cluster [75] of the University of Tübingen is a Linux-based cluster, which

81

http://kepler.sfb382-zdv.uni-tuebingen.de
http://kepler.sfb382-zdv.uni-tuebingen.de

82 CHAPTER 5. EXPLOITATION OF DATA REDUNDANCY

consists of 98 computing nodes based on dual BX-Boards with Pentium
III at 650 MHz clock rate1. Each board has 1 GB of memory and is con-
nected both to a Myrinet LAN and to an Ethernet network. The Kepler-
Cluster was included three times in the TOP500 [60] list (November 2000
until November 2001). Although the interconnection network has an hier-
archical structure, it is not possible to measure different message-passing
times for the different levels, because the overhead for a message is much
higher (µs) than the additional times for each level (ns). Hence, our target
machine corresponds to a 1NUMA-machine that reduces the set of param-
eters as illustrated in Table 5.1.

5.2 Analysis of the Parallel Dense Matrix-Vector-Mul-

tiplication in Distributed-Memory Systems

In this section, we analyze the problem of multiplying an n × m matrix A
with an m-element vector x in parallel, where both are dense. The resulting
vector b consists of n elements (Ax = b). The straightforward sequential
algorithm for this problem is a nested loop that iterates over the matrix and
the vector in the following way2.

for (int i=0; i<n; i++) {

for (int j=0; j<m; j++) {

b[i]+=A[i][j]*x[j];

}

}

As we can see, the running time can be asymptotically charged as O(nm).
Optimizations of this code according to the cache utilization are possible
and depend on the actual memory layout of the matrix and the vector and
the kinds of caches and their sizes for the respective platform. Generally,
this approach assumes that the matrix as well as the vector is stored in the
same memory space. Under this assumption, it is very simple to make a
parallel shared-memory version. As we know from Chapter 2.4.1, OpenMP
can parallelize loop nests by defining parallel regions and work-sharing
directives. The code above is extended by a parallel for directive, but the
nested loop itself stays unchanged. As a result the iterations are divided
equally among the threads and therefore among the available processors.
By default, the variables are shared between the threads. The schedule
directive has the argument static that defines an equal distribution before
runtime. In this case, this is the best schedule strategy, because the work

1Currently, the Kepler-Cluster is extended by 32 additional nodes.
2We use C code fragments to illustrate the algorithm and assume that the variables

(i,j,n,m,b,x,A) are declared in the complete program.

5.2. DENSE MATRIX-VECTOR-MULTIPLICATION 83

that has to be done is deterministic and thus, no synchronization for redis-
tribution during the loop is necessary. More information about the clauses
of the directives can be found in the OpenMP specification [61].

#pragma omp parallel for schedule(static)

for (int i=0; i<n; i++) {

for (int j=0; j<m; j++) {

b[i]+=A[i][j]*x[j];

}

}

In contrast, the situation in distributed-memory systems is more com-
plex. If we want to speed-up the computation it is of course also possible
to distribute the iterations equally, but the problem is that we do not have
access to a shared result vector. That means that each processor can only
produce partial results, which have to be combined later. Further, in the
shared-memory version the whole data is stored only once for all proces-
sors. We want to achieve the same situation for the distributed case, be-
cause it is inefficient to store the whole data for each processor separately.

5.2.1 Basic Parallel Algorithm

Roughly speaking, each processor stores a block of equal size from the ma-
trix A in its local memory. Additionally, each processor stores the part of
the vector x which is necessary to perform a partial multiplication with its
local block of the matrix. For simplicity, we neglect the arithmetic precision
and assume that the data can be partitioned evenly among the processors.

To be more precise, the data-decomposition can be described by two
parameters. Let h be the number of blocks in horizontal direction and v

the number of blocks in the vertical direction of the matrix A. It follows
directly that p = hv. Therefore, each processor stores nm

p
elements of the

matrix A and m
h

elements of the vector x.

Hence, the resulting algorithm consists of three phases namely, local
matrix-vector multiplication, communication of partial results and accu-
mulation of the received partial results, see Algorithm 1.

After the execution of Algorithm 1, the result vector b is distributed
equally among the processors. Since we do not know the context in which
the multiplication takes place, we do not consider the collection or storage
of the result vector for the algorithm. Variants of this algorithm for dif-
ferent computational models can be found in standard textbooks. See for
example [44] and [54].

84 CHAPTER 5. EXPLOITATION OF DATA REDUNDANCY

Algorithm 1: Basic parallel dense matrix-vector-multiplication algo-
rithm

1. Phase: Each processor computes a partial result vector by multiplying
the local block of the matrix A with its part of vector x of size m

h
. The

resulting vector has the length n
h

.

2. Phase: Each processor sends parts of the partial result vector to the
corresponding v − 1 processors. These parts have the length n

p
.

3. Phase: Each processor adds all received partial vectors of size n
p

to
its own partial vector. After that, each processor has n

p
continuous

elements of the result vector b.

Optimization Directions

Looking at the algorithm, we notice that the initial distribution of the ma-
trix over the processors defines the number of necessary communication
operations and determines the length of the vector, which has to be stored
in each processor. In order to minimize the number of communication, we
have to set v as low as possible and h as high as possible. If we want to
minimize the initial memory space and want to avoid redundant storage of
vector elements, then we have to set v and h vice versa. Hence, the matrix
decomposition is the major factor in determining the efficiency of the basic
algorithm. In the following analysis, we want to compare three different
situations. First, the minimization of initial memory usage (h = p, v = 1),
second, minimization of the number of communication operations (h = 1,
v = p) and, third, the balanced situation (h = v, if p is square).

5.2.2 Data Distribution

The three considered distributions are illustrated in Fig. 5.1. Each node
stores the part of the vector, which is necessary for the multiplication with
its part of the matrix, in the local memory too. Again, the input matrix A
has size n × m.

1. Vertical stripes (vstripe), h = p, v = 1.
Each node works on a matrix with size n × m

p
and on a vector with

size m
p

(see Fig. 5.1a).

2. Square blocks (block), h = v =
√

p.
Each node works on a matrix with size n√

p
× m√

p
and on a vector with

size m√
p

(see Fig. 5.1b).

5.2. DENSE MATRIX-VECTOR-MULTIPLICATION 85

3. Horizontal stripes (hstripe), h = 1, v = p.
Each node works on a matrix with size n

p
× m and on a vector with

size m (see Fig. 5.1c).

(b) block

(c) hstripe

(a) vstripe

Figure 5.1: Different initial data decomposition strategies for the matrix
and the vector. The shaded regions have to be stored in the nodes (N = 4).

Corresponding Algorithms

Now we have to adapt the basic algorithm to the distributions vstripe, block
and hstripe. This can be done by setting the values of h and v of the dis-
tributions into the basic algorithm. The resulting numbers are presented
in Table 5.2. As an example, the adapted algorithm for hstripe is shown in
Fig. 5.2.

Transfer of the Basic Algorithm to the Parallel Hierarchy

Until now, we have described a basic algorithm for the parallel dense matrix-
vector multiplication, we have pointed out that depending on the data de-
composition we can optimize either the number of communication opera-
tions or the initial memory space. However, we have not considered the
parallel hierarchy of the target platform. Applying the algorithms directly

86 CHAPTER 5. EXPLOITATION OF DATA REDUNDANCY

Distribution Communications Initial Memory Space

vstripe p nm
p

+ m
p

block
√

p nm
p

+ m√
p

hstripe 0 nm
p

+ m

Table 5.2: Number of communication operations and the size of the initial
memory space of the basic algorithm for the considered distributions

P
h
a
s
e
 1

P
h
a
s
e
 2

P
h
a
s
e
 3

Figure 5.2: Three phases of the parallel matrix-vector-multiplication algo-
rithm for the hstripe decomposition. (N = 4).

to the target architecture without considering the hierarchical structure can
lead to inefficient algorithms. We will give an example in Section 5.2.4.

The presented algorithm is a divide and conquer algorithm that solves the
problem by solving the same problem on smaller instances of the input.
In the 1. phase of the basic algorithm, a matrix-vector multiplication on
the locally stored data is called. Concerning the hierarchical structure, we
can apply the basic algorithm from the top level to the lowest level of the
κNUMA machine. For each level, it is possible to use another data distri-
bution dependent on the characteristics of the respective sub-machine. Our
target machine is a 1NUMA machine that has only two levels, the cluster

5.2. DENSE MATRIX-VECTOR-MULTIPLICATION 87

level and the node level. The main difference is the memory system. There
is distributed-memory between the nodes and shared-memory within the
nodes. Hence, the question, we have to answer is, which data decomposi-
tion for each level is the best. This situation is illustrated in Fig. 5.3.

Figure 5.3: Parallel hierarchy in the SMP cluster

5.2.3 Analysis

In order to create an overall algorithm, we have to stick the algorithms for
all levels together. Due to our target platform, we have a cluster-level algo-
rithm (κ = 1) and a node-level algorithm (κ = 0). The three phases of both
algorithms are denoted XPhaseY, whereby X is either C for cluster-level or
N for node-level and Y stands for the number of the concerned phase. The
overall algorithm is illustrated in Fig. 5.4. The shaded regions are obso-
lete, if the hstripe decomposition is used either at the node- or cluster-level,
because in this case each processor computes directly values of the result
vector and hence, no further communication or computation is necessary.

CPhase1

NPhase1 NPhase2 NPhase3

CPhase2 CPhase3

NPhase3b

Cluster−Level

Node−Level

Figure 5.4: Phases of the overall algorithm.

Cluster Algorithms Phase 1

Table 5.3 gives an overview of asymptotic computation and communica-
tion times for the three considered distributions for CPhase1. CPhase1 con-
sists of NPhase1, NPhase2 and NPhase3 (see Fig. 5.4). While NPhase1 is
equal for all distributions, due to NPhase2 and 3 we get a unique ranking:
1) hstripe, 2) block, 3) vstripe.

88 CHAPTER 5. EXPLOITATION OF DATA REDUNDANCY

Distribution NPhase1 NPhase2 NPhase3

vstripe O
(

nm
Nα(0)

)

2s0 + 2n
glocal

O(n)

block O
(

nm
Nα(0)

)

2s0 +
2n√

N

glocal
O
(

n√
N

)

hstripe O
(

nm
Nα(0)

)

0 0

Table 5.3: Analysis of node-level algorithm for phase 1 of the cluster-level
algorithm (CPhase1)

Cluster Algorithms Phase 2

The main thread of the node process is responsible to do the communica-
tion operations of phase 2. Depending on the distribution, each node has
to send N−1,

√
N−1 or 0 messages. Table 5.4 shows the three different for-

mulas for the distributions. Concerning CPhase2, the ranking is 1) hstripe,
2) block, 3) vstripe again.

Distribution Communication

vstripe Ns0 + 2s1 +
n−n

N

gglobal

block
√

Ns0 + 2s1 +
n√
N

−n
N

gglobal

hstripe 0

Table 5.4: Analysis of phase 2 of the cluster-level algorithm for the different
distributions (CPhase2)

Cluster Algorithms Phase 3

In the last phase of the cluster-algorithm, each node adds its received par-
tial result vectors in order to compute a part of the result vector of size

n
Nα(0)

= n
p

(Table 5.5). Again the algorithm behaves different for the three

distributions, but the ranking stays the same: 1) hstripe, 2) block, 3) vstripe.

Ranking

Summarizing the results of Table 5.3, 5.4 and 5.5, the ranking of the data de-
compositions is obvious. It is not necessary to aggregate the contents of all
tables for computation and communication, because the ranking of all data
decompositions in all phases of the cluster-algorithm is identical. Looking
at the node-level algorithm (CPhase1), the ranking is clearly hstripe, block
and then vstripe. Within the nodes, we do not have the problem of using

5.2. DENSE MATRIX-VECTOR-MULTIPLICATION 89

Distribution Computation

vstripe O
(

n
α(0)

)

block O
(

n√
Nα(0)

)

hstripe 0

Table 5.5: Analysis of phase 3 of the cluster-level algorithm for the different
distributions (CPhase3)

too much memory for hstripe, because there is shared-memory. The whole
vector for the partial problem has to be stored in the node anyway. Hence,
the ranking for the node-level algorithm stays unchanged. Looking at the
cluster-level algorithm, the decomposition with the best resulting perfor-
mance is hstripe, the second best is block and the third best is vstripe. Of
course, this is the ranking in order to optimize performance. If it is neces-
sary to use as little memory as possible, then the ranking is vice versa for
the cluster-level algorithm. All SMP nodes have to store the same amount
of matrix elements for all distributions. This is not true for the vector el-
ements. Using hstripe means to store the whole vector in each node (m
elements). If block-distribution is used, then only m/

√
N elements have

to be stored in each node. The least vector elements per node have to be
stored when the vstripe decomposition is used. Here it is only necessary
to store m/N elements of the vector, which is optimal. Nevertheless, be-
cause of the parallel hierarchy the situation is not as bad as it would be for
BSP-machines. Table 5.6 shows the initial memory usage per processor for
the three variants of the cluster-level algorithm. It is not necessary to store
the whole vector for each processor, we only have to store it in each node.
This makes hstripe more efficient, especially if α(0) is not much smaller than
Nα(0).

Distribution Initial Memory Space

vstripe nm
Nα(0)

+ m
Nα(0)

block nm
Nα(0)

+ m√
Nα(0)

hstripe nm
Nα(0)

+ m
α(0)

Table 5.6: Initial memory usage per processor of the overall algorithms.

5.2.4 Problems Involved with a Non-Hierarchical Approach

Before we show results of experimental test for previous analysis, we want
to look back briefly to non-hierarchical analyses. In the following, we will

90 CHAPTER 5. EXPLOITATION OF DATA REDUNDANCY

�✁�✁�
�✁�✁�
�✁�✁�
✂✁✂
✂✁✂
✂✁✂

✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄
✄✁✄✁✄

☎✁☎
☎✁☎
☎✁☎
☎✁☎

✆✁✆
✆✁✆
✆✁✆
✆✁✆

✝✁✝
✝✁✝
✝✁✝
✝✁✝ ✞✁✞

✞✁✞
✞✁✞
✞✁✞
✞✁✞

✟
✟
✟
✟
✟

✠✁✠
✠✁✠
✠✁✠
✠✁✠

✡✁✡
✡✁✡
✡✁✡
✡✁✡ ☛

☛
☛
☛

☞
☞
☞
☞

✌✁✌
✌✁✌
✌✁✌
✌✁✌

✍✁✍
✍✁✍
✍✁✍
✍✁✍

✎
✎
✎
✎

✏
✏
✏
✏

✑✁✑
✑✁✑
✑✁✑
✑✁✑
✑✁✑

✒✁✒
✒✁✒
✒✁✒
✒✁✒
✒✁✒

✓
✓
✓
✓
✓

✔
✔
✔
✔
✔

Memory Memory

(c)

(b)

(a)

network
interprocessor

P PPP

Figure 5.5: Problems with a non-hierarchical approach may appear using
the block distribution concerning redundant data. Depending on the assign-
ment of blocks to processors, vector elements have to be stored more than
necessary in each node. The quadrats represent the matrix and the vertical
rectangles represent the vector. The assignment of blocks to processors is
illustrated by the shading.

show that implementations based on these analyses may lead to inefficient
memory usages. In [54] the block distribution is used for the matrix-vector-
multiplication. As we explained before, this leads to a compromise be-
tween communication cost and memory usage. However, this is not the
whole story. In Fig. 5.5, three situations are presented that behave differ-
ently concerning the amount of memory per SMP node, although they all
belong to the block distribution. The difference is in the mapping of the
blocks to the processors. As an example we take a SMP cluster that consist
of two nodes and each node has two processors. According to the non-
hierarchic approach, it is not important which part of the matrix and vec-
tor is assigned to which processor. Therefore, in Fig. 5.5a an assignment
is shown which leads to the fact that the whole vector has to be stored
for two processors. According to non-hierarchical models this is optimal.
However, if we do the assignment as we show in Fig. 5.5b, then the proces-
sors in each node can use the same part of the vector. If we use processes
for the computation of the partial results, then we have the same problem
as in the Fig. 5.5a, because each process has its own memory space and
therefore, the part of the vector is stored redundantly although it is identi-
cal. But in the κNUMA model and the corresponding hybrid-programming
model, threads of the same node have a common memory space. Hence,
the identical part of the vector for both computations can be stored only

5.3. EXPERIMENTAL TESTS 91

once, compare Fig. 5.5c. This problem will not appear if the analysis re-
spects the hierarchical architecture as we showed in the previous sections.
Looking at the example, we can realize that Fig. 5.5c is nothing different
than choosing the vstripe algorithm for the cluster-level and applying the
hstripe algorithm for the node-level algorithm. As we know from the anal-
ysis this should be the variant with the lowest memory requirements and
with the fastest node level algorithm. Indeed the cluster-level algorithm
needs communication and is therefore not as fastest choice. In the next sec-
tion, we will show results of experimental test that will confirm the ranking
from the theoretical analysis of the previous sections.

5.3 Experimental Tests

The experimental tests for the cluster-level algorithm were made on dif-
ferent instances of the Kepler-Cluster [75] of the University of Tübingen.
The experiments for the SMP-algorithms were made on one node of this
cluster and on a Sun Sparc Ultra-4 Workstation with 4 processors. The pro-
gram was written in C++ using Posix-Threads for SMP programming and
TPO++[38] (Section 2.4.1) for message-passing. For all experimental tests
we set m = n.

We decided not to use OpenMP, because we wanted to program the
different data distributions for the SMP node algorithm explicitly in order
to make the results comparable. To rely on the scheduling possibilities of
OpenMP would have been more convenient, but it is more difficult to for-
mulate the three distributions.

SMP-Node Experiments

All experimental tests on one SMP node confirmed the theoretical ranking
of the three data decompositions. In Table 5.7, we illustrate an example for
the Sun workstation (α(0) = 4) and in Table 5.8, there is an example for one
node of the Kepler-Cluster (α(0) = 2).

n Distribution time in sec

4096 vstripe 3.31

block 3.17

hstripe 2.74

2800 vstripe 1.62

block 1.48

hstripe 1.29

Table 5.7: Tests for the SMP-algorithm on the Sun Sparc Ultra-4 (4 CPUs).

92 CHAPTER 5. EXPLOITATION OF DATA REDUNDANCY

n Distribution time in sec

4096 vstripe 2.62

hstripe 2.52

2800 vstripe 1.3

hstripe 1.18

Table 5.8: Tests for the SMP-algorithm on one node of Kepler (two CPUs).
The block distribution is not possible for two CPUs per node.

Cluster Experiments

The SMP experiments confirmed the predicted ranking of the distributions.
Now we want to confirm the predicted ranking of the distributions con-
cerning CPhase2. It does not matter which distribution we choose for the
node-level algorithm. In the experiments, we take the hstripe distribu-
tion, because it is the fastest. In Table 5.9 and 5.10, we can see that the
experiments confirm the predicted ranking for the communication phase
(CPhase2).

n Distribution CPhase1 CPhase2 CPhase3

11200 vstripe 1.48 0.04 0.01

block 1.38 0.01 0

hstripe 1.41 0 0

5600 vstripe 0.46 0.02 0.01

block 0.44 0.01 0

hstripe 0.35 0 0

Table 5.9: Tests on the Kepler-Cluster with 16 nodes (time in sec). Values
that are 0 stand for times < 0.01.

However, it is also obvious that the time for CPhase2 is so small that it
is nearly not relevant for the total runtime of the algorithm. The runtime
of the algorithm is dominated by the runtime of the node-level algorithm
(CPhase1). By using more nodes, it is possible to reduce the overall runtime
by an optimal speed up. This works well, because the algorithm has a
very good scalability. Nevertheless, the more nodes are involved, the more
communication operations are necessary. With an increasing number of
nodes, the communication part of the runtime becomes more and more
important and, therefore, the programmer should consider the ranking of
the three distributions for his choice. Although we use the same algorithm
(hstripe) for CPhase1 in the cluster experiments and the amount of data
involved in the computation is equal, the timings are different for the three

5.4. SUMMARY 93

distributions. These differences are likely depending on cache utilization,
because the arrays have a different shape depending on the distribution
used in the cluster-level algorithm. The CPhase3 can be computed very fast
for all distributions. It does nearly not contribute to the overall runtime.

Nodes Distribution CPhase1 CPhase2 CPhase3

16 vstripe 4.73 0.08 0.01

block 4.29 0.02 0

hstripe 4.68 0 0

25 vstripe 2.95 0.09 0.01

block 2.75 0.01 0.01

hstripe 3.03 0 0

49 vstripe 1.59 0.10 0

block 1.43 0.01 0

hstripe 1.54 0.01 0

Table 5.10: Tests on the Kepler-Cluster with 16, 25 and 49 nodes where
n=19600 (time in sec). Values that are 0 stand for times < 0.01.

5.4 Summary

In this chapter, we illustrated the use of the κNUMA-method that enables
the transfer of algorithms from more general message-passing models like
BSP. The main idea is to use efficient algorithms for each level of the ma-
chine in a top-down fashion. This recursion ends at the SMP node level
where efficient shared-memory algorithms are used for the computation.

As an example, we developed efficient SMP cluster algorithms for the
parallel dense matrix-vector multiplication. In contrast to the analysis of
broadcast problems in Chapter 3, we made the κNUMA model more fea-
sible by adapting the parameters to a certain SMP cluster, and we made
experimental tests.

Besides applying the κNUMA method, we observed the algorithm with
respect to the usage of redundant data. We showed that the data decom-
position plays a key-role for the efficiency of the algorithm. By analyzing
the different variants of the algorithms, we predicted a ranking for the ex-
perimental results on a Linux cluster with two processors per node. The
experimental tests confirmed the predicted ranking of the analyzed algo-
rithms. Therefore, the κNUMA framework is suited for the development
of algorithms for SMP clusters.

We showed that within the nodes the hstripe distribution is the best
choice for the algorithm, because of the shared-memory between the pro-

94 CHAPTER 5. EXPLOITATION OF DATA REDUNDANCY

cessors. It is also the best choice for the cluster-level algorithm, if there is
enough memory to store the whole vector x in each node. An important
conclusion of the analysis and the experimental tests is that it is possible to
improve the performance by using redundant data. By storing more ele-
ments of vector x in each node, it was possible to use less communication.
This is a technique, which might as well be useful for other problems.

In addition, the investment in redundant data is not as high as it would
be predicted by the BSP model. It is only necessary to store m/α(0) ele-
ments of vector x per processor. The optimum is m/Aα(0) what means that
in some architectures, where the number of nodes A is small, the difference
is not relevant at all.

Further, we showed an example that the κNUMA method avoids an
unintentional redundant storage of data. Due to the hybrid-programming
model it is possible to distribute data in a way that those processors who
reside in the same node mainly have to work on the same data. This tech-
nique saves memory space, which is a critical resource in large scale appli-
cations.

Chapter 6

Adaptation of Communication
Patterns

In general, parallel algorithms contain communication steps where proces-
sors communicate according to a certain pattern. In Chapter 3, the per-
sonalized broadcast was introduced which is an example for a one-to-all
pattern. In Chapter 5, where the parallel matrix-vector multiplication was
analyzed , the all-to-all communication pattern was introduced, where each
processor sends messages to all other processors. We have already seen at
the analysis of the broadcast problem in Chapter 3 that the adaptation of
a communication pattern to the hierarchical structure improves the perfor-
mance. Additionally, in the last chapter we showed that a non-hierarchical
analysis ignores the possibilities of exploiting the shared-memory between
processors maximally. Looking at an all-to-all pattern used in an SMP clus-
ter, it is obvious that there are many point-to-point communications within
the all-to-all pattern that are very cheap because both processors reside in
the same node. Hence, the all-to-all operation should be not as expensive as
expected. Motivated by this observation, we want to research if it is further
possible to adapt communication patterns even more exactly to the under-
lying architecture in order to erase network communication completely. In
the following, we will apply this technique to the problem of parallel ma-
trix transposition that is an important operation in dense linear algebra.

In dense linear algebra, operations can be divided into three levels, see
e.g. [28]. In the following, uppercase letter stand for matrices, lowercase
letters stand for vectors and Greek lowercase letters are scalars. Level 1

consists of vector-vector operations, such as update (y = y + βx) or in-
ner product (d = yTx). Level 2 are matrix-vector operations, such as the
matrix-vector product (Ax = b). Finally, level 3 accounts for matrix-matrix
operations, like the matrix-matrix product (C = AB). Operations of level
3 are very often expressed generally as C = β op(A) op(B) + γC where
op(X) = X or XT. An important one of these cases C = βBTAT + γC can be

95

96 CHAPTER 6. ADAPTATION OF COMMUNICATION PATTERNS

A [1][4]
T

j

i

Abstract representation of the matrix in physical memory

A[1][4]

0

1

2

3

4

5

0 2 3 4 51

Figure 6.1: The figure depicts different access possibilities for the same
physical memory location of a matrix. It is possible to interpret the matrix
as transposed or not, without changing the physical representation.

implemented in 2 steps: (1) T = βAB, (2) C = T T + γC, like for example in
the PUMMA package [20].

Hence, the transposition of a matrix is a fundamental operation in dense
linear algebra and is used in many scientific and engineering applications.
In sequential and shared-memory programming the transposition of the
matrix need not to be done in physical memory. Basically, it is only nec-
essary to exchange the indices for the columns and the rows of the ma-
trix. Fig. 6.1 shows the access to an element of the original matrix A and
the transposed matrix AT . We can see that it is not necessary to change
the physical memory layout for these different access styles. However, de-
pending on the number of further accesses and the physical layout of the
matrix in memory, it may be better to restore the matrix in the transposed
form, because a better cache utilization is possible. An overview on cache
optimization techniques for numerical algorithms is given in [51].

In general, sequential and parallel shared-memory block-partitioned al-
gorithms are used to maximize the local processor performance. Working
on blocks of the matrix increases the overall performance because the mem-
ory hierarchy is used more efficiently.

This technique can also be used in a distributed-memory environment,
because local computation in distributed systems does profit by that, too.
However, in a distributed environment it is not possible to transpose the
matrix just by exchanging the global column or row indices. Instead, com-
munications are necessary, where processors send their blocks of the matrix
to each other.

The way data is distributed among the processors in a distributed sys-
tem is of fundamental importance to load balancing and communication

97

costs. Choi and Dongarra [21] assume as target machine a non-hierarchic
distributed-memory machine, where each processor has its own local mem-
ory. They use a data-distribution called block cyclic data distribution [52],
which leads to a communication step for the transposition operation. In
particular, the two-dimensional block-cyclic distribution has been suggested
as a possible general-purpose basic decomposition [13]. An example for
this distribution is depicted in Fig 6.2.

2

3 4 5

0 1

2

3 4 5

0 1 2

3 4 5

0 1

2

3 4 5

0 1 2

3 4 5

0 1

0

2

4

5

3

1

0 1 2 3 4 5

0 1 2

3 4 5

Figure 6.2: An Example for the block-cyclic distribution of the matrix: The
figure illustrates the distribution from the matrix point of view, i.e. the
numbers within the blocks correspond to the processors that store the cor-
responding block of the matrix. In this example the matrix transpose has to
be done by an all-to-all communication operation.

In the example of Fig. 6.2, the matrix is divided into 6 blocks, whereby
each block consists of 2 × 3 smaller blocks. Within each block, the smaller
blocks are assigned cyclically to the 6 processors. Before and after a trans-
position, each processor has to store the values for the same indices of the
matrix, therefore, communication is necessary. Due to the block-cyclic dis-
tribution, first, each processor has to exchange one block with each of the
other processors (all-to-all communication). Second, all blocks have to be
transposed locally.

A less algorithmic work was done by Haan [39]. He surveyed the prob-
lem of distributed matrix transpose technically on IBM SP supercomputers
that also have the SMP cluster structure. He compared running times for
the hybrid-programming model and for pure message-passing. The con-
clusion is that the hybrid program using MPI and OpenMP performs better
than the pure MPI program.

In contrast to this technical observation, the main contribution of this
chapter is to show how the communication costs of this operation can be
minimized by adapting the all-to-all communication pattern to the struc-
ture of hierarchical SMP clusters. This can be achieved by defining a special
data-distribution. The resulting algorithm can perform the transposition as
elegant as in the sequential case.

98 CHAPTER 6. ADAPTATION OF COMMUNICATION PATTERNS

6.1 Problem Definition

As explained in the beginning, we consider the following computation C =

βATBT + γC. For simplicity, we assume that β = 1 and γ = 0. Hence, the
considered problem is defined as follows:

• Let A and B be matrices of size n × m and m × n.

• The problem is to multiply A with B and to transpose the resulting
n × n-matrix T : C := (A× B)T .

• This computation can be implemented in 2 steps. First, T := A × B,
and second, C := T T.

6.2 On-the-Fly Algorithm

Before we explain in detail how we can optimize the computation, we
sketch a generic algorithm for the given problem, see Algorithm 2.

Algorithm 2: Generic algorithm for computing C := (A× B)T

1. Parallel matrix-multiplication. The result of the parallel matrix-
multiplication is the intermediate n × n matrix T . Depending on the
data distribution, each node of the SMP cluster computes one or more
blocks of T . Basically, a block of matrix T can be computed by a node,
if it has access to the corresponding horizontal stripe of matrix A and
the vertical stripe of matrix B, see Fig. 6.3. As we showed in Chap-
ter 5, where we analyzed the matrix-vector multiplication, which is a
special case of matrix-multiplication, multiplying the two matrices in
parallel this way does not need any communication and is therefore
appropriate for distributed parallel architectures.

2. Distribution of the blocks of T . After the multiplication, T is already
distributed evenly among the nodes of the system. The distributed
matrix can be transposed by communication between the nodes. De-
pending on the distribution of the blocks of T , this might be even an
all-to-all operation.

3. Local transposition. After the communication step, each processor
transposes its blocks of the matrices locally.

Basically, the strategy of the algorithm should be that all pairs of blocks
of T , which have to be exchanged in order to transpose T , were computed

6.2. ON-THE-FLY ALGORITHM 99

n m

m n

X =

n

n

n/b

n/b

Matrix A Matrix B Matrix T

Figure 6.3: Illustration of the initial memory space for the computation of
a block of n

b
× n

b
.

by the same node and therefore, are located in its own memory. Hence, the
transposition of T can be done on the fly without inter-node communica-
tion. Only local computation is necessary.

In the following, we describe the corresponding data distribution scheme
called mirror scheme, which is a first approach to a symmetric block-distri-
bution. In order to stay within the notion of the κNUMA model, we will
denote the number of nodes in the SMP cluster by N and the number of
processors per node by α(0).

6.2.1 Mirror Scheme

In order to realize the on-the-fly algorithm, we have to define which blocks
of T have to be calculated by which node. The intermediate matrix T is
partitioned into b2 square blocks of equal size. We assume that b2 is a

multiple of N. Hence, each node computes b2

N
blocks. Additionally, each

node must have at least two blocks in its memory, otherwise an inner-node
transpose is not possible. Thus, we assume b2 ≥ 2N.

• T is divided into b2 blocks of size n
b
× n

b
.

• The blocks are denoted by Bij, where 0 ≤ i, j < b.

• The block main diagonal (BMD) is defined as {Bii|0 ≤ i < b}.

• The lower triangular block matrix (LTB) is defined as {Bij|0 ≤ i, j < b; i >

j}, the upper triangular block matrix (UTB) is defined as {Bij|0 ≤ i, j <

b; j > i}.

The aim is that a node computes a number of pairs (Bij, Bji) with 0 ≤
i, j < b and i 6= j or a number of blocks on the BMD. If we can guarantee
such a distribution for each node, then the transposition step can be done
locally in each node, which is the precondition for the on-the-fly algorithm.

100 CHAPTER 6. ADAPTATION OF COMMUNICATION PATTERNS

0

0

1

2

0

0

0

1

2

2

1

1

1

4

4

n/An/A

n
/A

n
/A

(b)(a)

1

1

2

2

0

0

1 2

3

3 34

45

5

5

0 0

1

2 2

3 3

3

44

55 5

2

Figure 6.4: Examples for the Mirror Scheme: The numbers correspond
to the nodes beginning with 0. (a) Even case: N = 6, b is set to 6, because
b2 = 36 is the value that comes closest to 2N = 12 and fulfills the conditions
b2 − 2N = 24 > 0 and b2/N = 6 is an integer. (b) Odd case: N = b = 3. The
shaded regions represent the main block diagonal.

Depending on the number of SMP nodes N, there are two cases where we
have to define which blocks can be computed by which SMP node.

1. If N is odd (odd case), then we set b = N. Each node calculates exactly

one block of the BMD. Additionally, each node computes (b2

N
− 1)/2

pairs (Bij, Bji), whereby 0 ≤ i, j < b and i 6= j. The idea behind
this definition is that in fact, each node computes an odd number of
blocks, but because one block is always on the BMD the remaining
blocks can be pairs of blocks that have to be exchanged for a transpo-
sition. Hence, this distribution satisfies the conditions above.

2. If N is even (even case), then b is set in the way that (b2 − 2N) gets
minimal, but as well greater or equal to 0. Further, b2 has to be a mul-
tiple of N because only in this case it is possible to assign the compu-
tations of all blocks evenly among the processors. If b is determined
in this way, then b

2
nodes compute two blocks of the BMD. Addition-

ally, these nodes compute (b2

N
− 2)/2 pairs (Bij, Bji), the other nodes

compute b2

2N
pairs (Bij, Bji), whereby 0 ≤ i, j < b and i 6= j. Again,

this distribution satisfies the conditions above. The idea behind this
distribution is the following. If N is even and each node must com-
pute the same amount of blocks, then the total amount of blocks each
node computes is even, too. Hence, it is necessary that the nodes
compute either an even number of blocks of the BMD or no block of
the BMD at all, because otherwise the remaining number of blocks
for each node is odd and thus cannot be assigned to pairs of associ-
ated blocks of the UTB and LTB. On the other hand, we want to make
the blocks as large as possible, because many small blocks per node
may lead to an overhead in memory management. We regard the case

6.2. ON-THE-FLY ALGORITHM 101

b2 = 2N as optimal, but this case is not possible for all values of N,
because the number of blocks b has to be an integer. Therefore, we
take the value for b where b2 comes closest to 2N.

In both cases, each node computes b2

N
blocks of the intermediate matrix

T . An example for both cases is illustrated in Fig. 6.4.

6.2.2 Algorithm and Analysis

The on-the-fly-algorithm and its analysis are presented in Algorithm 3 on
page 101. An overview of the results of the analysis is depicted in Table
6.1. As presented in the analysis, the algorithm has optimal asymptotic
computation and communication costs. It is possible to switch very fast
from matrix CT to C, and vice versa without communication. This is an
advantage for calculations, which decide at runtime, if the result of the
multiplication has to be transposed or not.

Algorithm 3: On-the-fly algorithm and analysis for the computation
of C := (A× B)T

1. Parallel Matrix-Multiplication. Each node computes b2

N
blocks of

size n
b
× n

b
with α(0) processors. This can be done in

O

(

b2

N
(n

b
mn

b
)

α(0)

)

= O

(

n2m

p

)

steps

2. No Communication. According to the mirror scheme, no communi-
cation is necessary, since Bij and Bji are located in the same node.

3. Parallel Transpose. In each node b2

N
blocks of size n

b
× n

b
have to be

accessed by α(0) processors. This can be done in

O

(

b2

N

n2

b2

1

α(0)

)

= O

(

n2

Nα(0)

)

= O

(

n2

p

)

steps

The only sub-optimal feature is the initial memory space. The initial
memory space is the number of elements of the matrices A and B, which
have to be stored in the local memory of the nodes in order to perform
the multiplication. It would be optimal to store 2nm

N
elements per node or

2nm
p

elements per processor. However, the algorithm for parallel matrix-
multiplication needs more elements per processor, depending on the dis-
tribution of the computation of the blocks.

102 CHAPTER 6. ADAPTATION OF COMMUNICATION PATTERNS

On-the-Fly Algorithm Complexity

Matrix-Multiplication O
(

n2m
p

)

Matrix-Transpose O
(

n2

p

)

Communication 0

Initial Memory Space per processor ≤ b2nm
p

Table 6.1: Analysis of the On-the-Fly algorithm.

Until now, the mirror scheme does not define exactly, which blocks are
calculated by which nodes. We only know the number of blocks each node
has to compute and the sizes of the stripes of the initial matrices that are
necessary for each block separately. Hence, we can only give an upper
bound. For each block, at most 2nm

b
elements of the matrices A and B are

necessary (see Fig. 6.3). Therefore, each node has to store b2nm
N

elements,
which means, that it depends on the number of blocks, if this value comes
close to the optimum or not. Each processor stores ≤ b2nm

p
elements. Fur-

ther, it is obvious, that N ≥ b, because no node has to store more than both
matrices (2mn). Hence, obviously 2mn (both matrices) is the upper bound.

Fig. 6.5 is an example that shows that the size of the initial memory
space depends on the distribution of the blocks to the nodes. In the exam-
ple, the same number of blocks is computed by each node. While in the left
case only a part of the initial matrices have to be stored, in the right case
the node has to store both matrices completely.

In Section 6.3, we will improve the lower bound of 2mn
N

for the initial
memory space of a node. Further, a general exact mapping of blocks, called
snake-like scheme, is presented. The initial memory space of this scheme is
much lower than the upper bound and comes close to the lower bound.

6.3 Reducing the Initial Memory Space

The initial memory space is important, because it is an indicator for work
that has to be done before the needed data can be used by the nodes. The
data does not get there for free, either it gets there by communication or
by reading data from a storage medium. In both cases, the more data is
necessary, the more time is wasted. Further arguments are that in general
programs are faster if they use a smaller amount of memory, and in large-
scale applications, memory is also a critical resource, which has to be used
carefully.

6.3. REDUCING THE INITIAL MEMORY SPACE 103

n

Matrix A Matrix T

n

n

Matrix B

n

m

m m

m

n

Matrix AMatrix T

n

n

Matrix B

n/b

m/b n/b n/b

n/b

n/b

m/b

m/b m/b

n/b n/b

Figure 6.5: An example for different initial memory space, depending on
which block is calculated by which node. In the left case, a node needs only
6nm

b
, while in the right case it needs 12nm

b
. In this example N = b = 6, this

means that one node has to store both matrices, while the other has to store
only the amount of one matrix.

6.3.1 Lower Bound

As mentioned above, a distribution of the matrices A and B before the
multiplication over the N nodes that leads to store only 2nm

N
elements in

each node can be regarded as optimal concerning the initial memory space.
The on-the-fly algorithm avoids communication operations for the parallel
matrix-multiplication and hence, it is necessary to store more elements of
the initial matrices per node. In order to compute a block of T , the node
needs a horizontal stripe of A and a vertical stripe of B with the appropriate
sizes, see Fig. 6.3. If a node has to compute more than one block, it is pos-
sible for the node to reuse stripes from A or B, if another block of the same
block-column, or block-row, is computed by the node, too. The best reuse is
achieved, if all blocks, computed by one node, build a bigger square block
around the BMD. Basically, it is not possible to define a distribution, which
satisfies this assumption for all nodes (N > 1). Therefore, the initial mem-
ory space for this situation is a lower bound for all data-distributions. If the
b2

N
blocks of size n

b
× n

b
are arranged quadratically, then the initial memory

space for one node in this case is the best lower bound and can be charged
as

2

(
√

b2

N

nm

b

)

= 2

(

b√
N

nm

b

)

= 2
nm√

N

104 CHAPTER 6. ADAPTATION OF COMMUNICATION PATTERNS

6.3.2 Snake-like Scheme

The snake-like scheme extends the mirror scheme by a method how the blocks
of the LTB and the UTB are distributed among the nodes. The running time
of the algorithm stays the same, because each node computes the same
number of blocks as in the mirror scheme. Basically, the snake-like scheme
defines exactly which blocks have to be computed by which node in order
to reduce the initial memory space per node.

The blocks of the BMD are distributed as described in the mirror scheme.
In the following, we will only describe how to map the blocks of the LTB.
The mapping for the UTB can be received by exchanging the block indices.
The scheme is defined by a ranking of blocks of the LTB and by a ranking of
nodes. Each node has a unique number from 0 to N − 1. Each block in the

LTB has a number from 0 to b2−b
2

− 1, and the blocks of the BMD have the
numbers 0 to b − 1. There are two steps, first, the blocks of the BMD and
second, the blocks of the LTB are assigned to the nodes. The mapping starts
by assigning blocks to nodes with increasing node numbers and increasing
block numbers.

1. The blocks of the BMD are assigned to the nodes as follows. If N is
even, then the first b/2 nodes get two blocks of the BMD with increas-
ing block numbers. If N is odd, then each node gets the block of the
BMD, where the block number is equal to the node number.

2. The blocks of the LTB are assigned to the nodes as follows. We start
again with node 0 and continue with increasing node numbers. Each
node gets its remaining number of blocks according to the numbering
of the blocks in the LTB. The number or rank of a block in the LTB is
defined next.

Let R(i, j) be the rank of the block Bij in the LTB. R(i, j) is defined by

R(i, j) :=

x∑

k=0

(2b − 3 − 4k) + (1 − y)(z − 2(j + 1)) + y(z + 2(i − b))

, with x = ((i − j) div 2 + (i − j) mod 2) − 1

y = ((i − j) div 2 + (i − j) mod 2) mod 2

z = (i − j) mod 2

The resulting ranking for the blocks in an LTB is presented in Fig. 6.6
for b = 6. The snake-like scheme is shown in Fig. 6.7. In the following, we
adhere the properties of the snake-like scheme:

• First, the snake-like scheme guarantees a symmetric and even distribu-
tion of the blocks among the processors.

6.3. REDUCING THE INITIAL MEMORY SPACE 105

n/b

n
/b

0

1 2

3 4

5 6

7 8910

1112

13

14

Figure 6.6: Snake-like scheme. Ranking of the blocks of the LTB. The num-
bers represent the block numbers.

(a)

0

0

1

1

4

41

1

2

2

0

0

1 2

3

3 34

45

5

5

0 0

1

2 2

3 3

3

44

55 5

2

(b)

n/b

n
/b

n/b
n
/b0

0

1

1

2

2

Figure 6.7: Snake-like scheme. The numbers represent the node num-
bers. (a) The mapping of the BMD-blocks was already done, and the ar-
rows show the order in which the blocks will be mapped to the nodes. (b)
The resulting snake-like scheme for N = b = 6. In this case, the numbers
denote which node will computed the respective block.

• Each block that resides in the LTB (or UTB) and was computed by the
same node has one common stripe of the initial matrices with at least
one other block computed by the same node.

• By starting the distribution of the blocks of the LTB (UTB) with the
nodes that have to calculate blocks of the BMD, the scheme automat-
ically creates a good locality of all the blocks of these nodes. In some
cases, the blocks of the BMD of a node share at least one stripe with
the blocks of the node, which are not on the BMD.

In the following, the blocks that are computed by the same node in the
LTB are denoted by lower group, and the blocks in the UTB are denoted
by upper group. Further, we denote a group of blocks or a block on the
BMD as isolated, if it shares no stripe (horizontal or vertical) of the initial
matrices with another group or block within the node. Basically, due to the
snake-like scheme the lower and the upper group of each node are always
isolated.

106 CHAPTER 6. ADAPTATION OF COMMUNICATION PATTERNS

Maximal Memory Usage in Best- and Worst-Case Scenarios

Now we formulate best and worst-case behaviors. More exactly, we are
interested in the maximal amount of initial memory space that nodes have
to work on in a best- and a worst-case scenario. This analysis gives the
information about the minimal and the maximal memory requirements of
the nodes. In the following, we have to distinguish again the odd and the
even case.

1. If N is even, the best-case scenario for the nodes, which compute two
blocks on the BMD, is that each block shares its vertical stripe with
the upper group and the horizontal stripe with the lower group. The
lower and upper group are always isolated from each other. Hence,
the nodes which do not compute blocks on the BMD, are the bot-
tleneck, because their lower and upper groups consist of one more
block. Hence, these nodes will have the highest memory usage in
a best-case scenario. Under the assumption that each block in the
lower group shares one stripe with at least one other block of the
group, only 2 stripes of the initial matrices are necessary for the first
block. For all other blocks, only one more stripe is necessary that is
not yet known. Because each node that does not compute blocks on
the BMD has b2/2N in the lower as well as in the upper group, the
initial memory space in this case can be charged as

2

(

2mn

b
+

(

b2

2N
− 1

)

mn

b

)

=
2mn

b
+ b

mn

N

In the worst-case, if N is even, the lower and upper group are isolated
from each other and from the two blocks on the BMD. In this case,
we can calculate the initial memory usage in the following way. Four
stripes are necessary for the two blocks on the BMD, for the remaining
blocks the number of stripes can be calculated similar to the best case.

4mn

b
+ 2

(

2mn

b
+

(

b2

N
− 2

2
− 1

)

mn

b

)

=
4mn

b
+ b

mn

N

2. If N is odd, then all nodes are in the same situation. They compute
one block on the BMD, and the remaining blocks are part of the lower
and upper group. Therefore, in the best case the block on the BMD is
not isolated from the lower and upper group.

2

(

2mn

b
+

(

b2

N
− 1

2
− 1

)

mn

b

)

=
mn

b
+ b

mn

N

6.3. REDUCING THE INITIAL MEMORY SPACE 107

As mentioned above, in this case b = N and therefore the initial mem-
ory space is:

mn

N
+ mn

In the worst case, where the block on the BMD is isolated, we get an
initial memory space of

3
mn

N
+ mn

In Table 6.2 the bounds are summarized.

Best Case Worst Case

even 2mn
b

+ bmn
N

4mn
b

+ bmn
N

odd mn
N

+ mn 3mn
N

+ mn

Table 6.2: Analysis of the snake-like scheme.

6.3.3 Optimizing the Number of Blocks

In the odd case, the size of b is already defined by the mirror scheme (b = N).
In the even case, we can minimize the functions for the initial memory
space above and resolve them by b1. In the best case the initial memory
space gets minimal, if b =

√
2N is a valid solution. Since the function is

monotonic increasing for b ≥
√

2N, b has to be chosen as small as pos-
sible. However, this is guaranteed by definition of the mirror scheme in
Section 6.2.1 on page 99.

6.3.4 Comparison of the Bounds

Now, we want to compare the received bounds for the initial memory space
with each other and with the lower and upper bound defined above. The
odd case is depicted in Fig. 6.8 and the even case in Fig. 6.9.

In the odd case, the initial memory space per node decreases with an
increasing number of nodes N. In the worst case, as well as in the best-
case, the value converges towards mn, but will never reach it. Compared
with the upper bound (2mn), the value converges towards the half of the
upper bound value. The distance to the lower bound slightly increases with
increasing values for N.

The values for the maximal initial memory usage in the odd case are
either equal to the worst case or equal to the best-case, because b is static.

1 The minimization of the best case expression can be done as follows: (2mn
b

+ b
mn
N

) ′ =

− 2mn

b2
+ mn

N
= 0 → b =

√

2N.

108 CHAPTER 6. ADAPTATION OF COMMUNICATION PATTERNS

3 21 39 57 75 93

0.5

1

1.5

2

2.5
x 10

4

Number of SMP Nodes N

In
it
ia

l
M

e
m

o
ry

 S
p
a
c
e

(M

a
tr

ix
 E

le
m

e
n
ts

)

upper bound

lower bound

worst case

best case

Figure 6.8: Each node computes an odd number of blocks. The initial
memory space of a certain N is either on the best case line or on the worst
case line. In the example a matrix consists of 10000 elements.

0 10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5
x 10

4

Number of SMP Nodes N

In
it
ia

l
M

e
m

o
ry

 S
p

a
c
e

(M

a
tr

ix
 E

le
m

e
n

ts
)

upper bound

worst case

best case

lower bound

Figure 6.9: Each node computes an even number of blocks. The initial
memory space of a certain N is either on the best case line or on the worst
case line or in-between. In the example a matrix consists of 10000 elements.

6.4. SUMMARY 109

In the even case, the spectrum of possible values is even bigger, because
the number of blocks b is not fix. In the best case scenario, we get the best
possible result for b =

√
2N. In the worst-case scenario, the worst result is

achieved for the highest value of b possible. The highest value that always
fulfills the requirements of the mirror scheme is b = N.

Hence depending on the number of nodes, the initial memory space is a
value between 2

√
2mn√

N
and 4mn

N
+mn. In the best-case scenario, we are very

close to the lower bound. It is only a factor of
√

2 worse. In the worst-case,
the initial memory space converges towards mn with increasing number
of nodes.

6.4 Summary

The main aspect of the chapter is to show a method for algorithmic opti-
mizations on SMP clusters based on the idea of reducing communication
costs by adapting communication patterns to the hierarchical structure of
SMP clusters. As an example for the application of the technique, we pre-
sented an algorithm for computing an n×n-matrix C by , first, multiplying
an n × m-matrix A with an m × n-matrix B and, second, transposing the
resulting n × n-matrix T . The algorithm is optimal concerning asymptotic
computation time. Due to special data-decomposition (mirror scheme), it is
possible to perform the transpose without any communication operation.
Therefore, the algorithm is improved concerning communication costs, be-
cause the all-to-all communication step was eliminated.

Another criterion observed by the analysis is the initial memory space
needed by each processor before the computation. We presented a lower
bound for the initial memory space of the on-the-fly algorithm, and the
snake-like scheme that comes close to the lower bound (factor

√
2) in some

cases. For all cases, the initial memory space converges with an increasing
number of nodes towards nm, which is the size of one initial matrix. This
is only half of the worst-case behavior.

The main conclusion is, that the presented method is another and better
way to optimize algorithms for SMP clusters than just migrating existing
message-passing algorithms directly. In the presented algorithm, the key
for the optimization of the communication pattern was the data decom-
position. Because of a special decomposition, the existing communication
pattern became optimal. There are probably more problems in dense lin-
ear algebra or other areas, where such a strategy may be successful. As
presented in the analysis, the efficiency of the decomposition depends on
the structure of the underlying architecture, or instance of the architecture.
Hence, parallel programs and libraries should take the parameters (like N,
α(0)) of the target system into account.

110 CHAPTER 6. ADAPTATION OF COMMUNICATION PATTERNS

Chapter 7

Hierarchical Sensitive Design

The last method we want to present in this thesis, is called hierarchical sensi-
tive design for algorithms. In the beginning of the thesis, we showed the
technological trend to network and communication hierarchies. We ex-
plained why in future the number of hierarchies will probably grow and
that communication over higher levels of the hierarchy is more expensive
than over lower levels. Under this assumption, algorithms that try to min-
imize communication and try to shift the complexity to local computations
will have great relevance for future architectures. Algorithms that try to
decompose and distribute the data in a pre-processing step are thus very
suitable. Communication only takes place in this step, afterwards only lo-
cal computation is necessary to produce the results. As an example for the
development of such algorithms, we review a sorting method called Radix
Sort [68, 50]. Radix Sort is a method to sort a set of integer keys using their
binary representation. We present the various algorithms from the sequen-
tial to the latest parallel algorithm and we describe the motivations for the
respective improvements.

7.1 Sequential Radix Sort

The main idea of the algorithm is to sort the keys in several iterations using
parts of the binary representation. In each iteration, the keys are sorted
according to a certain number of bits (radix of size r), starting in the first
iteration with the least significant bit. Assuming the keys consist of l bits,
the algorithm needs l/r iterations to sort the keys. In order to introduce
the algorithm, we assume that the keys are stored in an array S (Source).
After the iteration, it will be stored in an array D (Destination). After each
iteration, the arrays exchange their roles. Further, only one working array
H (Help) of size 2r is necessary to store the histogram of keys. An example
is depicted in Fig. 7.1.

111

112 CHAPTER 7. HIERARCHICAL SENSITIVE DESIGN

Algorithm 4: Outline of the sequential straight radix sort algorithm.
In each of the l/r iterations, the following 3 steps have to be done

1. Generation of key histogram. Scan all keys in S. For each key, compute
the value v of the actual r bits. Increase the value of H[v] by one.
After scanning all keys, the array H contains the number of keys for
each possible value of the actual r bits.

2. Computation of prefix-sums. Now, the array H is turned into an array
containing the starting indices for each of the 2r buckets. This can be
done by creating the prefix sums on H.

3. Moving keys from source to destination. Again all keys have to be
scanned. For each key i, we compute its new index in array D. This
can be done by first computing the value v of the actual r bits. This
value can be used as an index in the prefix-sum array H. The corre-
sponding value at this index in the array H is the new index of the key
in the array D (D[H[v]]=S[i]). Next, the value at the corresponding
index in the array H is increased by 1.

3 4 5 8 90 1 2 6 7

3 4 5 8 90 1 2 6 7

Destination D

It
er

at
io

n
 1

It
er

at
io

n
 2

Source Array S

Destination D

Source Array S

4 8 4 5 6 4 2 4 3

16 20 25 31 35 37 414 80

6 3 5 5 5 4 4 6 3 3

0 6 9 14 19 24 28 32 38 41

Prefix−Sum H

Prefix−Sum H

Histogram H (least significant digit)

Histogram H (most significant digit)

99 10 20 15 25 31 44 87 56 23 13 78 46 60 91 78 34 55 72365 427 6 38 2 73 74 1 224 62 52 94 42 60 52 46 38 89 79 35 21 85

9910 20 15 2531 44 875623 13 46654260 91 34 55 6733 4 7 78 78 38 387422 62 52 944260 52 46 89 793521 851

10 20 31 9152 60 60 72 8521 22 6252 7334 74 9415 25 6535 55 56 8778 7838 998979461 2 3 4 6 7 13 23 38 42 42 44 46

72 2

4

Figure 7.1: An example for the sequential straight radix sort algorithm. In
each iteration, a radix of one decimal digit is used to sort keys consisting of
two decimal digits. Hence, the data array can be sorted in two iterations.

7.2. PARALLEL RADIX SORT ALGORITHMS 113

It is not easy to see, why this algorithm really sorts the input values.
Nevertheless, it works, because it is guaranteed that each iteration is stable.
That means that two keys only change their relative position, if one radix is
different. Otherwise, the order remains. Hence, it can be shown easily by
induction that the algorithm is correct. Detailed analyses of this sequential
radix sort algorithms can be found in standard textbooks, see e.g. [68, 50],
where it is called straight or straightforward radix sort.

7.2 Parallel Radix Sort Algorithms

In the next sections, we will present several parallel algorithms in histori-
cal order for Radix Sort that are suitable for distributed-memory machines.
Anyhow, each algorithms has certain drawbacks concerning either com-
munication costs or load balancing. We will show how these drawbacks
can be eliminated step-by-step.

7.2.1 Straight Parallel Radix Sort

A straightforward parallelization of radix sort is not very different to the
sequential algorithm. Initially, the keys are distributed equally among the
processors. The main idea of the parallelization is that the processors are
viewed as buckets or groups of buckets. In each of the l/r iterations each
processor creates B = 2r buckets. The buckets are assigned evenly to the
processors, i.e. each processor corresponds to B/p buckets. Each iteration
of the algorithms consists of three steps.

Algorithm 5: Description of the steps of each iteration of the parallel
radix sort algorithm

1. Creation of local buckets. Each processor scans its local keys with a
certain radix r and stores them in the corresponding buckets.

2. Communication of bucket sizes. The sizes of the locally created buck-
ets are exchanged by the processors in order to calculate a commu-
nication pattern for the buckets. In general, this is an all-to-all com-
munication, but each processor has to know how large the receiving
buckets will be.

3. Communication of the buckets. The keys are exchanged according to the
computed communication pattern. Each processor receives its buck-
ets from all the other processors.

114 CHAPTER 7. HIERARCHICAL SENSITIVE DESIGN

These steps are repeated until all bits of the keys were scanned, i.e. af-
ter l/r iterations. More detailed descriptions of radix sort algorithms for
shared-memory and distributed-memory machines can be found in [6, 46].

Obviously, this algorithm has two main drawbacks. First, depending
on the sizes of l and r there are several iterations, which all contain two all-
to-all communication operations, one for the bucket sizes and one for the
buckets themselves. The communication of the bucket sizes is not very ex-
pensive, because the amount of data is low. However, the communication
of the keys might become very expensive if n is large enough.

Second, the assignment of buckets to processors leads to load imbalance
of the processors. Usually the sizes of the buckets will vary a lot, because in
general the values of the keys are not distributed ideally. Hence, with each
iteration the imbalance between the processors will grow which leads to an
inefficient load. In the following, we will show improvements for each of
these drawbacks.

7.2.2 Load Balanced Parallel Radix Sort

One main problem with this approach is its irregularity in communication
and computation, which arise because of data characteristics like e.g. data
skew or duplicates. Therefore, in [70] a load balanced parallel radix sort is
presented. This algorithm splits the locally generated buckets with respect
to balance the number of keys that have to be sent to each processor. There-
fore, the resulting communication step is a real balanced all-to-all operation
between the processors.

The algorithm works in the same way as the last one, except that it
does not stick exactly to the assignment of buckets to processors. After the
processors exchanged the sizes of the respective buckets, each processor
can compute balanced parts of the keys by splitting the buckets. Thus, it is
possible that a processor sends one part of a local bucket to a processor and
the rest to another one. The example illustrated in Fig. 7.2 assumes four
processors, and hence, in each iteration four buckets are built locally (radix
r = 2). Further, in the beginning, each processor stores 10 integer keys. The
aim is to split the buckets in the way that each processor receives exactly 10
integer keys (including its own). The splits can be computed easily by each
processor and are depicted in Fig. 7.2b.

This algorithm provides that the load is balanced, but the problem of
having too much communication cost still remains.

7.2.3 Hierarchical-Sensitive Design

All presented algorithms perform the Radix Sort starting with the least sig-
nificant bits. It follows directly from the approach that the order in inter-
mediate iterations has not necessarily to do anything with the final order.

7.2. PARALLEL RADIX SORT ALGORITHMS 115

5

1

14

13

5

8

5

1

Processor 0 Processor 1 Processor 2 Processor 3

0

4

3

2

1

4

0

1

41

3 2 3

1 22

1

(a)

(b)

Processor 0 Processor 1 Processor 2 Processor 3

0

4

3

3

2

2

1

3

4

1

5

0

5

1

Bucket 0

Bucket 1

Bucket 2

Bucket 3

Bucket 0

Bucket 1

Bucket 2

Bucket 3

Figure 7.2: An Example for illustrating the idea of load balanced radix
sort. The splitting of the buckets is shown by the vertical black bars. For
example, processor 0 receives all bucket 0 from processor 1 and 2, but only
one key from the bucket 0 of processor 3.

In each iteration, bits that are more significant are considered which may
lead to the fact that lowest value gets highest one and vice-versa. Hence,
in a worst case scenario, the integer keys have to be communicated over
the highest level of the communication hierarchy of a κNUMA machine
in each iteration. Let us consider a simple example for this situation. The
target machine is a regular κNUMA machine that consists of 8 processors,
with κ = 2 and α(0) = α(1) = α(2) = 2, see Fig. 7.3. There are 8 keys and
we assume their binary representation has length l = 9 and radix r = 3.
Hence, the algorithm needs 3 iterations to sort the keys. The keys are se-
lected according to the following rule. We need 3 binary digits to code
the processor numbers. Before the first iteration, each processor stores a
key where the 3 most significant bits are equal to the inverted processor
number, the 3 bits in the middle are equal to the processor number and the
3 least significant bits are again equal to the inverted processor number.
Thus, processor 7 (= 111b) stores the integer 52=(= 000111000) before the

116 CHAPTER 7. HIERARCHICAL SENSITIVE DESIGN

first iteration. Starting with the least significant bits leads to the fact that
in every iteration the keys have to be sent over the highest level of the net-
work, because the keys have to be sent to the processor with the inverted
processor number and this is always a processor with maximal distance.

Hence, the idea is to sort the keys by starting at the most significant bits.
The main characteristic of buckets produced by this approach is that the
order among the buckets will never change again in the algorithm. Only
the keys within the buckets have to be sorted further. Hence, we could try
to divide continuously the input keys among the sub-machines. Further
iterations will only take place within the sub-machines, and by that, the
level over which communication takes place is also reduced with every
iteration.

s2 s2

s1s1 s1 s1

P0 P1 P2 P3 P4 P5 P6 P7

Figure 7.3: A sample architecture illustration of a non-hierarchical sensitive
algorithm. The architectural parameters are set to κ = 2, α(2) = α(1) =

α(0) = 2. The arrows depict the communication partners.

However, with such a solution we still have to communicate the keys
several times. Although the level of communication decreases in every it-
eration, it would be much better if it were possible to distribute them only
once. This is possible, if we can find a balanced partition of the input data
with respect to the processors. Due to such a partition, it is possible to send
the keys only once and to sort them in a second step locally. Concerning
our example, the partitioning is received by sorting the keys according to
the 3 most significant bits. The local sorting step is not necessary in this
case, because there is only one key per processor. In the following section,
we will present algorithms that work according to that principle.

7.2.4 Communication Sensitive Parallel Radix Sort

Until now, all mentioned algorithms need l/r key- and counter-communi-
cation steps. Especially for distributed-memory machines, where the com-
munication is done over an interconnection network, this might be very

7.2. PARALLEL RADIX SORT ALGORITHMS 117

time consuming. The communication and cache conscious radix sort algo-
rithm (C3-Radix) [45] tries to improve this situation by starting the radix
sort at the most significant bit. The intention of C3-Radix is to partition
the data into several buckets which can be distributed equally among the
processors. Therefore, the choice of the radix is very important. If the dis-
tribution of the buckets is not possible in a balanced way, the radix is en-
larged and more fine-grained buckets are created. This is repeated until
a good load-balance is achieved. Then the keys are sent with an all-to-all
operation among the processors. The remaining task is to sort the buckets
locally. For this step, the authors use a very efficient cache conscious radix
sort algorithm, which uses the fact that the data is already sorted for a cer-
tain number of bits. The algorithm has to communicate the keys only once,
but because of the characteristics of the data, there might be several itera-
tions where the bucket counters have to be exchanged. Depending on the
number of iterations and the size of the radix, this can increase the running
time of the algorithm extremely.

The algorithm sorts n keys and each key consists of l bits. The used
radix has length r. Initially, each processor stores n/p keys. The keys are
globally sorted if the keys within each processor are sorted, and there is
a known order of the processors for which all keys of one processor are
greater or equal to all keys in the preceding processor. Each processor
builds buckets of keys by starting to observe the first r bits of each key. The
initial length of the radix should be chosen in the way that 2r > p. Keys
with the same radix belong to the same bucket. All steps of the algorithm
are explained in Algorithm 6 on page 118.

7.2.5 An Alternative Approach: Sample Sort

Another approach is based on Sample Sort, which is often used in parallel
sorting; see e.g. [41, 33, 14, 69]. Each processor samples q keys from its n/p

keys and exchanges them with the other processors. Sorting the set of sam-
ples in each processor makes it possible to create a set of s − 1 < q equidis-
tant keys called splitters. These splitters can be used to create s buckets of
approximately size n/s. Load balance can be achieved, if s is a multiple
of p. The parallel counting split radix sort algorithm (PCS-Radix) [47] uses
Sample Sort for the partitioning of the data instead of using the radix of the
keys directly. Radix sort is only used to sort the buckets locally. The prize
for the independence of the data characteristics is the detection of global
samples in the distributed system, but in a badly distributed environment,
this investment is worth doing. Despite of that, in environments where the
data is mostly well distributed, the C3-Radix algorithm should be the al-
gorithm of choice, because each processor is able to start the local creation
of the buckets directly, and in general, no further iterations are necessary
to build the local buckets. On the other hand, also in a well-distributed

118 CHAPTER 7. HIERARCHICAL SENSITIVE DESIGN

Algorithm 6: Outline of the C3-Radix algorithm

1. Reverse Sorting. Each processor scans its n/p integer keys using the
first r bits beginning with the most significant bit, and building the
corresponding 2r buckets. During the creation of the buckets, a
counter array is built, too. Each entry in the counter array contains
the number of keys in the corresponding bucket.

2. Communication of Counters. The local 2r counters are exchanged be-
tween the processors. After this step, each processor knows the total
amount of elements per bucket.

3. Computation of bucket distribution . Each processor computes locally a
distribution of the buckets to the processors. If it is not possible to
achieve a good load balance, then each processor starts again with
step 1 and sets the new radix to ir, where i is the number of itera-
tions. By extending the radix, the algorithm tries to produce more
and smaller buckets that may lead to a better load balance. Other-
wise, the algorithm continues with step 4.

4. All-to-All key communication. The buckets are sent in an all-to-all fash-
ion. After this step, no more communication is necessary.

5. Local sorting.

environment, sometimes there may arise badly distributed data sets. The
C3-Radix algorithm does not have the capability of being efficient in these
cases, but it should be guaranteed that it is not far away from being effi-
cient.

Hence, in the following we survey the possibilities for C3-Radix to be
more stable and more predictable working on unbalanced data distribu-
tions. In Section 7.3, we will explain the problems of C3-Radix in such
cases more deeply, and we will give an example. In Section 7.4 we will give
and interpret results of experimental test, and in Section 7.5 we conclude.

7.3 Further Improvements of the Communication Sen-

sitive Parallel Radix Sort

In the last sections, we described that the parallel versions of Radix Sort
suffer either from too much communication costs or from unbalanced data
that leads to a bad load balance among the processors. With the follow-
ing improvements for the C3-Radix algorithm,, we want to eliminate both

7.3. FURTHER IMPROVEMENTS 119

drawbacks at once. As we can see in Section 7.2.4, the main problem with
the C3-Radix algorithm is that the first 3 steps may have to be repeated
several times. The number of iterations depends on the data distribution,
the initial radix chosen and the size of the integer keys. The more neces-
sary iterations, the larger the radix. Since the number of buckets as well
as the number of counters is 2r, the allocated memory and the amount of
data that has to be communicated may increase the running time of the al-
gorithm tremendously. What we want to improve is the way the algorithm
tries to distribute the data equally among the processors, if more than 1
iteration is necessary. All other optimizations of the C3-Radix algorithms
will not be changed.

In order to explain the problem more detailed, we give an example. We
want to calculate the total number of counters that have to be communi-
cated during the execution of the C3 algorithm. Let i be the number of
iterations. In iteration 0, the first three steps of the algorithm are executed
for the first time. Hence, the accumulated number of counters over all iter-
ations for each processor can be charged as

i∑

j=0

2(j+1)r

In the experiments of [45] the radix is set to 5. If we assume there is
a data distribution that leads to 6 iterations (0 ≤ j ≤ 5), where in the last
iteration 30 bits have to be compared, then the total number of counters
broadcasted over the network is 1, 108, 378, 656. If we further assume that
a counter is a 32 bit integer (which is necessary for a large n), then we
see that each processor has to communicate about 4.129 GB of data. Each
processor sends its counter array to all the other p−1 processors. Assuming
16 processors, the total data transferred by the network is 990.96 GB.

Besides this communication problem, there might arise memory prob-
lems. At least each processor has to store the counter array and the buckets
constructed locally. Although there are more data structures like for exam-
ple the initial data (n/p elements) or different counter arrays for the com-
munication operation, the memory demand is dominated by the counter
array. Therefore, we take its estimated memory demand as a key figure.
Since the counter array has size 230 in the sixth iteration and each en-
try stores one 32 bit integer, each processor needs at least 4 GB of main
memory. Depending on the implementation of the counter communica-
tion (allreduce, broadcast, ..) the node has to buffer up to p counter arrays
which leads to 64 GB in our example. For a huge part of supercomputers,
namely the PC-based SMP- or workstation-clusters, this size is not man-
ageable. The program will abort due to out of memory errors. In order to
avoid these large data arrays, our idea is not to rebuild all the buckets and
counters with a larger radix within each iteration, but only to rebuild those

120 CHAPTER 7. HIERARCHICAL SENSITIVE DESIGN

that are necessary. The algorithm of choosing the buckets that have to be
rebuilt needs the 3 steps explained in Algorithm 7 (page 120).

Algorithm 7: Algorithm for detecting buckets to rebuild in further
iterations

1. Build a prefix array count using the actual global counter array,
which is known after the broadcast of the local counters. The first
entry of the prefix array is the overall number of elements in the first
bucket. The second entry contains the sum of the first entry and the
number of elements in the second bucket. And so forth.

2. The optimal number of integer keys each processor should have be-
fore the local sorting step is n/p. We build a prefix array proc for the
optimal number of keys per processor. The first entry contains n/p,
the second entry contains 2n/p, and so forth. The whole array has p

entries.

3. For all entries in proc, we search the index in count where the value
of proc is lower than the value of count. All these indices are col-
lected and only the buckets and counters with these numbers are re-
build.

In the first iteration, the algorithm works as described in Section 7.2.4.
The only difference is that after checking if another iteration is necessary,
the buckets, which have to be rebuilt are detected with the method above.
For further iterations the first 3 steps are replaced by the 3 steps in Algo-
rithm 8 on page 120.

Algorithm 8: Changed steps for the communication conscious algo-
rithm

1. Reverse Sorting of special buckets. Rebuild the buckets and counters
detected by the above method with a larger radix.

2. Communication of Counters. All-to-all communication of the new
counter array.

3. Computation of bucket distribution. Check, if another iteration is neces-
sary. If it is necessary, detect the buckets that have to be rebuilt with a
higher radix. Otherwise, proceed to step 4 of the algorithm described
in Section 7.2.4.

7.3. FURTHER IMPROVEMENTS 121

Now, we want to analyze the behavior of this new algorithm in order to
judge the received improvement. Hence, we calculate the same numbers as
for the original C3 algorithm. In each iteration, a certain number of buckets
have to be rebuilt. We denote this number with aj, where 0 ≤ aj < p and
j > 0 is the number of the iteration (a0 = 0). Hence, in iteration i, the size
of the counter array is

2r +

i∑

j=0

(aj2
r − aj)

The accumulated amount of counters for each round and for each pro-
cessor assuming that i iterations are performed can be charged as

i∑

j=0

(2r +

j∑

k=0

(ak2r − ak)) = i2r + (2r − 1)

i∑

j=0

j∑

k=0

ak

Looking at the scenario above (r = 5, i = 5, p = 16) and assuming the
worst-case, where aj = p − 1 for j > 1 the over-all number of counters
broadcasted over the network by one processor is 7167. Again, we assume
that a counter is a 32 bit integer, and then we see that each processor has
to communicate about 27.996 KB. In each iteration, each processor sends
its counter array to the other p − 1 processors. Hence, the overall amount
of counters transferred by the network is 6, 719.063 KB. Compared to the
990.96 GB of the not improved version, this is negligibly small.

The situation is also much better for the memory requirements. Storing
the counter array of size 2357 in iteration 5 requires 9.21 KB per processor,
which normally is negligible compared to custom computer memory sizes.
It should fit in the cache! The maximum temporary buffer size needed for
the communication and reduction step of the counters is 147.31 KB, which
is not critical and significantly smaller than the 64 GB of the not improved
version.

The analysis and the example show the potential of the formulated im-
provement. In Fig. 7.4 and 7.5, the different approaches for decomposing
the data are illustrated.

Until now, we have just looked how the number of counters increases
in both methods depending on the number of iterations. However, we also
have to care about the way the new buckets are created locally in the step 1
(Reverse Sorting). C3-Radix scans its n keys and rebuilds all buckets using
the new radix. While building the buckets the counter array is updated,
too. The scan can be done in O(n), and an update of the buckets and coun-
ters can be done in O(1). A practical drawback of this method is the fol-
lowing: As we know, the array of buckets and counters may get very big.
Scanning the data means to access these arrays very irregularly. Hence, the

122 CHAPTER 7. HIERARCHICAL SENSITIVE DESIGN

memory hierarchy of the system is not used efficiently, and the time needed
for step 1 will grow quickly beginning at a critical size of the radix.

iteration

1

2

3

data

data

data

n/p n/pn/pn/p

Figure 7.4: The figure illustrates the decomposition method of C3-Radix.
The C3-Radix algorithm rebuilds every bucket in every iteration.

iteration

1

2

3

data

data

data

n/p n/p n/p n/p

Figure 7.5: The figure illustrates the decomposition method of BCSP-Radix.
BCSP-Radix only splits the buckets which may improve the load balance.

On the other side, the improved version does not always have to scan
all local integer keys. It just scans the keys located in the buckets, which
were decided to be rebuilt. However, in the worst-case all local keys are
contained in such buckets. Further, these n keys are not stored in one ar-
ray consecutively, therefore, there is an additional overhead for switching
between the buckets. After scanning the buckets and building new buck-
ets out of them, these buckets have to replace the old buckets. Assuming

7.4. EXPERIMENTAL TESTS 123

that all buckets are stored in an array, this operation can be done in O(2r),
whereby r is the size of the initial radix in the first iteration. For small ini-
tial radix sizes n should be ≥ 2r, hence, the additional time needed is not a
problem. For larger sizes step 1 is not the bottleneck of the algorithm as we
saw in the example. Despite of that, we see that there might be situations
for step 1, where C3-Radix is better than the improved version and vice
versa, depending on the data distribution and the size of the radix.

In the following sections, we present experimental results that will show
the behavior of the two algorithms for several data distributions. The im-
proved algorithm is called balanced communication sensitive parallel radix
sort (BCSP-Radix).

7.4 Experimental Tests

As in Chapter 5, our experimental tests were made on the Kepler-Cluster,
[75]. Just to remember, this is a Linux-SMP cluster with two Pentium III
processors (650 MHz) and 1 GB main memory per node. The nodes are
connected by a Myrinet 1.28 GBit/s switched LAN. The whole cluster con-
sists of 98 nodes.

As we showed in Section 7.3, it is sufficient to compare the first 3 steps
of C3- and BCSP-Radix , because the steps 4 and 5 are the same as in the C3-
Radix algorithm. Again, we implemented them with C++ and TPO++ [38],
which is an object-oriented message-passing system build on MPI [57, 59].

Concerning the data distributions, we use two kinds of data sets. The
first type are distributions already used in [70, 45, 47, 40] and, therefore,
are called standard data distributions. The second type are data distribu-
tions, which leads to worst-case behavior. We will explain them in Section
7.4.2. Duplicates are allowed in all data sets. For all experiments, we try to
achieve the best load balance possible. Since duplicates are allowed, a per-
fect load balance is not always possible. In general, we accept deviations of
≤ 1% of n/p.

7.4.1 Standard Data Distributions

Our four standard data distributions are defined as follows, in which MAX

is (231 − 1) for the integer keys, see also [70, 45, 47, 40].

1. Random [R], the data set is produced by calling the C library random
number generator random() consecutively. The function returns in-
teger values between 0 and 231 − 1.

2. Gaussian [G], an integer key is generated by calling the random()
function 4 times, adding the return values and dividing the result by
4.

http://kepler.sfb382-zdv.uni-tuebingen.de

124 CHAPTER 7. HIERARCHICAL SENSITIVE DESIGN

3. Bucket Sorted [B], the generated integer keys are sorted into p buck-
ets, obtained by setting the first n/p2 keys at each processor to be
random numbers in the range of 0 to (MAX/p − 1), the second n/p2

keys in the range of MAX/p to (2MAX/p − 1), and so forth.

4. Staggered [S], if the processor index i is < p/2, then all n/p integer
keys at the processor are random numbers between (2i + 1)MAX/p.
Otherwise, all n/p keys are random numbers between (i−p/2)MAX/p

and ((i − p/2 + 1)MAX/p − 1).

The main problem of using radix sort is that we do not know how the
data is distributed and, therefore, with which size of the radix we should
start. Our aim is to minimize the total running time. Nevertheless, without
knowing details about the data it is not possible to choose the size of the
radix optimally. The algorithm should grant that the running time should
be close or equal to its optimum independent of the radix size and data dis-
tribution . Hence, in our test, we varied the initial size of the radix from 5 to
12. We made experiments using 16M integer keys and 8, 16 and 32 proces-
sors. All tests produced similar results, therefore, we give the explanation
of the results by means of the 16 processors test. The running times of this
test is presented in Table 7.1.

BCSP-Radix
radix 5 6 7 8 9 10 11 12 total mean

[R] 0.95|1 1.06|1 1.12|1 1.24|1 1.24|1 1.23|1 1.20|1 1.15|1 1.15

[G] 2.63|3 2.42|2 1.85|2 1.68|2 1.71|2 1.77|2 1.07|1 1.11|1 1.78

[B] 2.87|3 2.87|3 2.51|2 2.44|2 2.10|2 1.94|2 0.93|1 0.96|1 2.08

[S] 2.76|3 2.53|3 2.94|2 2.34|2 1.98|2 1.79|2 1.01|1 1.09|1 2.05

C3-Radix
radix 5 6 7 8 9 10 11 12 total mean

[R] 0.96|1 1.05|1 1.16|1 1.23|1 1.21|1 1.19|1 1.16|1 1.14|1 1.14

[G] 2.87|3 1.63|2 1.92|2 2.83|2 4.65|2 10.74|2 1.06|1 1.12|1 3.35

[B] 2.47|3 4.45|3 1.67|2 2.09|2 3.74|2 10.02|2 0.93|1 0.96|1 3.29

[S] 2.49|3 4.23|3 1.75|2 2.05|2 3.62|2 9.62|2 0.99|1 1.08|1 3.23

Table 7.1: Test of the C3 and BSCP method on 16 processors (8 nodes with
2 processors) and 16M integer keys using 4 different data distributions, and
varying the initial radix in a range from 5 to 12. The first number in each
cell is the mean running time of all used processors for the first 3 steps. The
second number is the number of iterations needed for the execution.

Interpretation of the Results

• Concerning the [R] distribution, both algorithms achieve similar run-
ning times for all sizes of the radix, because if only 1 iteration is nec-

7.4. EXPERIMENTAL TESTS 125

essary then they are the same. The best running time can be achieved
by using the smallest radix, which is obvious, because then the data
structures are small, too. Computation and communication benefit
by that.

• In general, the overall best running time for all distributions can be
achieved, if we use the smallest size of the radix, with which only 1
iteration is necessary. In our sample this is r = 11 for [G], [B] and [S].
Again, both algorithms are the same.

• If the radix is chosen < 11, then the situation is as follows. If the
number of iterations needed to perform the algorithm is equal for sev-
eral sizes of the initial radix, then C3-Radix is better if the size of the
radix is minimal and BCSP-Radix is better for larger sizes of the radix.
The reason why C3-Radix gets slower for larger sizes of the radix
is founded in the increasing sizes of the bucket and counter arrays.
Communication and computation gets much higher if the radix size
increases dramatically due to further iterations. BCSP-Radix is much
more stable, because the more iterations are necessary, the smaller
the buckets are that have to be rebuilt. Furthermore, the size of the
counter array for the communication is bounded by O(2r) as we saw
in Section 7.3. Therefore, the communication cost is stable, too. If
BCSP-Radix is worse, this is because of the running time of step 1. In
these cases, due to the small radix, the data is distributed in a small
number of buckets (≤ p−1). Hence, each bucket has to be rebuilt and
each processor has to scan all integer keys stored locally. The addi-
tional time needed for replacing all buckets by 2r new buckets leads
to the worse behavior. This situation is illustrated in Fig. 7.6 for radix
6. The figure is based on the results presented in Table 7.1. We com-
pare the composition of the total running time for a sequence of radix
sizes, which lead to the same number of iterations. As predicted,the
running time for C3-Radix grows exponentially with the size of the
radix, while the running time for BCSP-Radix is very stable and in-
creases very slowly.

• An essential observation can be made looking at the mean of the pro-
cessor mean times (see column total mean in Table 7.1). BCSP-Radix is
better for [S], [B], [G] and of course equal for [R]. While C3-Radix has
some runaways in all distributions, BCSP-Radix is much more stable.
This is important, because normally we do not know the behavior of
the data with respect to the chosen radix. By using BCSP-Radix, it is
guaranteed that the first three steps do not destroy the total running
time of the whole algorithm.

126 CHAPTER 7. HIERARCHICAL SENSITIVE DESIGN

2

4

6

0

radix 6 radix 8 radix 9

BCSP C3 BCSP C3 BCSP C3

running time in secs

Figure 7.6: Comparison of the running times of C3-Radix and BCSP-
Radix using 16M integer keys, 16 processors, and data distribution [G].
The shaded part of the running time represents step 1, the white part rep-
resents step 2. The times for 3 different sizes of the initial radix (6, 8, and
9) are considered to show the development of the running time.In all situ-
ations 2 iterations are necessary.

7.4.2 Worst-Case Data Distributions

For the BCSP-Radix algorithm, the worst-case data-distribution can be de-
scribed as follows. After the first iteration, the data is partitioned into p − 1

buckets of equal size and the other buckets are empty. The algorithm de-
cides to rebuild all p − 1 buckets with a larger radix. However, the data is
chosen in the way that the next bits are the same for all keys until the last r

bits begin. That means that in each iteration the p − 1 buckets remain un-
changed until the last iteration. This is the worst case, because BCSP-Radix
has to scan all keys in each iteration, and p − 1 is the maximum number
of buckets, which achieve this situation. Using this data set with C3-Radix
does also lead to the maximum number of iterations possible. This data
set is not constructed very artificially. The keys are uniformly distributed
within a small range of bits and duplicates are allowed. Hence, this might
also occur in a well-distributed environment. As we know from the exam-
ple in Section 7.3, we cannot perform all iterations for 32 bit keys with the
C3-Radix, because the main memory of our SMP nodes is limited to 1 GB
(using only 1 processor per node!). Therefore, the data set is constructed in
the way that the nodes of the cluster will not collapse (≤ 20 bits). However,
we will show the behavior of BCSP-Radix performing all possible itera-
tions.

7.5. SUMMARY 127

Interpretation of the Results

Table 7.2 presents an example of the comparison between the algorithms,
where the data is distributed in the way that both algorithms have to per-
form 4 iterations, which means that the data can be partitioned looking at
the first 20 bits. BCSP-Radix is much better than C3-Radix. The difference
between both would even grow if further iterations were necessary. Unfor-
tunately, C3-Radix cannot iterate further without aborting due to memory
limitations.

Algorithm Step 1 Step 2 Step 3
∑

C3 4.79 5.88 0.15 10.82

BCSP 5.35 0.02 < 0.01 5.37

Table 7.2: Test with 16 processors, 16M integer keys, and an initial radix of
5. The numbers are the mean times (in sec.) of the processors for a worst-
case situation where 4 iterations are necessary.

In Table 7.3, the running times for BCSP-Radix making 6 iterations (30

bits) are illustrated. We have to adhere that in this case BCSP-Radix is
even faster than C3-Radix performing only 4 iterations. Although this is
a worst-case situation for BCSP-Radix, the running time is better than the
worst time achieved with C3-Radix for [S], [B] and [G] and radix 10 where
2 iterations were necessary (see Table 7.1).

Algorithm Step 1 Step 2 Step 3
∑

BCSP 7.72 0.04 < 0.01 7.76

Table 7.3: Test with 16 processors, 16M integer keys and an initial radix of
5. The numbers are the mean times (in sec.) of the processors for the worst
case situation where 6 iterations are necessary. Only BCSP-Radix is able to
terminate its execution.

7.5 Summary

In this chapter, we illustrated the development path from a sequential al-
gorithm to a hierarchical sensitive parallel algorithm for Radix sort. We
showed drawbacks and improvements for all parallel versions. Besides the
improvements concerning load balancing, the most important improve-
ment considers the reduction of communication cost. This improvement
was motivated by distributed parallel architectures like SMP clusters, be-
cause here the practical drawback is much higher than in shared-memory
machines.

128 CHAPTER 7. HIERARCHICAL SENSITIVE DESIGN

Hence, the development path illustrates the method of hierarchical sen-
sitive design, because communication is avoided as much as possible and in
contrast local computation is preferred.

Further, in the previous sections, we suggested improvements with re-
spect to the data decomposition for the currently fastest parallel radix sort
algorithm. Instead of rebuilding all buckets for each iteration with a larger
radix size, BCSP-Radix only rebuilds those buckets, which help to find
a better load balance for the proceeding steps of the algorithm. Due to
this optimization, the computation, communication and memory require-
ments are much better. In experimental tests, we showed that the aver-
age general behavior of BCSP-Radix for standard data distributions is su-
perior. While C3-Radix has several situations where the execution time
deverges extremely from the mean time, BCSP-Radix behaves much more
stable and predictable. For worst-case data distributions, the advantage of
using BCSP-Radix is even bigger. While the non-optimized algorithm may
not terminate due to memory constraints, BCSP-Radix is even in the posi-
tion to achieve reasonable running times. The memory requirements per
processor do not violate the capacity of custom workstations.

Chapter 8

Summary, Conclusions and
Outlook

In Chapter 1, we introduced the design chain for efficient parallel applica-
tions. An efficient algorithm for a certain parallel architecture is developed
and analyzed best on a cost model that reflects the key characteristics of the
target machine. Further, an appropriate programming model is necessary
that fits to the target machine as well and with which the algorithm can
be implemented directly. The question is posed how the situation for an
emerging architecture called SMP cluster is. This kind of parallel computer
is characterized by a parallel hierarchy. On the one hand side, we have
parallelism within the nodes, where multiple processors have a shared-
memory. On the other hand, parallelism between the nodes uses the in-
terconnection network. Generally, communication over shared-memory is
faster than over communication networks. Hence, we have also a commu-
nication hierarchy. Additionally, even the network may consist of several
levels with different time behaviors. These levels can appear due to multi-
ple switches, Grid- or Metacomputing technologies.

Hence, in Chapter 2, we gave an overview on parallel architectures, cost
models and programming models in order to verify if there is a rational
chain for SMP clusters. Besides an introduction to parallel architectures, the
chapter explained that there is a trend to hierarchical structures , especially
to SMP clusters. We gave arguments why this trend started and why it will
last for several years.

Concerning cost models, we introduced the concept of parallel bridging
models that postulates the aim of building a general-purpose cost model
on which efficient algorithms can be design for all parallel computers inde-
pendently of their system-specific features. Despite of this generality, the
algorithms should also perform well in practice. We described the most
popular parallel bridging models namely BSP, LogP and QSM. Addition-

129

130 CHAPTER 8. SUMMARY, CONCLUSIONS AND OUTLOOK

ally, we reviewed extensions of these models that try to respect hierarchical
memory and machine structures. Examples for such extensions are BSP*
and the D-BSP model.

Further, we described the two main programming models for distribut-
ed and shared-memory architectures. For distributed-memory machines,
the message-passing model is used. Each processor has its local memory.
If data has to be exchanged between processors, this is done by messages.
The most accepted library for message-passing is MPI (message-passing
interface). Shared-memory programming is usually done by threads. The
most accepted library is OpenMP with which it is possible to define parallel
regions in a sequential code. These regions are executed according to work
sharing directives by a predefined number of threads. After the parallel
region, the threads join again and only a master thread continues.

A new approach for programming SMP clusters is the hybrid-program-
ming model that proposes to use message-passing between the nodes and
threads within the nodes of an SMP cluster. This model has the highest
potential to be very efficient for SMP clusters, because it uses the most ad-
equate model for the corresponding parts of the SMP cluster. A drawback
is the increased complexity, which leads to problems for program mainte-
nance, profiling and debugging.

The chapter concludes with the fact, that there is no obvious design
chain for parallel algorithms for SMP clusters. There is nearly no work
which tries to optimize algorithms for the platform. This conclusion was
taken as a motivation to work out a design chain and to develop methods,
with which it is possible to design efficient parallel algorithms for SMP
clusters. The programming model with the most potential on SMP clus-
ters is the hybrid-programming model. Hence, our idea was to develop the
missing element for the chain which is a cost model that reflects the pro-
gramming model and the architecture of SMP clusters.

In Chapter 3, we build a cost model for the design and analysis of par-
allel algorithms for SMP Clusters. The model is called κNUMA. The model
is based on elements of several accepted parallel bridging models, espe-
cially on the BSP model and extended by the characteristics of SMP clusters
and the hybrid-programming model. Hence, the model introduces differ-
ent cost measures for inner- and inter-node communication. We presented
the usage of the model by analyzing broadcast problems, and showed that
even for this basic communication operation, algorithms that were sug-
gested by the BSP model are too coarse. With the help of the κNUMA
model, it was possible to develop a more accurate algorithm for the prob-
lem.

The chapter concludes that it makes sense to respect the hierarchical
structure of SMP clusters within the design process, because otherwise the
resulting algorithms may become sub-optimal.

131

One problem with the κNUMA model is that the analysis gets very
complicated even for simple algorithms like the (personalized) broadcast.
On the other hand, the κNUMA model can be regarded as a super-model.
It is not always necessary to use the full model, because either there is a cer-
tain architecture that reduces the set of parameters, or the analyzed prob-
lem itself does not need a complete model. In further chapters, we showed
cases where reduced instances of the κNUMA model can be used and make
the analysis more feasible but not less significant. Another problem is that
the theoretical results were not verified in practice. In addition, this was
done for other problems in the next chapters.

In Chapter 4, we reviewed and presented methods for designing and
optimizing parallel algorithms for SMP clusters. The overall design pro-
cess consists of several stages, beginning at the problem definition (or se-
quential algorithm), followed by a parallel algorithm, followed by a paral-
lel SMP cluster algorithm and ending in an optimized parallel SMP cluster
algorithm. Each method has its individual start and end stage within the
design process. Hence, it is possible to design an algorithm by using a chain
of methods. In each of the following chapters, we presented case studies for
developing efficient algorithms for several problems by applying a certain
chain of methods.

In Chapter 5, we tried to reduce communication costs by storing data
redundantly. On the other hand, we showed that due to certain a trans-
fer method the storage of unnecessary redundant data could be avoided.
Therefore, we called this method Exploitation of Data Redundancy. The method
was explained using the problem of dense matrix-vector-multiplication.
The analysis is applied on the κNUMA model with κ = 1. This reflects
the characteristics of a special SMP cluster, on which we made experimen-
tal tests to verify the model’s predictions. We formulated a general parallel
algorithm for the dense matrix-vector multiplication and examined several
data-distributions. Depending on the different matrix distributions, there
has to be stored more or less elements of the vector with which the ma-
trix has to be multiplied. For all distributions, the same amount of matrix
elements has to be stored. Using different data distributions leads to two
extremes

1. A minimum number of elements of the vector has to be stored for
each processor, but the algorithm needs an all-to-all communication
pattern. For large-scale applications, it might be more important to
save memory than time for communication, because memory might
be a critical resource.

2. No communication costs are necessary by storing more elements of
the vector per processor. If there is enough memory space, then this
is obviously the best solution.

132 CHAPTER 8. SUMMARY, CONCLUSIONS AND OUTLOOK

Further, we showed in this chapter that a hierarchical analysis with the
κNUMA model is superior to a non-hierarchic analysis by giving an exam-
ple where an efficient distribution for the basic algorithm suggested by the
BSP model can lead to an inefficient implementation on SMP clusters. We
showed that this is avoided even by using a reduced κNUMA model with
κ = 1.

The second case study attempts to improve performance by the Adap-
tation of Communication Patterns to hierarchical structures of SMP clusters
and was presented in Chapter 6. This was explained at the problem of
transposing a matrix that is the result of a matrix-multiplication in a paral-
lel environment. While in the sequential case, the transposition can be done
by just exchanging the indices of the columns and rows, in parallel compu-
tation the matrix is evenly distributed among the processors. Depending
on this distribution, a certain communication pattern has to be executed
by the processors. For the block-cyclic distribution, this often leads to an
all-to-all communication operation between the processors.

By using a special data distribution this communication step can be
avoided. The main idea is to multiply the matrices in the way that af-
terwards all blocks that have to be exchanged by a transposition opera-
tion were computed by processors that reside in the same SMP node of the
cluster. In this case, no communication is necessary, because the blocks are
already in the same memory and because of the hybrid model even in the
same memory space. The transposition can be done by local computation.

The last method presented in the thesis is called Hierarchical Sensitive
Design, and was explained in Chapter 7. In general, algorithms that try to
minimize communication and try to shift the complexity to local computa-
tions have great relevance for hierarchical architectures and are called hier-
archical sensitive. Especially algorithms that try to decompose and distribute
the data in a pre-processing step and continue with local computations be-
long to this class. Communication only takes place in this step, afterwards
only local computation is necessary to produce the results. As an example
for the development of such algorithms, we considered the sorting method
called Radix Sort. We presented various algorithms from the sequential to
the latest parallel algorithm, and we described the motivations for each re-
spective improvement.

Briefly, the classical parallel version of Radix sort, sorts the integers by
scanning and comparing their binary representation from the least signif-
icant to the most significant bit. This always leads to all-to-all communi-
cation patterns. This can be avoided by starting the sorting the other way
round. The most efficient algorithm is based on two parts. The first part
divides the set of integers in p equal sized sets, where p is the number of
processors. How this can be done is the core of the hierarchical sensitive

133

algorithm. Finally, these sets are sorted locally.

In parallel computation, a lot of effort is done in accelerating appli-
cations by technical improvements like optimizing libraries or compilers.
One aim of this work was to show that it is not enough to trust in the
efficiency of the libraries of the used programming model and to show
that further improvements due to algorithmic optimizations are possible.
Of course, it is also possible to achieve a good performance by just using
the programming libraries without considering the hierarchical structures.
However, treating modern parallel architectures as non-hierarchic, will in
general not lead to the best performance possible. The situation is compa-
rable to that of memory hierarchies within a computer, where the consid-
eration of data locality does also lead to remarkable performance improve-
ments. Hence, it is also required to improve algorithms to hierarchical SMP
clusters. Algorithmic optimizations can be regarded as additional improve-
ments in the sense that just optimized algorithm are capable to exploit the
technical improvements best.

This thesis shows methods and case studies how program developers
can try to develop and transform their algorithms in the way that they con-
sider hierarchical structures. The methods can be used to develop parallel
algorithms from scratch, to transform existing parallel algorithms to SMP
clusters and to optimize them for SMP clusters concerning communica-
tion costs. The resulting algorithms can be analyzed with the help of the
κNUMA cost model that predicts their practical performance.

Although, the formulation of a cost model seems to be too theoretical
for the practical daily use, it helps to understand parallel hierarchy and
helps to produce ideas how algorithms may be adapted or changed best in
order to run efficiently on SMP clusters. The idea to have one single model
for all parallel computers on which developers can analyze and design al-
gorithms that perform well in practice is very interesting, but should not
be taken too literally. As we showed, in practice real machines have certain
very special characteristics, which influence the performance of programs
dramatically. In general, these characteristics are not considered by parallel
bridging models, so it seems to be a better solution to extend these models
with the special characteristics of the underlying machine and to show how
algorithms can be transformed best. Of course, this comprises the risk of
producing too complex models. However, as we showed, it makes sense
to regard these models as super-models that can be reasonably reduced
e.g. by fixing parameters for a certain computer. This makes the analysis
more feasible, without loosing prediction quality. The approach of extend-
ing parallel bridging models with special characteristics of the underlying
machine is not limited to SMP clusters. We considered them as an example,
because they have great relevance in the supercomputing area.

Anyhow, this approach for developing applications is very low level. In

134 CHAPTER 8. SUMMARY, CONCLUSIONS AND OUTLOOK

the previous chapters, we gave optimizations for basic operations and al-
gorithms. Normally, a programmer should have the possibility to use these
operations and algorithms as black-boxes. Of course, there are libraries that
provide similar functionality for many architectures and also for SMP clus-
ters. In general, they are simply “optimized” by recompiling on the target
platform. Hence, it would be desirable to have libraries that are optimized
algorithmically and technically. This combination should produce the best
performance (e.g. an optimized algorithm library based on an optimized
MPI library).

Hence, we propose two research paths. The first path is concerned with
the development of better algorithms as we tried to show in this thesis. The
second path deals with compilers, programming models and software tools
in general with which it is possible to make efficient implementations for
SMP clusters. For example, the hybrid-programming model has the best
potential but it is still too complex to create, maintain and debug programs
based on it. The synthesis of both paths will lead to a programming en-
vironment comparable with that of sequential computing. Only this way
will make it possible for parallel computation to make the step from the
scientific domain into the business domain.

In addition, business processes contain very time consuming tasks that
may profit from their parallelization. Cheap parallel machines like SMP
clusters, an efficient standardized programming environment and a huge
amount of efficient libraries are arguments for companies that suffer from
slow sequential implementations to do investments. This step will bring
parallel computation into new dimension.

Appendix A

Related Publications

The chapters of this thesis are founded on our refereed publications in in-
ternational conferences, journals and books of the last years. In the follow-
ing, we give an overview which chapter is based on which publication, and
where the publication was done.

A.1 Conferences

• Martin Schmollinger, Michael Kaufmann. “κNUMA: A Model for Clusters
of SMP-Machines”. In Proceedings of the 4th Conference on Parallel Pro-
cessing and Applied Mathematics (PPAM 2001), Naleczow, Polen, Septem-
ber 2001. LNCS 2328, Springer Verlag.

−→ Chapter 3, 4.

• Martin Schmollinger, Michael Kaufmann. “Algorithms for SMP Clusters.
Matrix-Vector Multiplication”. Proceedings of the 16th International Paral-
lel and Distributed Processing Symposium (IPDPS), Ft. Lauderdale, Florida,
USA, April 2002. IEEE Computer Society.

−→ Chapter 5.

• Martin Schmollinger, Michael Kaufmann. “Matrix Transpose on SMP Clus-
ters”, 14th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS), MIT, Camebridge, USA. November 2002,
Accepted for publication.

−→ Chapter 6.

135

136 APPENDIX A. RELATED PUBLICATIONS

• Martin Schmollinger. “Improving Communication Sensitive Parallel Radix
Sort for Unbalanced Data”, Proceedings of the 9th International Euro-Par
Conference, Klagenfurt, Austria. August 2003. LNCS 2790, Springer-
Verlag.

−→ Chapter 7.

A.2 Journals

• Martin Schmollinger, Michael Kaufmann. “Designing Parallel Algorithms
for Hierarchical SMP Clusters”. In International Journal of Foundations
of Computer Science special issue on advances in parallel and distributed
computational models, 14(1):59-78, World Scientific Publishing Company.
February 2003.

−→ Chapter 3, 4 and 5.

A.3 Book Chapters

• Massimo Coppola, Martin Schmollinger. Chapter ”Hierarchical Models and
Software Tools for Parallel Programming”. in ”Algorithms for Memory Hi-
erarchies”, Advanced Lectures, LNCS 2625, Springer Verlag, 2003.

−→ Chapter 2

Bibliography

[1] V. N. Alexandrov, J. J. Dongarra, B. A. Juliano, R. S. Renner, and C. J. K.
Tan, editors. Computational Science - ICCS 2001, Part II, volume 2074 of
LNCS, 2001. 137, 138, 140, 142

[2] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel. TreadMarks: Shared memory computing on net-
works of workstations. IEEE Computer, 29(2):18–28, Feb. 1996. 38

[3] F. M. auf der Heide and R. Wanka. Parallel bridging models and their
impact on algorithm design. In Alexandrov et al. [1], pages 628–637.
22, 27, 29

[4] S. Baden and S. Fink. A Programming Methodology for Dual-Tier
Multicomputers. IEEE Transactions on Software Engineering, 26(3):212–
226, 2000. 45

[5] D. Bader and J. JáJá. SIMPLE: A Methodology for Programming High
Performance Algorithms on Clusters of Symmetric Multiprocessors
(SMPs). Journal of Parallel and Distributed Computing, 58(1):92–108,
1999. 43

[6] D. A. Bader and J. JáJá. SIMPLE: A Methodology for Programming
High Performance Algorithms on Clusters of Symmetric Multiproces-
sors (SMPs). Journal of Parallel and Distributed Computing, 58(1):92–108,
1999. http://hpc.eece.unm.edu/papers/3798.ps. 73, 114

[7] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and
M. Yarrow. The NAS Parallel Benchmarks 2.0. Technical Report NAS-
95-020, NASA Ames Research Center, Moffett Field, CA, 94035-1000,
December 1995. 36

[8] G. Bell and J. Gray. High Performance Computing: Crays, Clusters,
and Centers. What Next? Technical Report MSR-TR-2001-76, Mi-
crosoft Research, Microsoft Corporation, August 2001. 16, 19

[9] S. Benkner. VFC:The Vienna Fortran Compiler. Scientific Programming,
7(1):67–81, 1999. 44

137

138 BIBLIOGRAPHY

[10] S. Benkner and V. Sipkova. Language and Compiler Support for
Hybrid-Parallel Programming on SMP Clusters. In Proceedings of the
4th International Symposium on High Performance Computing, volume
2327 of LNCS. Springer, 2002. 44

[11] M. Beran. Decomposable bulk synchronous parallel computers. In
J. Pavelka, G. Tel, and M. Bartosek, editors, SOFSEM’99: Theory and
Practice of Informatics, volume 1725 of LNCS, pages 349–359, 1999. 29

[12] G. Bilardi, C. Fantozzi, A. Pietracaprina, and G. Pucci. On the effec-
tiveness of D-BSP as a bridging model of parallel computation. In
Alexandrov et al. [1], pages 579–588. 29, 59

[13] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,
I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, , and R. C. Whaley. ScaLAPACK: A Linear Algebra Library
for Message-Passing Computers. In Proceedings of the SIAM Conference
on Parallel Processing, 1997. 97

[14] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith,
and M. Zagha. A Comparison of Sorting Algorithms for the Connec-
tion Machine. In Proceedings of Sysmposium on Parallel Algorithms and
Architectures, pages 3–16, July 1991. 117

[15] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping. The Paderborn
University BSP (PUB) Library - Design, Implementation and Perfor-
mance. In 13th International Parallel Processing Symposium & 10th Sym-
posium on Parallel and Distributed Processing (IPPS/SPDP), April 1999.
27

[16] F. Cappello and D. Etiemble. MPI versus MPI+OpenMP on IBM SP for
the NAS Benchmarks. In Proceedings of the Supercomputing Conference.
IEEE/ACM, 2000. 40, 41, 73

[17] F. Cappello and O. Richard. Performance Characteristics of a Network
of Commodity Multiprocessors for the NAS Benchmarks Using a Hy-
brid Memory Model. In Proceedings of International Conference on Par-
allel Architectures and Compilation Techniques PACT. IEEE/IFIP, October
1999. 41

[18] F. Cappello, O. Richard, and D. Etiemble. Investigating the perfor-
mance of two programming models for clusters of SMP PCs. In Pro-
ceeding of the 6th High Performance Computer Architecture Conference.
IEEE, January 2000. 41

[19] A. A. Chien. Computing platforms. In Foster and Kesselman [32],
chapter 17. 17

BIBLIOGRAPHY 139

[20] J. Choi, J. J. Dongarra, and D. W. Walker. PUMMA:Parallel Univer-
sal Matrix Multiplication Algorithms on Distributed Concurrent Com-
puters. Concurrency: Practice and Experience, 6:543–570, 1994. 96

[21] J. Choi, J. J. Dongarra, and D. W. Walker. Parallel matrix transpose al-
gorithms on distributed memory concurrent computers. Parallel Com-
puting, 21(9):1387–1405, 1995. 97

[22] E. Chow and D. Hysom. Assessing Performance of Hybrid
MPI/OpenMP Programs on SMP Clusters. Technical Report UCRL-
JC-143957, Lawrence Livermore National Laboratory, May 2001. 41

[23] M. Coppola and M. Schmollinger. Algorithms for Memory Hierarchies,
volume 2625 of LNCS Advanced Lectures, chapter Hierarchical Models
and Software Tools for Parallel Programming. Springer-Verlag, 2003.

[24] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: A practical model of paral-
lel computation. Communications of the ACM, 39(11):78–85, November
1996. 25

[25] F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari. Reducing
I/O complexity by simulating coarse grained parallel algorithms. In
Proc. 13th International Parallel Processing Symposium (IPPS’99), pages
14–20, Puerto Rico, 1999. 25

[26] F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari. Bulk syn-
chronous parallel algorithms for the external memory model. Theory
of Computing Systems, pages 1–31, Sept. 2002. Electronic version of the
journal, DOI: 10.1007/s00224-002-1066-2. 25

[27] E. Demaine. A Threads-Only MPI Implementation for the Develop-
ment of Parallel Programs. In Proceedings of the 11th International Sym-
posium on High Performance Computing Systems, HPCS, pages 153–163,
1997. 37

[28] J. Dongarra and V. Eijkhout. Numerical linear algebra algorithms and
software. CAM (Numerical) Linear Algebra, 31(4), 1999. 95

[29] M. J. Flynn. Some computer organizations and their effectiveness.
IEEE Transactions on Computers, C-21(9):948–960, 1972. 11

[30] S. Fortune and J. Wyllie. Parallelism in random access machines. In
Proceedings of the 10th anual Symposium on Theory of Computing, pages
114–118. ACM, 1978. 20

[31] I. Foster. Designing and Building Parallel Programs, Concepts and Tools for
Parallel Software Engineering. Addison-Wesley Publishing Company,
1994. 9, 67

140 BIBLIOGRAPHY

[32] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann Pub., July 1998. 17, 19, 138

[33] A. V. Gerbessiotis and C. J. Siniolakis. Deterministic Sorting and Ran-
domized Median Finding on the BSP Model. In Proceedings oth the 8th
ACM Symposium on Parallel Algorithms and Architectures, pages pp.223–
232, 1996. 117

[34] P. B. Gibbons, Y. Mathias, and V. Ramachandran. Can shared-memory
model serve as a bridging model for parallel computation? In Proc. of
the 9th ACM Symp. on Parallel Algorithms and Architectures, pages 72–83,
1997. 26, 55

[35] A. Grama, V. Kumar, S. Ranka, and V. Singh. Architecture independent
analysis of parallel programs. In Alexandrov et al. [1], pages 599–608.
20

[36] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface stan-
dard. Parallel Computing, 22(6):789–828, September 1996. 36

[37] W. D. Gropp and E. Lusk. User’s Guide for MPICH, a Portable Implemen-
tation of MPI. Mathematics and Computer Science Division, Argonne
National Laboratory, 1996. ANL-96/6. 36

[38] T. Grundmann, M. Ritt, and W. Rosenstiel. Object-Oriented Message-
Passing with TPO++. In EURO-PAR 2000, Parallel Processing, volume
1900 of LNCS, pages 1081–1084. Springer Verlag, 2000. 32, 91, 123

[39] O. Haan. Matrix Transpose with Hybrid OpenMP/MPI Paralleliza-
tion. In Second meeting of IBM SP Scientific Computing User Group
http://www.spscicomp.org/2000/userpres.html#haan, 2000. 97

[40] D. R. Helman, D. A. Bader, and J. JáJá. Parallel Algorithms for Per-
sonalized Communication and Sorting With Experimental Study. In
Proceedings of the IEEE Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 211–220, 1996. 123

[41] D. R. Helman and J. JáJá. Sorting on Clusters of SMPs. Informatica: An
International Journal of Computing and Informatics, 23, 1999. 73, 117

[42] J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang,
S. B. Rao, T. Suel, T. Tsantilas, and R. Bisseling. BSPlib: The BSP Pro-
gramming Library. Technical Report PRG-TR-29-97, Oxford Univer-
sity Computing Laboratory, 1997. 27

[43] Y. Hu, H. Lu, A. Cox, and W. Zwaenepoel. OpenMP for Networks of
SMPs. In Proceedings of the 2nd Merged Symposium International Parallel

BIBLIOGRAPHY 141

and Distributed Symposium/Symposium on Parallel and Distributed Pro-
cessing (IPPS/SPDP). IEEE, 1999. 38

[44] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
70, 83

[45] D. Jiminez-Gonzales, J. Larriba-Pey, and J. Navarro. Communication
Conscious Radix Sort. In Proceedings of the International Conference on
Supercomputing, pages 76–82. ACM, 1999. 117, 119, 123

[46] D. Jiminez-Gonzales, J. Larriba-Pey, and J. Navarro. Algorithms for
Memory Hierarchies, volume 2625 of LNCS, Advanced Lectures, chap-
ter Case Study: Memory Conscious Parallel Sorting, pages 358–378.
Springer Verlag, 2003 to appear. 114

[47] D. Jiminez-Gonzales, J. Navarro, , and J. Larriba-Pey. Fast Parallel In-
Memory 64 Bit Sorting. In Proceedings of the International Conference on
Supercomputing, pages 114–122. ACM, 2001. 117, 123

[48] W. Johnston. Rationale and Strategy for a 21st Century Scientific Com-
puting Architecture: The Case for Using Commercial Symmetric Mul-
tiprocessors as Supercomputers. International Journal of High Speed
Computing, June 1998. 18

[49] B. Juurlink and H. Wijshoff. EURO-PAR 96, Parallel Processing, volume
1124 of LNCS, chapter The E-BSP Model: Incorporating Unbalanced
Communication and General Locality into the BSP Model, pages 339–
347. Springer, August 1996. 59

[50] D. Knuth. The Art of Computer Programming: Sorting and Searching,
volume 3. Addison-Wesley, 1973. 111, 113

[51] M. Kowarschik and C. Weiß. Algorithms for Memory Hierarchies, vol-
ume 2625 of LNCS, Advanced Lectures, chapter An Overview of Cache
Optimzation Techniques and Cache-Aware Numerical Algorithms,
pages 213–232. Springer Verlag, 2003. 96

[52] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel
Computing. Benjamin/Cummings Publ. Company, 1994. 12, 13, 14, 97

[53] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Ar-
rays, Trees, Hypercubes. Morgan Kaufmann, 1992. 13

[54] W. F. McColl. Computer Science Today, volume 1000 of Lecture Notes in
Computer Science, chapter Scalable Computing, pages 46–61. Springer
Verlag, 1995. 83, 90

142 BIBLIOGRAPHY

[55] J. Merlin, D. Miles, and V. Schuster. The Portland Group Distributed
OMP: Extensions to OpenMP for SMP-Cluster. In Proceedings of 2nd
European Workshop on OpenMP (EWOMP), Edinburgh, UK, September
2000. Edinburgh Parallel Computing Centre. Electronic Proceedings,
http://www.epcc.ed.ac.uk/ewomp2000/. 39

[56] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Technical Report CS-94-230, Computer Science Department,
University of Tennessee, Knoxville, TN, May 1994. 30

[57] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Technical Report CS-94-230, Computer Science Department,
University of Tennessee, Knoxville, TN, May 1994. 123

[58] Message Passing Interface Forum. MPI-2: Extensions to the Message-
Passing Interface, July 1997. 30

[59] Message Passing Interface Forum. MPI-2: Extensions to the Message-
Passing Interface, July 1997. 123

[60] H. Meurer, E. Strohmaier, J. Dongarra, and H. Simon. TOP500 Super-
computer Sites, http://www.top500.org, June 2003. 16, 82

[61] OpenMP Forum. OpenMP C and C++ Application Program Interface,
Version 2.0. http://www.openmp.org, March 2002. 33, 34, 36, 83

[62] V. Ramachandran. Parallel algorithm design with coarse-grained syn-
chronization. In Alexandrov et al. [1], pages 619–627. 26

[63] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of OpenMP Com-
piler for an SMP Cluster. In Proceedings of the 1st European Workshop
on OpenMP (EWOMP), pages 32–39. Lund University, Lund, Sweden,
1999. Electronic proceedings, http://www.it.lth.se/ewomp99/.
38

[64] M. Schmollinger. Improving Communication Sensitive Parallel Radix
Sort for Unbalanced Data. In Proceedings of the 9th International Confer-
ence Euro-Par, number 2790 in LNCS. Springer Verlag, August 2003.

[65] M. Schmollinger and M. Kaufmann. A Model for Clusters of SMP-
Machines. In Conference on Parallel Processing and Applied Mathematics,
volume 2328 of LNCS, pages pp. 42–50. Springer Verlag, 2001.

[66] M. Schmollinger and M. Kaufmann. Algorithms for SMP Clusters,
Dense Matrix-Vector Multiplication. In Proceedings of the 16th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS). IEEE Com-
puter Society, April 2002.

BIBLIOGRAPHY 143

[67] M. Schmollinger and M. Kaufmann. Designing Algorithms for Hier-
archical SMP Clusters. International Journal of Foundations of Computer
Science, 14(1), February 2003.

[68] R. Sedgewick. Algorithms. Addison-Wesley, 1992. 111, 113

[69] H. Shi and J. Schaeffer. Parallel Sorting by Regular Sampling. Journal
of Parallel and Distributed Computing, 14:361–372, 1992. 117

[70] A. Sohn and Y. Kodama. Load Balanced Parallel Radix Sort. In Proceed-
ings of the International Conference on Supercomputing, pages 305–312.
ACM, 1998. 114, 123

[71] T. Takahashi, F. O’Carroll, H. Tezuka, A. Hori, S. Sumimoto,
H. Harada, Y. Ishikawa, and P. Beckman. Implementation and Evalu-
ation of MPI on an SMP Cluster. In Proceedings of the International Par-
allel and Distributed Symposium/Symposium on Parallel and Distributed
Processing (IPPS/SPDP), pages 1178–1192. IEEE, 1999. 36

[72] R. Thakur, W. Gropp, and E. Lusk. A case for using MPI’s derived
datatypes to improve I/O performance. In Proc. of SC98: High Perfor-
mance Networking and Computing. IEEE, Nov. 1998. 32

[73] P. D. L. Torre and C. P. Kruskal. Submachine locality in the bulk
synchronous setting. In L. Bougé, P. Fraigniaud, A. Mignotte, and
Y. Robert, editors, Euro-Par’96 - Parallel Processing, vol. II, volume 1124
of LNCS, pages 352–360, 1996. 28

[74] T. Ungerer. Parallel Rechner und Parallele Programmierung. Spektrum
Akademischer Verlag, 1997. 5

[75] University of Tübingen (SFB-382). http://kepler.sfb382-zdv.uni-
tuebingen.de/. 81, 91, 123

[76] L. G. Valiant. A bridging model for parallel computation. Communica-
tions of the ACM, 33(8):103–111, Aug. 1990. 9, 21, 53, 63

[77] A. van der Steen and J. Dongarra. Overview of Recent Supercomput-
ers. http://www.top500.org/ORSC/2002/, July 2002. 11, 14

[78] J. S. Vitter. External Memory Algorithms and Data Structures: Dealing
with MASSIVE DATA. ACM Computing Surveys, 33(2):209–271, June
2001. 20

Index

κ-level broadcast, 58
κ-level personalized broadcast, 61
κNUMA method, 74
κNUMA model, 52

parameters, 52

barrier synchronization, 31, 38, 43,
53

BCSP radix sort, 123
block cyclic data distribution, 97
block main diagonal BMD, 99
broadcast, 31, 43

κ-level broadcast, 58
κ-level personalized broadcast,

61
direct 1-level broadcast, 56

BSP model, 9, 22, 27
BSP* model, 27
bulk synchronous parallel model

(BSP), 22
bus connection, 12
Butterfly, 71

C,C++, 30, 33, 38
c-optimality, 24
C3 radix sort, 116

improvements, 118
cache coherence, 14
CGM model, 24, 27
cluster of SMP, 16
coarse grained multicomputer model

(CGM), 24
collective

communication, 31
communication

asynchronous, 51

bandwidth, 13, 17
cost, 3
inner-node, 54
inter-node, 54
latency, 13, 17

compiler directed SDSM, 38
check code, 38

constellation, 16
cost model, 7
crossbar connection, 12

decomposable BSP model (D-BSP),
28

Design Chain for Efficient Parallel
Applications, 6

direct 1-level broadcast, 56
distributed-memory, 14, 15
divide-and-conquer algorithms, 73

fork-join model, 34
FORTRAN, 30, 33, 38, 43

grain, 40
coarse-grain decomposition, 25
fine-grain, 27

hierarchical communication archi-
tecture, 8

High Performance FORTRAN, 43,
45

HPF, 43, 45
hybrid-programming, 40

coarse-grain parallelization, 41
fine-grain parallelization, 40
model, 9
with HPF, 44
with MPI and OpenMP, 40

144

INDEX 145

hybrid-programming model, 73

initial memory space, 101
interprocess communication, 37

KeLP2, 45
Kepler-Cluster, 81
Kernel Lattice Parallelism 2, 45

load balancing, 1
LogP model, 25, 26
lower triangular block matrix (LTB),

99

Massively parallel processing sys-
tems (MPP), 16

matrix transpose, 96
matrix-vector-multiplication, 82
maximum contention, 26
message-passing interface (see MPI),

30
message-passing paradigm, 30, 36
MIMD programming, 30
mirror scheme, 99
MPI, 30, 37, 38, 40, 41, 44

collective communication, 31
derived data types, 32
MPI-IO, 31
non-contiguous data structures,

32
one-sided communication, 31
optimizations, 36
point-to-point communication,

31
TPO++, 32

MPP, 16
multi-stage crossbar, 12
multiple instruction multiple data

(MIMD), 14

NAS Parallel Benchmark, 36
non-uniform memory access archi-

tecture (NUMA), 15

OpenMP, 30, 33, 37–42, 44

distributed OpenMP, 39
on SDSM systems, 37

parallel algorithm, 3, 7
parallel architecture, 6
parallel bridging model (PBM), 21,

49
parallel computer, 6
parallel hierarchy, 8, 17, 85
parallel I/O

MPI-IO, 31
parallel matrix transpose, 96
parallel matrix-vector-multiplication,

83
parallel programming libraries, 30
parallel random access machine (PRAM),

20
parallel sample sort, 117
parallel slackness, 22
PCAM, 68, 69
personalized one-to-all-broadcast

problem, 55
POSIX threads, 43
PRAM, 20, 26
process, 5
programming model, 7

QSM model, 26
queuing shared-memory (QSM), 26

radix sort, 111
C3, 116
communication sensitive, 116
load balanced, 114
sequential, 111
straight parallel, 113

SDSM, 37
shared-memory, 14

communication, 36
programming paradigm, 30

SIMPLE model, 43, 46
SMP Cluster, 8
snake-like scheme, 102

146 INDEX

software distributed shared-memory,
37

speed-up, 1
SPMD programming, 30, 41
supercomputer, 6
supersteps, 22, 53
symmetric multiprocessor (SMP),

15

thread, 5
threads only MPI, 37
TOMPI, 37, 41
TOP500 list, 82
TPO++, 32, 91, 123

uniform memory access architec-
ture (UMA), 15

UNIX, 37
domain sockets, 37

Unix
kernel, 36

upper triangular block matrix (UTB),
99

VFC, 44

work-preserving emulation, 26

	Introduction
	Motivation for Parallel Computation
	Levels of Parallelism in Computer Programs
	Design Chain for Efficient Parallel Applications
	The Contribution of the Thesis
	Structure of the Thesis

	Architectures, Models, Libraries
	Architectures
	Motivation and Technological Perspective

	Computational Cost Models
	Parallel Bridging Models
	The Bulk Synchronous Parallel Model
	LogP Model
	QSM model
	A Comparison of Parallel Bridging Models
	Parallel Bridging Models and Hierarchical Parallelism

	Programming Models
	Parallel Programming Libraries
	Parallel-Hierarchical Programming

	Summary

	A Model for Hierarchical SMP Clusters
	Design Decisions for the Model
	NUMA Model
	The Set of NUMA-Parameters
	Execution of Parallel Algorithms
	One-to-All Broadcast Problem
	Remarks and Conclusions to the Broadcast Problem

	Summary

	Designing Parallel Algorithms
	PCAM
	Transferring Parallel Algorithms
	Hierarchical Sensitive Design
	Adaptation of Communication Patterns
	Usage and Avoidance of Redundant Data
	Summary

	Exploitation of Data Redundancy
	Adapting NUMA to the Target Platform
	Dense Matrix-Vector-Multiplication
	Basic Parallel Algorithm
	Data Distribution
	Analysis
	Problems Involved with a Non-Hierarchical Approach

	Experimental Tests
	Summary

	Adaptation of Communication Patterns
	Problem Definition
	On-the-Fly Algorithm
	Mirror Scheme
	Algorithm and Analysis

	Reducing the Initial Memory Space
	Lower Bound
	Snake-like Scheme
	Optimizing the Number of Blocks
	Comparison of the Bounds

	Summary

	Hierarchical Sensitive Design
	Sequential Radix Sort
	Parallel Radix Sort Algorithms
	Straight Parallel Radix Sort
	Load Balanced Parallel Radix Sort
	Hierarchical-Sensitive Design
	Communication Sensitive Parallel Radix Sort
	An Alternative Approach: Sample Sort

	Further Improvements
	Experimental Tests
	Standard Data Distributions
	Worst-Case Data Distributions

	Summary

	Summary, Conclusions and Outlook
	Related Publications
	Conferences
	Journals
	Book Chapters

