

Open access • Journal Article • DOI:10.1177/1094428112440328

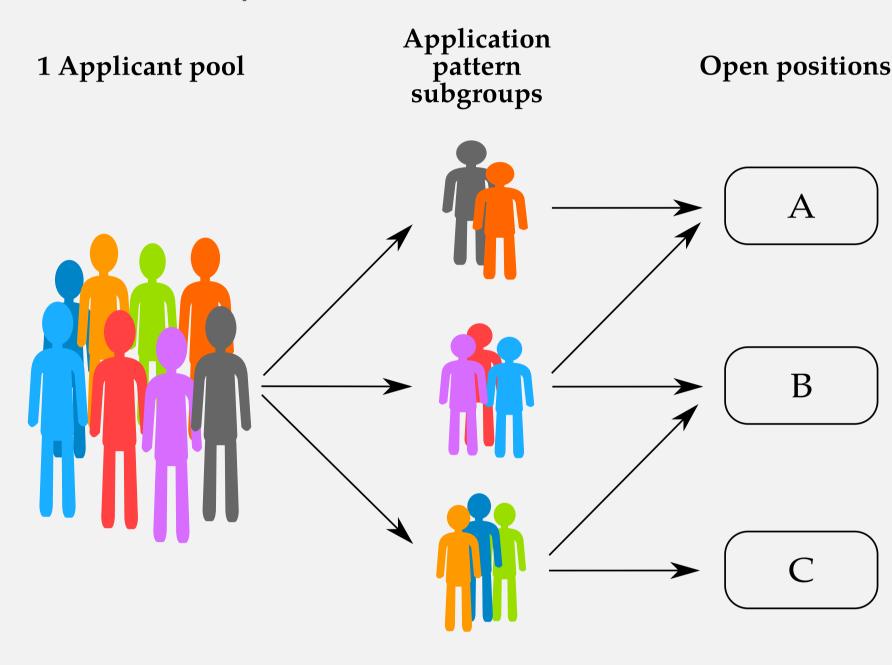
Designing Pareto-Optimal Systems for Complex Selection Decisions:

— Source link 🗹

Celina Druart, Wilfried De Corte

Published on: 04 May 2012 - Organizational Research Methods (SAGE PublicationsSage CA: Los Angeles, CA) Topics: Selection (genetic algorithm) and Personnel selection

Related papers:


- Designing Pareto-optimal selection systems: Formalizing the decisions required for selection system development
- · Combining predictors to achieve optimal trade-offs between selection quality and adverse impact
- Weighting Admission Scores to Balance Predictiveness-Diversity: The Pareto-Optimization Approach
- Predicting adverse impact and mean criterion performance in multistage selection.
- Validity and adverse impact potential of predictor composite formation

Share this paper: 👎 🄰 in 🖂

1. Complex Selection Decisions

- One applicant pool and several open positions
- Many applicants are apt and show interest in one or number of different positions

- Large industrial or governmental organisations
- Currently no methods available to estimate outcomes: quality and (2) adverse impact ratio (AIR)
- Importance: wrongly handling a complex selection deci was a series of seperate simple selection decisions, lead expectations concerning the outcomes

2. Method

- Outcomes as expected under rational selection strategy: predictor information is used so as to maximize expected criterion performance of retained applicants
- We propose two different analytic methods to estimate expected selection quality and adverse impact
- 1. variable prediction method: a different predictor composite for each position
- 2. uniform prediction method: same predictor composite for all positions
- Both methods integrated in a multi-objective optimization framework to obtain Pareto-optimal complex selection systems

Designing Pareto-optimal Systems for Complex Selection Decisions

Celina Druart & Wilfried De Corte

3. Example application

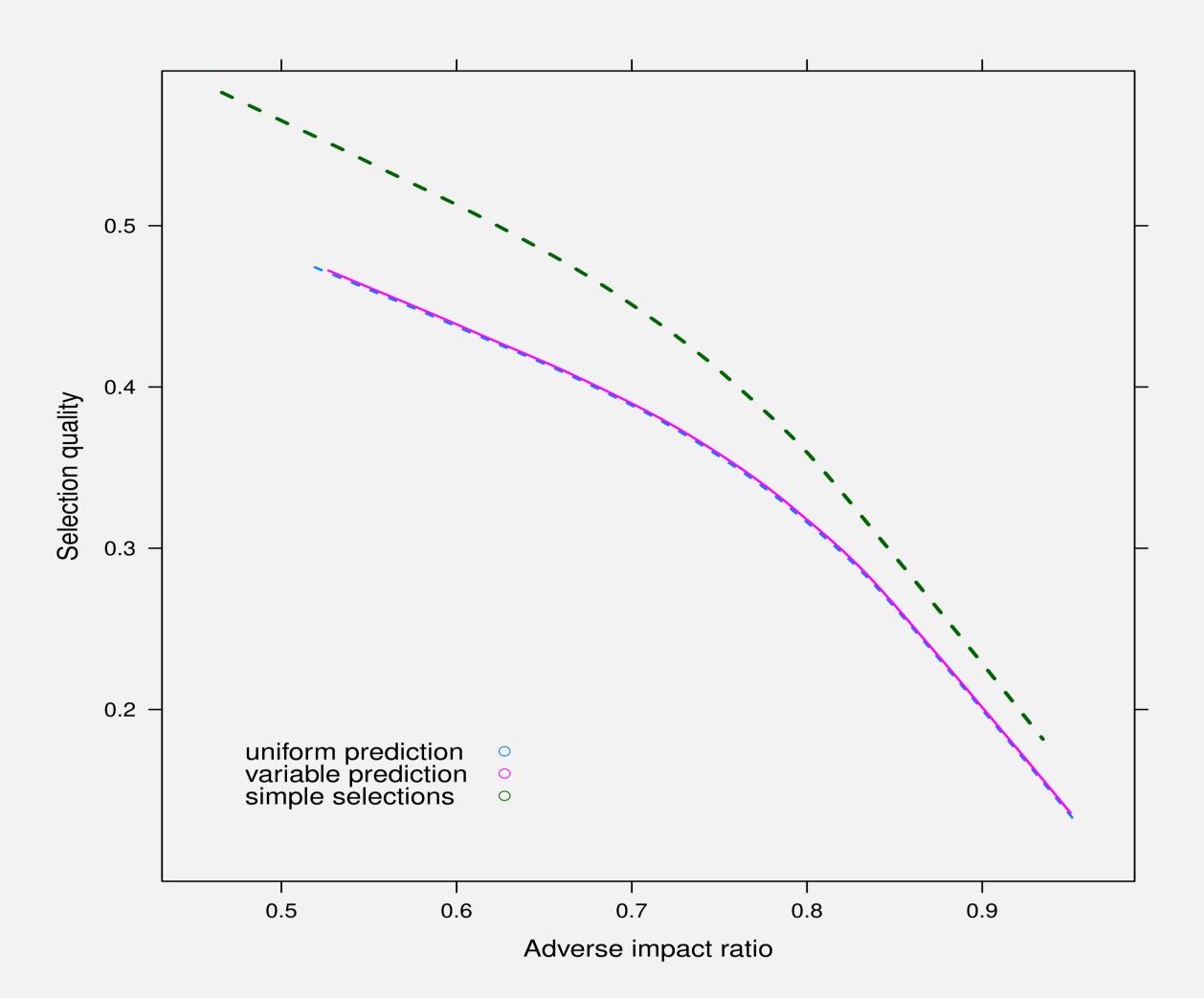
• Characteristics of selection predictors in

r more of a	Variable	Effect Size	Correlation Matrix		
		d	1	2 3	4
5	Predictors				
	1. Cognitive ability	-0.72			
	2. Structured Interview	-0.31	.31		
	3. Conscientiousness	-0.06	.03 .	26	
	4. Biodata	-0.57	.37 .	17.31	
	Criteria				
	5. Performance Jobs 1-2-3	-0.43	.51 .	48.22	.32

• Characteristics applicant pool: minority / majority group compositon .12 / .88 and job application patterns:

(1) selection	Subgroup	Prevalence	Applica
	1	.30	Job 1
cision as if it	2	.25	Job 2
nds to biased	3	.20	Job 3
	4	.10	Jobs 1 a
	5	.10	Jobs 1 a
	6	.05	Jobs 1,

• Complex selection situation as 25% of applicant pool applies for more than one job


4. Results

- Set of Pareto-optimal complex selection systems
- Pareto-optimal trade offs between selection quality and AIR

light	of	envisioned	jobs:
0			J

ation Pattern

and 2 and 3 2 and 3

(c) 3 separate simple selection decisions (dashed)

5. Conclusions

- of complex selection decisions
- same Pareto front
- about attainable trade offs
- to perform complex selection decisions

Corresponding author: Celina Druart, E-Mail: Celina.Druart@UGent.be Ghent University, Department of Data Analysis

Comparison Pareto front (a) uniform prediction (dotted) vs (b) variable prediction method (solid) for complex selection situations, and

• We propose the first analytic method to estimate efficiency and AIR

• Uniform and variable prediction method result in practically the

• Wrongy handling a complex selection situation as a series of simple selection decisions, leads to **substantively biased expectations**

• Method permits an **informed design of composite predictors**