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Abstract: Exceptional points (EPs) have been shown to be useful in bringing about sensitive
optical properties based on non-Hermitian physics. For example, they have been applied in
plasmonics to realize nano-sensing with extreme sensitivity. While the exceptional points are
conventionally constructed by considering parity-time symmetric or anti-parity-time symmetric
media, we theoretically demonstrate the possibility of generating a series of non-Hermitian
systems by transforming a seed system with conventional parity-time symmetry within the
transformation optics framework. The transformed systems do not possess PT-symmetry with a
conventional parity operator after a spatial operation, i.e. hidden from conventional sense, but are
equipped with exceptional points and phase transitions, hinting an alternative method to design
non-Hermitian plasmonic systems with sensitive spectra or eigenmodes.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Non-Hermitian optical systems have attracted a lot of attention due to their ability to generate
sensitive optical properties around the so-called exceptional points [1–5]. A range of exotic wave
phenomena have been demonstrated, ranging from unidirectional invisibility [6], spontaneous
PT-symmetry breaking [7,8], coherent perfect absorption and lasing [9–11], etc. In particular,
the sensitive optical properties around exceptional points, also an associated phase transition, can
be very useful for sensing [12–14], mode discrimination (e.g. for lasing) [15–17] and isolation
(non-reciprocal transmission) [18–20]. Recently, exceptional points have been successfully
demonstrated in the optical regime, allowing the realization of exceptional point-based devices,
such as ultrasensitive plasmonic sensors [21,22], and vortex beam generators [23]. In this case,
the gain and loss are not merely compensating each other (e.g., active plasmonic systems [24,25]).
The coupling and the gain-loss contrast between two different spatial domains interplay with each
other and induce an exceptional point, in which both the eigenvalues and eigenvectors coalesce.

It is not trivial to guarantee the appearance of such an exceptional point for a generally
non-Hermitian system [26]. One possible way is to impose a symmetry between two spatial
domains through Parity-time (PT) operation on the material parameters [27–29]. The exceptional
point can then be swept across configurationally by varying a single parameter (the ratio between
coupling and gain-loss contrast). There are alternative routes, such as employing bianisotropy
[30,31], considering anti-PT symmetry [32–38] and pseudo-Hermiticity [39,40], to construct
non-Hermitian exceptional points. It is worth to mention that employing anti-PT symmetry to
construct EPs is a relatively recent approach. EPs in these anti-PT systems have been found
to enhance Sagnac effect in ring laser gyroscopes [34,35], in coupled waveguides with lossy
buffers for on chip applications [36] and in side-coupled cavities for robust sensing [37] or
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electromagnetically induced transparency [38]. The conventional P-symmetry can therefore be
replaced by other kinds of symmetries. This work, in the same spirit of this route, investigates
how transformation optics (TO) can help generate exceptional points by coordinate-transforming
a known PT-symmetric system. We apply TO on a conventional PT-symmetric system and
generate different daughter systems. Since the coordinate transformation does not preserve
the original PT symmetry, the transformed daughter systems will not possess PT-symmetry
with a conventionally defined parity operator, but are still equipped with exceptional points and
phase transitions. In other words, the P-operation is effectively coordinate transformed while the
T-operation stays the same. This approach is different from a previous scheme that employs a
complex coordinate transformation to obtain a PT-symmetric system without phase transition
from a lossless system [41,42]. TO has been previously used to design plasmonic systems with
hidden symmetries, evolving from the earlier applications on designing invisibility cloaks to
specific optical components [43–47]. For example, a broadband resonance can be hidden in a
finite plasmonic structure with a singular geometry, with applications in nanofocusing, biosensing,
energy harvesting, electron-energy loss spectroscopy, and strong coupling [48–57]. A third
spatial dimension can be compacted and hidden into a two-dimensional plasmonic structure
[58]. In the current case, the PT-symmetry is effectively hidden by the coordinate transformation
without a conventionally defined P-operator (inversion or mirror) as a result of the TO approach.

2. Transformation optics applied on a PT-symmetric system

To illustrate the idea of TO in generating non-Hermitian systems with exceptional points, we start
from a seed PT-symmetric plasmonic metal-insulator-metal (MIM) structure [59]. Figure 1(a)
shows the MIM structure in complex coordinate w = u + iv. It comprises a thin slab of insulator
of thickness d with permittivity ϵ0 = 1 (white, chosen as air) sandwiched by a lossy semi-infinite
metal slab (blue) with permittivity ϵL = ϵ + iγ (ϵ<0, γ ≥ 0) for u< − d/2 and a semi-infinite gain
material (orange) with permittivity ϵR = ϵ − iγ for u>d/2. The system is parity-time symmetric,
with parity being the mirror operation in u-direction, satisfying ϵL = ϵ∗R [60]. Now, we apply an
exponential conformal map [61]

z = ge−
2πw

H , (1)

which transforms the MIM system in coordinate w to concentric shells in coordinate z = x + iy,
as shown in Fig. 1(b). We note that complex coordinates w and z are introduced as a compact
notation for u, v and x, y which are the actual Cartesian coordinates, for simplicity in expressing
conformal maps.

According to TO [43,48], the permittivity and permeability of the transformed structure ε′, µ′are
given by ε′ = ΛεΛT/(det Λ), µ′ = ΛµΛT/(det Λ), where Λ is the Jacobian transformation matrix:

Λ =
2gπ

H
e−

2πu
H

©­­­­«

−cos(2πv/H) −sin(2πv/H) 0

sin(2πv/H) −cos(2πv/H) 0

0 0 He
2πu
H /(2gπ)

ª®®®®¬
,

with detΛ = |dz/dw|2. For the plasmonic modes, we only need to consider TM (transverse
magnetic) modes, in-plane components of the permittivity (index 1 and 2 in row and column)
and out-of-plane component of the permeability tensors (index 3 in row and column). For a
conformal map, by substituting the Jacobian into the transformation rule of permittivity and
permeability, the transformed permittivity is found to be isotropic and is the same as the mother
structures at corresponding mapped locations. The permeability, on the other hand, has its value
changed according to the transformation rule. In our current case, we consider the near-field
limit (wavelength much larger than the insulator thickness d and the size of the shells) while the
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Fig. 1. Coordinate transformation from a mother metal-insulator-metal (MIM) structure in
complex coordinate w (a) to concentric shells in complex coordinate z (b). In (a) the MIM
structure is a well-defined PT-symmetric system. The blue (Orange) slab has a permittivity
ϵ + iγ (ϵ − iγ) in loss (gain), and the white area represents an insulator slab with unit
permittivity. In (b), the daughter system consists of the same materials (represented with the
same colours) in cylindrical shells.

effect of retardation will be considered in a later step. In this limit, the transformed permeability
is neglected [62]. As a result of the transformation, the lossy slab becomes the area (in blue,
with permittivity ϵ + iγ) outside a cylindrical area of radius R2. The slab with gain becomes the
cylinder (in orange, with permittivity ϵ − iγ) with radius R1. The thin shell in white colour is the
air with unit permittivity. The parameter g controls the sizes of the transformed cylinders. The
transformed shells have radii R1 and R2 governed by R1eπd/H

= R2e−πd/H
= g, where H is the

period of the slab system, artificially imposed in the v direction. H is chosen according to the ratio
between R1 and R2 while both R1and R2 should be small compared with the wavelength. The
system in physical coordinate (x and y) can now be regarded as equivalent to the PT-symmetric
system in the virtual coordinate (u and v) but without conventional sense of PT-symmetry, i.e.,
without an obvious definition of the P-operation after transformation.

A local plasmon mode on the w-plane, is the so-called gap plasmon [59,63] with transverse-
magnetic (TM) polarization, satisfying in the near-field limit:

e
4πmd

H =

(
ϵL − 1

ϵL + 1

) (
ϵR − 1

ϵR + 1

)
, (2)

where m, a positive integer, corresponds to discretized linear momentum due to the imposed
period H in the w-plane. According to TO, the same equation also describes the mode spectra in
the z-plane when the wavelength is much larger than sizes of the shells (R2) and the thickness of
insulator (d). Then m corresponds to the angular momentum of a TM mode ((Ex, Ey, Hz) with
Hz ∝ exp(im arg z)) in the z-plane.

Here, we set d = 20.0 nm, R1 = 3.3 nm, and R2 = 13.3 nm as the geometric parameters of the
current example. With ϵL = ϵ + iγ and ϵR = ϵ − iγ, we can obtain the local plasmon dispersion
(over ϵ and γ, as shown in Fig. 2(a)) for the MIM system using full-wave simulations (COMSOL
Multiphysics). In the simulation, the system is excited by an array of dipoles pointing in the
u-direction at a wavelength of 600 nm, periodically placed in the v-direction with period H. The
colour profile plots the averaged field intensity over the metal/dielectric surfaces (where the local
plasmon modes localize) in log scale with red colour (high intensity) indicates the local plasmon
mode dispersion obtained numerically. The two m = 1 modes start with ϵ = −1.73 and ϵ = −0.6
at γ = 0. Then the splitting between the two modes becomes smaller when γ increases until a
certain point at γ ≅ 0.55 at which the two m = 1 modes become degenerate. The m = 2 modes
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Fig. 2. Local plasmon condition in terms of ϵ and γ (the real and imaginary parts of the
permittivities) for the MIM system in w-plane (a) and for the cylindrical shells in the z-plane
(b). The colour map shows the average of |Ex |

2 over the metal/dielectric interface (in log
scale). The red colour shows the locations with highest E-field intensity, i.e. the local
plasmon condition. The dashed line in both (a) and (b) shows the local plasmon condition
by solving ϵ from Eq. (2) with varying γ. m = 1 (the larger parabola) and m = 2 (the
smaller parabola) are the two plasmon conditions in the near-field limit. The geometric
parameters are d = 20.0 nm, R1 = 3.3 nm, and R2 = 13.3 nm. The conformal map in Eq. (1)
has parameters g = 6.6 nm and H = 90.0 nm. (c) gap plasmon mode (showing only Ex

distribution) at γ = 0.02, ϵ = −0.6 in the w plane and its coordinate transformation result
(d) (showing only in Ex distribution). (e) Ex distribution obtained using a dipole excitation
directly in the cylindrical z plane at γ = 0.02, ϵ = −0.6. (f) gap plasmon mode (showing
only Ex distribution) at γ = 0.02, ϵ = −1.73 in the w plane and its coordinate transformation
result (g) (showing only in Ex distribution). (h) Ex distribution obtained using a dipole
excitation directly in the cylindrical z plane at γ = 0.02, ϵ = −1.73.

show up as a smaller “parabola,” while the m = 3 modes appear as an even smaller one around the
point ϵ = −1 and γ = 0 (the higher-order modes are not clearly resolved around the same point).
In Fig. 2(b), the dispersion diagram is solved by full-wave simulations in the x-y plane (Fig. 1(b))
using a dipole excitation pointing along the x-direction at (g, 0) [48]. The two dispersions exhibit
a similar permittivity dependence, confirming the equivalence between the two systems for the
mode spectra. It should be noted that different points in the color map represent different systems
with fixed wavelength excitation in the full wave simulation in principle. However, one can
substitute a frequency dispersion, e.g., the Drude model of permittivity into Eq. (2) and solve for
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k0 to get distinct modes of a single system at any specific γ (see later Fig. 3). In order to have an
intuitive sense of the equivalence, Fig. 2(c) and (f) shows the Ex-field profile for the gap plasmon
mode γ = 0.02, ϵ = −0.6(odd mode for Ex) and γ = 0.02, ϵ = −1.73 (even mode for Ex)

in the w plane and the field fits one wavelength in a period H in the vertical direction. We
transform this field to the z plane by the coordinate transformation according to TO [50] and the
TO-transformed field (again only showing Ex profile) is plot in Fig. 2(d) and (g). The transformed
field shows a very similar quality to the result in Fig. 2(e) and (h), which is directly excited in the
cylindrical z plane. We note that the equivalence is not exact as there are approximations here.
The permeability µ is kept at value 1 for the whole domain in both w-plane and z-plane in the
near-field limit. For TO theory, the permeability µ becomes inhomogeneous in the transformed
z-plane, as discussed above. The near-field approximation becomes more accurate only when the
wavelength is much larger than the sizes of the cylinders [64]. In the present case, the wavelength
is sufficiently large to ensure the equivalence between the two domains. On the other hand,
the retardation effect shows up by plotting the analytic mode dispersions obtained from Eq. (2)
(solving for ϵ by varying γ). The analytic mode dispersions are plotted in the two panels of Fig. 2
as dashed lines for both m = 1 and m = 2 modes. The size of the m = 1 “parabola” has a small
mismatch with the colour map in Fig. 2(a) and (b) due to the retardation effect. Nonetheless,
we can conclude that the two systems have very similar mode dispersions (confirmed by the
full-wave simulations). The system in the z-plane, although lacking a well-defined PT-symmetry,
has an origin from the system in the w-plane, which is purposely designed to be conventional
PT-symmetric. In the dispersion relation of m = 1, when the two branches become degenerate
at around γ ≅ 0.55, such a non-Hermitian system exhibits an exceptional point, which will be
investigated in the next section. We note that the mode in the broken phase (with γ beyond
the exceptional point) is not showing up in Fig. 2 as the full-wave simulations (color map) are
performed with a point source excitation with only a real value of ϵ , while the mode in the broken
phase has an imaginary ϵ in solving the mode equation.

Fig. 3. Exceptional point dynamics. The complex wavenumber k0 satisfying the mode
equation with retardation effect is plotted against the gain-loss contrast γ (according to
Drude model (Eq. (9)) in (a) Re(k0) against γ and in (b) trajectory of complex k0 when γ
increases from zero to 5.5 × 106m−1. The solid black lines are the theoretical results by
plugging in Drude model into Eq. (2) without considering retardation effect. The sizes of
the cylinders are scaled down by 50% with parameters listed in the caption of Fig. 2.
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3. Hidden PT-symmetry with exceptional point dynamics

The above discussion assumes the near-field limit and solves for ϵ from the mode equation
(Eq. (2)) in the w-plane by substituting ϵL = ϵ + iγ and ϵR = ϵ − iγ for the analytic solution.
The same mode equation can be mathematically recast as an eigenvalue problem for the MIM
structure:

(H − ϵI)
©­«

Ev(−d/2)

Ev(+d/2)

ª®¬
= 0, (3)

where the 2×2 Hamiltonian is governed by

H =
©­«
−

ξ2m
+1

ξ2m−1
− iγ

2ξm

ξ2m−1
2ξm

ξ2m−1
−

ξ2m
+1

ξ2m−1
+ iγ

ª®¬
, (4)

with ξ = exp(2πd/H) and eigenvalue ϵ to give the same secular equation (Eq. (2)). Ev(∓d/2)
is the electric field in the vertical v-direction at u = −d/2 and d/2. The Hamiltonian H can
be directly related to a 2×2 PT-symmetric Hamiltonian, with the P-operation as the mirror
operation in the u-direction and T being the time-reversal operation in this case [27–29]. The two
eigenvalues become either two real numbers or a complex conjugate pair. Figure 2 captures the
symmetric phase when the two eigenvalues ϵ are real up to the exceptional point (e.g., γ ≅ 0.55
for m = 1 mode). ϵR = ϵ∗L is now regarded as the hidden PT-symmetry (i.e. without conventional
identification of PT operation) condition in the near-field limit in the z-plane. The TO allows
us to replace ξ → R2/R1, Ev(−d/2) → −2πR2Eφ(R2)/H , Ev(d/2) → −2πR1Eφ(R1)/H and the
corresponding eigenvalue problem in the z-plane becomes

A
©­«

R2Eφ(R2)

R1Eφ(R1)

ª®¬
= (H − ϵI)

©­«
R2Eφ(R2)

R1Eφ(R1)

ª®¬
= 0, (5)

where Eφ is the electric field in the azimuthal direction. We note that the P-operation in the
matrix level is still identified as the application of matrix {{0,1},{1,0}} while the T-operation is
conjugate operation. However, in the field solution level, the P operation is not the conventional
one. It is transformed by the mapping from u ↔ −u to r ↔ g2/r as the new meaning, according
to the conformal mapping Eq. (1).

After making the PT-symmetry origin clear in both materials profile (PT-symmetric in w-plane)
and the abstract mathematical equivalence (Eq. (5)), we now incorporate the retardation effect.
The consideration of the retardation effect is necessary if we want to solve for eigen-frequency
(equivalently finite wavenumber k0 = ω/c) directly and observe the dynamics of exceptional
point in the complex frequency plane. By adding δA, a function of k0, ϵL and ϵR and can be seen
as a perturbation term for a small k0, the mode equation is then the solution of det(A + δA) = 0.
The mode equation (m = 1) with retardation effect can be written as

R2
2(ϵL + 1)(ϵR + 1) − R2

1(ϵL − 1)(ϵR − 1) + δf (k0, ϵL, ϵR) = 0, (6)

where

δf = (R2
2 − R2

1)Tr
©­«
©­«

0 1

−1 0

ª®¬
A
©­«

0 −1

1 0

ª®¬
(δA)T

ª®¬
, (7)

represents a perturbation of the mode equation introduced by the retardation effect. Tr and
superscript T mean the trace and transpose of a matrix. In this case, Eq. (6) is generally complex.
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To restore the case of PT-symmetry that only one scanning parameter is needed to get an EP, we
perturb the hidden PT-symmetry condition (imaginary part of l.h.s. of Eq. (6) now stays zero) by

ϵR = ϵ
∗
L−

iImδf (k0, ϵL, ϵ∗
L
)

R2
2 + R2

1 + (R
2
2 − R2

1)ϵL
, (8)

it will be possible to capture the exceptional point by scanning γ, the gain-loss contrast. In the
near field limit, δf → 0, the hidden PT-symmetry condition returns to ϵR = ϵ∗L . The modified
condition (Eq. (8)) thus allows us to have a correction due to a finite k0 (δf depends on k0) and to
observe the exceptional point dynamics in the complex frequency plane.

We note that Eq. (8) (derived from the perturbation theory) is only quantitatively accurate
for small frequencies, or equivalently at small sizes of the cylinders compared to the free-space
wavelength. As an example, we scale down the physical sizes of the cylinders by half. The ϵL
and ϵ∗

L
in Eqs. (6) and (8) are now replaced by a frequency-dispersive Drude model:

ϵL → 1 −
k2

p

k2
0 + 2ik0γ

, ϵ∗L → 1 −
k2

p

k2
0 − 2ik0γ

, (9)

where the plasma wavenumber kp is set at 2π/137 nm (for silver) [65]. Figure 3(a) plots the
magnitude of l.h.s of the mode equation with retardation effect (Eq. (6)), with low intensity (blue)
indicating the m = 1 mode, i.e. showing the solved k0 by varying γ. The splitting between the
two modes of purely real k0 at γ = 0 decreases as γ increases, and the two modes then become
degenerate at |γ | ≅ 4.2 × 106m−1 (i.e. at an exceptional point). The dynamics in approaching
the exceptional point can be illustrated by plotting the trajectory of the complex k0 when we
increase γ from 0 to 5.5 × 106m−1, as shown in Fig. 3(b). Compared with the theoretical results
(by substituting Eq. (8) and Eq. (9) into Eq. (2) without the retardation term) of exceptional
point dynamics without considering retardation effect shown in solid black lines, we can see
that the retardation effect will shift the local plasmon condition and the exceptional point a little
bit. The two modes with purely real k0 merge at around k0 ≅ 3.2 × 107 m−1 and then become a
complex conjugate pair when γ further increases (roughly forming a bending of 90 degrees). This
behaviour is similar to a conventional PT-symmetric system, except the fact that the PT-symmetry
is hidden in the cylindrical domain where the P-operator cannot be defined as a conventional
mirror or inversion operation. The EP is also about a nonlinear eigenvalue problem [66].

4. Generating other hidden PT-symmetric systems

From the above discussion, TO serves as a guidance in obtaining non-Hermitian systems that
can capture exceptional points, with an origin from a conventional PT-symmetric system. In
fact, we can adopt other maps from the virtual space (w-plane) to obtain and generate other
non-Hermitian systems with hidden PT-symmetries. In the current case, we further cascade
a Mobius map z = g(a + w)/(b − w) so that the metal cylinder with gain can be shifted from
its current position (shown in Fig. 4(a)). There is a shift in distance d from the center of the
lossy shell in the z-plane. As an example, we set R1 = 3.1 nm, R2 = 14.6 nm and d = 5.5 nm.
The resultant dispersion diagram (full-wave simulations shown as the colour map) is shown in
Fig. 4(b). For the concentric structure, the dispersion relation with retardation effect in Fig. 2(b)
is plotted as the dashed lines for the fundamental and second modes. It is found to have a good
agreement with the colour map. Therefore, the non-concentric system shown in Fig. 4(a) is also
having a hidden PT-symmetry.
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Fig. 4. (a). A mobius transformation z = g( a + w)(b − w) converts concentric shell
structure with loss (blue region ϵ + iγ) and gain (orange region ϵ − iγ) into a non-concentric
structure with lossy cylinder shell enclosing a gain cylinder. The mapping has parameters
a = 6.6 nm, b = 33.4 nm, g = 25.8 nm. The geometric parameters in the w-plane are the
same as those in Fig. 1(b). The radius of the gain cylinder and lossy shell in the z plane are
R1 = 3.1 nm, R2 = 14.6 nm. The centre of the gain cylinder is displaced by d = 5.5 nm from
the centre of the lossy shell. (b) Local plasmon dispersions of a non-concentric structure in
terms of ϵ and γ (the real and imaginary parts of the permittivities). The dashed lines are
simulated fundamental and second modes of concentric structure with retardation effect in
Fig. 2(b). The colour map shows the average of |Ex |

2 in logscale over the metal/dielectric
interface.

5. Conclusion

We have established a generic approach to construct various non-Hermitian systems with
exceptional points through coordinate transformations. We have applied this approach to
transform a conventional PT-symmetric system, a plasmonic MIM structure, to generate systems
with hidden PT-symmetry. The same approach can also be equivalently applied to systems (other
than the MIM structure) with other origins of exceptional points, such as anti-PT symmetric
or bianisotropic systems. The investigations will be useful for exceptional point-based sensing,
lasing, and generally for non-Hermitian plasmonics.
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