
Draft

Designing plots for precise estimation of forest attributes in 
landscapes and forests of varying heterogeneity

Journal: Canadian Journal of Forest Research

Manuscript ID cjfr-2020-0508.R2

Manuscript Type: Article

Date Submitted by the 
Author: 23-Mar-2021

Complete List of Authors: Lister, Andrew; Northern Research Station, Forest Inventory and 
Analysis
Leites, Laura; Penn State, Ecosystem Science and Management

Keyword: cluster plot design, forest inventory design optimization, forest inventory 
efficiency, forest pattern simulation, forest sampling simulation

Is the invited manuscript for 
consideration in a Special 

Issue? :
Not applicable (regular submission)

 

© The Author(s) or their Institution(s)

Canadian Journal of Forest Research



Draft

1

1 Designing plots for precise estimation of forest attributes in 
2 landscapes and forests of varying heterogeneity
3 Andrew J. Lister1* and Laura P. Leites2

4 1 USDA Forest Service, Northern Research Station, Forest Inventory and Analysis,
5 3460 Industrial Dr., York PA 17402, USA
6 2 Department of Ecosystem Science and Management, Penn State University, 312 Forest 
7 Resources Bldg., University Park, PA 16802, USA
8 *Corresponding author: Tel: +1 484 254 6358; Email: andrew.lister@usda.gov
9

10

Page 1 of 33

© The Author(s) or their Institution(s)

Canadian Journal of Forest Research

mailto:andrew.lister@usda.gov


Draft

2

11 Abstract

12

13 Models of relationships among forest inventory sampling efficiency and cluster plot configuration 

14 variables inform decisions by inventory planners. However, relationships vary under different spatial 

15 heterogeneity scenarios. In order to improve understanding of how spatial patterns of forests affects 

16 these relationships, we implemented a factorial experiment by simulating forest pattern at both the 

17 landscape and stand scales. We sampled these simulated forests with a variety of cluster plot 

18 configurations, calculated coefficient of variation (CV) of trees per hectare  for each replicate, and 

19 tested the relationships among CV and the heterogeneity and cluster plot configuration factors 

20 within a linear mixed model framework. Both landscape and stand-scale pattern aggregation had a 

21 significant relationship with CV. Changing cluster plot configuration factors did little to change the 

22 overall CV when using larger subplots but had some important effects when using smaller subplots. 

23 These impacts were stronger in the more uniform landscapes. Results were opposite for stand-scale 

24 heterogeneity; changing plot configuration in areas with aggregated patterns had a stronger impact 

25 than it did in areas with more uniform patterns. Results of this study reveal the importance of 

26 accounting for spatial pattern at multiple scales when making cluster configuration choices if the 

27 goal is statistical efficiency.

28

29 Keywords: cluster plot design; forest inventory design optimization; forest inventory efficiency; 

30 forest pattern simulation; forest sampling simulation

31

32 Introduction

33

34 The impacts of the spatial distribution of forest resources on the efficiency of forest 

35 monitoring systems vary with the scale of analysis and with the attribute of interest. Spatial variation 
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36 exists at both the landscape (Heilman et al. 2002; Haddad et al. 2015) and local (Stoyan and 

37 Penttinen 2000) scales, and is due to a combination of human and natural biotic and abiotic 

38 influences. This wide range of variability at multiple scales presents a challenge to planners seeking 

39 efficient forest monitoring system designs, particularly as developing countries create forest 

40 monitoring systems that meet requirements for participation in degradation and deforestation 

41 reduction incentive programs like the United Nations’ Reducing Emissions from Deforestation and 

42 Forest Degradation (REDD) program (UNFCCC 2016).

43 Monitoring can generally be made more efficient by sampling as opposed to exhaustive 

44 measurement of the resource of interest. Sampling design is the most consequential decision with 

45 regard to efficiency, as it involves decisions related to field plot design, inferential paradigm, form of 

46 the estimator, number of plots, sample unit selection process, and data collection protocols 

47 (Thompson 2012 p. 2). An important design decision is whether to incorporate auxiliary information 

48 in the form of remote sensing data. For example, remote sensing imagery can help in planning and 

49 other logistical aspects of the inventory, or it can be used in estimation and inference, such as in the 

50 case of model-assisted or model-based inference. Traditional design-based inference is based on 

51 probabilistic sample unit selection and the distribution of all possible estimates obtainable using a 

52 given sampling protocol; remote sensing data can be used to “assist” inference in this case by 

53 providing input to a model that describes the population while still relying upon the probabilistic 

54 nature of the sampling design to make inferences. Using remote sensing data in a model-based 

55 paradigm, on the other hand, entails reliance on a model for inference about  population parameters 

56 (Gregoire 1998; McRoberts 2010). In the context of this study, we are using a finite population 

57 sampling paradigm, and employ design-based inference without the use of auxiliary data. This is 

58 commonly done in many large area forest inventories around the world, assuming that the use of 

59 stratification is not considered a model-assisted technique.

60 One approach to forest inventory design is to seek the best precision for a fixed number of 

61 plots, i.e., to reduce the variance of the estimate of a mean or total, which is often referred to as 
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62 sampling error or relative standard error (Thompson 2012). Coefficient of variation (CV), which is a 

63 component of sampling error, is a commonly used index of the variability of a sample. Plot 

64 configuration (hereafter, plot design) has direct influence on the CV of an attribute by affecting the 

65 average deviation between each plot value and the mean plot value; if a plot is configured such that 

66 each plot is a microcosm of the population as a whole, the average deviation will be small, CV will be 

67 small, and precision will be improved for a fixed number of plots. It is also common to design a forest 

68 inventory such that estimates will meet an allowable error (AE) criterion, such as a sampling error of 

69 10% of the estimate at the 95% confidence level (IPCC 2006). Plot design thus has an indirect effect 

70 on required sample size needed to achieve AE through its effects on CV (Equation 1): 

71  

72  (1)𝑛𝑟𝑒𝑞 = (𝐶𝑉% ∗ 𝑡
𝐴𝐸% )2

73

74 where nreq is the required sample size to achieve a specified AE% given a known or hypothesized 

75 CV% of the attribute of interest, and t is the Student’s t-value associated with the desired confidence 

76 level (Loetsch and Haller 1973). 

77 Plot design factors that can be altered to adjust CV include size and shape for single subplot 

78 designs, as well as count and separation distance for multiple subplot or cluster designs. In cluster 

79 designs, primary units (sampling units, often referred to simply as plots) are composed of more than 

80 one secondary unit (measurement units, often simply referred to as subplots) distributed in a 

81 defined pattern such as a line, cross, or L-shape. For a fixed number of plots, separation of subplots 

82 in space leads to plot-level estimates that more closely resemble the sample mean by avoiding 

83 redundant sampling effort in neighbouring patches of land with similar conditions. 

84 In general, plots acquire a large amount of new information over short distances as plot area 

85 increases, leading to sharp improvements in precision. As plot area increases beyond a certain 

86 threshold, however, there are diminishing improvements with added area because each plot’s status 
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87 comes to resemble that of the sample mean; this phenomenon is depicted conceptually in 

88 Supplementary Material S1. Smith (1938) was among the first to identify this negative exponential 

89 relationship between plot area and variance, and since then, it has been explored in a forestry 

90 context by several authors, as reviewed by Lynch (2017). For a given plot design, the magnitude of 

91 the absolute value of the exponent depicted in Supplementary Material S1 varies by spatial pattern 

92 scenario; Lynch (2017) reports values in the literature ranging between approximately -0.1 (for 

93 aggregated patterns or those with a spatial trend, e.g., Reich and Arvanitis (1992)) to approximately -

94 1 (for a completely random pattern, per the discussion in Zeide (1980)). Each plot design factor 

95 affects precision in a similar manner, but the interactions among these, landscape- and local-level 

96 heterogeneity, and inventory precision are difficult to predict without a systematically planned 

97 analysis approach like a designed experiment.

98 There is thus a lack of clear guidelines for how the interaction of multiple levels of 

99 heterogeneity affect cluster plot design decisions; this can lead to decisions with costly 

100 repercussions. For example, the United Nations Food and Agriculture Organization (FAO) at one time 

101 suggested cluster plot designs with four 0.5 ha subplots separated by 500 m in a square 

102 configuration (Branthomme 2004). Some national forest inventories employ much smaller clusters, 

103 like that of the United States, which uses four 0.17 ha subplots, separated by 37 meters and 

104 arranged in a triangular pattern (Bechtold et al. 2005). Other inventories, like those for nonforest 

105 trees that occur in sparse clumps, are conducted with larger subplots or with linear transects and 

106 line intercept sampling (Kleinn et al. 2001). With such a broad range of plot design choices, it is 

107 critical that there exist conceptual and empirical models that provide heuristics to help guide 

108 inventory planners with plot design and configuration decisions. With an improved understanding of 

109 which design variables are important, and how their importance responds to different spatial 

110 heterogeneity scenarios, inventory designers can improve decisions.

111 Many studies select plot designs using information from stem-mapped stands that are 

112 purposively chosen and deliberately restricted to forested areas (e.g., Schreuder et al. 1987, Picard 
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113 et al. 2018). Others have chosen to extract subsets of trees using different plot designs from existing 

114 forested inventory plots (Lynch 2003; Picard et al. 2004; Yim et al. 2015). Still others have used 

115 models to create artificial forests and then simulated point or other types of sampling (Arvanitis and 

116 O’Regan 1967; Mackisack and Wood 1990; Brink and Schreuder 1992; Hou et al. 2015; Gove 2017). 

117 None, to our knowledge, have used a designed experiment to model how effects of different scales 

118 of heterogeneity interact with each other and with several plot design factors to reduce variance of 

119 forest inventory estimates. Understanding these interactions is critical when achieving an AE is the 

120 goal, or when paired with cost estimates. However, there is often a lack of meaningful cost data to 

121 guide decisions due to uncertainties about field or other logistics. In such cases, having knowledge of 

122 the relationships among design factors, the population’s spatial structure, and nreq is valuable. It 

123 helps planners identify which plot design components are most impactful and suggests ranges of 

124 values for plot design variables.

125 We conducted a factorial simulation experiment to investigate the precision impacts of 

126 these interactions. We tested the impacts of different cluster plot designs on inventory efficiency 

127 under a variety of simulated forest heterogeneity scenarios.  The main goals of this study were to 

128 uncover and interpret the effects of different types and scales of heterogeneity on the relationship 

129 between variance and plot design choices, and to provide a conceptual and experimental framework 

130 for investigating inventory plot design optimization.

131

132 Methods

133

134 Simulation Experiment

135

136 A repeated measures factorial simulation experiment with multiple crossed factors (Oehlert 

137 2000 p. 438) was conducted in order to model the CV of forest tree density as a function of two 
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138 spatial pattern factors and three cluster plot design factors. Each of the two spatial pattern factors, 

139 representing landscape (L) and stand (S) scale heterogeneity, had three levels (Figure 1):

140

141 L1:  highly dispersed patterns of forest patches with many small, isolated fragments

142 L2:  intermediate levels of aggregation

143 L3:  highly aggregated patterns, with large, continuous patches

144 S1:  highly dispersed (uniformly distributed) pattern of tree locations

145 S2:  completely random pattern

146 S3:  highly aggregated pattern of tree locations, with trees occurring in clumps.

147

148 The concepts of aggregation, dispersion, and randomness of patterns are dependent upon the scale 

149 of analysis and the definitions of patch. For the purposes of this study, patches are defined as 

150 geographic areas that are internally homogeneous and possess clear boundaries. In the context of 

151 landscapes, aggregation is thus defined as a patch configuration in which patch sizes are large and 

152 edge density is small, whereas dispersion is defined as one with smaller patch sizes and larger edge 

153 densities (Figure 1). In the context of point patterns such as the spatial distribution of trees, patch 

154 boundaries are much harder to define. We therefore draw on definitions of dispersion and 

155 aggregation from the field of point process statistics (Baddeley et al. 2015), in which the patterns are 

156 characterized as having distributions of interpoint distances that reflect spatial grouping, 

157 randomness, or uniformity. 

158 For each of the nine factor level combinations, 30 replicates were generated via simulation 

159 for a total of 270 replicates (procedure described in the section on simulation details and Figure 1, 

160 below).

161 Each of the 270 replicate heterogeneity scenarios was sampled once at 49 plot locations with a 

162 cluster plot design, consisting of a linear array of square subplots aligned north to south (Figure 1).  
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163 Each cluster plot design was drawn from a set of designs consisting of every combination of the 

164 following factors:

165

166 d:  10, 25 or 50 m subplot separation (measured between subplot edges)

167 m:   2, 3, 4 or 5 subplots per plot

168 a:  0.01 or 0.2 ha subplot area.

169

170 In other words, each member of a set of 3(d) x 4(m) x 2(a) = 24 cluster plot designs was used 

171 to sample each of the 270 replicates at the 49 plot locations, as shown conceptually in Figure 1. This 

172 process required repeated measurements, as the 49 plot locations were always the same on each 

173 replicate; the only thing that changed was the plot design. The sampling intensity within each 

174 replicate was approximately 214 hectares per plot, which is within a range of intensities employed 

175 by many countries’ national forest inventories (Lawrence et al. 2009 p. 41).

176 The variable recorded for each of the 30 x 3(L) x 3(S) x 3(d) x 4(m) x 2(a) = 6480 observations 

177 was CV of forest trees per hectare ( hereafter, N), calculated from the 49 plot-level values and using 

178 simple random sampling estimators. Cluster plots were treated as a single stage design (Thompson 

179 2012). Our population includes both forest and nonforest areas, which is the same paradigm used by 

180 many large area forest inventories, like that of the United States (Bechtold et al. 2005). This implies 

181 that all plots are considered to be 100% in the population and accessible, including plots falling 

182 partially or completely outside forest patches. CV was chosen as the dependent variable in the 

183 model because it is needed to estimate the required sample sizes to achieve allowable error (nreq, 

184 Eq. 1), and is often used to help guide forest inventory design decisions. A summary of this 

185 experiment is as follows:

186

187 1. Simulate 270 replicates of the forested heterogeneity scenarios (9 L-S combinations x 30 

188 replicates each, Figure 1a).
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189 2. Overlay a 7 x 7 grid of plot locations on each replicate.

190 3. Sample each of the 270 replicates at the plot locations from step 2 using each of the 24 plot 

191 designs, recording CV of N for each case (Figure 1b), leading to 6480 observations of CV.

192 4. Build and interpret a linear model of CV as a function of L, S, d, m, and a.

193

194 <Approximate location of Figure 1>

195

196 Simulation procedure 

197

198 Simulation of L

199 To create a heterogeneity gradient from simulated landscapes, we used the multifractal map 

200 generation feature of the qRule landscape analysis software (Gardner, 2017, 1999). We created 

201 square maps (10-m pixels, 10.24 km sides, 105 km2) with 50% coverage of each of two landcover 

202 classes: forest and non-forest. The software generates realistic maps using a fractal algorithm that 

203 produces randomized, spatially correlated patterns of land cover, with the option of controlling the 

204 level of aggregation. This allows for the creation of each level of L described above and in Figure 1. 

205 We calibrated this algorithm such that the three levels of aggregation corresponded with a gradient 

206 of approximate forest edge densities of 432.5 m·ha-1 for L1, 55.0 m·ha-1 for L2, and 11.2 m·ha-1 for 

207 L3. Forest edge density is defined as the length of the interface between forest and nonforest pixels, 

208 divided by the area of the map. For reference, the maximum possible edge density (an alternating 

209 forest-nonforest checkerboard pattern of pixels) would be approximately 2000 m·ha-1 and the 

210 smallest possible edge density (the perimeter of a square patch of forest that is surrounded by 

211 nonforest and occupies half the landscape area) would be approximately 3 m·ha-1. We chose the 

212 simulation method and parameters to cover a diverse range of landscape patterns such as those 

213 found in Northeastern U.S. temperate forests fragmented by different levels of urbanization and 

214 agriculture (e.g. L2 and L3), and those found in agricultural ecosystems like those in Central America 
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215 with sparse tree clusters of different sizes within natural grasslands (L1); we provide analysis results 

216 and examples and code for calculating edge density and forest proportion from existing maps 

217 (Supplementary Material S2).  For each level of L, 90 maps (replicates) were simulated, 30 per level 

218 of S. The raster (Hijmans, 2019) and spatstat (Baddeley and Turner, 2005) R packages were used to 

219 convert the qRule output files to raster objects.

220 Simulation of S

221 For the simulations of tree patterns, an N of 388 trees·ha-1 was chosen. This is the average 

222 tree density of live trees greater than or equal to 12.7 cm diameter at breast height on forest land 

223 for Pennsylvania, according to the USDA Forest Service’s Forest Inventory and Analysis (FIA) 

224 database (USDA 2020). We considered other commonly reported inventory attributes to use for our 

225 study, including basal area per hectare (G) and volume per hectare (V). N was chosen because, in 

226 Pennsylvania, the variance of its estimate for trees greater than 12.7 cm diameter at breast height 

227 tends to be slightly larger than that for G but slightly smaller than that for V (USDA 2020). In 

228 addition, N is a co-equal component of stocking calculations with G, and has been considered what is 

229 arguably one of the fundamental inventory attributes that FIA produces (Zarnoch and Bechtold 

230 2000). Finally, simulating patterns of N is possible using standard point process models that reflect 

231 naturally occurring patterns, while simulating G and V adds complexity by requiring hierarchical 

232 models or other techniques that incorporate the effects of tree size in pattern formation.  

233 To create a heterogeneity gradient from tree spatial patterns at the stand-scale, spatial point 

234 process models were used to simulate the three types of S pattern types described above at each 

235 plot location using the spatstat R package. Spatial point pattern modelling can be used to both 

236 model existing spatial point patterns, and to simulate them, so as to create spatial patterns that 

237 might occur in nature (Lister and Leites 2018); Stoyan and Penttinen (2000) describe how various 

238 ecological conditions can lead to regular, random, or dispersed patterns of trees. To create the 

239 highly dispersed pattern (S1), a simple sequential inhibition pattern generator (rssi) with a 4-m 

240 inhibition distance and the requisite number of points to achieve the target N was implemented. rssi 
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241 works by sequentially adding points to the analysis window and rejecting points that fall within the 

242 inhibition distance (Baddeley et al. 2015). For the intermediate level of aggregation (S2), a 

243 homogeneous Poisson process pattern generator (rpoispp) was used with the target N to create a 

244 completely random spatial pattern. rpoispp works by applying a uniform Poisson process within the 

245 analysis window to generate complete spatial randomness of points (Baddeley et al. 2015). To create 

246 the aggregated spatial pattern (S3), a Thomas cluster process generator (rThomas) was used with a 

247 scale parameter of 3, a mean number of points per cluster of 10, and the requisite N for cluster 

248 centers. rThomas works by first generating a uniform Poisson process of initial (parent) points, which 

249 are next replaced by clusters of child points that are also generated by a Poisson process, and 

250 randomly offset from the parent point location (Baddeley et al. 2015). For each level of S, 90 

251 realizations (replicates) were generated, 30 per level of L. For each of the 49 plots in each of the L-S 

252 replicates, simulations were performed in a rectangular, 144.7-m x 523.6-m window surrounding 

253 each plot center. This window size, which represents a 50-m buffer around the largest candidate 

254 cluster plot design’s footprint, was chosen to minimize artefacts in the point pattern simulation 

255 process that would occur from restricting the simulation to the plot boundaries. 

256 Cluster plot design creation

257 At each cluster plot location, clusters of different d-m-a configurations at each of 49 

258 locations were superimposed over the simulated L-S combinations, as shown in Figure 1b, using the 

259 spatstat, raster (Hijmans 2019) and sp (Pebesma and Bivand 2005) packages. Candidate cluster plot 

260 designs were located one at a time, and N for that cluster plot recorded. Computer code for the R 

261 statistical software (R Core Team 2018) for simulating cluster plot designs, landscapes, and stand 

262 spatial patterns is provided in Supplementary Material S3.

263

264 Analysis

265
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266 To gain insights into how the CV is affected by the different combinations of levels of the 

267 variables associated with subplot configuration (d, m, and a) and landscape type (L and S), we used a 

268 mixed effects analysis of variance. This allowed for the testing of main effects and interactions 

269 among the variables of interest. In this factorial design, each realization of the simulated landscape 

270 and stand pattern combination is a replicate upon which a systematic sample of 49 cluster plots of 

271 different design was superimposed to calculate the CV. This required accounting for repeated 

272 measures within the factorial design. In addition, the CV was log transformed to minimize 

273 heteroskedasticity of residuals. The model form is:

274

275 (2)𝑙𝑜𝑔𝐶𝑉𝑖𝑗𝑘𝑝𝑞𝑟 =  𝜇 + 𝑳𝑖 × 𝑺𝑗 × 𝒎𝑝 × 𝒅𝑞 × 𝒂𝑟 + 𝛾𝑘(𝑖𝑗) + δ𝑝𝑘(𝑖𝑗) + δ𝑞𝑘(𝑖𝑗) + δ𝑟𝑘(𝑖𝑗) + 𝜀𝑝𝑞𝑟𝑘(𝑖𝑗)

276 ~ N(0, σ2),𝜀𝑝𝑞𝑟𝑘(𝑖𝑗)

277

278 where logCV is the natural log of the coefficient of variation of the estimated N of the kth replicate, 

279 for the ith and jth levels of L and S, respectively, and for the p, q, and rth level of the plot design 

280 variables m, d, and a respectively; μ is the overall mean;  is the replicate random effect with k=1-30 𝛾

281 replicates; L is the landscape heterogeneity class with i=1-3 levels; S is the stand heterogeneity class 

282 with j=1-3 levels; m is the number of subplots with p=1-4 levels; d is the distance between subplots 

283 with q=1-3 levels; a is the subplot area with r=1-2 levels; are random effects δ𝑝(𝑘), δ𝑞(𝑘), and δ𝑟(𝑘)

284 accounting for repeated measures for m, d and a, respectively; and  is the model error term. 𝜀𝑝𝑞𝑟𝑘(𝑖𝑗)

285 The syntax convention we use in Eq. 2 was chosen to be consistent with that used elsewhere in the 

286 paper, thus parameter names and variable names correspond. After the full model was fit, model 

287 terms were evaluated with F-tests, and those that were not significant at α = 0.05 were removed and 

288 the model was fit again. A log-likelihood test was performed and results were found to be non-

289 significant (p>0.05), suggesting that the reduction of model terms was appropriate (West et al. 2014 

290 p. 220). Version 1.1-23 of the lme4 package of version 3.5.1 of the R statistical software (Bates et al. 

291 2015; R Core Team 2018) was used to fit the model.
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292

293 Results

294

295 Model results, which take into account the repeated measures design of the experiment and 

296 thus allow us to make valid inferences about interactions among design and heterogeneity factors, 

297 indicate that heterogeneity type and plot design factors all significantly (F-test, p<0.05) affect 

298 precision and that many of them interact in different ways (Table 1). In the following sections we 

299 present a summary of the effect of each main factor by averaging across the other factors’ levels, 

300 and highlight the important interactions found.

301

302 <Approximate location of Table 1>

303

304 Landscape- (L) and stand-level (S) heterogeneity effects on precision 

305

306 Both landscape- and stand-level heterogeneity had similar effects on precision, with more 

307 dispersed patterns (L1 and S1) having a smaller average CV. The landscape pattern with highly 

308 dispersed small patches (L1) had a mean CV of 0.77, which is 26 and 28% smaller than those of the 

309 more aggregated patches, L2 and L3, respectively (Figure 2). Within S, the more dispersed stand 

310 pattern (S1) had the smallest mean CV, which was 4 and 18% smaller than those for S2 and S3, 

311 respectively (Figure 2). 

312 Due to the fact that  CV is averaged across all levels of the plot design variables, the range of 

313 CV variability for each level of S and L is an indicator of the importance that plot design choices can 

314 have on CV.  At the landscape scale, the CV variability (interquartile range and range) is largest in the 

315 more dispersed pattern level (L1), and, at the stand scale, largest at the more aggregated level (S3, 

316 Figure 2). At the stand scale, the differences in CV variability are greater across levels than at the 
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317 landscape scale; the range of S3 is 90 and 78% larger than those of S1 and S2, respectively. CV 

318 variability across levels of L were all similar (Figure 2).

319

320 <Approximate location of Figure 2>

321

322 Plot design effects on precision

323

324 Of the three plot design variables, subplot area had the greatest impact on CV. When 

325 subplot area was large, the CV was on average smaller, with the mean CV for a=0.01 equal to 1.06 

326 and that for a=0.2 equal to 0.87 (Figure 3). In addition, the variability of the CV for the larger subplot 

327 was the smallest across most landscape and stand heterogeneity levels, indicating that the two 

328 other design variables, m and d, are less influential when subplot area is large. The largest influence 

329 of subplot size on the mean CV and variability is in S3, the more clustered tree pattern. In contrast, 

330 the effect of subplot size is smaller across levels of landscape aggregation, although differences 

331 generated by subplot size became smaller from L1 (aggregated) to L3 (dispersed) (Figure 3).

332

333 <Approximate location of Figure 3>

334

335 Distance between subplots (d) was the least impactful design variable (Figure 4). What 

336 impact it did have generally decreased as landscapes became more aggregated (L1-L3) and subplots 

337 became large (a0.01-a0.2). It was most important in reducing the CV when plot area a was small 

338 (0.01 ha) and landscape pattern was highly dispersed and composed of smaller patches (L1). In that 

339 case, increasing d from 10 to 50 m decreased the CV by over 7% when averaged across levels of S 

340 and m. Otherwise, impacts of increasing d had much less or no practical impact on CV compared to 

341 changes in the other design factors (Figure 4).

342
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343 <Approximate location of Figure 4>

344

345 Number of subplots (m) affected precision by reducing the CV as the number of subplots, 

346 and thus total plot size (m × a), increased (Figure 4). However, the reduction in CV from increasing 

347 the number of subplots was more important when subplot area was small and stands had more 

348 clustered patterns (Figure 4). When the subplot area was larger (0.2 ha), the reduction in CV as m 

349 increased was of less magnitude, and decreased with increasing landscape aggregation from L1-L3. 

350

351 Effects of plot design variables by heterogeneity type on required sample size

352

353 Calculating the nreq using an AE of 10% and a confidence level of 95% (Eq. 1), we present, for 

354 each plot design variable, the percentage reduction in nreq when increasing the factor level from the 

355 lowest to the largest values while averaging across levels of the remaining variables (Figure 5). 

356 Magnitudes of reductions in nreq are largest for the most clustered stand patterns (S3) and the most 

357 dispersed landscape patterns (L1), highlighting the importance of plot design choices in those 

358 situations. In contrast, smallest reductions were observed for the most uniform stand tree patterns 

359 (S1) and the aggregated landscape patterns (L3). Across heterogeneity scales and levels, the plot 

360 design variable that contributed to the greatest reductions on nreq was total plot size (m × a) and the 

361 least was distance between subplots (d).

362

363 <Approximate location of Figure 5>

364

365 Discussion

366

367 In this study, we use simulation and a repeated measures factorial experiment to 

368 disentangle interactions between variability of an important forest inventory attribute (N), spatial 
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369 pattern type and scale, and plot design factors. The factor levels of the different plot design variables 

370 had important impacts on reductions in the number of sample plots required to achieve AE (Figure 

371 5). However, these impacts were largely dependent on the landscape L and stand S heterogeneity 

372 levels, indicating that the pattern and scale of spatial variability need to be considered when 

373 designing plots. 

374 The effects of landscape- and stand-scale heterogeneity on the relationship between plot 

375 design and CV are due to the interaction of plot geometry with spatial patterns of tree density. Plots 

376 in landscapes with a larger forest edge density (L1) are more likely to cross forest patch boundaries 

377 and thus contain a mixture of forest and nonforest closer to the average value of the landscape. This 

378 leads to CVs smaller than those obtained from plots located in aggregated landscape patterns (L3), 

379 where it is more likely that plots fall entirely either in nonforest areas or forest patches. In L3, 

380 augmenting either plot area or separation distance therefore does not lead to the acquisition of as 

381 much new information as it does in L1. This becomes intuitively clear upon inspection of examples of 

382 the landscape maps we used in our experiment (Figure 1). 

383 This situation is reversed for levels of stand-scale aggregation. In stands with aggregated 

384 patterns (S3), plots are more likely to partially fall in either open areas or tree clumps than plots in 

385 more uniform stands (S1 or S2). Augmenting plot dimensions or subplot separation in this case has 

386 large impacts on CV reduction compared to S1 or S2, where changes in size or subplot spacing will 

387 not lead to the plot acquiring new information. This becomes apparent upon inspection of examples 

388 of the stand maps shown in Figure 1; in S1 and S2, tree density is homogeneous at a scale smaller 

389 than the dimensions of the subplot. Therefore, there are two spatial pattern-driven mechanisms 

390 affecting CV-plot design relationships: one at the landscape scale, where forest patch homogeneity 

391 leads to more important plot design effects, and one at the stand-scale, where tree pattern 

392 aggregation leads to more important effects. We thus conclude that in scenarios like L1 and S3, 

393 where increasing the area or subplot spacing of plots is more likely to capture new information, plot 

394 design choices have more impact compared to landscapes like L3 or S1, where the spatial 
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395 configuration is such that changing plot design parameters within the range we tested is unlikely to 

396 dramatically increase the information content of each plot. 

397 Subplot area (a) was the most important single plot design factor (Figures 4 and 5). When 

398 averaged across levels of all other factors, the mean CV dropped from 1.06 to 0.87 with larger 

399 subplots, which is an 18% decrease. Subplot area also moderates the effects of the other plot design 

400 variables, reducing their impacts on CV when the area is larger (Figure 4). For example, when 

401 subplots are small, the increase in m leads to a substantial decrease in CV, while when subplots are 

402 large, there is a weaker reduction in CV as m increases. This was expected, as this aligns with the 

403 well-known negative exponential relationship between plot area and relative variance (Smith 1938; 

404 Lynch 2017). Our study shows how that relationship changes across a gradient of different types of 

405 heterogeneity, becoming more pronounced as stands become more aggregated and less 

406 pronounced as landscapes become more aggregated.

407 Kleinn (1996) found that, from a statistical standpoint, subplot separation was a critical 

408 factor affecting precision when holding subplot count and area constant; this was due to plots with 

409 more internal separation, such as those with subplots configured in a line or L-shape, having smaller 

410 intra-cluster correlation. In our study, however, subplot separation distance (d) had a relatively small 

411 impact on CV and nreq in our experiment compared to the other factors (Figures 4 and 5). The largest 

412 impact of d appears for the L1 landscape type (across all levels of S), due to the relationship between 

413 patch edge density and the set of separation distances we used; L1 had a much larger edge density 

414 than L2 and L3. Larger separation distances might have had larger impacts, but these become 

415 impractical in the field when using cluster plot designs, and the distances we chose are similar to 

416 those employed by other well-established forest inventories like that of the United States (Bechtold 

417 et al. 2005). Subplot separation distance d had a larger effect on CV for smaller subplots than for 

418 larger subplots, likely because increasing a incorporates so much new information on each plot that 

419 the information accrued by increasing d becomes relatively less important.
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420 There are a few practical points to consider. First, although there is a tendency among forest 

421 inventory designers and ecologists to prefer larger plots, our results clearly suggest that there is 

422 great potential value in choosing subplot area and count based on simulation experiments or pilot 

423 studies. For example, Tomppo et al. (2014) used a simulation study that took into account the 

424 naturally occurring spatial patterns of existing vegetation maps to find optimal sample and plot 

425 design; they repeatedly superimposed cluster plots with different subplot configurations on existing 

426 maps in their study area (as opposed to our approach, which involved simulation of a gradient of 

427 landscape-scale patterns with known characteristics). Our approach (and our code in the 

428 Supplementary Material S2 and S3) can easily be adapted to use samples of existing remote sensing-

429 based maps that reflect the patterns in the population under study. 

430 Second, our results suggest that investments in increasing subplot separation distance do 

431 not in general have a big impact relative to changing other factors. This supports design choices 

432 made by countries that use square, triangular, cross, or L-shaped subplot configurations in their NFIs 

433 (Tomppo et al. 2010); there are logistical advantages that can be gained by compact designs in terms 

434 of smaller walking distances required to visit all subplots and return to a starting point. However, if 

435 using small subplots in landscapes with a large edge density (such as L1), subplot separation can lead 

436 to meaningful gains in precision by allowing the plot to accumulate new information about the 

437 landscape by avoiding redundant measurements in patches exhibiting autocorrelation. For the same 

438 number of subplots, linear arrays allow for the maximum subplot separation. 

439 Finally, it must be noted that logistical or cost considerations associated with a particular 

440 design are often very important when making design decisions. For example, integration with 

441 remote sensing might be a critical design component if the goal is calibration or validation of map 

442 products, or if the data are to be used with some of the more complex designs that benefit from a 

443 high degree of spatial alignment between plots and imagery pixels (Næsset et al. 2015); in this case, 

444 additional decisions surrounding inferential paradigm and treatment of errors induced by spatial 

445 mismatch between subplots and pixels need to be considered. A second important logistical 
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446 consideration is the balance between field work costs and those for transportation between plots; 

447 when these are considered, relationships between design variables and efficiency will differ (Zeide 

448 1980; Lynch 2017), and efforts should be made to attach cost data to each plot design and model 

449 inventory cost as a function of the design and heterogeneity variables, using the same basic methods 

450 as those described herein. In the absence of reliable cost information, however, the principles 

451 derived from our research will be helpful when making design choices aimed at efficiently achieving 

452 a fixed AE. 

453 The conclusions from this study would be difficult to predict without simulation experiments 

454 to test plot design options. We chose to use a landscape simulation algorithm that produces 

455 landcover patterns that resemble those found on actual landscapes, yet can be parameterized to 

456 reflect a heterogeneity gradient (Supplementary Material S2; Gardner 1999, 2017). For stand 

457 patterns, modelling and stochastic simulation using point process theory allows for the creation of 

458 patterns that reflect processes that occur in nature. For example, Lister and Leites (2018) developed 

459 a hierarchical point process modelling framework that allows for simulation of realistic patterns of 

460 trees that reflect the outcomes of factors like competition and topographic influences. If point 

461 process models and landscape maps are calibrated using data from pilot studies within the 

462 population of interest, multiple inventory design scenarios can be tested before investing in a 

463 specific design. Furthermore, Stoyan and Penttinen (2000) provide a review of pattern types that are 

464 associated with various types of forest ecosystem conditions, and these heuristics could aid 

465 practitioners in the selection of tree pattern parameters in new study areas. We have provided R 

466 code for plot design and landscape/stand spatial pattern simulation and for subsetting of existing 

467 landscape maps (Supplementary Material S2 and S3) so that in future work different plot designs 

468 (such as those incorporating remote sensing) and spatial pattern scenarios can be constructed to 

469 meet individual needs. 

470

471 Conclusions
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472

473 Plot design variables have the largest impact on increasing precision of the estimate when 

474 the attribute has a dispersed pattern at the landscape level (L1) and a clustered pattern at the stand 

475 level (S3). In these situations, investments in experiments to optimize plot design become highly 

476 relevant. If choosing to work with small subplots, then number of subplots and separation distance 

477 become more relevant than when considering larger subplots. Large landscape pattern aggregation 

478 level leads to a larger CV, regardless of stand pattern heterogeneity and with little effect of plot 

479 design variables in changing the overall CV values. In the same way, dispersed patterns at the stand 

480 level lead to smaller CVs and plot design variable choices are of less relevance.

481 It is difficult to predict the effects of forest heterogeneity on the precision outcomes of 

482 different forest inventory plot designs without either using guidelines derived from previous 

483 experience and general principles, or using a modelling framework that allows for testing 

484 hypotheses about the effects of different heterogeneity scenarios on precision. The current study 

485 provides both. We have created a simulation framework for creating forest and landscape patterns 

486 with different spatial configurations of forest trees at both landscape- and stand-scales, and we have 

487 identified general principles that can be used to guide design choices. When inventory planners 

488 confront areas with varying landscape and tree spatial patterns, results from our study will provide 

489 heuristics that will help choose from among the wide range of plot design choices, identify which 

490 variables to focus on, and gain insight into how spatial pattern changes at two scales can affect 

491 design choices. Our goal was to provide monitoring system designers with principles and tools with 

492 which to design more efficient inventories. 
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629 S1. Conceptual depiction of the relationship between forest inventory precision (y axis) and plot 

630 configuration parameters such as plot area or subplot separation distance (x axis). Units do not 

631 represent meaningful quantities, and were chosen for illustrative purposes. The different curves 

632 represent exponential models where the only thing varying is the magnitude of the absolute value of 

633 the exponent.  The variation in form of the relationship is, for a given plot configuration, related to 

634 the spatial heterogeneity type and scale of the attribute of interest.

635 S2. Results of analysis of landscape edge densities from a variety of landscape types in Pennsylvania, 

636 USA and the La Paz department of El Salvador. R code for analyses is included. 

637 S3. Compressed archive containing R code for generating a set of cluster plot designs, landscape 

638 patterns, and stand scale tree patterns, and using the generated plots to sample the 

639 landscape/stand combinations  and calculate coefficient of variation (CV).

640
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Table 1. Parameters, F statistic and p-values associated with the final model from Eq. 2. 

Parameter F-value p-value Parameter F-value p-value
(Intercept) 66873.41 <.0001 S 118.66 <.0001
a 26166.63 <.0001 d*L 45.21 <.0001
a*S 5919.29 <.0001 a*d 27.9 <.0001
m 1554.22 <.0001 a*d*L 14.4 <.0001
a*L 1099.09 <.0001 a*L*S 14.27 <.0001
L 862.79 <.0001 a*m*L 5.99 <.0001
d 331.13 <.0001 a*d*S 2.95 0.0189
a*m 189.4 <.0001 m*d 2.34 0.0293
a*m*S 144.34 <.0001 d*S 1.11 0.3497
m*S 132.34 <.0001 L*S 0.42 0.7976
m*L 124.42 <.0001  
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1

2
3 Figure 1. Conceptual model depicting factorial experimental design. a) Thirty replicates for each of 3 
4 levels of landscape-scale (L) heterogeneity were simulated for each of 3 levels of stand-scale (S) 
5 heterogeneity. b) At each plot located on a 7x7 grid superimposed on each landscape, stand-scale 
6 patterns were simulated for each level of S. Candidate cluster plot designs were superimposed over 
7 each plot location for each replicate, and TPH was calculated per plot. CVs from the 49 plots were 
8 calculated for each combination of candidate plot design and replicate.
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1
2 Figure 2. Boxplot of the CV values for each landscape (L1, L2, L3) and stand (S1, S2, S3) 
3 heterogeneity type. Shaded boxes = interquartile ranges, dark lines = medians, small circles = means, 
4 and dashed lines = range of values for each level. n=2160 for each level. 
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1
2 Figure 3. Boxplot representing distribution of CV values for each combination of subplot area (a), 
3 landscape type (L1, L2, L3), and stand type (S1, S2, S3). Shaded boxes = interquartile ranges, dark 
4 lines = medians, small circles = means, and dashed lines = range of values for each level. 

Page 31 of 33

© The Author(s) or their Institution(s)

Canadian Journal of Forest Research



Draft

1

1
2 Figure 4. Interaction plots showing the relationship between mean coefficient of variation (CV) and 
3 different levels of the factors used in the simulation (a=subplot area, d=subplot edge separation 
4 distance, m=number of subplots, L= landscape type, S = stand type). 
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1
2 Figure 5. Percent reduction of required sample size for each plot design variable and heterogeneity 
3 type when factor levels increase from lowest to highest and values are averaged across levels of 
4 remaining factors. Legend entry indicates how reduction was calculated. Required sample sizes were 
5 calculated using Eq. 1, with an AE of 10% and a conservative t value of 2.0 for a 95% confidence 
6 level, for each heterogeneity type and plot design variable. Error bars represent one standard 
7 deviation.
8  
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