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Abstract

Symmetric multiprocessors (SMPs) dominate the high-end server market and are currently the primary
candidate for constructing large scale multiprocessor systems. Yet, the design of efficient parallel algorithms
for this platform currently poses several challenges. In this paper, we present a computational model for
designing efficient algorithms for symmetric multiprocessors. We then use this model to create efficient
solutions to two widely different types of problems - linked list prefix computations and generalized sorting.
Our novel algorithm for prefix computations builds upon the sparse ruling set approach of Reid-Miller and
Blelloch. Besides being somewhat simpler and requiring nearly half the number of memory accesses, we
can bound our complexity with high probability instead of merely on average. Our algorithm for generalized
sorting is a modification of our algorithm for sorting by regular sampling on distributed memory architec-
tures. The algorithm is a stable sort which appears to be asymptotically faster than any of the published
algorithms for SMPs. Both of our algorithms were implemented in C using POSIX threads and run on
three symmetric multiprocessors - the DEC AlphaServer, the Silicon Graphics Power Challenge, and the
HP-Convex Exemplar. We ran our code for each algorithm using a variety of benchmarks which we identi-
fied to examine the dependence of our algorithm on memory access patterns. In spite of the fact that the
processors must compete for access to main memory, both algorithms still yielded scalable performance up
to 16 processors, which was the largest platform available to us. For some problems, our prefix computation
algorithm actually matched or exceeded the performance of the best sequential solution using only a single
thread. Similarly, our generalized sorting algorithm always beat the performance of sequential merge sort
by at least an order of magnitude, even with a single thread.
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NCSA HP-Convex Exemplar SPP-2000 and the NCSA SGI/CRAY POWER CHALLENGEarray with the support of the National
Computational Science Alliance under grant No. ASC970038N.



1 Introduction

Symmetric multiprocessors (SMPs) dominate the high-end server market and are currently the primary can-
didate for constructing large scale multiprocessor systems. Yet, the design of efficient parallel algorithms for
this platform currently poses several challenges. The reason for this is that the rapid progress in micropro-
cessor speed has left main memory access as the primary limitation to SMP performance. Since memory
is the bottleneck, simply increasing the number of processors will not necessarily yield better performance.
Indeed, memory bus limitations typically limit the size of SMPs to 16 processors. This has at least two
implications for the algorithm designer. First, since there are relatively few processors available on an SMP,
any parallel algorithm must be competitive with its sequential counterpart with as little as one processor in
order to be relevant. Second, for the parallel algorithm to scale with the number of processors, it must be
designed with careful attention to minimizing the number and type of main memory accesses.

In this paper, we present a computational model for designing efficient algorithms for symmetric multi-
processors. We then use this model to create efficient solutions to two widely different types of problems -
linked list prefix computations and generalized sorting. Both problems are memory intensive, but in different
ways. Whereas generalized sorting algorithms typically require a large number of memory accesses, they
are usually to contiguous memory locations. By contrast, prefix computation algorithms typically require a
more modest quantity of memory accesses, but they are are usually to non-contiguous memory locations.

Our novel algorithm for prefix computations builds upon the sparse ruling set approach of Reid-Miller
and Blelloch [10]. Unlike the original algorithm, we choose the ruling set in such a way as to avoid the need
for conflict resolution. Besides making the algorithm simpler, this change allows us to achieve a stronger
bound on the complexity. Whereas Reid-Miller and Blelloch claim an ezpected complexity of O (%) for
n >> p, we claim a complexity with high probability of O (%) for n > p?Inn. Additionally, our algorithm
incurs approximately half the memory costs of their algorithm, which we believe to be the smallest of any
parallel algorithm of which we are aware. Our algorithm for generalized sorting is a modification of our
algorithm for sorting by regular sampling on distributed memory architectures. The algorithm is a stable
sort which appears to be asymptotically faster than any of the published algorithms we are aware of.

Both of our algorithms were implemented in C using POSIX threads and run on three symmetric mul-
tiprocessors - the DEC AlphaServer, the Silicon Graphics Power Challenge, and the HP-Convex Exemplar.
We ran our code for each algorithm using a variety of benchmarks which we identified to examine the de-
pendence of our algorithm on memory access patterns. In spite of the fact that the processors must compete
for access to main memory, both algorithms still yielded scalable performance up to 16 processors, which
was the largest platform available to us. For some problems, our prefix computation algorithm actually
matched or exceeded the performance of the best sequential solution using only a single thread. Similarly,
our generalized sorting algorithm always beat the performance of sequential merge sort by at least an order
of magnitude, which from our experience is the best sequential sorting algorithm on these platforms.

The organization of our paper is as follows. Section 2 presents our computational model for analyzing



algorithms on symmetric multiprocessors. Section 3 describes our prefix computation algorithm for this
platform and its experimental performance. Similarly, Section 4 describes our generalized sorting algorithm

for this platform and its experimental performance.

2 A Computational Model for Symmetric Multiprocessors

For our purposes, the cost of an algorithm needs to include a measure that reflects the number and type
of memory accesses. A number of models have already been proposed which focus on the cost of accessing
different levels of memory, including the D-disk model of Vitter and Shriver [13], the Hierarchical Memory
with Block Transfer Model of Aggarwal et al. [1], and the Uniform Memory Hierarchy Model of Alpern et al.
[2]. However, we believe that these models are unnecessarily complicated to describe the behavior of existing
symmetric multiprocessors. Other models have been proposed which focus instead on the contention caused
by multiple processors competing to access the same location in main memory, including the (d,x)-BSP
model of Blelloch et al. [4] and the Queuing Shared Memory (QSM) of Gibbons et al. [5]. The difficulty
with these models is that while they address an issue which has an important impact on performance, the
contention they describes depends on specific implementation details such as the memory map which may
be entirely beyond the control of the algorithm designer.

In our SMP model, we acknowledge the dominant expense of memory access. Indeed, it has been widely
observed that the rapid progress in microprocessor speed has left main memory access as the primary
limitation to SMP performance. The problem can be minimized by insisting where possible on a pattern of
contiguous data access. This exploits the contents of each cache line and takes full advantage of the pre-
fetching of subsequent cache lines. However, since it does not always seem possible to direct the pattern of
memory access, our complexity model needs to include an explicit measure of the number of non-contiguous
main memory accesses required by an algorithm. Additionally, we recognize that efficient algorithm design
requires the efficient decomposition of the problem amongst the available processors, and, hence, we also
include the cost of computation in our complexity.

More precisely, we measure the overall complexity of an algorithm by the triplet of values (M4, Mg, T¢),
where M 4 is the maximum number of accesses made by any processor to main memory, Mg i1s the maximum
amount of data exchanged by any processor with main memory, and 7 is an upper bound on the local
computational complexity of any of the processors. Note that M4 1s simply a measure of the number of
non-contiguous main memory accesses, where each such access may involve an arbitrary sized contiguous
block of data. Notice also that while we report T using the customary asymptotic notation, we report M4
and Mg as approzimations of the actual values. By approximations, we mean that if M4 or Mg is described
by a quadratic expression, then we report the highest order term and its coefficient. We distinguish between
memory access cost and computational cost in this fashion because of the dominant expense of memory
access on this architecture. With so few processors available, this coefficient is usually crucial in determining

whether or not a parallel algorithm can be a viable replacement to the sequential alternative. On the other



hand, despite the importance of these memory costs, we report only the highest order term, since otherwise
the expression can easily become unwieldy.

In practice, it is often possible to focus on either M4 or Mg when examining the cost of algorithmic
alternatives. For example, we observed when comparing prefix computation algorithms that the number of
contiguous and non-contiguous memory accesses were always of the same asymptotic order, and therefore
we only report My, which describes only the much more expensive non-contiguous accesses. Subsequent
experimental analysis of the step-by-step costs has validated this simplification. On the other hand, al-
gorithms for generalized sorting are usually all based on the idea of repeatedly merging sorted sequences,
which are accessed in a contiguous fashion. Moreover, since our model is concerned only with the cost
of main memory access, once values are stored in cache they may be accessed in any pattern at no cost.
As a consequence, the number of non-contiguous memory accesses are always much less than the number
of contiguous memory accesses, and in this situation we only report Mg, which includes the much more
numerous contiguous memory accesses. Again, subsequent experimental analysis of the step-by-step costs

has validated this simplification.

3 Prefix Computations

Consider the problem of performing a prefix computation on a linked list of n elements stored in arbitrary
order in an array X. For each element X;, we are given Xj;.suce, the array index of its successor, and
X;.data, its input value for the prefix computation. Then, for any binary associative operator ®, the prefix

computation is defined as:

X;.data if X; 1s the head of the list.
Xi.data @ X(pre).prefiz otherwise.

X;.prefix = { ) (1)

where pre is the index of the predecessor of X;. The last element in the list is distinguished by a negative
index in its successor field, and nothing is known about the location of the first element.

Any of the known parallel prefix algorithms in the literature can be considered for implementation on
an SMP. However, to be competitive, a parallel algorithm must contend with the extreme simplicity of the
obvious sequential solution. A prefix computation can be performed by a single processor with two passes
through the list, the first to identify the head of the list and the second to compute the prefix values. The

pseudocode for this obvious sequential algorithm is as follows:

e (1): Visit each list element X; in order of ascending array index. If X; is not the terminal element,

then label its successor with index X;.succ as having a predecessor.

¢ (2): Find the one element not labeled as having a predecessor by visiting each list element X; in order

of ascending array index - this unlabeled element is the head of the list.

e (3): Beginning at the head, traverse the elements in the list by following the successor pointers. For
each element traversed with index i and predecessor pre, set List[i].prefiz_data = List[i].prefiz_data @
List[pre].prefiz_data.



To compute the complexity, note that Step (1) requires at most n non-contiguous accesses to label the
successors. Step (2) involves a single non-contiguous memory access to a block of n contiguous elements.
Step (3) requires at most n non-contiguous memory accesses to update the successor of each element. Hence,
this algorithm requires approximately 2n non-contiguous memory accesses and runs in in O(n) computation
time.

According to our model, however, the obvious algorithm is not necessarily the best sequential algorithm.
The non-contiguous memory accesses of Step (1) can be replaced by a single contiguous memory access
by observing that the index of the successor of each element is a unique value between 0 and n — 1 (with
the exception of the tail, which by convention has been set to a negative value). Since only the head
of the list does not have a predecessor, 1t follows that together the successor indices comprise the set
{0,1,.,h—= L, h+ 1, h+2,..,n— 1}, where h is the index of the head. Since the sum of the complete set
{0,1,..,n— 1} is given by %n(n — 1), it easy to see that the identity of the head can be found by simply
subtracting the sum of the successor indices from %n(n — 1). The importance of this lies in the fact that
the sum of the successor indices can be found by visiting the list elements in order of ascending array index,
which according to our model requires only a single non-contiguous memory access. The pseudocode for this

improved sequential algorithm is as follows:

e (1): Compute the sum 7 of the successor indices by visiting each list element X; in order of ascending

array index. The index of head of the list is h = (%n(n -1)- Z).

e (2): Beginning at the head, traverse the elements in the list by following the successor pointers. For
each element traversed with index 7 and predecessor pre, set List[i]. _prefiz_data = List[i].prefiz_dala @
List[pre].prefiz_data.

Since this modified algorithm requires no more than approximately n non-contiguous memory accesses
while running in O(n) computation time, it is optimal according to our model.

The first fast parallel algorithm for prefix computations was probably the list ranking algorithm of Wyllie
[14], which requires at least nlogn non-contiguous accesses. Other parallel algorithms which improved upon
this result include those of of Miller and Reif [9] (5n non-contiguous accesses), Anderson and Miller [3] (4n
non-contiguous accesses), and Reid-Miller and Blelloch [10] (2n non-contiguous accesses - see [6] for details
of this analysis). Clearly, however, none of these approach the memory requirement of our optimal sequential
algorithm, which seems necessary to be practically significant on the relatively small number of processors

available on the SMP.

3.1 A New Algorithm for Prefix Computations

A high-level description of our algorithm proceeds as follows. We first identify the head of the list using the
same procedure as in our optimal sequential algorithm. We then partition the input list into s sublists by
randomly choosing exactly one splitter from each memory block of (sf—l) elements, where s is Q(plogn) (the

list head is also designated as a splitter). Corresponding to each of these sublists is a record in an array



called Sublists. We then traverse each of these sublists, making a note at each list element of the index of
its sublist and the prefix value of that element within the sublist. The results of these sublist traversals are
also used to create a linked list of the records in Sublists, where the input value of each node is simply the
sublist prefix value of the last element in the previous sublist. We then determine the prefix values of the
records in the Sublists array by sequentially traversing this list from its head. Finally, for each element in
the input list, we apply the prefix operation between its current prefix input value (which is its sublist prefix
value) and the prefix value of the corresponding Sublists record to obtain the desired result.

The pseudo-code of our algorithm is as follows, in which the input consists of an array of n records called
List. Each record consists of two fields, successor and prefiz_data, where successor gives the integer index
of the successor of that element and prefir_data initially holds the input value for the prefix operation. The
output of the algorithm is simply the List array with the properly computed prefix value in the prefiz_data
field. Note that as mentioned above we also make use of an intermediate array of records called Sublists.
Each Sublists record consists of the four fields head, scratch, prefiz_data, and successor, whose purpose is

detailed in the pseudo-code.

e (1): Processor P; (0 < i < p— 1) visits the list elements with array indices %" through (ﬁ%ﬁ — 1)
in order of increasing index and computes the sum of the successor indices. Note that in doing this a
negative valued successor index is ignored since by convention it denotes the terminal list element - this
negative successor index is however replaced by the value (—s) for future convenience. Additionally, as
each element of List is read, the value in the successor field is preserved by copying it to an identically

indexed location in the array Succ. The resulting sum of the successor indices is stored in location 7

of the array 7.

e (2): Processor Py computes the sum T of the p values in the array Z. The index of the head of the
list is then h = (%n(n -1)-T).

e (3): Forj = up to (% — 1), processor P; randomly chooses a location # from the block of list
elements with indices ((] — 1)(sf—1)) through (j(sf—l) — 1) as a splitter which defines the head of a
sublist in List (processor Py chooses the head of the list as its first splitter). This is recorded by setting
Sublists[j].head to x. Additionally, the value of Listfz] successor is copied to Sublistsfj].scratch, after

which List[z].successor is replaced with the value (—j) to denote both the beginning of a new sublist

and the index of the record in Sublists which corresponds to its sublist.

e (4): For j = %s up to (Q%E — 1), processor P; traverses the elements in the sublist which begins
with Sublists[j].head and ends at the next element which has been chosen as a splitter (as evidenced by
a negative value in the successor field). For each element traversed with index # and predecessor pre
(excluding the first element in the sublist), we set List[z].successor = -jto record the index of the record
in Sublists which corresponds to that sublist. Additionally, we record the prefix value of that element

within its sublist by setting Listfz] prefiz_data = List[z].prefiz_data @ List[pre].prefiz_data. Finally, if

z is also the last element in the sublist (but not the last element in the list) and & is the index of



the record in Sublists which corresponds to the successor of x, then we also set Sublists[j]. successor
= k and Sublists[k].prefiz_data = List[z] prefiz_data. Finally, the prefiz_data field of Sublists[0], which
corresponds to the sublist at the head of the list is set to the prefix operator identity.

e (5): Beginning at the head, processor Py traverses the records in the array Sublists by following the
successor pointers from the head at Sublists[0]. For each record traversed with index j and prede-
cessor pre, we compute the prefix value by setting Sublists[j].prefiz_data = Sublists[j].prefiz_data @
Sublists[pre].prefiz_data.

e (6): Processor P; visits the list elements with array indices %” through (ﬁ%ﬁ - 1) in order of increas-
ing index and completes the prefix computation for each list element x by setting List[z] prefiz_data
= List[z] prefiz_data ® Sublists[-(List[z].successor)] prefiz_data. Additionally, as each element of List
is read, the value in the successor field is replaced with the identically indexed element in the array

Suce. Note that is reasonable to assume that the entire array of s records which comprise Sublists can

fit into cache.

We can establish the complexity of this algorithm with high probability - that is with probability >
(1 = n™°) for some positive constant ¢. But before doing this, we need the results of the following Lemma,

whose proof has been omitted for brevity [6].

Lemma 1: The number of list elements traversed by any processor in Step (4) is at most a% with high

probability, for any a(s) > 2.62 (read a(s) as “the function o of s”), s > (plnn + 1), and n > p*Inn.

With this result, the analysis of our algorithm is as follows. In Step (1), each processor moves through a
contiguous portion of the list array to compute the sum of the indices in the successor field and to preserve
these indices by copying them to the array Sucec. When this task is completed, the sum is written to the
array Z. Since this 1s done in order of increasing array index, it requires only three non-contiguous memory
accesses to exchange approximately 217" elements with main memory and O (%) computation time. In Step
(2), processor Py computes the sum of the p entries in the array Z. Since this is done in order of increasing
array index, this step requires only a single non-contiguous memory accesses to exchange p elements with
main memory and O(p) computation time. In Step (3), each processor randomly chooses 1% splitters to be the
heads of sublists. For each of these sublists, it copies the index of the corresponding record in the Sublists

array into the successor field of the splitter. While the Sublists array is traversed in order of increasing

array index, the corresponding splitters may lie in mutually non-contiguous locations and so the whole

process may require 1% non-contiguous memory accesses to exchange 2175 elements with main memory and 1%
computation time. In Step (4), each processor traverses the sublist associated with each of its 1% splitters,

which together contain at most a(s)% elements with high probability. As each sublist is completed, the prefix
value of the last element in the subarray is written to the record in the Sublists array which corresponds
to the succeeding sublist. Since we can reasonably assume that (s << n) and can therefore ignore the cost

of writing to the Sublists array, this step requires approximately a(s)% non-contiguous memory accesses



to exchange approximately a(s)% elements with main memory and O (%) computation time with high
probability . However, it is important to note that an >-biased binomial process requires on average = events
before encountering the first success and so on average each processor traverses about % list elements (which
is what we observe experimentally in the next section). In Step (5), processor Py traverses the the linked
list of s records in the Sublists array established in Step (4) to compute their prefix values, which requires
s non-contiguous memory accesses to exchange s elements with main memory and O (s) computation time.
Finally, in Step (6), each processor completes the prefix values for a contiguous chunk of the input list by
first looking up the prefix value of the record in Sublists which maps to the head of its sublist. Since we make
the reasonable assumption that the entire array of s records which comprise Sublists will fit into the cache,
which is the case for all three platforms considered in this paper and the choices for n, accessing the prefix
values in the Sublists array will only require s non-contiguous memory accesses (non-contiguous because
we are assuming they are accessed in the order of request). As the computation of the prefix value for an
element is completed, the correct value is restored to its successor field from the array Succ. Hence, this step
will require approximately (s 4+ 1) non-contiguous memory accesses to exchange approximately 217” elements
with main memory and O (%) computation time. Thus, with high probability, the overall complexity of our
prefix computation algorithm is given by

T(n,p) = (Ma(n,p); Mp(n,p);Tc(n,p)) (2)

n n
= (a2 (@ + )0 (L)) Q
for a(s) > 2.62, s > (plnn+ 1), n >> s, and n > p*Inn. Noting that the relatively expensive M4 non-
contiguous memory accesses comprise a substantial proportion of the Mg total elements exchanges with
memory, and recalling that on average each processor traverses only about % elements in Step (4), we would

expect that in practice the complexity of our algorithm could be characterized as

T(n,p) = (Ma(n,p);Tc(n,p)) (4)
- <;;o(;)>, (5)

Notice that our algorithm’s requirement of approximately n non-contiguous memory accesses is nearly half
the cost of Reid-Miller and Blelloch and compares very closely with the requirements of the optimal sequential

algorithm.

3.2 Performance Evaluation

Both our parallel algorithm and the optimal sequential algorithm were implemented in C using POSIX
threads and run on a DEC AlphaServer 2100A system, an SGI Power Challenge, and an HP-Convex Exem-
plar. To evaluate these algorithms, we examined the prefix operation of of floating point addition on three
different benchmarks, which were selected to compare the impact of various memory access patterns. These
benchmarks are the Random [R], in which each successor is randomly chosen, the Stride [S], in which

each successor is (wherever possible) some stride S away, and the Ordered [O], in which which element is



Prefix Sums of 4M Elements Prefix Sums of 4M Elements Prefix Sums of 4M Elements
HP-Convex Exemplar SGI Power Challenge DEC AlphaServer
10 P —— 10 e 10
RN [R] Seq : t];]] SecIuenti ':tl
4 < ‘{(S)]] ‘:‘1 k “ | . - -
— (O Seqventil > [R] — L, e R _ [R]
o L . » -[R] Sequential -]
tb P - - Py a3 [O] Sequential--g» |- 2 [S] Sequential ~ e
Fg o 1) | € 8] £ —. | ®
[ \‘ e [ < - [ b -
\: [O] [O] -[O] Sequegilal"b [O]
0.1 0.1 1
1 2 4 8 16 1 2 4 8 16 1 2 4
Number of Threads Number of Threads Number of Threads

Figure 1: Comparison between the performance of our parallel algorithm and our optimal sequential algorithm
on three different platforms using three different benchmarks.

paced in the array according to its rank. See [6] for a more detailed description and justification of these
benchmarks.

The graphs in Figure 1 compare the performance of our optimal parallel prefix computation algorithm
with that of our optimal sequential algorithm. Notice first that our parallel algorithm almost always out-
performs the optimal sequential algorithm with only one or two threads. The only exception is the [O]
benchmark, where the successor of an element 1s always the next location in memory. Notice also that for
a given algorithm, the [O] benchmark is almost always solved more quickly than the [S] benchmark, which
in turn is always solved more quickly than the [R] benchmark. A step by step breakdown of the execution
time in Table I verifies that these differences are entirely due to the time required for the sublist traversal
in Step (4). This agrees well with our theoretical expectations, since in the [R] benchmark, the location of
the successor is randomly chosen, so almost every step in the traversal involves accessing a non-contiguous
location in memory. By contrast, in the [O] benchmark, the memory location of the successor is always the
successive location in memory, which in all likelihood is already present in cache. Finally, the [S] benchmark
is designed so that where possible the successor is always a constant stride away. Even though we chose the

stride to be 1001, so that each step of the sublist traversal should involve accessing a non-contiguous location

Number of Threads & Benchmark

Step: [1] (2] (4] (8] [16] |

RI [ [S] [O][IRI [ [s] [IO] [IR] [ [s] [[O] [[[R] [ [S] [ [O] [ [R] [ [S] | [O]

(1)-(3): || 0.59 | 0.87 | 0.66 || 0.34 | 0.40 | 0.34 || 0.18 | 0.21 | 0.18 || 0.10 | 0.12 | 0.10 || 0.08 | 0.08 | 0.08
(4): 6.69 | 1.86 | 2.33 || 3.40 | 1.08 | 1.17 || 1.75 | 0.57 | 0.59 || 0.96 | 0.31 | 0.30 || 0.74 | 0.22 | 0.18
(5): 0.01 ] 0.12 | 0.01 || 0.01 | 0.04 | 0.01 || 0.01 | 0.05 | 0.01 || 0.01 | 0.06 | 0.01 {| 0.01 | 0.02 | 0.01
(6): 0.69 | 0.75 | 0.69 || 0.37 | 0.38 | 0.35 || 0.21 | 0.20 | 0.19 || 0.11 | 0.12 | 0.11 || 0.09 | 0.12 | 0.08
Total: 797 | 3.60 | 3.68 || 4.12 | 1.91 | 1.87 || 2.14 | 1.03 | 0.97 || 1.19 | 0.60 | 0.52 || 0.92 | 0.41 | 0.35

Table I: Comparison of the time (in seconds) required as a function of the benchmark for each step of computing
the prefix sums of 4M list elements on an HP-Convex Exemplar, for a variety of threads.
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Figure 2: Scalability of our prefix computation algorithm on the HP-Convex Exemplar with respect to the
number of threads, for differing problem sizes.

in memory, the constant stride still allows it to take advantage of cache pre-fetching. Lastly, notice that,
in Table I, the n noncontiguous memory required by the [R] benchmark in Step (4) consume on average
almost five time as much time as the 4n contiguous memory accesses of Steps (1) and (6). Taken as a whole,
these results strongly support the emphasis we place on minimizing the number of non-contiguous memory
accesses 1n this problem.

The graph in Figure 2 examines the scalability of our prefix computation algorithm as a function of the
number of threads. Bearing in mind that these graphs are log-log plots, they show that for large enough
inputs, the execution time decreases as we increase the number of threads p, which is the expectation of our
model. For smaller inputs, this inverse relationship between the execution time and the number of threads
deteriorates. In this case, such performance is quite reasonable if we consider the fact that for small problem
sizes the size of the cache approaches that of the problem. This introduces a number of issues which are

beyond the intended scope of our algorithm.

4 Generalized Sorting

Consider the problem of sorting n elements equally distributed amongst p processors, where we assume
without loss of generality that p divides n evenly. Any of the algorithms that have been proposed in the
literature for sorting on hierarchical memory models can be considered for possible implementation on an
SMP. However, without modifications, most are unnecessarily complex or inefficient for a relatively simple
platform such as ours. A notable exception is the algorithm of Varman et al. [12]. Yet another approach is
an adaptation of our sorting by regular sampling algorithm [8], which we originally developed for distributed

memory machines.

10



4.1 A New Algorithm for Generalized Sorting

The idea behind sorting by regular sampling is to find a set of p—1 splitters to partition the n input elements
into p groups indexed from 0 up to p— 1 such that every element in the i'* group is less than or equal to each
of the elements in the (i+1)"" group, for (0 < i < p—1). Then the task of sorting each of the p groups can be
turned over to the correspondingly indexed processor, after which the n elements will be arranged in sorted
order. One way to chose the splitters is by regularly sampling the input elements - hence the name Sorting
by Regular Sampling. As modified for an SMP, this algorithm is similar to the parallel sorting by regular
sampling (PSRS) algorithm of Shi and Schaeffer [11], except that our algorithm can be easily implemented
as a stable sort.

The pseudocode for our algorithm is as follows, where (' 1s the size of the cache and L is the cache line

slze:

e (1) Each processor P; (0 < i < p—1) sorts the subsequence of the n input elements with indices (%)
through (W — 1) as follows:
— (A) Sort each block of m input elements using sequential merge sort, where m < %

— (B) For j = 0 up to (%T;(/Tp)ml — 1), merge the sorted blocks of size (mz]) using z-way merge,

c
where z < 7.
, th
e (2) Each processor P; selects each (% + (k+ 1)1%) element as a sample, for (0 <k <s—1) and a
given value of s (p <s< 1%)

e (3) Processor P,_1) merges the p sorted subsequences of samples and then selects each ((k + 1)s)th
sample as Splitter[k], for (0 < k < p — 2). By default, the p'" splitter is the largest value allowed by
the data type used. Additionally, binary search is used to compute for the set of samples with indices

0 through ((k 4+ 1)s — 1) the number of samples Est[k] which share the same value as Splitter[].

e Step (4): Each processor P; uses binary search to define an index b; j for each of the p sorted input
sequences created in Step (1). If we define 7; ;) as a subsequence containing the first b; ;) elements
in the j?* sorted input sequence, then the set of p subsequences {11y, Tt 2)5 - Ta py} will contain all
those values in the input set which are strictly less than Splitter[i] and at most (Est [1] x 1%) elements

with the same value as Splitter[¢]. The term al most is used because there may not actually be this

number of elements with the same value as Splitter[d].

e Step (5): Each processor P; merges those subsequences of the sorted input sequences which lie between
indices b(;_1) ;) and b(; ;) using p-way merge. It can be shown [8] that no processor will merge more

than (% + 5 - p) elements.

Before establishing the complexity of this algorithm, we need the results of the following lemma, whose

proof has been omitted for brevity [8]:
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Lemma 2: At the completion of the partitioning in Step (4), no more than (% + 5= p) elements will be

associated with any splitter, for n > p® and (p <s< 1%)

With this result, the analysis of our algorithm is as follows. In Step (1A), each processor moves through a
contiguous portion of the input array to sort it in blocks of size m using sequential merge sort. If we assume

that (m < %), this will require only a single non-contiguous memory accesses to exchange 2]7” elements with

main memory and O (% log m) computation time. Step (1B) involves % rounds of z-way merge. Since

2("2 ry non- contiguous memory ac-

2nlog(n/pm)
plog(#)

The selection of s noncontiguous samples by each processor in Step (2) requires s non-contiguous memory

cesses to exchange elements with main memory memory and O (;log (W)) computation time.
accesses to exchange 2s elements with main memory and O(s) computation time. Step (3) involves a p-way
merge of blocks of size s followed by p binary searches on segments of size s. Hence, it requires approximately
plog(s) non-contiguous memory accesses to exchange approximately 2sp elements with main memory and
O(splogp) computation time. Step (4) involves p binary searches by each processor on segments of size
% and hence requires approximately plog (%) non-contiguous memory accesses to exchange approximately
plog (%) elements with main memory and O (p log (%)) computation time. Step (5) involves a p-way
merge of p blocks of total maximum size (% + 5= p), requiring approximately p non-contiguous memory
n

accesses to exchange approximately 2 (% + ;) elements with main memory and O (%) computation time.

Hence, the overall complexity of our sorting algorithm is given by

T(n,p) = (Ma(n,p); Me(n,p);Te(n, p)) (6)
nz n log n/pm) n n n
- - 1 — 2)—42—); -1
(o) ()2 022 o2
for n > p?log (%), (p <s < 1%)’ m < %, and z < Q Since the analysis suggests that the parameters m and

z should be as large as possible subject to the stated constraints while selecting s so that (p << s << %),

we would expect that in practice the complexity of our algorithm could be characterized as

T(n,p) = (Mg(n,p);Tc(n,p)) (8)
_ log(n/pm)\ n (n,
- <<4+2 log(2) )P’O<Pl & )> ®)

4.2 Performance Evaluation

Both the sequential algorithm and our parallel algorithm were implemented in C using POSIX threads and
run on a DEC AlphaServer 2100A system, an SGI Power Challenge, and an HP-Convex Exemplar. We ran
our code using six widely different benchmarks which were selected to test the dependence of our algorithm
on the input distribution. A detailed description and justification of these benchmarks is presented in [7].
The results in Table IT verify that as expected performance does not significantly depend on the input
distribution. Because of this independence, the remainder of this section will only discuss performance on

the single benchmark [U], in which the input data forms a uniform random distribution.

12



Input Benchmark

Size [U] | [G] | [Z] | [WR] | [DD] | [RD]
512K | 0.397 | 0.394 | 0.320 | 0.421 | 0.337 | 0.348
1M 0.868 | 0.856 | 0.741 | 0.844 | 0.724 | 0.710
2M 1.64 1.72 1.39 1.73 1.40 1.51
4M 3.50 3.47 | 3.00 3.52 3.01 2.98

Table II: Sorting doubles (in seconds) using 4 threads on a DEC AlphaServer 2100A.

Block Denomination of z-Way Merge

Size 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 [ 1024 | 2048 | 4096
1K 30.43 | 21.49 | 19.22 | 17.66 | 17.87 | 16.20 | 16.74 | 16.91 | 16.87 | 16.82 | 16.73 | 16.29
2K 29.14 | 21.65 | 19.15 | 18.02 | 17.95 | 16.63 | 16.91 | 16.98 | 16.79 | 18.29 | 15.86
4K 27.96 | 20.55 | 19.62 | 18.29 | 16.65 | 17.00 | 17.14 | 17.06 | 16.86 | 15.91
8K 2759 | 21.55 | 19.18 | 19.27 | 17.90 | 18.07 | 18.04 | 17.84 | 17.08
16K 26.69 | 20.73 | 19.84 | 18.21 | 18.50 | 18.53 | 18.43 | 17.83
32K 27.77 | 23.14 | 22.14 | 20.81 | 20.88 | 20.90 | 20.41
64K 29.98 | 25.46 | 24.26 | 24.51 | 24.51 | 23.06
128K || 37.54 | 34.19 | 33.26 | 33.36 | 31.84
256K || 39.85 | 36.51 | 36.74 | 35.37
512K || 39.78 | 37.81 | 36.54
1M 39.53 | 37.62
2M 39.25
4M 38.86 - (No z-way merge is necessary for this block size)

Table III: Time (in seconds) required on the HP-Convex Exemplar to sort 4M doubles using a single thread
as a function of M and z.

Table III displays the times required to sort 4M doubles (i.e. double precision floating point values)
on the HP-Convex Exemplar using a single thread as a function of m and z. Notice first that performance
suffers dramatically when the block size reaches IMB (128K eight byte double precision numbers), which is
the limit of the cache on the Exemplar. This is expected, since sorting a block in Step (1A) now requires
that data be repeatedly swapped to main memory. Consider also the data for a given block size - say 1K.
The execution time drops as we move from z = 2 to z = 16. This is reasonable since we require 12 rounds
of 2-way merge, 6 rounds of 4-way merge, 4 rounds of 8-way merge, and only 3 rounds of 16-way merge,
and each round of z-way merge is obviously another round where all the input elements must be brought
in from main memory. Moving from z = 16 to z = 32 has little effect on the execution time since it does
nothing to reduce the memory requirements; but moving to z = 64 saves a round of memory access and,
hence, the execution time is further reduced. However, the most dramatic illustration of the importance of
minimizing secondary memory access can be found by comparing the optimal sorting time of 15.86 seconds
for m = 2K and z = 2048 with the time of 39.25 seconds required to sort using only binary merge sort.
Reducing memory access by a combination of block sorting and z-way merging improved the performance
by 60%. Clearly, such results strongly support the attention that we place in this algorithm on the number
of contiguous memory accesses.

The graph in Figure 3 examines the scalability of our sorting algorithm as a function of the number
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Scalability of Sorting in Threads
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Figure 3: Scalability of our generalized sorting algorithm on the HP-Convex Exemplar with respect to the
number of threads, for differing problem sizes.

of threads, for a variety of problem sizes. Bearing in mind that these graphs are log-log plots, they show
that for large enough inputs, the execution time decreases as we increase the number of threads p, which is
the expectation of our model. For smaller inputs, this inverse relationship between the execution time and
the number of threads deteriorates when we move to 16 threads. This explanation for this problem may
lie in the fact that when we moved to 16 threads on this platform, the data suddenly became very erratic,
perhaps because some threads now had to compete with operating system processes for access to one of the

16 processors.
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