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1 IntroductionSymmetric multiprocessors (SMPs) dominate the high-end server market and are currently the primary can-didate for constructing large scale multiprocessor systems. Yet, the design of e�cient parallel algorithms forthis platform currently poses several challenges. The reason for this is that the rapid progress in micropro-cessor speed has left main memory access as the primary limitation to SMP performance. Since memoryis the bottleneck, simply increasing the number of processors will not necessarily yield better performance.Indeed, memory bus limitations typically limit the size of SMPs to 16 processors. This has at least twoimplications for the algorithm designer. First, since there are relatively few processors available on an SMP,any parallel algorithm must be competitive with its sequential counterpart with as little as one processor inorder to be relevant. Second, for the parallel algorithm to scale with the number of processors, it must bedesigned with careful attention to minimizing the number and type of main memory accesses.In this paper, we present a computational model for designing e�cient algorithms for symmetric multi-processors. We then use this model to create e�cient solutions to two widely di�erent types of problems -linked list pre�x computations and generalized sorting. Both problems are memory intensive, but in di�erentways. Whereas generalized sorting algorithms typically require a large number of memory accesses, theyare usually to contiguous memory locations. By contrast, pre�x computation algorithms typically require amore modest quantity of memory accesses, but they are are usually to non-contiguous memory locations.Our novel algorithm for pre�x computations builds upon the sparse ruling set approach of Reid-Millerand Blelloch [10]. Unlike the original algorithm, we choose the ruling set in such a way as to avoid the needfor con
ict resolution. Besides making the algorithm simpler, this change allows us to achieve a strongerbound on the complexity. Whereas Reid-Miller and Blelloch claim an expected complexity of O�np� forn >> p, we claim a complexity with high probability of O�np� for n > p2 lnn. Additionally, our algorithmincurs approximately half the memory costs of their algorithm, which we believe to be the smallest of anyparallel algorithm of which we are aware. Our algorithm for generalized sorting is a modi�cation of ouralgorithm for sorting by regular sampling on distributed memory architectures. The algorithm is a stablesort which appears to be asymptotically faster than any of the published algorithms we are aware of.Both of our algorithms were implemented in C using POSIX threads and run on three symmetric mul-tiprocessors - the DEC AlphaServer, the Silicon Graphics Power Challenge, and the HP-Convex Exemplar.We ran our code for each algorithm using a variety of benchmarks which we identi�ed to examine the de-pendence of our algorithm on memory access patterns. In spite of the fact that the processors must competefor access to main memory, both algorithms still yielded scalable performance up to 16 processors, whichwas the largest platform available to us. For some problems, our pre�x computation algorithm actuallymatched or exceeded the performance of the best sequential solution using only a single thread. Similarly,our generalized sorting algorithm always beat the performance of sequential merge sort by at least an orderof magnitude, which from our experience is the best sequential sorting algorithm on these platforms.The organization of our paper is as follows. Section 2 presents our computational model for analyzing2



algorithms on symmetric multiprocessors. Section 3 describes our pre�x computation algorithm for thisplatform and its experimental performance. Similarly,Section 4 describes our generalized sorting algorithmfor this platform and its experimental performance.2 A Computational Model for Symmetric MultiprocessorsFor our purposes, the cost of an algorithm needs to include a measure that re
ects the number and typeof memory accesses. A number of models have already been proposed which focus on the cost of accessingdi�erent levels of memory, including the D-disk model of Vitter and Shriver [13], the Hierarchical Memorywith Block Transfer Model of Aggarwal et al. [1], and the UniformMemory Hierarchy Model of Alpern et al.[2]. However, we believe that these models are unnecessarily complicated to describe the behavior of existingsymmetric multiprocessors. Other models have been proposed which focus instead on the contention causedby multiple processors competing to access the same location in main memory, including the (d,x)-BSPmodel of Blelloch et al. [4] and the Queuing Shared Memory (QSM) of Gibbons et al. [5]. The di�cultywith these models is that while they address an issue which has an important impact on performance, thecontention they describes depends on speci�c implementation details such as the memory map which maybe entirely beyond the control of the algorithm designer.In our SMP model, we acknowledge the dominant expense of memory access. Indeed, it has been widelyobserved that the rapid progress in microprocessor speed has left main memory access as the primarylimitation to SMP performance. The problem can be minimized by insisting where possible on a pattern ofcontiguous data access. This exploits the contents of each cache line and takes full advantage of the pre-fetching of subsequent cache lines. However, since it does not always seem possible to direct the pattern ofmemory access, our complexity model needs to include an explicit measure of the number of non-contiguousmain memory accesses required by an algorithm. Additionally, we recognize that e�cient algorithm designrequires the e�cient decomposition of the problem amongst the available processors, and, hence, we alsoinclude the cost of computation in our complexity.More precisely, we measure the overall complexity of an algorithm by the triplet of values hMA;ME ; TCi,where MA is the maximumnumber of accesses made by any processor to main memory,ME is the maximumamount of data exchanged by any processor with main memory, and TC is an upper bound on the localcomputational complexity of any of the processors. Note that MA is simply a measure of the number ofnon-contiguous main memory accesses, where each such access may involve an arbitrary sized contiguousblock of data. Notice also that while we report TC using the customary asymptotic notation, we report MAandME as approximations of the actual values. By approximations, we mean that if MA or ME is describedby a quadratic expression, then we report the highest order term and its coe�cient. We distinguish betweenmemory access cost and computational cost in this fashion because of the dominant expense of memoryaccess on this architecture. With so few processors available, this coe�cient is usually crucial in determiningwhether or not a parallel algorithm can be a viable replacement to the sequential alternative. On the other3



hand, despite the importance of these memory costs, we report only the highest order term, since otherwisethe expression can easily become unwieldy.In practice, it is often possible to focus on either MA or ME when examining the cost of algorithmicalternatives. For example, we observed when comparing pre�x computation algorithms that the number ofcontiguous and non-contiguous memory accesses were always of the same asymptotic order, and thereforewe only report MA, which describes only the much more expensive non-contiguous accesses. Subsequentexperimental analysis of the step-by-step costs has validated this simpli�cation. On the other hand, al-gorithms for generalized sorting are usually all based on the idea of repeatedly merging sorted sequences,which are accessed in a contiguous fashion. Moreover, since our model is concerned only with the costof main memory access, once values are stored in cache they may be accessed in any pattern at no cost.As a consequence, the number of non-contiguous memory accesses are always much less than the numberof contiguous memory accesses, and in this situation we only report ME , which includes the much morenumerous contiguous memory accesses. Again, subsequent experimental analysis of the step-by-step costshas validated this simpli�cation.3 Pre�x ComputationsConsider the problem of performing a pre�x computation on a linked list of n elements stored in arbitraryorder in an array X. For each element Xi, we are given Xi:succ, the array index of its successor, andXi:data, its input value for the pre�x computation. Then, for any binary associative operator 
, the pre�xcomputation is de�ned as:Xi:pre�x = � Xi:data if Xi is the head of the list.Xi:data 
X(pre):pre�x otherwise. ; (1)where pre is the index of the predecessor of Xi. The last element in the list is distinguished by a negativeindex in its successor �eld, and nothing is known about the location of the �rst element.Any of the known parallel pre�x algorithms in the literature can be considered for implementation onan SMP. However, to be competitive, a parallel algorithm must contend with the extreme simplicity of theobvious sequential solution. A pre�x computation can be performed by a single processor with two passesthrough the list, the �rst to identify the head of the list and the second to compute the pre�x values. Thepseudocode for this obvious sequential algorithm is as follows:� (1): Visit each list element Xi in order of ascending array index. If Xi is not the terminal element,then label its successor with index Xi:succ as having a predecessor.� (2): Find the one element not labeled as having a predecessor by visiting each list element Xi in orderof ascending array index - this unlabeled element is the head of the list.� (3): Beginning at the head, traverse the elements in the list by following the successor pointers. Foreach element traversed with index i and predecessor pre, set List[i].pre�x data = List[i].pre�x data 
List[pre].pre�x data. 4



To compute the complexity, note that Step (1) requires at most n non-contiguous accesses to label thesuccessors. Step (2) involves a single non-contiguous memory access to a block of n contiguous elements.Step (3) requires at most n non-contiguous memory accesses to update the successor of each element. Hence,this algorithm requires approximately 2n non-contiguous memory accesses and runs in in O(n) computationtime.According to our model, however, the obvious algorithm is not necessarily the best sequential algorithm.The non-contiguous memory accesses of Step (1) can be replaced by a single contiguous memory accessby observing that the index of the successor of each element is a unique value between 0 and n � 1 (withthe exception of the tail, which by convention has been set to a negative value). Since only the headof the list does not have a predecessor, it follows that together the successor indices comprise the setf0; 1; ::; h� 1; h + 1; h + 2; ::; n� 1g, where h is the index of the head. Since the sum of the complete setf0; 1; ::; n� 1g is given by 12n(n � 1), it easy to see that the identity of the head can be found by simplysubtracting the sum of the successor indices from 12n(n � 1). The importance of this lies in the fact thatthe sum of the successor indices can be found by visiting the list elements in order of ascending array index,which according to our model requires only a single non-contiguous memory access. The pseudocode for thisimproved sequential algorithm is as follows:� (1): Compute the sum Z of the successor indices by visiting each list element Xi in order of ascendingarray index. The index of head of the list is h = �12n(n� 1)� Z�.� (2): Beginning at the head, traverse the elements in the list by following the successor pointers. Foreach element traversed with index i and predecessor pre, set List[i]. pre�x data = List[i].pre�x data 
List[pre].pre�x data.Since this modi�ed algorithm requires no more than approximately n non-contiguous memory accesseswhile running in O(n) computation time, it is optimal according to our model.The �rst fast parallel algorithm for pre�x computations was probably the list ranking algorithm of Wyllie[14], which requires at least n logn non-contiguous accesses. Other parallel algorithms which improved uponthis result include those of of Miller and Reif [9] (5n non-contiguous accesses), Anderson and Miller [3] (4nnon-contiguous accesses), and Reid-Miller and Blelloch [10] (2n non-contiguous accesses - see [6] for detailsof this analysis). Clearly, however, none of these approach the memory requirement of our optimal sequentialalgorithm, which seems necessary to be practically signi�cant on the relatively small number of processorsavailable on the SMP.3.1 A New Algorithm for Pre�x ComputationsA high-level description of our algorithm proceeds as follows. We �rst identify the head of the list using thesame procedure as in our optimal sequential algorithm. We then partition the input list into s sublists byrandomly choosing exactly one splitter from each memory block of n(s�1) elements, where s is 
(p logn) (thelist head is also designated as a splitter). Corresponding to each of these sublists is a record in an array5



called Sublists. We then traverse each of these sublists, making a note at each list element of the index ofits sublist and the pre�x value of that element within the sublist. The results of these sublist traversals arealso used to create a linked list of the records in Sublists, where the input value of each node is simply thesublist pre�x value of the last element in the previous sublist. We then determine the pre�x values of therecords in the Sublists array by sequentially traversing this list from its head. Finally, for each element inthe input list, we apply the pre�x operation between its current pre�x input value (which is its sublist pre�xvalue) and the pre�x value of the corresponding Sublists record to obtain the desired result.The pseudo-code of our algorithm is as follows, in which the input consists of an array of n records calledList. Each record consists of two �elds, successor and pre�x data, where successor gives the integer indexof the successor of that element and pre�x data initially holds the input value for the pre�x operation. Theoutput of the algorithm is simply the List array with the properly computed pre�x value in the pre�x data�eld. Note that as mentioned above we also make use of an intermediate array of records called Sublists.Each Sublists record consists of the four �elds head, scratch, pre�x data, and successor, whose purpose isdetailed in the pseudo-code.� (1): Processor Pi (0 � i � p � 1) visits the list elements with array indices inp through � (i+1)np � 1�in order of increasing index and computes the sum of the successor indices. Note that in doing this anegative valued successor index is ignored since by convention it denotes the terminal list element - thisnegative successor index is however replaced by the value (�s) for future convenience. Additionally, aseach element of List is read, the value in the successor �eld is preserved by copying it to an identicallyindexed location in the array Succ. The resulting sum of the successor indices is stored in location iof the array Z.� (2): Processor P0 computes the sum T of the p values in the array Z. The index of the head of thelist is then h = �12n(n� 1)� T �.� (3): For j = isp up to � (i+1)sp � 1�, processor Pi randomly chooses a location x from the block of listelements with indices �(j � 1) n(s�1)� through �j n(s�1) � 1� as a splitter which de�nes the head of asublist in List (processor P0 chooses the head of the list as its �rst splitter). This is recorded by settingSublists[j].head to x. Additionally, the value of List[x].successor is copied to Sublists[j].scratch, afterwhich List[x].successor is replaced with the value (�j) to denote both the beginning of a new sublistand the index of the record in Sublists which corresponds to its sublist.� (4): For j = isp up to � (i+1)sp � 1�, processor Pi traverses the elements in the sublist which beginswith Sublists[j].head and ends at the next element which has been chosen as a splitter (as evidenced bya negative value in the successor �eld). For each element traversed with index x and predecessor pre(excluding the �rst element in the sublist), we set List[x].successor = -j to record the index of the recordin Sublists which corresponds to that sublist. Additionally, we record the pre�x value of that elementwithin its sublist by setting List[x].pre�x data = List[x].pre�x data 
 List[pre].pre�x data. Finally, ifx is also the last element in the sublist (but not the last element in the list) and k is the index of6



the record in Sublists which corresponds to the successor of x, then we also set Sublists[j].successor= k and Sublists[k].pre�x data = List[x].pre�x data. Finally, the pre�x data �eld of Sublists[0], whichcorresponds to the sublist at the head of the list is set to the pre�x operator identity.� (5): Beginning at the head, processor P0 traverses the records in the array Sublists by following thesuccessor pointers from the head at Sublists[0]. For each record traversed with index j and prede-cessor pre, we compute the pre�x value by setting Sublists[j].pre�x data = Sublists[j].pre�x data 
Sublists[pre].pre�x data.� (6): Processor Pi visits the list elements with array indices inp through � (i+1)np � 1� in order of increas-ing index and completes the pre�x computation for each list element x by setting List[x].pre�x data= List[x].pre�x data 
 Sublists[-(List[x].successor)].pre�x data. Additionally, as each element of Listis read, the value in the successor �eld is replaced with the identically indexed element in the arraySucc. Note that is reasonable to assume that the entire array of s records which comprise Sublists can�t into cache.We can establish the complexity of this algorithm with high probability - that is with probability �(1� n��) for some positive constant �. But before doing this, we need the results of the following Lemma,whose proof has been omitted for brevity [6].Lemma 1: The number of list elements traversed by any processor in Step (4) is at most �np with highprobability, for any �(s) � 2:62 (read �(s) as \the function � of s"), s � (p lnn+ 1), and n > p2 lnn.With this result, the analysis of our algorithm is as follows. In Step (1), each processor moves through acontiguous portion of the list array to compute the sum of the indices in the successor �eld and to preservethese indices by copying them to the array Succ. When this task is completed, the sum is written to thearray Z. Since this is done in order of increasing array index, it requires only three non-contiguous memoryaccesses to exchange approximately 2np elements with main memory and O �np� computation time. In Step(2), processor P0 computes the sum of the p entries in the array Z. Since this is done in order of increasingarray index, this step requires only a single non-contiguous memory accesses to exchange p elements withmainmemory and O(p) computation time. In Step (3), each processor randomly chooses sp splitters to be theheads of sublists. For each of these sublists, it copies the index of the corresponding record in the Sublistsarray into the successor �eld of the splitter. While the Sublists array is traversed in order of increasingarray index, the corresponding splitters may lie in mutually non-contiguous locations and so the wholeprocess may require sp non-contiguous memory accesses to exchange 2sp elements with main memory and spcomputation time. In Step (4), each processor traverses the sublist associated with each of its sp splitters,which together contain at most �(s)np elements with high probability. As each sublist is completed, the pre�xvalue of the last element in the subarray is written to the record in the Sublists array which correspondsto the succeeding sublist. Since we can reasonably assume that (s << n) and can therefore ignore the costof writing to the Sublists array, this step requires approximately �(s)np non-contiguous memory accesses7



to exchange approximately �(s)np elements with main memory and O�np� computation time with highprobability . However, it is important to note that an sn -biased binomial process requires on average ns eventsbefore encountering the �rst success and so on average each processor traverses about np list elements (whichis what we observe experimentally in the next section). In Step (5), processor P0 traverses the the linkedlist of s records in the Sublists array established in Step (4) to compute their pre�x values, which requiress non-contiguous memory accesses to exchange s elements with main memory and O (s) computation time.Finally, in Step (6), each processor completes the pre�x values for a contiguous chunk of the input list by�rst looking up the pre�x value of the record in Sublists which maps to the head of its sublist. Since we makethe reasonable assumption that the entire array of s records which comprise Sublists will �t into the cache,which is the case for all three platforms considered in this paper and the choices for n, accessing the pre�xvalues in the Sublists array will only require s non-contiguous memory accesses (non-contiguous becausewe are assuming they are accessed in the order of request). As the computation of the pre�x value for anelement is completed, the correct value is restored to its successor �eld from the array Succ. Hence, this stepwill require approximately (s+ 1) non-contiguous memory accesses to exchange approximately 2np elementswith main memory and O �np� computation time. Thus, with high probability, the overall complexity of ourpre�x computation algorithm is given byT (n; p) = hMA(n; p);ME(n; p);TC(n; p)i (2)= h�(s)np ;�(�(s) + 4)np� ;O�np�i (3)for �(s) � 2:62, s � (p lnn + 1), n >> s, and n > p2 lnn. Noting that the relatively expensive MA non-contiguous memory accesses comprise a substantial proportion of the ME total elements exchanges withmemory, and recalling that on average each processor traverses only about np elements in Step (4), we wouldexpect that in practice the complexity of our algorithm could be characterized asT (n; p) = hMA(n; p);TC(n; p)i (4)= hnp ;O�np�i; (5)Notice that our algorithm's requirement of approximately n non-contiguous memory accesses is nearly halfthe cost of Reid-Miller and Blelloch and compares very closely with the requirements of the optimal sequentialalgorithm.3.2 Performance EvaluationBoth our parallel algorithm and the optimal sequential algorithm were implemented in C using POSIXthreads and run on a DEC AlphaServer 2100A system, an SGI Power Challenge, and an HP-Convex Exem-plar. To evaluate these algorithms, we examined the pre�x operation of of 
oating point addition on threedi�erent benchmarks, which were selected to compare the impact of various memory access patterns. Thesebenchmarks are the Random [R], in which each successor is randomly chosen, the Stride [S], in whicheach successor is (wherever possible) some stride S away, and the Ordered [O], in which which element is8



tb]Figure 1: Comparison between the performance of our parallel algorithm and our optimal sequential algorithmon three di�erent platforms using three di�erent benchmarks.paced in the array according to its rank. See [6] for a more detailed description and justi�cation of thesebenchmarks.The graphs in Figure 1 compare the performance of our optimal parallel pre�x computation algorithmwith that of our optimal sequential algorithm. Notice �rst that our parallel algorithm almost always out-performs the optimal sequential algorithm with only one or two threads. The only exception is the [O]benchmark, where the successor of an element is always the next location in memory. Notice also that fora given algorithm, the [O] benchmark is almost always solved more quickly than the [S] benchmark, whichin turn is always solved more quickly than the [R] benchmark. A step by step breakdown of the executiontime in Table I veri�es that these di�erences are entirely due to the time required for the sublist traversalin Step (4). This agrees well with our theoretical expectations, since in the [R] benchmark, the location ofthe successor is randomly chosen, so almost every step in the traversal involves accessing a non-contiguouslocation in memory. By contrast, in the [O] benchmark, the memory location of the successor is always thesuccessive location in memory, which in all likelihood is already present in cache. Finally, the [S] benchmarkis designed so that where possible the successor is always a constant stride away. Even though we chose thestride to be 1001, so that each step of the sublist traversal should involve accessing a non-contiguous locationNumber of Threads & BenchmarkStep: [1] [2] [4] [8] [16][R] [S] [O] [R] [S] [O] [R] [S] [O] [R] [S] [O] [R] [S] [O](1)-(3): 0.59 0.87 0.66 0.34 0.40 0.34 0.18 0.21 0.18 0.10 0.12 0.10 0.08 0.08 0.08(4): 6.69 1.86 2.33 3.40 1.08 1.17 1.75 0.57 0.59 0.96 0.31 0.30 0.74 0.22 0.18(5): 0.01 0.12 0.01 0.01 0.04 0.01 0.01 0.05 0.01 0.01 0.06 0.01 0.01 0.02 0.01(6): 0.69 0.75 0.69 0.37 0.38 0.35 0.21 0.20 0.19 0.11 0.12 0.11 0.09 0.12 0.08Total: 7.97 3.60 3.68 4.12 1.91 1.87 2.14 1.03 0.97 1.19 0.60 0.52 0.92 0.41 0.35Table I: Comparison of the time (in seconds) required as a function of the benchmark for each step of computingthe pre�x sums of 4M list elements on an HP-Convex Exemplar, for a variety of threads.9



Figure 2: Scalability of our pre�x computation algorithm on the HP-Convex Exemplar with respect to thenumber of threads, for di�ering problem sizes.in memory, the constant stride still allows it to take advantage of cache pre-fetching. Lastly, notice that,in Table I, the n noncontiguous memory required by the [R] benchmark in Step (4) consume on averagealmost �ve time as much time as the 4n contiguous memory accesses of Steps (1) and (6). Taken as a whole,these results strongly support the emphasis we place on minimizing the number of non-contiguous memoryaccesses in this problem.The graph in Figure 2 examines the scalability of our pre�x computation algorithm as a function of thenumber of threads. Bearing in mind that these graphs are log-log plots, they show that for large enoughinputs, the execution time decreases as we increase the number of threads p, which is the expectation of ourmodel. For smaller inputs, this inverse relationship between the execution time and the number of threadsdeteriorates. In this case, such performance is quite reasonable if we consider the fact that for small problemsizes the size of the cache approaches that of the problem. This introduces a number of issues which arebeyond the intended scope of our algorithm.4 Generalized SortingConsider the problem of sorting n elements equally distributed amongst p processors, where we assumewithout loss of generality that p divides n evenly. Any of the algorithms that have been proposed in theliterature for sorting on hierarchical memory models can be considered for possible implementation on anSMP. However, without modi�cations, most are unnecessarily complex or ine�cient for a relatively simpleplatform such as ours. A notable exception is the algorithm of Varman et al. [12]. Yet another approach isan adaptation of our sorting by regular sampling algorithm [8], which we originally developed for distributedmemory machines. 10



4.1 A New Algorithm for Generalized SortingThe idea behind sorting by regular sampling is to �nd a set of p�1 splitters to partition the n input elementsinto p groups indexed from 0 up to p�1 such that every element in the ith group is less than or equal to eachof the elements in the (i+1)th group, for (0 � i � p�1). Then the task of sorting each of the p groups can beturned over to the correspondingly indexed processor, after which the n elements will be arranged in sortedorder. One way to chose the splitters is by regularly sampling the input elements - hence the name Sortingby Regular Sampling. As modi�ed for an SMP, this algorithm is similar to the parallel sorting by regularsampling (PSRS) algorithm of Shi and Schae�er [11], except that our algorithm can be easily implementedas a stable sort.The pseudocode for our algorithm is as follows, where C is the size of the cache and L is the cache linesize:� (1) Each processor Pi (0 � i � p� 1) sorts the subsequence of the n input elements with indices � inp �through � (i+1)np � 1� as follows:{ (A) Sort each block of m input elements using sequential merge sort, where m � C2 .{ (B) For j = 0 up to � log(n=pm)log(z) � 1�, merge the sorted blocks of size �mzj� using z-way merge,where z � CL .� (2) Each processor Pi selects each � inp + (k + 1) nps�th element as a sample, for (0 � k � s � 1) and agiven value of s �p � s � np2�.� (3) Processor P(p�1) merges the p sorted subsequences of samples and then selects each ((k + 1)s)thsample as Splitter[k], for (0 � k � p � 2). By default, the pth splitter is the largest value allowed bythe data type used. Additionally, binary search is used to compute for the set of samples with indices0 through ((k + 1)s � 1) the number of samples Est[k] which share the same value as Splitter[k].� Step (4): Each processor Pi uses binary search to de�ne an index b(i;j) for each of the p sorted inputsequences created in Step (1). If we de�ne T(i;j) as a subsequence containing the �rst b(i;j) elementsin the jth sorted input sequence, then the set of p subsequences fT(i;1); T(i;2); :::; T(i;p)g will contain allthose values in the input set which are strictly less than Splitter[i] and at most �Est[i]� nps� elementswith the same value as Splitter[i]. The term at most is used because there may not actually be thisnumber of elements with the same value as Splitter[i].� Step (5): Each processor Pi merges those subsequences of the sorted input sequences which lie betweenindices b((i�1);j) and b(i;j) using p-way merge. It can be shown [8] that no processor will merge morethan �np + ns � p� elements.Before establishing the complexity of this algorithm, we need the results of the following lemma, whoseproof has been omitted for brevity [8]: 11



Lemma 2: At the completion of the partitioning in Step (4), no more than �np + ns � p� elements will beassociated with any splitter, for n � p3 and �p � s � np2�.With this result, the analysis of our algorithm is as follows. In Step (1A), each processor moves through acontiguous portion of the input array to sort it in blocks of size m using sequential merge sort. If we assumethat �m � C2 �, this will require only a single non-contiguous memory accesses to exchange 2np elements withmainmemory and O �np logm� computation time. Step (1B) involves log(n=pm)log(z) rounds of z-way merge. Sinceround j will begin with npmzj blocks of size mzj , this will require at most 2nzpm(z�1) non-contiguous memory ac-cesses to exchange 2n log(n=pm)p log(z) elements with main memory memory and O�np log � npm�� computation time.The selection of s noncontiguous samples by each processor in Step (2) requires s non-contiguous memoryaccesses to exchange 2s elements with main memory and O(s) computation time. Step (3) involves a p-waymerge of blocks of size s followed by p binary searches on segments of size s. Hence, it requires approximatelyp log(s) non-contiguous memory accesses to exchange approximately 2sp elements with main memory andO(sp logp) computation time. Step (4) involves p binary searches by each processor on segments of sizenp and hence requires approximately p log�np� non-contiguous memory accesses to exchange approximatelyp log�np� elements with main memory and O �p log�np�� computation time. Step (5) involves a p-waymerge of p blocks of total maximum size �np + ns � p�, requiring approximately p non-contiguous memoryaccesses to exchange approximately 2�np + ns � elements with main memory and O �np� computation time.Hence, the overall complexity of our sorting algorithm is given byT (n; p) = hMA(n; p);ME(n; p);TC(n; p)i (6)= h� nzpm(z � 1) + s + p log�np�� ;��2 log (n=pm)log(z) + 2� np + 2ns� ;O�np logn�i (7)for n � p2 log�np�, �p � s � np2 �, m � C2 , and z � CL . Since the analysis suggests that the parameters m andz should be as large as possible subject to the stated constraints while selecting s so that �p << s << np�,we would expect that in practice the complexity of our algorithm could be characterized asT (n; p) = hME(n; p);TC(n; p)i (8)= h�4 + 2log (n=pm)log(z) � np ;O�np logn�i: (9)4.2 Performance EvaluationBoth the sequential algorithm and our parallel algorithm were implemented in C using POSIX threads andrun on a DEC AlphaServer 2100A system, an SGI Power Challenge, and an HP-Convex Exemplar. We ranour code using six widely di�erent benchmarks which were selected to test the dependence of our algorithmon the input distribution. A detailed description and justi�cation of these benchmarks is presented in [7].The results in Table II verify that as expected performance does not signi�cantly depend on the inputdistribution. Because of this independence, the remainder of this section will only discuss performance onthe single benchmark [U], in which the input data forms a uniform random distribution.12



Input BenchmarkSize [U] [G] [Z] [WR] [DD] [RD]512K 0.397 0.394 0.320 0.421 0.337 0.3481M 0.868 0.856 0.741 0.844 0.724 0.7102M 1.64 1.72 1.39 1.73 1.40 1.514M 3.50 3.47 3.00 3.52 3.01 2.98Table II: Sorting doubles (in seconds) using 4 threads on a DEC AlphaServer 2100A.Block Denomination of z-Way MergeSize 2 4 8 16 32 64 128 256 512 1024 2048 40961K 30.43 21.49 19.22 17.66 17.87 16.20 16.74 16.91 16.87 16.82 16.73 16.292K 29.14 21.65 19.15 18.02 17.95 16.63 16.91 16.98 16.79 18.29 15.864K 27.96 20.55 19.62 18.29 16.65 17.00 17.14 17.06 16.86 15.918K 27.59 21.55 19.18 19.27 17.90 18.07 18.04 17.84 17.0816K 26.69 20.73 19.84 18.21 18.50 18.53 18.43 17.8332K 27.77 23.14 22.14 20.81 20.88 20.90 20.4164K 29.98 25.46 24.26 24.51 24.51 23.06128K 37.54 34.19 33.26 33.36 31.84256K 39.85 36.51 36.74 35.37512K 39.78 37.81 36.541M 39.53 37.622M 39.254M 38.86 - (No z-way merge is necessary for this block size)Table III: Time (in seconds) required on the HP-Convex Exemplar to sort 4M doubles using a single threadas a function of M and z.Table III displays the times required to sort 4M doubles (i.e. double precision 
oating point values)on the HP-Convex Exemplar using a single thread as a function of m and z. Notice �rst that performancesu�ers dramatically when the block size reaches 1MB (128K eight byte double precision numbers), which isthe limit of the cache on the Exemplar. This is expected, since sorting a block in Step (1A) now requiresthat data be repeatedly swapped to main memory. Consider also the data for a given block size - say 1K.The execution time drops as we move from z = 2 to z = 16. This is reasonable since we require 12 roundsof 2-way merge, 6 rounds of 4-way merge, 4 rounds of 8-way merge, and only 3 rounds of 16-way merge,and each round of z-way merge is obviously another round where all the input elements must be broughtin from main memory. Moving from z = 16 to z = 32 has little e�ect on the execution time since it doesnothing to reduce the memory requirements, but moving to z = 64 saves a round of memory access and,hence, the execution time is further reduced. However, the most dramatic illustration of the importance ofminimizing secondary memory access can be found by comparing the optimal sorting time of 15:86 secondsfor m = 2K and z = 2048 with the time of 39:25 seconds required to sort using only binary merge sort.Reducing memory access by a combination of block sorting and z-way merging improved the performanceby 60%. Clearly, such results strongly support the attention that we place in this algorithm on the numberof contiguous memory accesses.The graph in Figure 3 examines the scalability of our sorting algorithm as a function of the number13



Figure 3: Scalability of our generalized sorting algorithm on the HP-Convex Exemplar with respect to thenumber of threads, for di�ering problem sizes.of threads, for a variety of problem sizes. Bearing in mind that these graphs are log-log plots, they showthat for large enough inputs, the execution time decreases as we increase the number of threads p, which isthe expectation of our model. For smaller inputs, this inverse relationship between the execution time andthe number of threads deteriorates when we move to 16 threads. This explanation for this problem maylie in the fact that when we moved to 16 threads on this platform, the data suddenly became very erratic,perhaps because some threads now had to compete with operating system processes for access to one of the16 processors.References[1] A. Aggarwal, A. Chandra, and M. Snir. Heirarchical Memory with Block Transfer. In Proceedings ofthe 28th Annual IEEE Symposium on Foundations of Computer Science, pages 204{216, October 1987.[2] B. Alpern, L. Carter, E. Feig, and T. Selker. The Uniform Memory Hierarchy Model of Compuatation.Algorithmica, 12:72{109, 1994.[3] R. Anderson and G. Miller. Deterministic Parallel List Ranking. In Proceedings Third Aegean Workshopon Computing, AWOC 88, pages 81{90, Corfu, Greece, June/July 1988. Springer-Verlag.[4] G.E. Blelloch, P.B. Gibbons, Y. Matias, and M. Zagha. Accounting for Memory Bank Contention andDelay in High-Bandwidth Multiprocessors. IEEE Transactions on Parallel and Distributed Systems,8(9):943{958, 1997.[5] P.B. Gibbons, Y. Matias, and V. Ramachandran. Can a Shared-Memory Model Serve as a Bridging-Model for Parallel Compatation? In Proceedings of the 9th ACM Symposium on Parallel Algorithmsand Architectures, pages 72{83, June 1997. 14
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