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1 Introduction

Market indices are widely used to track the performance of stocks or to design investment portfolios
[1]. This paper initiates a rigorous mathematical study of the computational complexity of the art of
designing proxies for such indices. There are several results on selecting such proxies (or portfolios)
in an on-line manner (see, for example, [2] and [3]), we look at off-line algorithms for designing
proxies based on historical data. In particular, we show that all combinations of three fundamental
problems (such as tracking or outperforming a full market index) with four commonly-used indices
give NP-complete problems, so are computationally hard.
To formally define market indices, let B be a set of b stocks in a market. Let Si,t ≥ 0 be the

price of the i-th stock at time t. Let wi be the number of outstanding shares of the i-th stock.
We assume that wi does not change with time. This paper discusses computational complexity
issues regarding four kinds of market indices currently in use [1]. These indices are calculated by
the following formulas, which can be multiplied by arbitrary constants to arrive at desired starting
index values at time 0.
• The price-weighted index of B at time t is

Φ1(B, t) =
∑b
i=1 Si,t
b

. (1)

The Dow Jones Industrial Average is calculated in this manner for some B consisting of thirty
stocks.
• The value-weighted index of B at time t is

Φ2(B, t) =
∑b
i=1 wi·Si,t∑b
i=1 wi·Si,0

.

The Standard & Poor’s 500 is computed in this way with respect to 500 stocks.
• The equal-weighted index of B at time t is

Φ3(B, t) =
b∑
i=1

Si,t
Si,0
.

∗Supported in part by NSF Grant CCR-9531028.
†Supported in part by NSF Grant CCR-9409945 and Texas Advanced Research Program Grant 1997-003594-019.

1



The index published by the Indicator Digest is calculated by this method, involving stocks listed
on the New York Stock Exchange.
• The price-relative index of B at time t is

Φ4(B, t) =
(
Πbi=1

Si,t
Si,0

) 1
b

.

The Value Line Index is computed by this formula.
There are numerous reasons why stock investors and money managers would want to invest in

a subset of stocks rather than those of a whole market [1]. For instance, small investors certainly
do not have sufficient capital to invest in every stock in the market. Logically, such investors would
attempt to choose a small subset of stocks which hopefully can perform roughly as well as or even
outperform the market as a whole. They then face difficult trade-offs between returns and risks.
For these and other reasons of optimization, we formulate three natural computational problems
for the design of market indices. Given a market M consisting of m stocks, we wish to choose
a subset Mk of at most k stocks and calculate an index of Mk, which is called a k-proxy of the
corresponding index of the whole market M (we sometimes refer toMk as a portfolio). Our goal
is to choose Mk so that the resulting k-proxy tracks or outperforms the corresponding index of
M. This paper shows that designing proxies for the above four indices based on historical data is
computationally hard.

2 Problem Formulations

In this section we formally define three basic problems related to selecting k-proxies, or portfolios.

Problem 1 (tracking an index)

Input: A market M of m stocks, their prices Si,t ≥ 0 for t = 0, . . . , f , their numbers wi of
outstanding shares, a real ε1 > 0, an integer k > 0, and some j ∈ {1, 2, 3, 4} to indicate the
desired type of index.

Output: A subsetMk of at most k stocks inM such that∣∣∣∣∣Φj(Mk, t)

Φj(Mk, 0)
− Φj(M, t)
Φj(M, 0)

∣∣∣∣∣ ≤ ε1·Φj(M, t)Φj(M, 0) for all t = 1, . . . , f. (2)

Problem 2 (outperforming an index)

Input: A market M of m stocks, their prices Si,t ≥ 0 for t = 0, . . . , f , their numbers wi of
outstanding shares, a real ε2 ≥ 0, an integer k > 0, and some j ∈ {1, 2, 3, 4} to indicate the
desired type of index.

Output: A subsetMk of at most k stocks inM such that

Φj(Mk, t)

Φj(Mk, 0)
≥ (1 + ε2)·Φj(M, t)

Φj(M, 0) for all t = 1, . . . , f. (3)
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For the final problem, we need a few extra definitions in order to analyze the volatility of a set
of stocks. Let B be a set of stocks as defined in §1.
• The one-period return of Φj for B at time t ≥ 1 is

Rj(B, t) = ln Φj(B, t)
Φj(B, t− 1) .

• The average return of Φj for B up to time t ≥ 1 is

Rj(B, t) =
∑t
i=1Rj(B, i)
t

.

• The volatility of Φj for B up to time t ≥ 2 is

∆j(B, t) =

√√√√∑ti=1 (Rj(B, i) −Rj(B, t))2
t− 1 .

Problem 3 (sacrificing return for less volatility)

Input: A market M of m stocks, their prices Si,t ≥ 0 for t = 0, . . . , f , their numbers wi of
outstanding shares, two reals α, β > 0, an integer k > 0, and some j ∈ {1, 2, 3, 4} to indicate
the desired type of index.

Output: A subsetMk of at most k stocks inM such that

Φj(Mk, t)

Φj(Mk, 0)
≥ α·Φj(M, t)

Φj(M, 0) for all t = 1, . . . , f ; (4)

∆j(Mk, s) ≤ β·∆j(M, s) for all s = 2, . . . , f. (5)

In this problem, (4) is called the performance bound, and (5) is called the volatility bound.

3 Price-weighted Index

In this section, we consider taking the value of the market and portfolio using a price-weighted
index, defined in (1). As given in the problem statements, we use the notation Φ1(M, t) to denote
the market average at timestep t, and Φ1(Mk, t) to denote the average of the portfolio at that
timestep.

3.1 Tracking an index

To solve the problem of tracking the market average, we need to satisfy (2) using function Φ1(B, t).
We will refer to this bound as the “tracking bound.” In the following proofs, we show this by
proving an equivalent relation:

1− ε ≤ Φ1(M, 0)
Φ1(Mk, 0)

· Φ1(Mk, t)

Φ1(M, t) ≤ 1 + ε. (6)

Theorem 3.1 Let ε be any error bound satisfying 0 < ε < 1 and specified using nO(1) bits in fixed
point notation. Then the tracking problem for a price-weighted index with error bound ε is NP-hard.
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In the remainder of this section, we prove this theorem by reduction from the minimum set
cover problem. We will use the notation from the minimum cover definition given in the classic
book on NP-completeness by Garey and Johnson [4]: C is a collection of subsets of a finite set S,
and K is the desired cover size. Specifically, we want a subcollection C ′ ⊆ C such that |C ′| ≤ K
and every item x ∈ S is in some subset from C ′.
Let n = |C|, and consider making an n × |S| matrix in which each column corresponds to a

fixed item from S, and each row corresponds to a subset S′ ∈ C. The element in row i, column j is
some given value v1 if the element in S for that column is in the subset S

′, and value v0 if it is not.
Then the minimum cover problem can be stated as follows: Is there a set of K rows such that the
K × |S| matrix defined using only those rows has at least one entry with value v1 in each column?
It makes sense now to consider this n×|S| matrix as an input to the portfolio selection problem,

where each row corresponds to a security and each column corresponds to a timestep, and we are to
choose a portfolio of size k = K. Selecting a portfolio is then equivalent to selecting the subcollection
in the minimum cover problem. A subcollection that is missing some item from S corresponds to a
portfolio in which some timestep has all values equal to v0, and hence the portfolio average at that
timestep must be v0. Ideally, we would select v0 and v1 in such a way that the required tracking
bound is met if any v1 values are included in the portfolio, but not if all values are v0. However,
this simple construction has very unpredictable market averages at each time step, so we need a
slightly more involved construction.
We will introduce a new row into our matrix called the “adjustment row”, and we will select

values to adjust the column averages to predictable values. To guarantee that this row is not selected
in our portfolio (so selections are made up entirely of rows from the minimum cover problem), we
introduce a special column called the “control column” — any selection including our adjustment
row will violate the error bound in that column, and no selection excluding that row will violate
the bound. In addition, we need to pad the problem out substantially. This is accomplished by
including rows that contain value v0 in every non-control column, which is equivalent to padding
the original set cover problem instance with empty subsets added to C. This clearly has no effect
on the set cover problem. Finally, we insert a column of all ones to give the Si,0 values for the
portfolio selection problem. The final matrix contains m = 3n rows, f = |S| + 1 columns, and is
depicted in Figure 1.
Note that since Si,0 = 1 for all i, Φ1(M, 0) = Φ1(Mk, 0) = 1, and so (6) reduces to just checking

that

1− ε ≤ Φ1(Mk, t)

Φ1(M, t) ≤ 1 + ε.
First we examine properties of the control column, where the values in that column are defined

by

c0 =

⌈
1− ε
ε

⌉
,

c1 = c0 +m.

Lemma 3.1 The tracking bound is met for the control column if and only if the adjustment row is
not included in the portfolio.

Proof : From the values for c0 and c1, it is clear that the average value of the control column is
c0 + 1. Since we will be examining the error of approximations relative to this average, we first
note that we can bound (due to the ceiling involved in the definition of c0)

ε

1 + ε
<

1

c0 + 1
≤ ε. (7)
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Figure 1: Pictorial depiction of reduction for Theorem 3.1

Any portfolio that does not include the adjustment row has average value c0, and so we can lower
bound the relative error by

Φ1(Mk, t)

Φ1(M, t) =
c0
c0 + 1

= 1− 1

c0 + 1
≥ 1− ε.

Since the relative error is clearly less than one, it falls into the acceptable range of values.
On the other hand, if a portfolio does include the adjustment row, then the portfolio average is

c0 +m/k, and so the relative error is

Φ1(Mk, t)

Φ1(M, t) =
c0 +m/k

c0 + 1
= 1 +

m/k − 1
c0 + 1

.

Due to our padding of the problem, we know that k ≤ m/3, and so m/k − 1 ≥ 2. Using this
observation and the bound from (7) leads to the conclusion that

Φ1(Mk, t)

Φ1(M, t) ≥ 1 +
2

c0 + 1
> 1 +

2

1 + ε
ε > 1 + ε.

In other words, any portfolio that includes the adjustment row will not meet the required error
bound. Combined with our previous observation, this completes the proof of the lemma.

Next we must define the values v0 and v1, and show the equivalence of our portfolio selection
instance with the original set cover instance. To do so, define

∆ =

⌈
1

1− ε
⌉
,

v0 =

⌈
(k + 1)(1 − ε)∆− 1

ε

⌉
,

v1 = v0 + 2k∆.
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All values in the portfolio selection problem must be non-negative integers, and while these
values are clearly integers, are they non-negative? Since ∆ ≥ 1

1−ε , we see that v0 ≥ k
ε > 0. Since

v1 is greater than v0, it too is clearly non-negative.
For column t, if there are Mt rows with value v1, then the value we use in the adjustment row

for that column is
At = ((k + 1)m− 2kMt)∆ + v0.

The sum down the column is

(m−Mt − 1)v0 +Mtv1 +At = (m−Mt − 1)v0 +Mt(v0 + 2k∆) + (k + 1)m∆− 2kMt∆+ v0
= mv0 + (k + 1)m∆,

which means that the column average is v0 + (k+ 1)∆. Notice the independence from t. We make
such an adjustment for every column in the matrix.
Is such an adjustment possible? At is clearly an integer, and so this is a valid adjustment as

long as At ≥ 0. Since Mt ≤ m
3 , we know that (k + 1)m − 2kMt ≥ (k + 1)m − 2km3 = (k3 + 1)m,

which is clearly positive, so At ≥ 0. We have demonstrated that such a reduction is possible, so
the next thing to demonstrate is the equivalence of the produced portfolio selection instance with
the original set cover instance.

Lemma 3.2 The relative error bound is met if and only if the portfolio contains at least one v1
value in each column.

Proof : Let t be an arbitrary column other than the control column, and recall that Mt represents
the number of v1 entries in column t. We first upper bound the approximation ratio for all values
of Mt. In particular, we know that the maximum possible portfolio average is v1 = v0 + 2k∆, so
we can bound

Φ1(Mk, t)

Φ1(M, t) ≤
v0 + 2k∆

v0 + (k + 1)∆
= 1 +

(k − 1)∆
v0 + (k + 1)∆

. (8)

We can lower-bound v0 be removing the ceiling, giving a bound on the last fraction above:

(k − 1)∆
v0 + (k + 1)∆

≤ (k − 1)∆
(k+1)(1−ε)∆−1

ε + (k + 1)∆
=

(k − 1)∆
(k + 1)∆ − 1ε ≤ ε, (9)

where the last inequality uses the fact that ∆ ≥ 1. Combining this with (8) gives Φ1(Mk ,t)
Φ1(M,t) ≤ 1+ ε,

which holds for all values of Mt.
Next, we lower bound the error when at least one row with a v1 entry is selected (in other

words, Mt ≥ 1). In this case, the portfolio average is at least v0 + 1
k2k∆ = v0 + 2∆, and so we

derive
Φ1(Mk, t)

Φ1(M, t) ≥
v0 + 2∆

v0 + (k + 1)∆
= 1− (k − 1)∆

v0 + (k + 1)∆
.

Notice that this results in exactly the same fraction as above, so we can use (9) to give Φ1(Mk ,t)
Φ1(M,t) ≥

1− ε, when at least one row containing v1 is selected.
What we have shown is that any time at least one row containing v1 is selected, the portfolio

average tracks the total market average within a relative error of ε. We next show that this bound
is not met when no rows containing v1 are selected. In this case, the portfolio average is exactly
v0, which results in

Φ1(Mk, t)

Φ1(M, t) =
v0

v0 + (k + 1)∆
= 1− (k + 1)∆

v0 + (k + 1)∆
. (10)
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Figure 2: Construction for main reduction

This last fraction can be bounded by first upper bounding v0: just remove the ceiling and add 1
(note that this gives a strict upper bound). Thus

(k + 1)∆

v0 + (k + 1)∆
>

(k + 1)∆
(k+1)(1−ε)∆−1+ε

ε + (k + 1)∆
=

(k + 1)∆

(k + 1)∆ − (1− ε)ε > ε,

where the last inequality comes from the fact that ε < 1. Using this bound in (10) gives Φ1(Mk ,t)
Φ1(M,t) <

1 − ε whenever none of the selected rows contain v1. In other words, the error bound is not met
when no such rows are selected.

As a final note, it is fairly easy to show that all values in the constructed portfolio selection
problem have length polynomial in the length of the original set cover problem and the number of
bits used to specify ε. Therefore, these values form a polynomial time reduction from the set cover
problem to the portfolio selection problem, which completes the proof of Theorem 3.1.

3.2 Sacrificing Return for Less Volatility

Next, we will skip Problem 2 and prove a hardness result for Problem 3: sacrificing return for less
volatility. In the following section, we will return to problem 2, and show that the hardness of that
problem (outperforming an index) follows directly from the results of this section.
As in §3.1, we will show that Problem 3 is NP-complete by reducing the minimum cover problem

to this one.

3.2.1 The construction

The main reduction for this proof involves a problem constructed from a minimum cover instance,
and this construction is illustrated in Figure 2. This constructed problem is an instance of our
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portfolio selection problem where the rows represent different securities, the columns represent
times, and the values in the matrix represent prices.
In the original minimum cover instance, let n = |C| represent the number of subsets in the

input, let |S| represent the size of the overall set, and let K be the number of subsets we are
allowed to select. The data from this problem can be encoded into an n× |S| matrix M , where the
values in this matrix are set as follows (v2 is a value that will be defined shortly):

Mij =

{
v2 if subset i contains element j;
0 otherwise.

We will need a larger matrix in order to complete the reduction, so we embed matrix M into our
larger matrix — in Figure 2 the embedded matrix is labeled as the “Coding Region”. This gives a
portfolio selection problem with m securities, f = P + |S| time steps, and portfolio size k = K.
We surround matrix M with various “padding rows” and “padding columns”. The number of

padding rows and padding columns are defined as follows:

• There are P + 1 padding columns, where P = max (2(k + 1), 2|S|).
• The total number of rows is defined in terms of the following constants:

q = dmax (1 + (4/β), logk(2/α))e , and B = dαkqe .

The total number of rows is m = nB.

The definition of q implies some important properties of the constant B that we note here:

B ≥ 2; (11)

B ≥ kα ≥ α. (12)

Finally, from the first part of (12) we can derive

⌊
B

α

⌋
>
B

α

k − 1
k
. (13)

All of the first n rows in the padding columns are filled with value v1, and value v2 is used in
the coding region as previously described. These values are defined in terms of the constant B as
follows:

• v1 = B − 1
• v2 = k(B − 1)
Each column may have an “adjustment value”, denoted by At for column t. Odd numbered

columns in the padding region (type-2 columns) do not have an adjustment value, but even num-
bered columns other than column 0 (type-1 columns) do, and these values are positioned at suc-
cessively lower rows; therefore, if column t is a type-1 column, then At is placed in row n+

t
2 . If we

run out of rows before completing this placement, simply put all remaining adjustment values on
the last row. Notice that since P ≥ 2(k + 1) there are at least k + 1 type-1 padding columns, and
since the number of padding rows is (m− n) = (nB − n) ≥ n ≥ k + 1 (using (11)), there must be
at least k + 1 distinct rows that contain adjustment values. Columns that cross the coding region
(called “coding columns”) also have adjustment values, which are all placed on the last row of the

8



matrix (see Figure 2). The adjustment values to be used are defined below, where zt is the number
of zeros in the coding region of column t:

At =



(m− n)

(⌊
B
α

⌋
− 1

)
if 0 < t ≤ P and t is even;

(m− n)
(⌊
B
α

⌋
− k

)
+ zt · v2 if t > P .

Note that the adjustment values in the padding columns are all the same, but the adjustments
in the coding region depend on the data in the coding region. Furthermore, (12) guarantees that
these adjustment values are all non-negative.
Before analyzing the return and volatility of the constructed portfolio selection problem, we

state the following lemma regarding the size of the constructed problem, showing that we have a
polynomial reduction — the proof of this lemma is straight-forward given the above definitions,
and is omitted.

Lemma 3.3 If α and β are expressed using nO(1) bits in fixed-point binary notation, and 0 < α ≤
nO(1) and β = Ω

(
log k
logn

)
, then the size of the constructed problem (including the size of the values

in the matrix) is polynomial in the size of the original minimum cover problem.

3.2.2 Guarantees on Return

Lemma 3.4 The performance bound is met for all columns if and only if the selected portfolio
contains exactly k items from the coding rows and each coding column has at least one v2 value
from among the selected rows.

Proof : We will first prove that if the selected portfolio contains exactly k items from the coding
rows and each coding column has at least one v2 value from the selected rows, then the performance
bound is met. First consider a padding column t— since the k selected rows are all coding rows, all
selected values for any padding column have value v1, and so the portfolio average for that column
is Φ1(Mk, t) = v1. On the other hand, the market average is different for the two types of columns.
If column t is a type-1 padding column, then the sum of all the values in the column is

nv1 +At = n(B − 1) + (m− n)
(⌊
B

α

⌋
− 1

)
= n(B − 1) + (nB − n)

(⌊
B

α

⌋
− 1

)

= n(B − 1) + (B − 1)
(
n

⌊
B

α

⌋
− n

)
= (B − 1)n

⌊
B

α

⌋
.

Therefore, the market average for column t satisfies

Φ1(M, t) = (B − 1)n
nB

⌊
B

α

⌋
=
B − 1
B

⌊
B

α

⌋
(14)

≤ B − 1
B

B

α
=
B − 1
α
=
v1
α
.

Furthermore, any type-2 padding column has no adjustment value, which makes the market av-
erage smaller than a type-1 column. Therefore, for either type of padding column the bound
Φ1(M, t) ≤ v1

α is valid, and so it immediately follows that for any padding column t, since
Φ1(M, 0) = Φ1(Mk, 0) = v1,

Φ1(Mk, t)

Φ1(Mk, 0)
≥ α · Φ1(M, t)

Φ1(M, 0) .
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Therefore, the performance bound is met for all padding columns.
Now consider a coding column t, and recall that we are assuming that at least one v2 value

from column t is included in the portfolio. This means that the portfolio average is Φ1(Mk, t) ≥
v2/k = v1. For the market average, we compute the sum over all values in the column, as we did
before, and in this case we get

(n− zt)v2 +At = nv2 − ztv2 + (m− n)
(⌊
B

α

⌋
− k

)
+ ztv2

= nk(B − 1) + (nB − n)
(⌊
B

α

⌋
− k

)

= nk(B − 1) + (B − 1)
(
n

⌊
B

α

⌋
− nk

)
= (B − 1)n

⌊
B

α

⌋
.

Similar to the calculation for the padding columns, this gives us

Φ1(M, t) = B − 1
B

⌊
B

α

⌋
≤ B − 1

α
=
v1
α

=⇒ Φ1(Mk, t)

Φ1(Mk, 0)
≥ α · Φ1(M, t)

Φ1(M, 0) , (15)

and so the performance bound is met for the coding columns as well. Therefore we have completed
this direction of the proof.
For the other direction, we need to show that any portfolio that meets the performance bound

must be made up of exactly k items from the coding rows and each coding column has at least
one v2 value from the selected rows. We first show that any portfolio that meets the performance
bound may only use coding rows. By our placement of adjustment values, we noticed before that
there are at least k + 1 distinct padding rows that contain adjustment values. Therefore, there
must be at least one type-1 padding column, say column t, that does not have its adjustment value
At selected as part of the portfolio. Now if all k selections are not from the coding rows, then we
can bound the portfolio average for column t by

Φ1(Mk, t) ≤ (k − 1)v1
k

.

Since this is a type-1 column, (14) gives the market average, and we can further use (13) to conclude
that

Φ1(Mk, t)

Φ1(Mk, 0)

Φ1(M, 0)
Φ1(M, t) ≤

(k−1)v1
k

v1

v1
(B−1)
B

⌊
B
α

⌋ < (k − 1)(B − 1)
k

1
(B−1)
B

B
α
k−1
k

= α,

and so the performance bound would not be met. Therefore, all k row selections must come from
the coding rows.
Since we have established that all k selections must come from the coding rows, we will next

show that every column in the coding region must have at least one v2 value among the selected
rows. This is, in fact, very easy to see — if no v2 values are selected in a particular column, then the
portfolio average is zero, which cannot meet the performance bound for that column. Therefore, all
coding columns must be contain at least one v2 value, which completes this direction of the proof,
and also completes the entire proof.

3.2.3 Guarantees on Volatility

Lemma 3.5 If the performance bound is met for our constructed portfolio selection problem, then
the volatility bound is met as well.
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Proof : Assume we have a solution that meets the performance bounds. Then by Lemma 3.4 we
know that all k selected rows are coding rows and that each coding column contains at least one
v2 value. From this information, we can bound the volatility of both the market and the portfolio.
The first observation is that the portfolio average is exactly v1 for every padding column,

including column 0, and this constant average means that the portfolio volatility is exactly zero for
all of the padding columns (so ∆(Mk, t) = 0 for all t ≤ P ). Since the portfolio volatility is zero,
the volatility bound is trivially met whenever t ≤ P .
For t > P we bound the market volatilities first. We have already computed the market averages

for the type-1 columns (in (14)) and for coding columns (in (15)), but we need to compute the
market average for type-2 columns. Since there are exactly n values of v1 in a type-2 column, and
there are m = nB total columns, the market average of a type-2 column is simply nv1m =

n(B−1)
nB =

B−1
B . We summarize all market averages below:

Φ1(M, t) =




B − 1 if t = 0;

B−1
B if t ≤ P and t is odd;

B−1
B

⌊
B
α

⌋
otherwise.

These values can then be used to compute the one-period returns for the market:

R1(M, i) =




− lnB if i = 1;

− ln
⌊
B
α

⌋
if 1 < i ≤ P and i is odd;

ln
⌊
B
α

⌋
if i ≤ P and i is even;

0 if i > P .

Recall that we are only interested in volatilities for times t > P , and from the above we can
derive for t > P

R1(M, t) = 1
t
ln
Φ1(M, t)
Φ1(M, 0) =

1

t
ln

(
1

B

⌊
B

α

⌋)
.

This market average return can be either positive or negative, depending on the value of α, so we

consider these two situations separately. First, if α ≥ 1, then B ≥
⌊
B
α

⌋
, and so R1(M, t) ≤ 0,

which implies that when i is even we have

R1(M, i) −R1(M, t) ≥ R1(M, i) = ln
⌊
B

α

⌋
=⇒

(
R1(M, i)−R1(M, t)

)2 ≥ (ln ⌊B
α

⌋)2
.

On the other hand, if α < 1, then B <
⌊
B
α

⌋
, and so R1(M, t) > 0, which implies that when i is

odd and greater than 1 we have

R1(M, i)−R1(M, t) ≤ R1(M, i) = − ln
⌊
B

α

⌋
=⇒

(
R1(M, i) −R1(M, t)

)2 ≥ (ln ⌊B
α

⌋)2
.

Notice that in both cases, we have the same bound, and we can guarantee that this bound holds for
at least P2 − 1 columns. Using this fact, we can bound the market volatilities for t > P as follows:

∆1(M, t) =

√√√√∑ti=1 (R1(M, i) −R1(M, t))2
t− 1 ≥

√√√√(P2 − 1
) (
ln
⌊
B
α

⌋)2
t− 1 =

√
P − 2
2(t− 1) ln

⌊
B

α

⌋
.

11



Since t ≤ P + |S|, P ≥ 2|S|, and P ≥ 6, we can bound P−2
2(t−1) ≥ 1

4 , and then use (13) to derive

∆1(M, t) =
√
1

4
ln

⌊
B

α

⌋
≥ 1
2
ln

⌊
B

α

⌋
>
1

2
ln

(
B

α

k − 1
k

)
≥ 1
2
ln

(
αkq

α

k − 1
k

)

=
1

2
ln

(
kq
k − 1
k

)
≥ 1
2
ln

(
k(4/β)+1

k − 1
k

)
=
1

2
ln
(
k(4/β)(k − 1)

)

≥ 1

2
ln k(4/β) =

1

2

4

β
ln k >

2

β
ln k. (16)

Next, we will find an upper bound for the portfolio volatility. As mentioned before, the portfolio
averages for t ≤ P are constant values v1. For t > P , the portfolio averages are data dependent,
but we can certainly bound them by the closed interval

Φ1(Mk, t) ∈ [v2
k
, v2] = [B − 1, k(B − 1)].

Using this bound, we can bound the one-period portfolio returns by

ln
Φ1(Mk, t)

Φ1(Mk, t− 1) ∈ [ln
B − 1
k(B − 1) , ln

k(B − 1)
B − 1 ] = [− ln k, ln k],

and we can also bound the portfolio’s average return by

1

t
ln
Φ1(Mk, t)

Φ1(Mk, 0)
∈ [1
t
ln
B − 1
B − 1 ,

1

t
ln
k(B − 1)
B − 1 ] = [0,

1

t
ln k].

Given these bounds, the largest possible value for (R1(Mk, i)−R1(Mk, t))
2 is

(
t+1
t ln k

)2
, and so

∆1(Mk, t) =

√√√√∑ti=1 (R1(Mk, i)−R1(Mk, t)
)2

t− 1 ≤

√√√√ t ( t+1t
)2

t− 1 ln k =

√
(t+ 1)2

t(t− 1) ln k.

Finally, since t ≥ P + 1 ≥ 2t+ 1 ≥ 3, we can bound

∆1(Mk, t) ≤ 2 ln k. (17)

Combining (16) and (17) we get

∆1(Mk, t)

∆1(M, t) <
2 ln k
2
β ln k

= β,

and so the volatility bounds are met.

3.2.4 The main result

Theorem 3.2 Let α and β be values expressed using nO(1) bits in fixed-point binary notation, and

satisfying 0 < α ≤ nO(1) and β = Ω
(
log k
logn

)
. Then the problem of sacrificing return for less volatility

using the price-weighted index is NP-complete.

Proof : Follows immediately from Lemmas 3.3, 3.4, and 3.5.

12



3.3 Outperforming an index

Given the results of the previous section, showing that the problem of outperforming an index is
NP-complete is trivial. In particular, we use the exact same construction as in Section 3.2 (for
concreteness in the construction, use β = 4), and then our result follows from direct application of
Lemmas 3.3 and 3.4.

Theorem 3.3 Let ε be any value satisfying 0 < ε < nc for some constant c. Then the problem of
outperforming the market average using the price-weighted index with bound ε is NP-hard.

We note here that the construction of Section 3.2 gives us a slightly stronger result: We can
actually let ε be as small as −1+2−nO(1). However, the disadvantage of using this reduction is that
it is in fact more complicated than necessary for this problem — a direct, and simpler, reduction
for the problem of outperforming an index is given in the appendix.

4 Other Indices

For the value-weighted and equal-weighted indices, we will, in fact, use the exact same constructions
as in the previous section — the prices in the constructed problem have been selected carefully so
that they work using related indices, such as the value-weighted and equal-weighted indices. The
results will follow fairly easily from the following lemma.

Lemma 4.1 Let Φj(B, t) be an index function where Si,0 = c for some constant c implies that
Φj(B, t)
Φj(B, 0) = d · Φ1(B, t)

for all sets of stocks B ⊆M, where d is a constant that does not depend on B or t, then all of the
previous NP-completeness results hold for index Φj(B, t).

Proof : Omitted from this extended abstract.

4.1 The Value-Weighted Index

We first apply this lemma to the value-weighted index. For the value-weighted index, we must
indicate the weights (the wi’s) in the constructed portfolio selection problem as well as the prices.
In all of our constructions, we will pick wi = 1 for all i.
If Si,0 = c for some constant c, then for any valid time t and any set of stocks B, using wi = 1

gives

Φ2(B, t) =
∑b
i=1wi · Si,t∑b
i=1wi · Si,0

=

∑b
i=1 Si,t∑b
i=1 c

=

∑b
i=1 Si,t
b c

=
1

c
Φ1(B, t).

Furthermore, regardless of B we have Φ2(B, 0) = 1, and so Lemma 4.1 holds with constant d = 1
c .

The following three theorems are a direct consequence of this Lemma.

Theorem 4.1 Let ε be any error bound satisfying 0 < ε < 1 and specified using nO(1) bits in fixed
point notation. Then the tracking problem for a value-weighted index with error bound ε is NP-hard.

Theorem 4.2 Let ε be any value satisfying 0 < ε < nc for some constant c. Then the problem of
outperforming the market average using the value-weighted index with bound ε is NP-hard.
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Theorem 4.3 Let α and β be values expressed using nO(1) bits in fixed-point binary notation, and

satisfying 0 < α ≤ nO(1) and β = Ω
(
log k
logn

)
. Then the problem of sacrificing return for less volatility

using the value-weighted index is NP-complete.

4.2 The Equal-Weighted Index

If Si,0 = c for all i,

Φ3(B, t) =
b∑
i=1

Si,t
Si,0
=

b∑
i=1

Si,t
c
=
1

c

b∑
i=1

Si,t =
b

c
Φ1(B, t).

It’s easy to see that Φ3(B, 0) = b, so
Φ3(B, t)
Φ3(B, 0) =

1

c
Φ1(B, t),

and so Lemma 4.1 applies with constant d = 1
c . The following three theorems are direct conse-

quences of that Lemma.

Theorem 4.4 Let ε be any error bound satisfying 0 < ε < 1 and specified using nO(1) bits in fixed
point notation. Then the tracking problem for a equal-weighted index with error bound ε is NP-hard.

Theorem 4.5 Let ε be any value satisfying 0 < ε < nc for some constant c. Then the problem of
outperforming the market average using the equal-weighted index with bound ε is NP-hard.

Theorem 4.6 Let α and β be values expressed using nO(1) bits in fixed-point binary notation, and

satisfying 0 < α ≤ nO(1) and β = Ω
(
log k
logn

)
. Then the problem of sacrificing return for less volatility

using the equal-weighted index is NP-complete.

4.3 The Price-Relative Index

The price-relative index is simply a geometric mean of the values in a set of stocks, whereas our
first index (the price-weighted index) is the arithmetic mean. By taking our previous constructions
and changing any value Si,t into a new value S

′
i,t = 2

Si,t , the previous hardness results apply. The
only disadvantage is that for the first problem (tracking the index), we need to restrict ε to have
O(log n) bits, rather than nO(1) bits as in the original construction.

Theorem 4.7 Let ε be any error bound satisfying 0 < ε < 1 and specified using O(log n) bits in
fixed point notation. Then the tracking problem for a price-relative index with error bound ε is
NP-hard.

Theorem 4.8 Let ε be any value satisfying 0 < ε < nc for some constant c. Then the problem of
outperforming the market average using the price-relative index with bound ε is NP-hard.

Theorem 4.9 Let α and β be values expressed using nO(1) bits in fixed-point binary notation, and

satisfying 0 < α ≤ nO(1) and β = Ω
(
log k
logn

)
. Then the problem of sacrificing return for less volatility

using the price-relative index is NP-complete.
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Figure 3: Pictorial depiction of reduction for Theorem A.1

A Direct construction for outperforming an index

We now turn our attention to the problem of finding a portfolio that outperforms the market
average at every time step. In particular, we are looking for a portfolioMk of size k which satisfies
(3). As we did in the first construction (for tracking an index), we rewrite this condition as follows:

Φ1(M, 0)
Φ1(Mk, 0)

· Φ1(Mk, t)

Φ1(M, t) ≥ 1 + ε. (18)

Theorem A.1 Let ε be any value satisfying 0 < ε < nc for some constant c. Then the problem of
portfolio selection for outperforming the market average with bound ε is NP-hard.

Proof : The reduction used in this proof is shown pictorially in Figure 3. The indicator variables
in this case are simple zero and one values (set to one if and only if the element represented by
that row is in the subset represented by that column). The adjustment row contains values so that
each column except the control column has sum n. This is clearly possible for each column, using
only integer values between 0 and n. We also again use an initial column of all ones, which reduces
condition (18) to just

Φ1(Mk, t)

Φ1(M, t) ≥ 1 + ε.

We first show that the required bound is met for the control column if and only if the selected
portfolio is made up entirely of rows from the first kn rows (i.e., those rows that contain a 1 in
the control column). In particular, the adjustment row may not be included in the portfolio. The
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market average for the control column is simply

Φ1(M, t) = kn

d(1 + ε)kne .

Obviously, when the portfolio Mk is made up entirely of these rows, the portfolio average in the
control column is 1, so we can bound

Φ1(Mk, t)

Φ1(M, t) =
d(1 + ε)kne
kn

≥ 1 + ε.

On the other hand, when only k−1 or fewer of the portfolio rows begin with a 1, then the portfolio
average is at most 1− 1k , and so we can bound

Φ1(Mk, t)

Φ1(M, t) ≤
(
1− 1
k

) d(1 + ε)kne
kn

<

(
1− 1
k

)
(1 + ε)kn+ 1

kn

=

(
1− 1
k

)(
1 + ε+

1

kn

)
= 1 + ε+

1

kn
− 1
k
− ε
k
− 1

k2n

= 1 + ε+−n− 1
kn

− ε
k
− 1

k2n
< 1 + ε.

Therefore, the desired bound is met only if all k selected rows begin with a 1.
We next show that the desired bound for all other columns is met if and only if at least one

row must be selected that contains a non-zero value. If no such rows are selected, all selected rows
contain 0 and so the portfolio average is 0. This clearly cannot meet our required bound. On
the other hand, if even one row is included with a non-zero value, then Φ1(Mk, t) ≥ 1

k , while the
market average for this column is clearly n

d(1+ε)kne . This leads to

Φ1(Mk, t)

Φ1(M, t) ≥
1

k

d(1 + ε)kne
n

≥ 1 + ε,

and so the desired bound is met. We note that in order to meet the desired bound on all columns,
the adjustment row must not be selected, and therefore the non-zero value required in each column
of the portfolio must come from the indicator variables of the original set cover problem. Therefore,
an acceptable portfolio exists if and only if an acceptable set cover exists.
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