
Designing Reusable Classes

Ralph E. Johnson
Brian Foote

Department of Computer Science

University of Illinois, Urbana-Champaign
Journal of Object-Oriented Programming

June/July 1988

August 26, 1991

[Editado por la cátedra de POO - 2001]

Abstract

Object-oriented programming is as much a different way of designing programs as it is a different
way of designing programming languages. This paper describes what it is like to design systems in
Smalltalk. In particular, since a major motivation for object-oriented programming is software reuse,
this paper describes how classes are developed so that they will be reusable.

1. Introduction

Object-oriented programming is often touted as promoting
software reuse[Fis87].Languages like Smalltalk are claimed to
reduce not only development time but also the cost of
maintenance, simplifying the creation of new systems and of
new versions of old systems. This is true, but object-oriented
programming is not a panacea. Program components must be
designed for reusability. There is a set of design techniques
that makes object-oriented software more reusable. Many of
these techniques are widely used within the object-oriented
programming community, but few of them have ever been
written down. This article describes and organizes these
techniques. It uses Smalltalk vocabulary, but most of what it
says applies to other object-oriented languages. It concentrates
on single inheritance and says little about multiple inheritance.

The first section of the paper describes the attributes of object-
oriented languages that promote reusable software. Data
abstraction encourages modular systems that are easy to
understand. Inheritance allows subclasses to share methods
defined in superclasses, and permits programming-by-
difference. Polymorphism makes it easier for a given
component to work correctly in a wide range of new contexts.
The combination of these features makes the design of object-
oriented systems quite different from that of conventional
systems.

The middle section of the paper discusses frameworks,
toolkits, and the software lifecycle. A framework is a set of
classes that embodies an abstract design for solutions to a
family of related problems, and supports reuses at a larger

granularity than classes. During the early phases of a system's
history, a framework makes heavier use of inheritance and the
software engineer must know how a component is
implemented in order to reuse it. As a framework becomes
more refined, it leads to "black box" components that can be
reused without knowing their implementations.

The last section of the paper gives a set of design rules for
developing better, more reusable object-oriented programs.
These rules can help the designer create standard protocols,
abstract classes, and object-oriented frameworks.

As with any design task, designing reusable classes requires
judgement, experience, and taste. However, this paper has
organized many of the design techniques that are widely used
within the object-oriented programming community so that
new designers can acquire those skills more quickly.

2. Object-Oriented Programming

An object is similar to a value in an abstract data type: it
encapsulates both data and operations on that data. Thus,
object-oriented languages provide modularity and
information-hiding, like other modern languages. Too much is
made of the similarities of data abstraction languages and
object-oriented languages. In our opinion, all modern
languages should provide data abstraction facilities. It is
therefore more important to see how object-oriented

languages differ from conventional data abstraction
languages.

There are two features that distinguish an object-oriented
language from one based on abstract data types:
polymorphism caused by late-binding of procedure calls and
inheritance. Polymorphism leads to the idea of using the set of
messages that an object understands as its type, and
inheritance leads to the idea of an abstract class. Both are
important.

2.1 Polymorphism

Operations are performed on objects by “sending them a
message". Messages in a language like Smalltalk should not
be confused with those in distributed operating systems.
Smalltalk messages are just late-bound procedure calls. A
message send is implemented by finding the correct method
(procedure) in the class of the receiver (the object to which the
message is sent), and invoking that method. Thus, the
expression a + b will invoke different methods depending
upon the class of the object in variable a .

Message sending causes polymorphism. For example, a
method that sums the elements in an array will work correctly
whenever all the elements of the array understand the addition
message, no matter what classes they are in. In fact, if array
elements are accessed by sending messages to the array, the
procedure will work whenever it is given an argument that
understands the array accessing messages.

2.2 Protocol

[Nota: preste atención a la definición de protocolo e
interface en esta sección, que difiere a la vista en la práctica
1]

The specification of an object is given by its protocol, i.e. the
set of messages that can be sent to it. The type of the
arguments of each message is also important, but “type"
should be thought of as protocol and not as class. For a
discussion of types in Smalltalk, see [Joh86]. Objects with
identical protocol are interchangeable. Thus, the interface
between objects is defined by the protocols that they expect
each other to understand. If several classes define the same
protocol then objects in those classes are “plug compatible".
Complex objects can be created by interconnecting objects
from a set of compatible components. This gives rise to a style
of programming called building tool kits, of which more will
be said later.

Although protocols are important for defining interfaces
within programs, they are even more important as a way for
programmers to communicate with other. Shared protocols
create a shared vocabulary that programmers can reuse to ease
the learning of new classes. Just as mathematicians reuse the
names of arithmetic operations for matrices, polynomials, and

other algebraic objects, so Smalltalk programmers use the
same names for operations on many kinds of classes. Thus, a
programmer will know the meaning of many of the
components of a new program the first time it is read.

Standard protocols are given their power by polymorphism.
Languages with no polymorphism at all, like Pascal,
discourage giving different procedures the same name, since
they then cannot be used in the same program. Thus, many
Pascal programs use a large number of slightly different
names, such as MatrixPlus, ComplexPlus, PolynomialPlus,
etc. Languages that use generics and overloading to provide a
limited form of polymorphism can benefit from the use of
standard protocols, but the benefits do not seem large enough
to have forced wide use of them. In Smalltalk, however, there
are a wide number of well-known standard protocols, and all
experienced programmers use them heavily.

Standard protocols form an important part of the Smalltalk
culture. A new programmer finds it much easier to read
Smalltalk programs once standard protocols are learned, and
they form a standard vocabulary that ensures that new
components will be compatible with old.

2.3 Inheritance

Most object-oriented programming languages have another
feature that differentiates them from other data abstraction
languages; class inheritance. Each class has a superclass from
which it inherits operations and internal structure. A class can
add to the operations it inherits or can redefine inherited
operations. However, classes cannot delete inherited
operations.

Class inheritance has a number of advantages. One is that it
promotes code reuse, since code shared by several classes can
be placed in their common superclass, and new classes can
start off having code available by being given a superclass
with that code. Class inheritance supports a style of
programming called programming-by-difference, where the
programmer defines a new class by picking a closely related
class as its superclass and describing the differences between
the old and new classes. Class inheritance also provides a way
to organize and classify classes, since classes with the same
superclass are usually closely related.

One of the important benefits of class inheritance is that it
encourages the development of the standard protocols that
were earlier described as making polymorphism so useful. All
the subclasses of a particular class inherit its operations, so
they all share its protocol. Thus, when a programmer uses
programming-by-difference to rapidly build classes, a family
of classes with a standard protocol results automatically. Thus,
class inheritance not only supports software reuse by
programming-by-difference, it also helps develop standard
protocols.

Another benefit of class inheritance is that it allows extensions
to be made to a class while leaving the original code intact.
Thus, changes made by one programmer are less likely to
affect another. The code in the subclass defines the differences
between the classes, acting as a history of the editing
operations.

Not all object-oriented programming languages allow protocol
and inheritance to be separated. Languages like C++[Str86]
that use classes as types require that an object have the right
superclass to receive a message, not just that it have the right
protocol. Of course, languages with multiple inheritance can
solve this problem by associating a superclass with every
protocol.

2.4 Abstract Classes

Standard protocols are often represented by abstract classes
[GR83]. An abstract class never has instances, only its
subclasses have instances. The roots of class hierarchies are
usually abstract classes, while the leaf classes are never
abstract. Abstract classes usually do not define any instance
variables. However, they define methods in terms of a few
undefined methods that must be implemented by the
subclasses. For example, class Collection is abstract, and
defines a number of methods, including select:,
collect:, and inject:into:, in terms of an iteration
method, do:. Subclasses of Collection, such as Array,
Set, and Dictionary, define do: and are then able to use
the methods that they inherited from Collection. Thus,
abstract classes can be used much like program skeletons,
where the user fills in certain options and reuses the code in
the skeleton.

A class that is not abstract is concrete. In general, it is better to
inherit from an abstract class than from a concrete class. A
concrete class must provide a definition for its data
representation, and some subclasses will need a different
representation. Since an abstract class does not have to
provide a data representation, future subclasses can use any
representation without fear of conflicting with the one that
they inherited.

Creating new abstract classes is very important, but is not
easy. It is always easier to reuse a nicely packaged abstraction
than to invent it. However, the process of programming in
Smalltalk makes it easier to discover the important
abstractions. A Smalltalk programmer always tries to create
new classes by making them be subclasses of existing ones,
since this is less work than creating a class from scratch. This
often results in a class hierarchy whose top-most class is
concrete. The top of a large class hierarchy should almost
always be an abstract class, so the experienced programmer
will then try to reorganize the class hierarchy and find the
abstract class hidden in the concrete class. The result will be a
new abstract class that can be reused many times in the future.

3. Toolkits and Frameworks

One of the most important kinds of reuse is reuse of designs.
A collection of abstract classes can be used to express an
abstract design. The design of a program is usually described
in terms of the program's components and the way they
interact. For example, a compiler can be described as
consisting of a lexer, a parser, a symbol table, a type checker,
and a code generator.

An object-oriented abstract design, also called a framework,
consists of an abstract class for each major component. The
interfaces between the components of the design are defined
in terms of sets of messages. There will usually be a library of
subclasses that can be used as components in the design. A
compiler framework would probably have some concrete
symbol table classes and some classes that generate code for
common machines. In theory, code generators could be mixed
with many different parsers. However, parsers and lexers
would be closely matched. Thus, some parts of a framework
place more constraints on each other than others.

Frameworks are useful for reusing more than just mainline
application code. They can also describe the abstract designs
of library components. The ability of frameworks to allow the
extension of existing library components is one of their
principal strengths.

Frameworks are more than well written class libraries. A good
example of a set of library utility class definitions is the
Smalltalk Collection hierarchy. These classes provide ways of
manipulating collections of objects such as Arrays,
Dictionaries, Sets, Bags, and the like. In a sense,
these tools correspond to the sorts of tools one might find in
the support library for a conventional programming system.
Each component in such a library can serve as a discrete,
stand-alone, context independent part of a solution to a large
range of different problems. Such components are largely
application independent.

A framework, on the other hand, is an abstract design for a
particular kind of application, and usually consists of a
number of classes. These classes can be taken from a class
library, or can be application-specific.

Frameworks can be built on top of other frameworks by
sharing abstract classes. FOIBLE is a framework for building
“device programming" systems in Smalltalk[Eri87]. It lets the
user edit a picture consisting of a collection of interconnected
devices. These devices have computational meaning, so
editing the picture is a form of programming. FOIBLE uses
the MVC framework to implement the editor, but adds Tools
and Foibles to implement the semantics of the picture and the
visual representation of components. Thus, FOIBLE is built
on top of MVC.

Frameworks provide a way of reusing code that is resistant to
more conventional reuse attempts. Application independent
components can be reused rather easily, but reusing the edifice
that ties the components together is usually possible only by
copying and editing it. Unlike skeleton programs, which is the
conventional approach to reusing this kind of code,
frameworks make it easy to ensure the consistency of all
components under changing requirements.

Since frameworks provide for reuse at the largest granularity,
it is no surprise that a good framework is more difficult to
design than a good abstract class. Frameworks tend to be
application specific, to interlock with other frameworks by
sharing abstract classes, and to contain some abstract classes
that are specialized for the framework. Designing a
framework requires a great deal of experience and
experimentation, just like designing its component abstract
classes.

3.1 White-box vs. Black-box Frameworks

One important characteristic of a framework is that the
methods defined by the user to tailor the framework will often
be called from within the framework itself, rather than from
the user's application code. The framework often plays the
role of the main program in coordinating and sequencing
application activity. This inversion of control gives
frameworks the power to serve as extensible skeletons. The
methods supplied by the user tailor the generic algorithms
defined in the framework for a particular application.

A framework's application specific behavior is usually defined
by adding methods to subclasses of one or more of its classes.
Each method added to a subclass must abide by the internal
conventions of its superclasses. We call these white-box
frameworks because their implementation must be understood
to use them.

A good example is the MVC Controller class, which
maps user actions into messages to the application. When the
mouse moves into the region of a controller, it is sent the
startUp message, which causes the controller to be sent the
controlInitialize, controlLoop, and
controlTerminate messages, in that order. The behavior
of a controller when it is selected and deselected is changed
by redefining controlInitialize and
controlTerminate. The default behavior of controlLoop
is to repeatedly send the controller the controlActivity
message until the mouse moves out of the region of the
controller. Thus, the reaction of a controller to mouse
movement, mouse button clicks, and keyboard events is
determined by the definition of the controlActivity.

The major problem with such a framework is that every
application requires the creation of many new subclasses.
While most of these new subclasses are simple, their number

can make it difficult for a new programmer to learn the design
of an application well enough to change it.

A second problem is that a white-box framework can be
difficult to learn to use, since learning to use it is the same as
learning how it is constructed.

Another way to customize a framework is to supply it with a
set of components that provide the application specific
behavior. Each of these components will be required to
understand a particular protocol. All or most of the
components might be provided by a component library. The
interface between components can be defined by protocol, so
the user needs to understand only the external interface of the
components. Thus, this kind of a framework is called a black-
box framework.

There is a set of black-box components of MVC called the
pluggable views. These components were designed with the
realization that the majority of MVC classes that were created
were controllers with a customized menu. The pluggable
views let controllers take the menus as parameters, thus
greatly reducing the need to create new controller classes.
Most of the programming tools in the latest versions of
Smalltalk-80, such as the browser, file tool, and debugger, use
pluggable views and do not require any new user interface
classes. The method that invokes a tool will create instances
of the various components, send messages to them to
customize them for the tool, and connect them together.

Black-box frameworks like the pluggable views are easier to
learn to use than white-box frameworks, but are less flexible.
Pluggable views are usually sufficient to describe user
interfaces that display only text, but the user who wants a
more graphical user interface will have to use the original
MVC framework. Fortunately, pluggable views fit into the
MVC framework well, so the user only has to create
components to handle the graphical aspects of the interface.

A framework becomes more reusable as the relationship
between its parts is defined in terms of a protocol, instead of
using inheritance. In fact, as the design of a system becomes
better understood, black-box relationships should replace
white-box ones. Black-box relationships are an ideal towards
which a system should evolve.

4. Lifecycle

The lifecycle of a Smalltalk application is not necessarily
different from that of other programs developed using rapid
prototyping. However, the lifecycle of classes differs
markedly from that of program components in conventional
languages, since classes may be reused in many applications.

Classes usually start out being application dependent. It is
always worth-while to examine a nearly-complete project to

see if new abstract classes and frameworks can be discovered.
They can probably be reused in later projects, and their
presence in the current project will make later enhancements
much easier. Thus, creating abstract classes and frameworks is
both a way of scavenging components for later reuse and a
way of cleaning up a design. The final class hierarchy is a
description of how the system ought to have been designed,
though it may bear little relation to the original design.

There are many ways that classes can be reorganized. Big,
complex classes can be split into several smaller classes. A
common superclass can be found for a set of related classes.
Concrete superclasses can be made abstract. An white-box
framework can be converted into a black-box framework. All
these changes make classes more reusable and maintainable.

Every class hierarchy offers the possibility of becoming a
framework. Since a white-box framework is just a set of
conventions for overriding methods, there is no fine line
between a white-box framework and a simple class hierarchy.
In its simplest form, a white-box framework is a program
skeleton, and the subclasses are the additions to the skeleton.

Ideally, each framework will evolve into a black-box
framework. However, it is often hard to tell in advance how
an white-box framework will evolve into a black-box
framework, and many frameworks will not complete the
journey from skeleton to black-box frameworks during their
lifetimes.

White-box inheritance frameworks should be seen as a natural
stage in the evolution of a system. Because they are a middle
ground between a particular application and an abstract
design, white-box inheritance frameworks provide an
indispensable path along which applications may evolve. A
white-box framework will sometime be a step in the evolution
of a loose collection of methods into a discrete set of
components. At other times, a white-box framework will be a
finished product. A useful design strategy is to begin with a
white-box approach. White-box frameworks, as a result of
their internal informality, are usually relatively easy to design.
As the system evolves, the designer can then see if additional
internal structure emerges.

Finding new abstractions is difficult. In general, it seems that
an abstraction is usually discovered by generalizing from a
number of concrete examples. An experienced designer can
sometimes invent an abstract class from scratch, but only after
having implemented concrete versions for several other
projects.

This is probably unavoidable. Humans think better about
concrete examples then about abstractions. We can think well
about abstractions such as integers or parsers only because we
have a lot of experience with them. However, new
abstractions are very important. A designer should be very
happy whenever a good abstraction is found, no matter how it
was found.

5. Design methodology

The product of an object-oriented design is a list of class
definitions. Each class has a list of operations that it defines
and a list of objects with which its instances communicate. In
addition, each operation has a list of other operations that it
will invoke. A design is complete when every object that is
referenced has been defined and every operation is defined.
The design process incrementally extends an incomplete
design until it is complete.

A class should represent a well-defined abstraction, not just a
bundle of methods And variable definitions. Human
judgement is needed to decide when and how a class hierarchy
is to be reorganized. Nevertheless, the following rules will
frequently point out the need for a reorganization and suggest
how it is to be accomplished.

5.1 Rules for Finding Standard Protocols

It is very important that the design process result in standard
protocols. In other words, many of the classes should have
nearly identical external interfaces and there should be sets of
operations that many classes implement.

Standard protocols are developed by choosing names
carefully. The need for standard protocols is one reason why it
takes a long time to become an expert Smalltalk programmer.
Many of the more important protocols are described in the
Blue Book[GR83], but just as many are not documented
anywhere except in the source code. Thus, the only way to
learn these protocols is by experience.

There are a number of rules of thumb that will help develop
standard protocols. A programmer practicing these rules is
more likely to keep from giving different names to the same
operation in different classes. These rules help minimize the
number of different names and maximize the number of
names shared by a set of classes.

Rule 1 Recursion introduction.

If one class communicates with a number of other classes, its
interface to each of them should be the same. If an operation
X is implemented by performing a similar operation on the
components of the receiver, then that operation should also be
named X. Even if the name of the operation has to be changed
to add more arguments, it makes sense to make the names
similar so that readers of the program will note the
connection. The result is that a method for a message sends
that same message to other objects. If the other objects are in
the same class as the sender then the method is recursive.
Even if no real recursion exists, the method appears recursive,
so we call this rule recursion introduction.

Recursion introduction can help decide the class in which an
operation should be a method. Consider the problem of
converting a parse tree into machine language. In addition to
an object representing the parse tree, there will be an object
representing the final machine language procedure. The
\generate code" message could be sent to either object.
However, the best design is to implement the generate code
message in the parse tree class, since a parse tree will consist
of many parse nodes, and a parse node will generate machine
code for itself by recursively asking its subtrees to generate
code for themselves.

Rule 2 Eliminate case analysis.

It is almost always a mistake to explicitly check the class of an
object. Code of the form

anObject class == ThisClass

ifTrue: [anObject foo]
ifFalse: [anObject fee]

should be replaced with a message to the object whose class is
being checked. Methods will have to be created in the various
possible classes of the object to respond to the message, and
each method will contain one of the cases that is being
replaced.

Eliminating case analysis is more difficult when the cases are
accessing instance variables, but it is no less important. If
instance variables are being accessed then self will need to be
an argument to the message and more messages may need to
be defined to access the instance variables.

Rule 3 Reduce the number of arguments.

Messages with half a dozen or more arguments are hard to
read. Except for instance creation messages, a message with
this many arguments should be redefined. When a message
has a smaller number of arguments it is more likely to be
similar to some other message, thus increasing the possibility
of giving them the same name.

The number of arguments can be reduced by breaking a
message into several smaller messages or by creating a new
class that represents a group of arguments. Frequently there
will be several kinds of messages that pass the same set of
objects around. This set of objects is essentially a new object,
and the design can be changed to reflect that fact by replacing
the set of objects with an object that contains them.

Rule 4 Reduce the size of methods.

Well-designed Smalltalk methods are almost always small. It
is easier to subclass a class with small methods, since its
behavior can be changed by redefining a few small methods
instead of modifying a few large methods. A thirty line
method is large and probably needs to be broken into pieces.

Often a method in a superclass is split when a subclass is
made. Most of the inherited method is correct, but one part
needs to be changed. Instead of rewriting the entire method, it
is split into pieces and the one piece that has changed is
redefined. This change leaves the superclass even easier to
subclass.

 Figure 1

These design rules are all related, since eliminating cases
reduces the size of methods, breaking a method into pieces is
likely to reduce the number of arguments that any one method
needs, and reducing the number of arguments is likely to
create more methods with the same name.

5.2 Rules for Finding Abstract Classes

Rule 5 Class hierarchies should be deep and narrow.

A well developed class hierarchy should be several layers
deep. A class hierarchy consisting of one superclass and 27
subclasses is much too shallow. A shallow class hierarchy is
evidence that change is needed, but does not give any idea
how to make that change.

An obvious way to make a new superclass is to find some
sibling classes that implement the same message and try to
migrate the method to a common superclass. Of course, the
classes are likely to provide different methods for the
message, but it is often possible to break a method into pieces
and place some of the pieces in the superclass and some in the
subclasses. For example, displaying a view consists of
displaying its border, displaying its subviews, and displaying
its contents. The last part must be implemented by each
subclass, but the others are inherited from View.

Rule 6 The top of the class hierarchy should be abstract.

Inheritance for generalization or code sharing usually
indicates the need for a new subclass. If class B overrides a
method x that it inherits from class A then it might be better to
move the methods in A that B does inherit to C, a new
superclass of A, as shown in Figure 1. C will probably be

abstract. B can then become a subclass of C, and will not have
to redefine any methods. Instance variables or methods
defined in A that are used by B should be moved to C.

Rule 7 Minimize accesses to variables.

Since one of the main differences between abstract and
concrete classes is the presence of data representation, classes
can be made more abstract by eliminating their dependence on
their data representation. One way this can be done is to
access all variables by sending messages. The data
representation can be changed by redefining the accessing
messages.

Rule 8 Subclasses should be specializations.

There are several different ways that inheritance can be
used[HO87]. Specialization is the ideal that is usually
described, where the elements of the subclass can all be
thought of as elements of the superclass. Usually the subclass
will not redefine any of the inherited methods, but will add
new methods. For example, a two dimensional array is a
subclass of Array in which all the elements are arrays. It might
have new messages that use two indexes, instead of just one.

An important special case of specialization is making concrete
classes. Since an abstract class is not executable, making a
subclass of an abstract class is different from making a
subclass of a concrete class. The abstract class requires its
subclasses to define certain operations, so making a concrete
class is similar to filling in the blanks in a program template.
An abstract class may define some operations in an overly
general fashion, and the subclass may have to redefine them.
For example, the size operation in class Collection is
implemented by iterating over the collection and counting its
elements. Most subclasses of Collection have an instance
variable that contains the size, so size is redefined in those
subclasses to return that instance variable. There are a couple
of ways that a designer can tell whether a subclass is a
specialization of a superclass. An abstract definition is that
anywhere the superclass is used, the subclass can be used.
Thus, a subclass has a superset of the behavior of its
superclass.

5.3 Rules for Finding Frameworks

Large classes are frequently broken into several small classes
as they grow, leading to a new framework. A collection of
small classes can be easier to learn and will almost always be
easier to reuse than a single large class. A collection of class
hierarchies provides the ability to mix and match components
while a single class hierarchy does not. Thus, breaking a
compiler into a parsing phase and a code generation phase
permits a new language to be implemented by building only a
new parser, and a new machine to be supported by building
only a new code generator.

Rule 9 Split large classes.

A class is supposed to represent an abstraction. If a class has
50 to 100 methods then it must represent a complicated
abstraction. It is likely that such a class is not well defined and
probably consists of several different abstractions. Large
classes should be viewed with suspicion and held to be guilty
of poor design until proven innocent.

Rule 10 Factor implementation differences into
subcomponents.

If some subclasses implement a method one way and others
implement it another way then the implementation of that
method is independent of the superclass. It is likely that it is
not an integral part of the subclasses and should be split off
into the class of a component. Multiple inheritance can also be
used to solve this problem. However, if an algorithm or set of
methods is independent of the rest of the class then it is
cleaner to encapsulate it in a separate component.

Rule 11 Separate methods that do not communicate.

A class should almost always be split when half of its methods
access half of its instance variables and the other half of its
methods access the other half of its variables. This sometimes
occurs when there are several different ways to view objects
in the class.

For example, a complex graphical object may cache its image
as a bitmap, but the image is derived from the complex
structure of the object, which consists of a number of simple
graphical objects. When the object is asked to display itself, it
displays its cached image if it is valid. If the image is not
valid, the object recalculates the image and displays it.
However, the graphical object can also be considered a
collection of (graphical) objects that can be added or removed.
Changing the collection invalidates the image.

This graphical object could be implemented as a subclass of
bitmapped images, or it could be a subclass of Collection. A
system with multiple inheritance might make both be
superclasses. However, it is best to make both the bitmap and
the collection of graphical objects be components, since each
of them could be implemented in a number of different ways,
and none of those ways are critical to the implementation of
the graphical object. Separating the bitmap class will make it
easier to port the graphical object to a system with different
graphics primitives, and separating the collection class will
make it easier to make the graphical object be efficient even
when very large.

Rule 12 Send messages to components instead of to self.

An inheritance-based framework can be converted into a
component-based framework black box structure by replacing
overridden methods by message sends to components.
Examples of such frameworks in conventional systems are

sorting routines that take procedural parameters. Programs
should be factored in this fashion whenever possible.
Reducing the coupling between framework components so
that the framework works with any plug-compatible object
increases its cohesion and generality.
Rule 13 Reduce implicit parameter passing.

Sometimes it is hard to split a class into two parts because
methods that should go in different classes access the same
instance variable. This can happen because the instance
variable is being treated as a global variable when it should be
passed as a parameter between methods. Changing the
methods to explicitly pass the parameter will make it easier to
split the class later.

6. Conclusion

A number of factors account for the high reusability of object-
oriented components. Polymorphism increases the likelihood
that a given component will be usable in new contexts.
Inheritance promotes the emergence of standard protocols,
and allows existing components to be customized. Inheritance
also promotes the emergence of abstract classes. Frameworks
allow a collection of objects to serve as a template solution to
a class of problems. Using frameworks, algorithms and
control code, as well as individual components, can be reused.

Object-oriented techniques offer us an alternative to writing
the same programs over and over again. We may instead take
the time to craft, hone, and perfect general components, with
the knowledge that our programming environment gives us
the ability to re-exploit them. If designing such components is
a time consuming experience, it is also one that is
aesthetically satisfying. If my alternatives are to roll the same
rock up the same hill every day, or leave a legacy of polished,
tested general components as the result of my toil, I know
what my choice will be.

References

[AC84] Inc. Apple Computer. Lisa Toolkit 3.0. Apple
Computer, Cupertino, CA, 1984.
[Ale87] James H. Alexander. Paneless panes for Smalltalk
windows. In OOPSLA'87, 1987.
[BC86a] Kent Beck and Ward Cunningham. The Literate
Program Browser. Technical Report, Tektronix, 1986.
[BC86b] Kent Beck and Ward Cunningham. Using the
Diagramming Debugger. Technical Report, Tektronix, 1986.
[Boo86] Grady Booch. Software Engineering with Ada.
Benjamin/Cummings, Menlo Park, CA, 1986.
[Boo87] Grady Booch. Software Components with Ada:
Structures, Tools, and Subsystems. Benjamin/Cummings,
Menlo Park, CA, 1987.

[CB86] Ward Cunningham and Kent Beck. ScrollController
Explained: An Example of Literate Programming in
Smalltalk. Technical Report,
Tektronix, 1986.
[Dij82] Edsger W. Dijkstra. How Do We Tell Truths that
Might Hurt?, pages. Springer-Verlag, New York, NY, 1982.
[Eri87] Stewart Ericson. FOIBLE: A Framework for Object-
Oriented Interactive Box and Line Environments. Master's
thesis, University of Illinois at Urbana-Champaign, 1987.
[Fis87] Gerhard Fischer. Cognitive view of reuse and
redesign. IEEE Software, 4(4):60{72, 1987.
[Foo88] Brian Foote. Designing to Facilitate Change with
Object-Oriented Frameworks. Master's thesis, University of
Illinois at Urbana-Champaign, 1988.
[GB81] Ira P. Goldstein and Daniel G. Bobrow. PIE: An
Experimental Personal Information Environment. Technical
Report CSL-81-4, Xerox Palo Alto Research Center, 1981.
[Gol84] Adele Goldberg. Smalltalk-80: The Interactive
Programming Environment. Addison-Wesley, Reading,
Massachusetts, 1984.
[GR83] Adele Goldberg and David Robson. Smalltalk-80:
The Language and its Implementation. Addison-Wesley,
Reading, Massachusetts,1983.
[HO87] Daniel C. Halbert and Patrick D. O'Brien. Using types
and inheritance in object-oriented programs. IEEE Software,
to appear,1987.
[Joh86] Ralph E. Johnson. Type-checking Smalltalk. In
Proceedings of OOPSLA `86, pages 315{321, November
1986. printed as SIGPLAN Notices, 21(11).
[Lis87] Barbara Liskov Keynote Address. Data Abstraction
and Hierarchy. In OOPSLA `87 Addendum to the
Proceedings, pp. 17-34 October 1987 (printed as SIGPLAN
Notices 23(5)).
[LS80] Ware Meyers. Interview with Wilma Osborne. IEEE
Software 5(3): 104-105, 1988
[OBHS86] Tim O'Shea, Kent Beck, Dan Halbert, and Kurt J.
Schmucker. Panel on: the learnability of object-oriented
programming systems. In Proceedings of OOPSLA `86, ,
pages 502{504, November 1986. Printed as SIGPLAN
Notices, 21(11).
[Roc86] Roxanna Rochat. In Search of Good Smalltalk
Programming Style. Technical Report CR-86-19, Tektronix,
1986.
 [Sch86] Kurt J. Schmucker. Object-Oriented Programming
for the Macintosh. Hayden Book Company, 1986.
[Sei87] Ed Seidewitz. Object-oriented programming in
smalltalk and Ada. In Proceedings of OOPSLA `87, pages
202{213, December 1987.Printed as SIGPLAN Notices,
22(12).
[Smi87] Randall B. Smith. Experience with the alternate
reality kit: an example of the tension between literalism and
magic. In Proceedings of CHI 87, pages 61{68, April 1987.
[Str86] Bjarne Stroustrup. The C++ Programming Language.
Addison-Wesley Publishing Co., Reading, MA, 1986.

