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Abstract. Reverse firewalls (RFs) were introduced by Mironov and
Stephens-Davidowitz to address algorithm-substitution attacks (ASAs)
in which an adversary subverts the implementation of a provably-secure
cryptographic primitive to make it insecure. This concept was applied
by Dodis et al. in the context of secure key exchange (handshake phase),
where the adversary wants to exfiltrate sensitive information by using
a subverted client implementation. RFs are used as a means of “sani-
tizing” the client-side protocol in order to prevent this exfiltration. In
this paper, we propose a new security model for both the handshake and
record layers, a.k.a. secure channel. We present a signed, Diffie-Hellman
based secure channel protocol, and show how to design a provably-secure
reverse firewall for it. Our model is stronger since the adversary has a
larger surface of attacks, which makes the construction challenging. Our
construction uses classical and off-the-shelf cryptography.

1 Introduction

In 2013, Snowden revealed thousands of classified NSA documents indicating
evidence of widespread mass-surveillance. In his essay on the moral character of
cryptographic work [21], Rogaway suggests that the most important effect of the
Snowden revelations was the realization of the existence of a new kind of adver-
sary with much greater powers than ever imagined. Its goal is to enable mass-
surveillance, by eavesdropping on unsecured communications, and by negating
the protection afforded by cryptography. It has massive computational resources
at its disposal to mount conventional attacks against cryptography, and also
tries to subvert the use of cryptographic primitives by introducing backdoors
into cryptographic standards [6, 7] or, equally insidiously, by using Algorithm
Substitution Attacks (ASA). The latter class of attacks was formalised by Bel-
lare et al. [1] in the context of symmetric encryption, but actually goes back
to much earlier work on Kleptography [22]. Bellare et al. [1] envisage a scenario
where the adversary substitutes a legitimate and secure implementation of a
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protocol with one that leaks cryptographic keys to an adversary in an unde-
tectable way. Sadly, they showed that all major secure communication protocols
are vulnerable to ASAs because of their intrinsic reliance on randomness.

Reverse Firewalls (RF). Reverse Firewalls were introduced to ensure secu-
rity when a machine is malfunctioning or compromised. Mironov and Stephens-
Davidowitz [18] define 3 properties RF should satisfy: (1) security preserving :
regardless of the client’s behaviour, the RF will guarantee the same protocol
security; (2) functionality-maintaining : if the user implementation is working
correctly, the RF will not break the functionality of the underlying protocol;
and (3) exfiltration resistance: regardless of the client’s behaviour, the RF pre-
vents the client from leaking information. In the key-exchange security game of
RF, the adversary first corrupts the client by changing its code. Then, during the
communication step, there is no more “direct” exchange between them, and the
adversary has to exfiltrate information from the messages circulating between
the RF and the server.

Dodis et al. [9] described an
ASA allowing an adversary to
break the security of many au-
thenticated key exchanges (AKE).
The attack is in the spirit of [1]:
substitute an implementation of
a (provably-secure) AKE protocol
with a weaker one, in an undetected
way for the servers, then exfiltrate information to a passively observing adver-
sary, who breaks the security of the channel by using weak randomness, for
instance. Next, they introduce a RF, used by either of the two endpoints, to
prevent any exfiltration during the AKE protocol. The RF can be seen as a
special entity in charge of enforcing the protocol’s requirements (e.g., checking
signatures, adding randomness) to ensure the robustness of the exchanged keys
even for a misbehaving client implementation. Delegating all the sensitive steps
to the RF would be simpler, but goes against the strong advocated model. RF
should preserve security, not provide it, as security must hold even with a mali-
cious RF. Moreover, for practical reasons, both endpoints should still be able to
communicate even if the RF is not responding, e.g., due to too many connections.

Dodis et al.’s protocol is a simple signed Diffie-Hellman key exchange modi-
fied to accommodate an RF. They prove that their new scheme is still a secure
2-party AKE protocol in the absence of an RF, and that it additionally provides
exfiltration resistance when an RF is added even if the endpoints are corrupted.
Furthermore, the RF learns no information about the session keys established
by the endpoints. Finally, they show that the resulting AKE protocol can be
composed with a secure messaging protocol and still provide a certain degree of
exfiltration resistance for specific weak client implementations. To this end, they
rerandomize the Diffie-Hellman inputs and perform verification tasks. Since the
two parties no longer see the same tuple of DH elements due to randomization,
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the signatures cannot be made on the transcripts directly. Instead, a bilinear
pairing is cleverly used to sign a deterministic function of the transcripts.

There are many possibilities for a client implementation to become weak: (1)
server authentication can be avoided and the adversary can play the role of a ma-
licious server, (2) by using weak randomness or pre-determined “randoms”, the
adversary can predict the client’s ephemeral DH secret and recover the common
key exchange and (3) the client can skip the authenticated encryption (AEAD)
security during the record phase. We point out that for channel security, be-
cause of weakness (3), we cannot just compose a key exchange protocol secure in
this model with a secure channel without looking at the security of the channel.
There is a subtle theoretic problem in the exfiltration resistance game: since the
client knows the key, he can choose messages that depend on the key, which is
not the case in traditional encryption security games.

Other approaches. Reverse firewalls have been extended to other contexts
such as malleable smooth projective hash functions [8], and attribute-based en-
cryption [17]. While these results have no real link to our work, they show that
reverse firewalls are relatively versatile and a promising solution to ASAs. They
also superficially resemble middleboxes, which have been studied in the context
of TLS [12,19,20]. However, RF fundamentally differ from middleboxes: the for-
mer are meant to preserve the confidentiality, integrity, and authenticity of the
secure channel, while the latter break it in controlled ways.

Comparison between previous attacker model and our guarantees.
Dodis et al. [9] consider three attack scenarios. The first is the security of the
primitive in the absence of a firewall (but where the client and server honestly
follow the protocol). The second entails that the primitive should still be secure
even in the presence of a malicious firewall. The third, and most important
security notion is exfiltration resistance, where a malicious implementation of
the client tries to exfiltrate information to a network adversary able to monitor
the channel between the (honest) reverse firewall and the server.

For this last definition, the adversary also controls the server. This has three
consequences: (1) exfiltration resistance may at most be guaranteed for the hand-
shake: if the RF is not present in the basic 2-party protocol, there is no security
check at the record layer and the firewall cannot prevent a client from exfiltrat-
ing information to a malicious server at the record layer; (2) [9] have to restrict
their malicious implementations to behave in a very particular way, called func-
tionality preserving : in this model, the malicious client must generally follow
protocol, although it may use weak parameters or bypass verification steps; (3)
if, within a protocol, the client sends the first key-exchange element, then a com-
mitment phase from the server must precede that message, essentially preventing
the server from adaptively choosing a weak DH element for the key-exchange. A
more in-depth comparison is given in Appendix A.

In contrast to [9] we consider security for both the key-agreement and the
record-layer protocols. As mentioned above, this is a non-trivial extension with
respect to exfiltration resistance, since the channel keys do not imply exfiltration
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resistance at the record layer. Recall that exfiltration consists in a malicious
implementation forwarding information beyond the reverse firewall – either to
the network attacker, or to the server. Our results are proven in the presence
of a semi-honest server who follows the protocol specification. We argue that
this restriction is necessary since nothing can prevent a malicious server – not
monitored by a firewall – from forwarding all the data it receives to the adversary.
We focus on guaranteeing exfiltration resistance (in the handshake and in the
record layer) with respect to a Man-in-the-Middle situated between the firewall
and the server.

Adding RF with Exfiltration resistance at the record layer. Protecting
the record layer is more challenging than the key exchange, and means consider-
ing these two stages as a whole. Our key observation is that an RF cannot pre-
vent exfiltration at this layer if it does not know the key used for the encryption:
nothing prevents the adversary from choosing messages which, for the computed
key, leak information to the adversary. Another difficulty is that, contrary to the
key exchange which essentially involves public-key primitives (usually quite mal-
leable), the record layer relies on symmetric key primitives, much less tolerant to
modifications. Our approach differs from [9] by introducing a new functionality
preserving definition: while Dodis et al. mainly limit the adversary to using weak
randomness and avoiding server checks, we do not restrict the client’s behaviour
beyond requiring that a semi-honest server accepts the communication.

Our solution is to allow the reverse firewall to contribute to securing mes-
sages exchanged during the record layer, without compromising the end-to-end
security that the channel should provide. As in [9], the main task of our reverse
firewall is to rerandomize some elements and verify the validity of the signatures.
The main difference we introduce is that this key exchange will now generate
two keys: kcs and kcfs. The former is very similar to the one generated in [9]
and will be only known to both endpoints. It will be used to encrypt messages
at the record layer, ensuring security even against a malicious reverse firewall.
The key kcfs will be known to the endpoints, but also to the RF, allowing it to
preserve security by adding a second layer of encryption. To accomplish this, our
RF will have a public key, which was not the case in [9]. This is non-trivial in
practice: for transparency the RF must not modify the messages’ format, and
the endpoints must be oblivious to the RF’s action. Indeed, if the RF was offline
or not capable of protecting all of its clients, this must not be detectable by
a corrupt implementation. Finally, we cannot rely on standard security prop-
erties for encryption to prove our exfiltration-resistance. This is related to the
adversarial strategy of choosing messages whose ciphertexts have a distinctive
pattern. We provide more details in Section 3.3 but, intuitively, the ciphertexts
meant to be distinguished by the adversary are encryptions of messages chosen
by a corrupt implementation that knows the channel key. Using key-dependent
messages schemes [3], we design a very efficient solution based on hash functions
and MAC schemes to prevent exfiltration at the record layer.
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2 Security model and definitions

2.1 The adversary model

The adversary A is a Man-in-the-Middle, interacting with honest parties (one
client C , one server S , and sometimes a reverse firewall FW ) via instances
associated with unique labels. We assume that the client is always the initiator
of each execution, and the server is the responder. The server and the firewall
have an identity associated with a pair of private-public keys. Additionally, we
require a setup phase for the firewall, run either by the challenger if the firewall is
honest, or by the adversary if it is malicious. The Setup(1λ) algorithms takes as
input a security parameter 1λ and generates secret parameters sparam (including
the firewall’s private credentials) and public parameters pparam (including FW ).

To each instance label, there is an associated set of values: a type type in
{C ,S ,FW }, the entity of which label is an instance, a session identifier sid, and
two types of session keys, denoted kcfs and kcs, respectively. Both keys are initially
set to ⊥. An authentication-acceptance bit accept, set to ⊥ at the beginning of
the instance, which may turn to either 1 (if the authentication of the partner
succeeds) or to 0 otherwise. Only client and firewall instances have a non-⊥
accept bit (since only the server authenticates itself). A pair of revealed bits
revealedcfs and revealedcs, both initially set to 0. A corrupt bit corrupted initially
set to 0, and a test bit b drawn at random at the initialization of each new
instance label. We use the notation “label.attribute” to refer to a value attribute
associated with the instance label.

Partnering. We define partnering in terms of type and session identifiers. Two
instances, associated with labels label and label′, are partnered if and only if
label.sid = label′.sid and label.type 6= label′.type. As such, a client may be part-
nered with a server, or a server and a firewall.

The scenarios we consider are formally defined through security experiments,
in which the adversary A has access to some (or all) of the following oracles.

– NewInstance(U): on input U ∈ {C ,S ,FW }, this oracle outputs an instance
of party U labeled label. The adversary is given label.

– Send(label,m): on input an existing client/firewall/server instance label and
a message m, this oracle simulates sending m to label, adds label to a list Ls

(initialized as an empty list at the first call to this oracle) and outputs its
corresponding reply m′.

– Reveal(label, kt): on input an existing label label and a string kt ∈ {cs, cfs}
denoting the key type to reveal, this oracle adds label to a list Lkt (initialized
as an empty list at the first call to this oracle), and outputs the values stored
in label.kkt. The corresponding bit label.revealedkt is also set to 1.

– CorruptS(): this oracle yields the server’s private long-term key. Upon cor-
ruption, all client and firewall instances with label.accept 6= 1 change their
corrupted values to 1. Moreover, any client or firewall instance generated
after this CorruptS query will have corrupted initialized to 1.
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– Testkt(label): with index a string kt ∈ {cs, cfs}, on input an instance label,
this oracle first verifies that label.kkt 6= ⊥ (otherwise, it outputs ⊥). Then,
depending on the test instance it responds as follows.
• if label is a client instance, it outputs either the key stored in label.kkt (if

label.b = 1), or a randomly-chosen key of the same length (if label.b = 0);
• if label is a server or firewall instance, it returns ⊥ if it has no partnered

instance label’ of type C . Otherwise, it returns Testkt(label
′).

– TestSend(label,m): on input an instance label and a messagem, if F [label] =⊥
(F is used to keep track of the firewalls), the oracle creates an RF instance
labeled F [label]:
• if label.b = 1, this oracle acts as Send(label,m) except that it does not
update Ls;

• else, this oracle acts as Send(F [label], Send(label, Send(F [label],m))) ex-
cept that it does not update Ls (without loss of generality, we assume
that the firewall just forward the session initialization message);

This oracle adds label to a list L∗ (initialized as an empty list at the first
call to this oracle).

As we only consider unilateral authentication, Testkt is defined asymmetri-
cally, depending on which party the tested instance belongs to. Our last oracle
TestSend either sends the unmodified message m, as in a Send query, or forces
the RF to be active on this transmission. It will be used to show that the ac-
tions of our RF go unnoticed and so will only be used in the obliviousness and
transparency experiments.

Forward secrecy. Whenever CorruptS is queried, any ongoing instance label
(i.e., any instance such that label.accept 6= 1) has their corrupt bit set to 1.
However, completed, accepting instances are excluded from this and can still be
tested. This models forward secrecy. We will include the CorruptS query in all
our security definitions, thus capturing forward secrecy by default.

Reveal and State Reveal. Krawczyk and Wee [16] also consider an oracle
that reveals parts of the ephemeral state of a given party. In multi-stage AKE
protocols, revealing state is particularly interesting since it distinguishes inputs
that the keys depend on from inputs whose knowledge does not affect the security
of the channel. For simplicity we omit state reveal queries in this paper, since we
focus on exfiltration resistance and security in the presence of malicious firewalls,
for which state reveals are less interesting.

Freshness. To rule out trivial attacks, we introduce the notion of freshness,
which determines the instances that A is allowed to attack.

Definition 1 (Freshness). Let kt ∈ {cs, cfs}. An instance label is kkt-fresh if:

– label.accept = 1 (for a client or firewall instance); and label.corrupted = 0
– label.revealedkt = 0, and label′.revealedkt = 0 for any partner label′ of label;

Channel Security. Whenever the session keys are indistinguishable from ran-
dom for the attacker, one can implicitly rely on existing work on constructing
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secure channels by composition, e.g. [4, 14] to prove the security of the estab-
lished channel. However, in the case of exfiltration resistance the hypothesis does
not hold: the corrupt implementation of the client does have access to the keys.

2.2 The security of kcs

We look at the AKE security of the key kcs when the firewall is malicious as it
clearly implies security with an absent or an honest firewall. Our definition of
AKE does not demand explicit server-authentication (see [2]). Since the adver-
sary knows kcfs, the default testing mode is Testcs(·). The adversary first runs
the Setup algorithm, outputting the public parameters to the challenger (since
the server credentials are not included, the adversary does not learn them).

Definition 2 (CS-AKE security – kcs). A cs-AKE protocol Π is secure if
for all PPT adversaries A , AdvCS-AKEΠ,A (λ) = |2 · Pr[1 ← ExpCS-AKEΠ,A (λ)] − 1| is

negligible in the security parameter λ, where ExpCS-AKEΠ,A (λ) is given in Fig. 1.

ExpCS-AKEΠ,A (λ): ExpCFS-AKEΠ,A (λ):

1. (sparam, pparam)← A
Setup(·)(1λ) 1. (sparam, pparam)← Setup(·)(1λ)

2. Q← {NewInstance, Send,Reveal, 2. Q← {NewInstance, Send,Reveal,
CorruptS,Testcs(·)} CorruptS,Testcfs(·)}

3. (label, b∗)← A
Q(sparam, pparam) 3. (label, b∗)← A

Q(pparam)
4. if (label is kcs-fresh) ∧ (label.b = b∗): 4. if (label is kcfs-fresh) ∧ (label.b = b∗):
return 1 return 1

5. else: return a random bit 5. else: return a random bit

ExpExfΠ,A (λ): ExpOBL
Π,A (λ):

1. (sparam, pparam)← Setup(1λ) 1. (sparam, pparam)← A
Setup(·)(1λ)

2. (P0,P1)← A (pparam) 2. Q← {NewInstance, Send,Reveal,
3. Q← {NewInstance, Send,Reveal} CorruptS,TestSend}

4. (labelFW , b∗)← A
Q(pparam,P0,P1) 3. (label, b∗)← A

Q(sparam, pparam)
5. if (labelFW is exfiltration-fresh) ∧ 4. if (label is Send-fresh)∧ (label.b = b∗):
(labelFW .b = b∗): return 1 return 1

6. else: return a random bit 5. else: return a random bit

Fig. 1. Experiments for the CS-AKE, CFS-AKE, exfiltration and obliviousness games.

2.3 The security of kcfs

The adversary can no longer control the RF (which is able to compute kcfs) and
simply acts as a Man-in-the-Middle between the client and the firewall and/or the
firewall and the server. The adversary first runs the Setup algorithm, outputting
the parameters to the challenger. We focus on the first “layer” of keys, i.e., on
kcfs, thus, the default mode for the test oracle is Testcfs(·).

Definition 3 (AKE security – kcfs). A cfs-AKE protocol Π is kcfs-secure if
for all PPT adversaries A , AdvCFS-AKEΠ,A (λ) = |2 · Pr[1 ← ExpCFS-AKEΠ,A (λ)] − 1| is

negligible in λ, where ExpCFS-AKEΠ,A (λ) is given in Fig. 1.
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2.4 The malicious client scenario

The malicious client scenario is the core motivation behind this work. The firewall
and server are both honest, but the adversary can tamper with the client-side
implementation. The RF must guarantee the security of the session keys and
ensure exfiltrate resistance. Moreover, in our model, we require this guarantee
to hold also for record-layer transmissions.

Client-adversary interaction. We consider a Man-in-the-Middle adversary
A situated between the firewall and the server1. The attacker is assumed to
have substituted the honest client implementation for a malicious one but has
no direct or covert communication channel with the adversary.

The game starts with an honest Setup phase, then after being given the
public parameters, the adversary A creates two client programs P0,P1 using
some suitable (unspecified) encoding, and outputs them to the challenger. The
adversary will query NewInstance(FW ) to create new firewall instance(s), which
will (unbeknownst to A ) interact with one of the two client programs P0 or P1,
provided by A . In this case the firewall instance’s test bit b ∈ {0, 1} indicates
which of the two adversarial programs it interacts with.

In the malicious client scenario, the adversary interacts directly with the
server and the firewall instances through the Send queries, but only indirectly
(through the firewall) with the client programs. We note that A ’s interaction
with the server and the firewall is still arbitrary, i.e., A still actively controls
the messages sent between them. The goal of the adversary is to guess which
of the supplied client programs P0, P1 the firewall has been interacting with.
Formally, A outputs a tuple consisting of a firewall instance labelFW and a bit
d, representing its guess of labelFW .b.

Trivial attacks. It is impossible to prove this “left-or-right” exfiltration re-
sistance for arbitrary programs P0,P1: A could output a program P0 which
produces obviously illegal messages, whereas P1 emulates the protocol perfectly.
The firewall will then abort for labelFW .b = 0, but not for labelFW .b = 1, allow-
ing A to distinguish the two cases. Similarly, A can also trivially win if P0 and
P1 output messages of different lengths.

Informally, we require that the externally observable behavior of the two
programs P0, P1, i.e., whatever the reverse firewall and server do in response to
the programs’ messages, should be similarly structured: the number of messages
generated should be the same and these messages should pairwise have the same
length. However, we do not restrict the semantics of these messages. Moreover,
this restriction applies only to the programs selected for the target instance; all
other instances can behave in any way.

Formally, we consider a program P , a firewall FW , and a server S . We
denote by τ[labelFW (P )↔labelS ] the ordered transcript of messages sent between the

firewall (interacting with P) and the server. Let L =
∣

∣τ[labelFW (P )↔labelS ]

∣

∣ denote

1 Exfiltration resistance would obviously be unachievable elsewhere.

8



the length of the transcript. For i ∈ {1, . . . , L}, let τ[labelS↔labelFW (P)][i] denote

the i-th message in the transcript, and let
∣

∣τ[labelS↔labelFW (P)][i]
∣

∣ denote its length.

Definition 4 (Transcript equivalence). Two programs P0 and P1 have equiv-
alent transcripts in an execution with the firewall FW and the server S if the
following conditions hold:

1.
∣

∣τ[labelFW (P0)↔labelS ]

∣

∣ =
∣

∣τ[labelFW (P1)↔labelS ]

∣

∣.

2.
∣

∣τ[labelFW (P0)↔labelS ][i]
∣

∣ =
∣

∣τ[labelFW (P1)↔labelS ][i]
∣

∣ for each i ∈ {1, . . . , L}.

Only allowing client programs that generate equivalent transcripts rules out
the trivial attacks mentioned above. Interestingly, it is arguably much easier to
decide whether two programs have equivalent transcripts (as it is only based on
measurable quantities) than to determine if a corrupt program is “functionality-
maintaining” in the sense of [9]. It allows realistic attacks, e.g., selection of
messages whose ciphertexts have very specific features, contrarily to [9].

Some of our requirements are fullfilled by using specific cryptographic tools,
such as length-hiding authenticated encryption [13, 15] which would, for exam-
ple, make the second condition easily satisfied. Regarding the first condition,
differences in the number of exchanged messages are likely to imply an unusual
behaviour of the client (e.g., a large number of aborted connections) and so can
potentially be detected by an external security event management system.

Definition 5 (Exfiltration freshness). A firewall labelFW is exfiltration-fresh
with respect to programs P0,P1 if:

– labelFW .accept = 1; for any label, label.revealedcfs = 0;
– the programs P0 and P1 generate equivalent transcripts in their execution

with the firewall instance labelFW and its partnering server instance labelS .

Definition 6 (Exfiltration). An AKE protocol Π is exfiltration secure if for
all PPT adversaries A , AdvExfΠ,A (λ) = 2 · |Pr[1 ← ExpExfΠ,A (λ)] − 1| is negligible

in λ, where ExpExfΠ,A (λ) is given in Fig. 1.

2.5 Obliviousness

Dodis et al. take the obliviousness into account for their protocols: the client
(resp. the server) cannot distinguish 2 whether it interacts with the firewall
or the server (resp. the client). To discard trivial attacks, we define the sending
freshness. A label is sending-fresh when it is never queried in Send and its related
firewall F [label] is never an input of the Send and Reveal oracles.

Definition 7 (Sending freshness). A firewall instance label is send-fresh if
F [label] /∈ Ls ∪Lcfs and label /∈ Ls.

Definition 8 (Obliviousness). An AKE protocol Π is oblivious if for all PPT
adversaries A , AdvOBL

Π (A ) = |2Pr[ExpOBL
Π,A (λ)⇒ 1]−1| is negligible in λ, where

ExpOBL
Π,A (λ) is given in Fig. 1.

2 The related definition of transparency is given in Appendix B.
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Client (pk
FW

, pk
S
) Firewall (skFW , pk

FW
, pk

S
) Server (skS , pkS )

x, c
$
← Zp y, d, β1, β2

$
← Zp

X = gx, C = gc Y = gy, D = gd

e = EncpkFW
(c)

(X,C, e)
c = DecskFW

(e)
(X,C, e)

σ = SignskS (Y,D,Xβ1 , Cβ2)

If σ verifies:
(σ, Y,D, β1, β2) (σ, Y,D, β1, β2)

kcs ← Y x·β1 kcs ← Xy·β1

kcfs ← Dc·β2 kcfs ← Dc·β2 kcfs ← Cd·β2

Else: abort.

Fig. 2. A key agreement protocol between the client, a passive firewall, and the server.

3 Our reverse firewall

We now describe a message-transmission protocol compatible with a reverse
firewall. We consider a setting of unilateral authentication, i.e., only the server
authenticates itself, using digital signatures. As in [9], we start with a simple DH
key exchange protocol between a client and a server, modified to accommodate a
reverse firewall. In particular, the goal of this new key exchange is for the client
and the server to compute two keys: kcs known only to them, and kcfs which will
also be known to the firewall. We manage to avoid the use of pairings and only
use standard cryptographic tools (such as CPA-secure public key encryption)
along with some tricks to ensure the obliviousness of our protocol.

However, we must keep in mind that a shared key is just a tool to protect
further communication, and we thus need to explain how the RF can proceed
to preserve security of future messages sent by a corrupt client, while only hav-
ing access to kcfs. This is particularly difficult as the record-later only involves
symmetric key primitives, and moreover, other subtleties prevent us from using
more “natural” solutions.

For the sake of clarity, we use this section to describe our protocol step by
step, first presenting a key agreement with a passive firewall in Section 3.1 and
then explaining in Section 3.2 how the latter can act to preserve security even
with a corrupt client. Finally, we will consider in Section 3.3 the record-layer,
describing how the keys generated during the key agreement should be used to
prevent exfiltration at this stage.

3.1 Signed Diffie-Hellman with passive/no firewall

Setup. Before the protocol runs there is a one-time setup phase where the
reverse firewall chooses a public/private key pair (pkFW , skFW ) for some public
encryption scheme Enc, such as the one proposed by El Gamal [11], and sends
pkFW to the client.In case the client does not have a reverse firewall installed
(and hence no pkFW value), the client draws a new random element from the
key space in every protocol run and uses this as a substitute for pkFW .
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Client (pk
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) Server (skS , pkS )

x, c
$
← Zp α1, α2

$
← Zp y, d, β1, β2

$
← Zp

X = gx, C = gc Y = gy, D = gd

e = EncpkFW
(c)

(X,C, e)
c = DecskFW

(e)
If X /∈ G or C /∈ G or gc 6= C:

abort
Else: ẽ = EncpkFW

(c · α2)

X̃ = Xα1 , C̃ = Cα2
(X̃, C̃, ẽ)

σ = SignskS (Y,D, X̃β1 , C̃β2)
(σ, Y,D, β1, β2)

If (Y,D) /∈ G
2 or invalid σ: abort.

Else: γ1 = α1 · β1, γ2 = α2 · β2

If σ verifies:
(σ, Y,D, γ1, γ2)

kcs ← Y x·γ1 kcs ← X̃y·β1

kcfs ← Dc·γ2 kcfs ← Dc·γ2 kcfs ← C̃d·β2

Else: abort.

Fig. 3. An active reverse firewall for the protocol in Fig. 2, using the same notations.

The protocol. Fig. 2 depicts how the protocol runs in the presence of a pas-
sive3 firewall. The client begins by choosing two ephemeral DH shares (X,C)←
(gx, gc) in some cyclic group G generated by g, encrypting c with the firewall
public key pkFW to get e = Encpk

FW
(c), and sending (X,C, e) to the server

forwarded unmodified by the firewall. The latter decrypts e with skFW to get c.

The server in turn chooses two ephemeral DH shares (Y,D) ← (gy, gd) and
two random elements (β1, β2) from Zp, and sends these, together with a signature
of (Y,D,Xβ1 , Cβ2) to the client (the firewall just forwards this message). The
server also computes the keys kcs ← Xy·β1 and kcfs ← Cd·β2 . Provided the
signature is valid, the client computes the keys kcs ← Y x·β1 and kcfs ← Dc·β2 .
Finally, the reverse firewall computes kcfs ← Dc·β2 . The scheme is correct since
Xy = Y x = gx·y and Cd = Dc = gc·d.

Security. Intuitively, only the parties knowing x or y can recover kcs, and only
the parties knowing d or c can recover kcfs. However, the latter has no actual
use in case the RF is passive or absent. The cs-AKE security of this protocol is
implied by that of the following protocol, where we consider an active, potentially
malicious, adversary.

3.2 Signed Diffie-Hellman with an active firewall

Our next step is to construct an active RF for the signed DH protocol described
in Section 3.1. Note that the protocol in Fig. 2 is compatible with the reran-
domization proposed by Dodis et al. [9]: the RF can rerandomize the key shares
without impacting the correctness of the resulting protocol.

3 Passive here means that the RF does not modify the elements sent by the client or
the server and so does not try to prevent exfiltration.
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In Fig. 3 we describe the active RF for the protocol of Fig. 2. The RF reran-
domizes the two DH elements X and C with exponents α1 and α2, respectively,
to obtain X̃ and C̃. It also decrypts e to obtain c, and encrypts c·α2 (with its own
public key4 pkFW ) to get ẽ, before forwarding (X̃, C̃, ẽ) to the receiving endpoint.
Upon reception, the server proceeds as before. The rerandomization made by the
RF impacts the input to the server’s signature; the firewall must therefore in-
clude its random values to the subsequent response to the client: the server sends
(σ, Y,D, β1, β2), and the firewall will forward (σ, Y,D, γ1 = α1 · β1, γ2 = α2 · β2).

Apart from rerandomizing the transcript, the RF verifies that the received
elements are from the correct groups and that they are not the neutral element
of those groups. In addition, it checks the validity of the server’s signature for the
rerandomized transcript, i.e., it checks that the server signed (Y,D, X̃β1 , C̃β2).

This protocol ensures obliviousness, as stated in Theorem 4. This comes from
the fact that the transcripts of the honestly-run protocol (in Fig. 2) and the ones
from the protocol in Fig. 3 are identically distributed from the point of view of
the endpoints, and a tampered client implementation cannot distinguish whether
it is being monitored or not.

The security of this protocol (more specifically cs- and cfs-AKE security) is
formally stated in Theorem 1 and Theorem 2, for which we give proof sketches
in Section 4.

Theorem 1. The protocol given in Fig. 3 is cfs-AKE secure (Definition 3) under
the DDH assumption, and assuming Sig is EUF-CMA and Enc is IND-CPA.

AdvCFS-AKEΠ (λ) ≤ nC · nS ·
(

AdvEUF-CMA
Sig (λ) + AdvIND-CPA

Enc (λ) + AdvDDH
G (λ)

)

Theorem 2. The protocol given in Fig. 3 is cs-AKE secure (Definition 2) under
the DDH assumption, and assuming Sig is EUF-CMA.

AdvCS-AKEΠ (λ) ≤ nC · nS ·
(

AdvEUF-CMA
Sig (λ) + AdvDDH

G (λ)
)

We discuss solutions to “stack” several RFs, and to adapt our RF to a real-world
TLS-like protocol in Appendix E and Appendix F, respectively.

3.3 Record-layer firewall

Theorem 2 and Theorem 1 prove that our protocol is a secure AKE protocol,
with or without an RF. What is still missing is a proof of exfiltration resistance,
as per Definition 6. While we could prove this property directly for the protocol
when viewed as an AKE, we recall that our goal is to also cover exfiltration
resistance when the AKE is combined with a subsequent encryption scheme,
and we thus prove exfiltration resistance for the whole channel establishment
protocol (AKE + encryption scheme). We explain how our reverse firewall can
prevent exfiltration at the record-layer.

4 For transparency, the message sent by the RF must have the same format as (X,C, e).
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Client (kcfs, kcs) Firewall (kcfs) Server (kcfs, kcs)

C ← AE.Enc(kcs, ℓ, he,M, stE)

r
$
← {0, 1}λ, k1 ← H1(r||kcfs) r̃

$
← {0, 1}λ, k̃1 ← H1(r̃||kcfs)

k2 ← H2(r||kcfs), k̃2 ← H2(r̃||kcfs),

s← k1 ⊕ C, t = MACk2
(r||s)

(r, s, t)
If |s| 6= ℓ: abort
k1 ← H1(r||kcfs), k2 ← H2(r||kcfs),

C̃ ← k1 ⊕ s

s̃← k̃1 ⊕ C̃, t̃ = MACk̃2
(r̃||s̃)

(r̃, s̃, t̃)
k̃1 ← H1(r̃||kcfs)

k̃2 ← H2(r̃||kcfs)
˜̃C ← k̃1 ⊕ s̃

M̃ ← AE.Dec(kcs, he,
˜̃C, stD)

If M̃ = ⊥ or t̃ invalid:
abort

Fig. 4. An active reverse firewall for the secure transmission of a message M , using an
stLHAE scheme, whereH2 : {0, 1}∗ → {0, 1}ℓ andH2{0, 1}

∗ → K (where K is the key
set of the MAC) are hash functions modelled as random oracles in the security analysis.
The encryption/decryption states used for the inner layer is (stE, stD). A passive firewall
simply forwards (r, s, t).

Double CPA encryption fails. When the client’s implementation cannot be
trusted, the security of the encryption algorithm used at the record layer becomes
irrelevant. Even the RF cannot ensure the security of ciphertexts formed with
kcs because it does not have this key.

We cannot simply add an independent, external encryption layer, taking kcfs
as the key, known to the RF, hoping it could preserve security by first decrypting
this external layer and then re-encrypting it; even if it seems that no matter
how the client implementation behaves, the adversary would only see a valid
ciphertext generated using kcfs, which it does not know. It might therefore be
tempting to conclude that this protocol is exfiltration resistant, assuming IND-
CPA security of the encryption scheme.

However, the IND-CPA security of an encryption scheme ensures that no
adversary can decide if a given ciphertext encrypts a message m of its choice.
Our adversary is much more powerful here: the client, controlled by the adver-
sary, selects the messages to send while knowing the secret keys, which is not
allowed in the IND-CPA security game. We cannot hope to rely on such a prop-
erty. Moreover, the corrupt implementation could simply select messages whose
ciphertexts contain some specific patterns that could be used as a distinguisher.

KDM encryption fails. Allowing the adversary to select messages while know-
ing the key is reminiscent of the key-dependent message model from [3]. Such an
encryption scheme remains secure even if the adversary receives the encryption
of some messages m = f(sk), where f is chosen by the adversary and sk is the
secret key. Unfortunately, this does not exactly match our scenario: here, we
have two adversaries, one (the corrupt client) who selects the messages to be
encrypted and knows the key, and one (the adversary between the RF and the
server) who does not know the key and must distinguish the encryption of these
messages. Our model is stronger than KDM, and we therefore cannot fully rely
on this property.
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Our solution. Nonetheless, the construction proposed in [3] does provide an
answer to our problem. In our protocol, the client first encrypts the plaintext
message into a ciphertext C using a length-hiding authenticated encryption and
the secret key kcs. The client then picks r and computes C ′ = H(r‖kcfs)⊕C, which
is similar to the technique in [3]. It sends (r, C ′) to the firewall which decrypts
C ′ and re-encrypts it by computing C̃ ′ = H(r̃‖kcfs)⊕C using a fresh random r̃.
We already showed that the key kcfs is indistinguishable from random. Thus, as
long as the adversary does not guess kcfs, the value H(r̃‖kcfs) is indistinguishable
from a random one (in the random oracle model) and acts as a one-time-pad on
C. This means that C̃ ′ leaks no information to the adversary. Finally, since a
one-time-pad does not prevent malleability, we need to additionally compute a
MAC on (r̃, C̃ ′) by using a key derived from kcfs.

The resulting protocol is exfiltration resistant (which we consider to be the
most important property) as stated in Theorem 3, and is also oblivious in both
phases, as stated in Theorem 4. Proof sketches are given in Section 4 and Ap-
pendix C, respectively, with the complete proof of Theorem 3 being given in Ap-
pendix D.3.

Theorem 3. Protocol Π is exfiltration resistant (Definition 6) in the ROM un-
der the CDH, and assuming that Sig is EUF-CMA and Enc is IND-CPA.

AdvExfΠ (λ) ≤q2m/2λ + AdvIND-CPA
Enc (λ) + ns · nf · (q1 + q2) · Adv

CDG
G (λ)

+ nm · qs · Adv
EUF-CMA
MAC (λ)

Theorem 4. Protocol Π is unconditionally oblivious (Definition 8).

4 Security Proofs

We give a sketch of the proofs of Theorems 1 to 3, while the sketch of Theorem 4
is in Appendix C. Complete proofs are in Appendix D. For each security proof,
we define the sid of an instance label (either at the firewall FW or the server
S ) to be its input to the signature scheme, i.e., referring to Fig. 3, we have
sid = (Y,D, X̃β1 , C̃β2).

Proof of Theorem 1. Let A be an adversary against the CFS-AKE security
of protocol Π. In the following sequence of games, let Si denote the event that
A is successful in Game i, and let ǫi = Pr[Si] −

1
2 . Thus, Si denotes the event

that A correctly guesses the bit labelC .b of a kcfs-fresh client instance labelC .
We denote by labeliT the ith label of type T created during the experiment.

Game 0. This game is the original experiment, thus: ǫ0 = AdvCFS-AKEΠ,A (λ).
Game 1. Let nC be the number of client labels created during the experi-
ment. This game is the same as Game 0, except that the challenger picks

i
$
← {0, . . . , nC} at the beginning of the game. If A does not return (labeliC , d)

for some bit d, the challenger returns a random bit. We have ǫ0 ≤ ǫ1 · nC .
Game 2. Let nS be the number of server labels created during the exper-

iment. This game is the same as Game 1, except that the challenger picks
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j
$
← {0, . . . , nS} at the beginning of the game. If labeliC and labelj

S
are not

partners, the challenger returns a random bit. We have ǫ1 ≤ ǫ2 · nS .

Game 3. This is the same as Game 2 except that the challenger aborts, sets
abort3 = 1 and returns a random bit if:

– A makes a Send(label, (σ, Y,D, γ1, γ2)) query before A makes any query to
the oracle CorruptS,

– Send(label, init) previously output a triplet (X,C, e) such that σ is a valid
signature on (Y,D,Xγ1 , Cγ1), and

– the server did not previously output (σ, Y,D, β1, β2) for some β1 and β2.

We claim that |Pr[S2] − Pr[S3]| ≤ Pr[abort3] ≤ AdvEUF-CMA
Sign (λ). To prove this

claim, we show that, using a PPT algorithm A that, with non-negligible proba-
bility, makes a Send(label, (σ, Y,D, γ1, γ2)) query, an adversary B can efficiently
break the EUF-CMA experiment by outputting σ.

Game 4. This is the same as Game 3 except that each time the challenger
should encrypt a message c using the public key of the firewall pkFW , the chal-
lenger picks a random value and encrypts it. Enc denotes the public key encryp-
tion scheme used in our protocol.

We claim that |Pr[S3] − Pr[S4]| ≤ AdvIND-CPA
Enc (λ). To prove this claim, we

show by reduction that distinguishing Game 3 and Game 4 is equivalent to
distinguishing whether the ciphertexts c contain the valid messages or some
random values, which breaks the IND-CPA security of Enc.

Game 5. This is the same as Game 4 except the challenger replaces kcfs with
random for the client label labeliC .

We claim that |Pr[S4]−Pr[S5]| ≤ AdvDDH
G (λ). We prove this claim by reduc-

tion using an adversary B receiving a DDH challenge that it embeds into the
game it simulates for A , an adversary on Game 4. B can distinguish Game 4
from Game 5 depending on the behavior of A .

By the changes in the games, we have that the adversary’s Testcfs query will
always be answered with a random key, thus ǫ5 = 0, which concludes the proof.

Proof of Theorem 2. Let A be an adversary against the CS-AKE security of
protocol Π. We use the same notation as for Theorem 1.

Game 0, 1, 2 and 3 Game 0 is the original ExpCS-AKEΠ,A (λ) experiment. Games
1, 2 and 3 are defined as in the proof of Theorem 1, and the reductions between
them are done in a similar way.

Game 4. This is the same as Game 3 except that the challenger replaces kcs
with random for the client label labeliC .

We claim that |Pr[S3]−Pr[S4]| ≤ AdvDDH
G (λ).We prove this claim in a similar

way as for Game 4 of Theorem 1, except that B sets X = A for labeliC , Y = B
for labelj

S
, and Z for building the shared key kcs.

By the changes in the games, we have that the adversary’s Testcs query will
always be answered with a random key, thus ǫ4 = 0, which concludes the proof.
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Proof of Theorem 3. Recall that Π is the protocol that first runs the server-
authenticated AKE protocol given in Fig. 3 to obtain the keys kcs and kcfs, which
are then used in the stLHAE protocol given in Fig. 4.

Let A be an adversary against the exfiltration resistance of protocol Π. Let
P0 and P1 be the two programs output by A after the setup phase in experiment
ExpExfΠ,A (λ). We use the same notations as in the proof of Theorem 2.

Game 0. This is the original experiment, hence ǫ0 = AdvExfΠ,A (λ).

Game 1. At the ith message sent by Pb to the firewall, the challenger simu-

lates the firewall by picking a random element denoted r̃i
$
← {0, 1}λ. This game

proceeds as in Game 0, except that if the challenger picks r̃i such that there
exists j < i with r̃i = r̃j , then the challenger aborts, sets abort1 = 1, and
returns a random bit. Let qm be the number of messages sent by Pb, we have
|Pr[S0]− Pr[S1]| ≤ Pr[abort1] ≤ q2m/2λ.

Game 2. This is the same as Game 1 except that the challenger aborts, sets
abort2 = 1, and returns a random bit if A makes a Send(labelFW , (σ, Y, β1, β2))
query such that σ is a valid signature on (Y,Xβ1 , Cβ2), and a (X,C, ·) was output
by Send(labelFW , init), and the server did not previously output (σ, Y, β1, β2).
We claim that |Pr[S1]− Pr[S2]| ≤ Pr[abort2] ≤ AdvEUF−CMA

Sign (λ). We prove this
claim as in Game 3 in the proof of Theorem 1. Game 3. This is the same game as
Game 2 except that each time the challenger should encrypt a message c using
the public key of the firewall pkFW , the challenger picks a random value and
encrypts it. Enc denotes the public key encryption scheme used in our protocol.
We claim that: |Pr[S2]−Pr[S3]| ≤ AdvIND−CPA

Enc (λ) We prove this claim as in the
Game 3 in the proof of Theorem 1.

Game 4. We recall that in Game 3, each time Pb sends a message (ri, si, ti)
to the RF, the RF picks r̃i and computes k̃j,i ← Hj(r̃i‖kcfs) for j ∈ {0, 1}. We
set hi = r̃i‖kcfs. Game 4 proceeds as in Game 3, but now the challenger sets
abort4 = 1, aborts, and returns a random bit if the adversary sends one of the
hi to the random oracle that simulates H1 or H2.

We claim that |Pr[S3]−Pr[S4]| ≤ Pr[abort4] ≤ ns ·nf · (q1+ q2) ·Adv
CDH
G (λ).

where qj is the number of queries sent to the random oracle Hj , and nf (resp.
ns) is the number of firewall (resp. server) labels. To prove this, we show how to
build an algorithm B that solves the CDH problem from an efficient algorithm
A that triggers abort4 with non-negligible probability.

We note that, at this step, k2 can be viewed as a MAC key generated at
random, independently from any other element of the protocol.

Game 5. This is the same as Game 4 except that the challenger aborts, sets
abort5 = 1 and returns a random bit if A makes a Send(labelS , (r, s, t)) query
such that the server does not abort, and no Send(label, ·) query received (r, s, t)
as an answer. Let nm be the number of messages sent by the firewall during the
experiment, and qs the number of queries sent to the sending oracle.

We claim that |Pr[S4] − Pr[S5]| ≤ Pr[abort5] ≤ nm · qs · Adv
EUF−CMA
MAC (B).

To prove this claim, we show that, using an efficient algorithm A that makes
such a Send(labelS , (r, s, t)) query with non-negligible probability, an adversary
B can efficiently break the EUF-CMA experiment by outputting t.
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No value output by the firewall or by the server depends on label.b, which
means that ǫ5 = 0, and concludes the proof.

5 Conclusion and Extension

Reverse firewalls aim to limit the damage done by subverted implementations.
We revisited the original goals for this primitive in the AKE setting, as stated by
Dodis et al. [9]. To thwart much larger classes of malicious implementations, we
defined a new security model that is both less restrictive and significantly clearer
than the one of [9], based on the notion of functionality-preserving adversaries.

Based on our model, we constructed a reverse firewall for communication pro-
tocols, taking into account both their key exchange and their record layer. Our
construction resists very complex strategies by only using simple cryptographic
tools, such as hash functions or standard public key encryption. This explains
the efficiency of our solution, only adding a reasonable overhead. Moreover, our
reverse firewall is remarkably versatile, being able to handle the elements of most
recent secure communication protocols. It is therefore a truly practical solution,
illustrating the benefits of reverse firewalls in the real world. To show this, we im-
plement our reverse firewall in TLS1.3-like protocol, proving its security and we
compare with the Mint TLS1.3 implementation. The results are in Appendices F
and G.
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A Our Security Model Compared to Dodis et al.’s

Reverse firewalls must preserve, not create security. If a secure-channel estab-
lishment protocol is run honestly, it should guarantee end-to-end security, no
matter what is or isn’t between the endpoints. This requirement is taken into
account, both by Dodis et al.’s work [9] and by ours.
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The use case for reverse firewalls (RFs) is one in which the adversary has
tampered with the client implementation to exfiltrate information to a MitM
adversary. It is expected that an honest5 RF will preserve security, so the ad-
versary should not be able to distinguish a transcript involving its corrupt im-
plementation (protected by an RF) from one only involving honest parties. This
property obviously cannot hold for all tampered implementation and it is thus
necessary to place some restrictions on the adversarial behaviour. In [9], this is
done by requiring functionality-maintaining implementations, whose definition
we adapt and re-orient to fit our criteria.

Our model. Our first goal is to define a model that places fewer restrictions on
the adversarial behaviour, while making these restrictions easy to understand
and quantify, via the notion of transcript equivalence, defined in Section 2.4.

As mentioned before, our second goal is to design an RF that preserves
security for the key agreement and the record-layer protocols in this new model,
which is a non-trivial extension compared to [9], as our model is much more
permissive, allowing more realistic attacks, such as key-replacement in the record
layer or choosing key-dependent messages. To achieve this, we consider a more
general definition of the RF, allowing it to have a public key pkFW . The existence
of this public6 key is an important difference compared to [9]: the client is aware
of the existence of the RF, which does not seem to be a significant restriction
for most use-cases, such as the one of a company network. We stress that we can
retain obliviousness and transparency for our protocol, meaning that the client
cannot detect the status of the RF.

The firewall can, via its secret key, passively derive a shared secret kcfs (also
known to both endpoints) from any key agreement involving one of the clients it
protects. This key will be used to preserve the security of the record layer even
if the client is corrupt. However, since we also want to ensure privacy for the
client and the server against the RF (in case the latter is malicious), we allow the
endpoints to derive another shared key kcs (unknown to the RF), which is meant
to provide end-to-end security (even with respect to the RF). In our protocol,
one needs both keys to learn any information about the transmitted messages;
yet the strength of only one key suffices to prevent exfiltration of information
and provide security with respect to Man-in-the-Middle adversaries.

The RF is unable to break the security of the channel, yet tampered imple-
mentations cannot manage to exfiltrate information through the firewall – our
RF performs its task without being trusted. In particular, our model considers
malicious RFs and we prove that security still holds in this case, despite its
additional knowledge of kcfs. This additional key may be useful when consider-
ing more intricate key agreement protocols such as TLS 1.3, where parts of the
handshake are encrypted.

5 This requirement is necessary: we cannot ensure any relevant security property when
both the client and the RF are corrupt.

6 Actually, only the client protected by the RF needs to know this public key, so we
do not need a complex PKI infrastructure.
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Three attack scenarios. We first prove security in a context where everyone
is honest, but we also need to separately study the case of kcs, only known to the
endpoints, and of kcfs, known to the client, the firewall and the server. We also
consider the possibility of a malicious client, which again is the main motivation
of RFs. This leads to the three following scenarios:

1. Security of kcs. The adversary controls a legitimate RF, situated between two
honest endpoints, and its goal is to break the security of the channel, i.e.,
get some information on kcs. This scenario implies security without an RF,
since the adversary can simply force the latter to be passive. It shows that
the client server are still able to preserve their privacy even in the presence
of a malicious RF.

2. Security of kcfs. The protocol must ensure the security of the kcfs key estab-
lished between three honest parties following the protocol. Our adversaries
are stronger than those of Dodis et al., since they can reveal all but the
test-session keys7 and since they may choose the target instance adaptively.
In this scenario the adversary tries to get some information on kcfs.

3. Malicious client. For exfiltration resistance, the adversary provides a mali-
cious client implementation, which will then interact with the firewall and
the server. The goal of the adversary is to obtain information about the
data sent by the tampered implementation during the executions of the key
agreement and secure messaging protocol. The server is honest.

For clarity, we choose to treat each case separately. Our modelling approach
follows the models of Bellare and Rogaway [2] and Canetti and Krawczyk [5],
although we also use ideas from the multi-stage model of Dowling et al. [10].

B Transparency

While obliviousness allows the adversary to obtain auxiliary information, such as
revealed keys, transparency is solely based on the indistinguishability of messages
coming from the endpoints, and those modified by the firewall. Therefore, it is
entirely linked to the content of those messages. By definition, transparency
is a sub-goal of obliviousness: it is necessary, but not sufficient. Being able to
tell whether a message has been modified implies being able to tell whether a
firewall is involved or not. If a protocol with a reverse firewall does not achieve
transparency, i.e., if there exists an PPT adversary who can distinguish the
message originally issued by the client from a modified one with non-negligible
probability, this protocol does not achieve obliviousness.

Definition 9 (Transparency). An AKE protocol Π is transparent if for all
PPT adversaries A , AdvTRSΠ (A ) = Pr[ExpTRSΠ,A (λ)⇒ 1]− 1

2 is negligible in λ:

7 This is not the case for Dodis et al., in particular with respect to their security
against active adversaries.
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ExpTRSΠ,A (λ):

1. (sparam, pparam)← A Setup(·)(1λ)
2. Q← {NewInstance, Send,TestSend}
3. (label, d)← A Q(sparam, pparam)
4. if (label is Send-fresh) ∧ (label.b = d): return 1
5. else: return a random bit

C Proof of Theorem 4.

We will show that no adversary can distinguish a message sending by an entity
(client or server) and a message randomized by the firewall:

Client key exchange initialization: the client sends a message (gx, gc, e =
Encpkf (c)) where x and c was picked at random. The firewall sends a message

(gx
′

, gc
′

, e = Encpkf (c
′)) where where x′ = x · α1 and c′ = c · α2, such that α1

and α2 was picked at random. Since α1 and α2 perfectly randomizes x and y,
(gx, gc, e = Encpkf (c)) and (gx

′

, gc
′

, e = Encpkf (c
′)) follow the same distribution.

Server response: if the server receives (gx, gc, e = Encpkf (c)) from the client,
it sends a message (σ, Y,D, β1, β2) where β1 and β2 are randomly chosen in Zp,
and such that σ is a valid signature on (Y,D, gx·β1 , gc·β2). if the server receives
(gx

′

, gc
′

, e = Encpkf (c
′)) from the firewall, it sends a message (σ, Y,D, β1, β2)

where β1 and β2 are randomly chosen in Zp, and such that sigma is a valid

signature on (Y,D, gx
′·β1 , gc

′·β2). The firewall then returns (σ, Y,D, γ1, γ2) where
γi = αi · βi, so σ is a valid signature on (Y,D, gx·γ1 , gc·γ2), and (σ, Y,D, β1, β2)
and (σ, Y,D, γ1, γ2) follow the same distribution.

Transmission of a message: the client picks r at random an sends (r, s, t)
where s ← H1(r‖kcfs) ⊕ C, and t ← MACH1(r‖kcfs)(r‖s). The firewall picks r̃

at random an sends the message (r̃, s̃, t̃) where s̃ ← H1(r̃‖kcfs) ⊕ C, and t̃ ←
MACH1(r̃‖kcfs)(r̃‖s̃), so (r, s, t) and (r̃, s̃, t̃) follow the same distribution.

D Complete security proofs

For each security proof, we define the sid of an instance label (either at the firewall
FW or the server S ) to be its input to the signature scheme, i.e., referring to
Fig. 3, we have sid = (Y,D, X̃β1 , C̃β2).

D.1 Proof of Theorem 1

Let A be an adversary against the CFS-AKE security of protocol Π. In the
following sequence of games, let Si denote the event that A is successful in
Game i, and let ǫi = Pr[Si] −

1
2 . Thus, Si denotes the event that A correctly

guesses the bit labelC .b of a kcfs-fresh client instance labelC . We denote by labeliT
the ith label of type T created during the experiment.

Game 0. This is the original ExpCFS-AKEΠ,A (λ) experiment, thus: ǫ0 = AdvCFS-AKEΠ,A (λ).
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Game 1. Let nC be the number of client labels created during the experiment.

This game is the same as Game 0, except the challenger picks i
$
← {0, . . . , nC}

at the beginning of the game. If A does not returns (labeliC , d) for some bit d,
the challenger returns a random bit. We have: ǫ0 ≤ ǫ1 · nC .

Game 2. Let nS be the number of server labels created during the experiment.

This game is the same as Game 1, except the challenger picks j
$
← {0, . . . , nS}

at the begining of the game. If labeliC and labelj
S
are not partner, the challenger

returns a random bit. We have: ǫ1 ≤ ǫ2 · nS .

Game 3. This is the same game as Game 2 except that the challenger aborts,
sets abort3 = 1 and returns a random bit if:

– A makes a Send(label, (σ, Y,D, γ1, γ2)) query before A makes any query to
the oracle CorruptS,

– Send(label, init) previously output a triplet (X,C, e) such that σ is a valid
signature on (Y,D,Xγ1 , Cγ1), and

– the server did not previously output (σ, Y,D, β1, β2) for some β1 and β2.

Since |Pr[S2]−Pr[S3]| ≤ Pr[abort3], we claim that: Pr[abort3] ≤ AdvEUF-CMA
Sign (λ).

Proof. We show how to build a PPT adversary B such that Pr[abort3] =
AdvEUF-CMA

Sign,B (λ). B receives the verification key pkS . It perfectly simulates Game
2 for A , except it sets the public key of the server to pkS , and it calls its own
signing oracle to simulate the server’s signature. If abort3 = 1, B can then
forward A ’s forgery to its challenger, which concludes the proof of the claim.

Game 4. This is the same game as Game 3 except that each time the chal-
lenger should encrypt a message c using the public key of the firewall pkFW ,
the challenger picks a random value and encrypts it. Enc denotes the public
key encryption scheme used in our protocol. We claim that: |Pr[S3]− Pr[S4]| ≤
AdvIND-CPA

Enc (λ).

Proof. We show how to build a polynomial time algorithm B such that |Pr[S3]−
Pr[S4]| = AdvIND-CPA

Enc,B (λ). B receives the encryption public key pkFW , then it
simulates the experiment to A as in Game 3 except that:

– B sets the firewall public key as pkFW , and

– whenever B should encrypt a message c using pkFW , B picks m1
$
← Zp, sets

m0 = c and sends (m0,m1) to its challenger, which returns the ciphertext e.

At the end of the experiment, A returns (label, d). If labelFW is exfiltration-fresh
and labelFW .b = d, B returns 1, else it returns 0. Analysis: If b = 0, then B per-
fectly simulates Game 3 to the adversary A , so Pr[0 ← ExpIND-CPA

Enc,B (λ)|b = 0] =

Pr[S3]. If b = 1, then B perfectly simulates Game 4, so Pr[1← ExpIND-CPA
Enc,B (λ)|b =

1] = Pr[S4]. These two equations conclude the proof.
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Game 5. This is the same as Game 4 except that the challenger replaces kcfs with
random for the client label labeliC . We claim that: |Pr[S4]−Pr[S5]| ≤ AdvDDH

G (λ).

Proof. We show how to build a polynomial time algorithm B from A solving the
DDH problem with advantage AdvDDH

G,B (λ)|Pr[S4]−Pr[S5]|. B is given (A,B,Z)

by its challenger where A = ga, B = gb and Z is either ga·b or a random element
of G. B perfectly simulates Game 4 except for the following oracle queries.

1. Send(labeliC , init): B picks (x, c)
$
← (Zp)

2, then sets X ← gx and C ← A,
generates e← Encpk

FW
(c), and answers (X,C, e).

2. Send(labelkFW , (X,C, e)) for some index k: B picks (α1, α2, c̃)
$
← (Zp)

3, sets

X̃ ← Xα1 and C̃ ← Cα2 , generates ẽ ← Encpk
FW

(c̃) and answers with

(X̃, C̃, ẽ).

3. Send(labelj
S
, (X̂, Ĉ, ê)) such that (X̂, Ĉ, ê) = (X,C, e) or (X̂, Ĉ, ê) = (X̃, C̃, ẽ):

B picks y ← Zp and sets Y = gy and D = B, picks (β1, β2) ← (Zp)
2, signs

σ ← SignskS (Y,D, X̂β1 , Ĉβ2), and answers (σ, Y,D, β1, β2). If (X̂, Ĉ, ê) =
(X,C, e), then B computes kcfs = Zβ2 and kcs = Xy·β1 , else B computes
labelj

S
.kcfs = Zα2·β2 and labelj

S
.kcs = Xy·α1·β1

4. Send(labelkFW , (σ, Y,D, β1, β2)): B acts as in Game 3, except that it sets the
key labelkFW .kcfs as Z

γ2 . It returns (σ, Y,D, γ1, γ2).

5. Send(labeliC , (σ, Y,D, ρ1, ρ2)) where (ρ1, ρ2) = (β1, β2) or (ρ1, ρ2) = (γ1, γ2):
B acts as in Game 4 except the it sets labeliC .kcfs = Zρ2 .

At the end of the experiment, A returns label. If label = labeliC and labeliC is
kcfs-fresh and labeliC .b = b∗ then B returns 1, else 0.

Analysis: We set Z = gz. We remark that if z = a · b, then B perfectly
simulates Game 4, so Pr[1← B(A,B,Z)|z = a · b] = Pr[S4]. Else Z is a random
group element and B perfectly simulates Game 5, so Pr[1 ← B(A,B,Z)|z 6=
a · b] = Pr[S5]. This concludes the proof of the claim.

By the changes in the games, we have that the adversary’s Testcfs query will
always be answered with a random key, thus: ǫ5 = 0 which concludes the proof.

D.2 Proof of Theorem 2

Let A be an adversary against the CS-AKE security of protocol Π. In the fol-
lowing sequence of games, we use the same notation as for Theorem 1.

Game 0, 1, 2 and 3. Game 0 is the original ExpCS-AKEΠ,A (λ) experiment. Games 1,
2 and 3 are defined as in the proof of Theorem 1, and the reductions between
them are done in a similar way.

Game 4. This is the same as Game 3 except that the challenger replaces kcs with
random for the client label labeliC . We claim that: |Pr[S3]−Pr[S4]| ≤ AdvDDH

G (λ).
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Proof. We show how to build a polynomial time algorithm B from A solving
the DDH problem with advantage AdvDDH

G,B (λ) = |Pr[S3] − Pr[S4]|. B is given
(A,B,Z) by its challenger.

B perfectly simulates Game 4 except for the following oracle queries.

1. Send(labeliC , init): B randomly picks c
$
← Zp, sets X ← A, C ← gc, gener-

ates e← Encpk
FW

(c)), and answers (X,C, e).

2. Send(labelj
S
, (X̂, Ĉ, ê)): B randomly picks (β1, β2)

$
← Z

2
p and d ← Zp, sets

Y = B andD = gd, and computes σ = SignskS (Y,D, X̂β1 , Ĉβ2) and labelj
S
.kcfs =

Ĉd·β2 , answering the query with (σ, Y,D, β1, β2).
3. Send(labeliC , (σ, Y,D, ρ1, ρ2)): B acts as in Game 3, except that it sets labeliC .kcs

= Zρ1 and labelj
S
.kcs = Zρ1 .

At the end of the experiment, A returns label. If label = labeliC and labeliC
is kcs-fresh and labeliC .b = b∗ then B returns 1, else 0.

Analysis: We set A = ga, B = gb and Z = gz. We remark that if z = a · b,
then B perfectly simulates Game 3, so Pr[1 ← B(A,B,Z)|z = a · b] = Pr[S3].
Else Z is a random group element and B perfectly simulates Game 4, so Pr[1←
B(A,B,Z)|z 6= a · b] = Pr[S4]. This concludes the proof of the claim.

By the changes in the games, the adversary’s Testcs query will always be
answered with a random key, thus: ǫ4 = 0 which concludes the proof.

D.3 Proof of Theorem 3

Recall that Π is the protocol that first runs the server-authenticated AKE pro-
tocol given in Fig. 3 to obtain the keys kcs and kcfs, which is then used in the
stLHAE protocol given in Fig. 4.

Let A be an adversary against the exfiltration resistance of protocol Π. Let
P0 and P1 be the two programs output by A after the setup phase in experiment
ExpExfΠ,A (λ). We use the same notations as in the proof of Theorem 2.

Game 0. This is the original ExpExfΠ,A (λ) experiment, hence ǫ0 = AdvExfΠ,A (λ).

Game 1. At the ith message sent by Pb to the firewall, the challenger simulates

the firewall by picking a random element denoted r̃i
$
← {0, 1}λ. This game

proceeds as in Game 0, except that if the challenger picks r̃i such that there exists
j < i with r̃i = r̃j , then the challenger aborts the experiment, sets abort1 = 1
and returns a random bit. We have: |Pr[S0]− Pr[S1]| ≤ Pr[abort1].

Let qm be the number of messages sent by Pb, we have: Pr[abort1] ≤ q2m/2λ.

Game 2. This is the same game as Game 1 except that the challenger aborts,
sets abort2 = 1 and returns a random bit if:

– A makes a Send(labelFW , (σ, Y, β1, β2)) query such that σ is a valid signature
on (Y,Xβ1 , Cβ2), and a (X,C, ·) was output by Send(labelFW , init), and
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– the server did not previously output (σ, Y, β1, β2).

Since |Pr[S1]−Pr[S2]| ≤ Pr[abort2], we claim that: Pr[abort2] ≤ AdvEUF−CMA
Sign (λ).

Proof. We prove this claim as in the Game 3 in the proof of Theorem 1.

Game 3. This is the same as Game 2 except that each time the challenger should
encrypt a message c using the public key of the firewall pkFW , the challenger
picks a random value and encrypts it. Enc is the public key encryption scheme
used in our protocol. We claim that: |Pr[S2]− Pr[S3]| ≤ AdvIND−CPA

Enc (λ).

Proof. We prove this claim as in the Game 3 in the proof of Theorem 1.

Game 4. We recall that in Game 3, each time Pb sends a message (ri, si, ti) to
the firewall, the firewall picks r̃i and computes k̃j,i ← Hj(r̃i‖kcfs) for j ∈ {0, 1}.
We set hi = r̃i‖kcfs. Game 4 proceeds as in Game 3, but now the challenger
sets abort4 = 1, aborts and returns a random bit if the adversary sends one of
the hi to the random oracle that simulates H1 or H2. Since |Pr[S3]− Pr[S4]| ≤
Pr[abort4], we claim that: Pr[abort] ≤ ns · nf · (q1 + q2) · Adv

CDH
G (λ) where qj

is the number of queries sent to the random oracle Hj , and nf (resp. ns) is the
number of firewall (resp. server) labels.

Proof. We will show how to build a polynomial time algorithm B such that
Pr[abort4] ≤ ns ·nf ·(q1+q2) ·Adv

CDH
G,B(λ). B receives the CDH pair (A,B) ∈ G

2,
then B generates the firewall encryption key pair (pkFW , skFW ) and the server
signing key pair (skS , pkS ), then it runs (P0,P1) ← A (pkFW , pkS ). B picks

if
$
← {0, . . . , nf} and js

$
← {0, . . . , ns} (at this step, B tries to guess the firewall

and the server labels that will share the key kcfs sent by A to the random oracle
in the query that triggers abort4 = 1). B initializes a counter l ← 0 and an
empty list list L . B perfectly simulates Game 3 expect for the following oracle
queries (where labelit denotes the ith label of type t):

1. Send(labeliFW , init): When A queries a firewall label to initiate its first

key exchange message, B runs P labeli
FW

.b to produce a message (X,C, e). B

picks (ci, xi, θi)
$
← (Zp)

3 and computes X̃i ← gxi and ẽi ← Encpk
FW

(θi). If
i = if , it then embeds the values A from its CDH challenge by computing

C̃i ← A, else it computes Ci = gci . Finally, B returns (X̃i, C̃i, ẽi). Note that
(X̃i, C̃i, ẽi) do not depend on (X,C, e).

2. Send(labelj
S
, (X̃, C̃, ẽ)): When A queries a server label to initiate the key

exchange response message, B picks (yj , dj , βj,1, βj,2)
$
← (Zp)

4, then: if j =

js, B embeds the value B from its CDH challenge into labelj
S
’s message

by computing Djs ← B.else B computes Dj = gdj . Finally, B computes

Yj ← gyj , generates σj ← SignskS (Yj , Dj , X̃
βj,1 , C̃βj,2) and sets labelj

S
.kcs =

X̃yj ·βj,1 , and returns (σj , Yj , Dj , βj,1, βj,2).
3. Send(labeliFW , (σ, Y,D, β1, β2)): When A queries a firewall label to finalize

the key exchange, if for all j we have (σ,D) 6= (σj , Dj) then B aborts
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according to the Game 2 aborting condition. Else, if i = if and (σ,D) 6=
(σjs , Djs), B aborts with a failure. if i = if , (σ,D) = (σjs , Djs) and σ is

valid, B sets label
if
FW

.kcs = Y cif ·β2 and sets β∗ = β2. Otherwise, B acts as
in Game 3.

4. Send(labeliFW ,m): When A queries a firewall label to send a message to

the server, B runs P labeli
FW

.b to produce the message (r, s, t). B increments

l ← l + 1 and picks r̃l
$
← {0, 1}λ, then it picks k̃2,l

$
← K (we recall that

K denotes the set of MAC keys). B picks s̃l ← {0, 1}
ℓ and computes t̃l =

MACk̃2,l
(r̃l||s̃l). If i = if then B adds r̃l to the list L . B returns (r̃l, s̃l, t̃l).

We remark that (r̃l, s̃l, t̃l) do not depend on (r, s, t), and that since while
abort4 6= 1, k̃1,l acts as a one time pad on the message sent by the client, s̃l
is indistinguishable from a random bit-string, so the behavior of the firewall
is perfectly simulated for A . Moreover, each r̃l is unique (Game 1).

At the end of the experiment, if q1 + q2 = 0 then B aborts, else B picks

q∗
$
← {1, . . . , q1 + q2}. if q∗ ≤ q1, then B parses the qth∗ query sent to the

random oracle H1 by A as r||K, else, B parses the (q∗ − q1)
th query sent to

the random oracle H2 by A as r||K. If r 6∈ L then B aborts, else B computes
Z = K1/β∗ . Finally, B returns Z.

Analysis. First, we note that while A does not send a query hl = r̃l‖label
i
FW .kcfs

to the random oracle, then Game 3 is perfectly simulated. Assume that A sends

a query hl = r̃l‖label
if
FW

.kcfs such that r̃l ∈ L to the random oracle. In this

case, setting A = ga and B = gb, label
if
FW

.kcfs should be equal to (B)a·β∗ , so

label
if
FW

.kcfs
1/β∗ = ga·b, which is the correct answer of the Diffie-Hellman state-

ment (A,B). When A picks q∗, the probability that it chooses the query hl is
1/(q1 + q2). When B picks if (resp. js), the probability that B guesses the fire-
wall (resp. server) label that will use the key kcfs sent by A to the random oracle
is 1/nf (resp. 1/ns). We deduce that Pr[abort4] ≤ nf ·ns · (q1+ q2) ·Adv

CDH
G (λ),

which concludes the proof of the claim.

We note that, at this step, k2 can be viewed as a MAC key generated at
random, independently from any other element of the protocol.

Game 5. This is the same game as Game 4 except that the challenger aborts, sets
abort5 = 1 and returns a random bit if A makes a Send(labelS , (r, s, t)) query
such that the server does not abort, and no Send(label, ·) query did receive (r, s, t)
as an answer. We have |Pr[S4]−Pr[S5]| ≤ Pr[abort5]. Let nm be the number of
messages sent by the firewall during the experiment, and qs the number of queries
sent to the sending oracle. We show how to build a polynomial time adversary B

such that: Pr[abort5] ≤ nm · qs · Adv
EUF−CMA
MAC (B). B picks n

$
← {1, . . . , nm + 1}

and q
$
← {1, . . . , qs}, then it perfectly simulates Game 4 for A , except that

when B simulates the firewall on the nth message, B calls its MAC oracle on
(r̃||s̃) to compute t̃. At the qth query sent to the sending oracle, B parses the
input of the oracle as (r, s, t) and returns the message r||s and the MAC t to its
challenger. Note that a fresh MAC key is generated at each message. Assume

26



that abort5 = 1, if B guesses the query (r, s, t) that triggers abort5 = 1, and B

guesses what message corresponds to the MAC key used by the server to verify
t, then B returns a valid forgery to its challenger. We remark that the event
that the MAC key used to verify t was not previously used by the firewall is
captured by the fact that B can pick n such that n = nm + 1. We deduce that
if abort5 = 1, then B wins its experiment with probability 1/(nm · qs), which
concludes the proof of the claim.

Finally, we remark that: (1) if Game 5 does not aborts then the experiment
is exfiltration-fresh and each time the adversary sends a message (r, s, t) to the
server, this message was produced by the firewall; so the behavior of the server
does not depend on label.b, (2) none of the key exchange’s first messages (X,C, e)
outputted by the firewall depend on label.b, because X, C and e are perfectly
randomized by construction, and (3) none of the messages (r, s, t) sent by the
firewall depend on label.b, because s is masked by a one time pad.

These facts imply that no value outputted by the firewall or by the server
depends on label.b, which means that: ǫ5 = 0. This concludes the proof.

E Multiple Reverse Firewalls

Even though we have chosen to focus on scenarios involving a single firewall,
it is interesting to note that our protocol can be adapted for multiple reverse
firewalls.

Suppose there are n firewalls FW 1, . . . ,FW n between the client and the
server, with FW 1 being directly after the client and FW n directly before the
server. Each firewall FW i will add its randoms (αi

1, α
i
2) to the randomization of

X and C as they transit from the client to the server, in the same way the single
firewall does in Fig. 2 and Fig. 3, before forwarding them to FW i+1 (or the
server, if i = n). Each firewall must also forward c multiplied by all the randoms
that came before: the first firewall will encrypt c̃ = c ·α1

2 using the public key of
FW 2 (see below for a discussion on the firewalls’ public keys), then FW 2 will
encrypt ˜̃c = c̃ · α2

2 with the public key of FW 3, and so on, until FW n receives
the encryption of c · α1

2 · . . . · α
n−1
2 .

When the server answers, each FW i will multiply the server’s (potentially
rerandomized) randoms β1 and β2 with αi

1 and αi
2 before forwarding everything

to FW i−1 (or the client, if i = 0), again following the actions of the firewall in
Fig. 2 and Fig. 3.

Once the exchange is over, the client receives γj = α1
j ·. . .·α

n
j ·βj for j ∈ {1, 2}.

The transcript signed by the server is thus (Y,D,Xγ1 , Cγ2), with kcfs = Dc·γ2

and kcs = Y x·γ1 .

Firewalls’ public keys. Several design choices can be made regarding the public
keys of the firewalls.

Instinctively, one would require each firewall to have its own key pair, with
FW i always using FW i+1’s keys to encrypt its (re)randomized c. This solution,
however, implies that if one firewall, say FW i, is absent, then FW i+1 would
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receive from FW i−1 a message containing an encryption that it cannot decrypt.
Therefore, if one firewall is absent, this forces all subsequent firewalls “out” of
the session. Indeed, while the server can receive the aforementioned message
from FW i−1 and complete the exchange, no firewall FW j with j ≥ i will have
taken part in it, as they could not receive a (re)randomized c. Note that this
solution somewhat breaks the obliviousness for the firewalls8 if one is absent,
but not for the endpoints. As long as encryptions under two different keys are
indistinguishable (e.g., if we use ElGamal), we do however keep the transparency
no matter how many firewalls are missing, and the obliviousness if they are all
present.

Nevertheless, in order to mitigate the problems caused by an absent firewall
in this setting, one could imagine some sort of way to “ping” the next firewall
to know who is next: this causes us to lose obliviousness, and either requires the
client and the firewalls to know every public key, or to have a new setup every
time.

The most practical choice would be to have one common key for every firewall:
the firewalls can be in any order, absent or not; no need to redo a setup every
time; and both obliviousness and transparency are maintained.

F Real World, More Complex Protocols

In this paper, we focused on the cryptographic core of a secure-channel establish-
ment, describing how to preserve the security of a Diffie-Hellman key-exchange
protocol, and of the record layer. However, regarding the former part, one may
argue that real-world key establishment protocols are much more complex and
involve some elements that were not considered in Fig. 3. This is particularly
true for TLS 1.3, which includes several important features, such as : (1) the
session nonces; (2) signature on the session hash; (3) encryption of some key-
exchange messages (including the signature); (4) finished messages, encrypted
with the respective handshake keys.

We thus discuss how we can expand our RF to handle all of these elements,
using TLS 1.3 as a running example as well as for benchmarking our solution.
We note that our solution can also be useful for other protocols, such as TLS
1.2, which only includes a subset of the previous features. Nevertheless, to avoid
any confusion, we stress that our goal is not to design a RF for the genuine TLS
1.3, which seems elusive. Indeed, when we consider all the changes that we or [9]
had to make to the simple Diffie-Hellman key-exchange so that it can support
a reverse firewall, we do not see how we could do the same for TLS 1.3 without
adapting it. This is all the more true given that the TLS 1.3 handshake itself
contains a Diffie-Hellman key-exchange.

Therefore, our goal here is just to present a variant of TLS 1.3, conserving its
main features, that would nicely interact with a reverse firewall. In particular,

8 If FW i cannot decrypt the message, it knows that at least one of the previous
firewalls is absent.
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we first need to make the following modifications to take points (1) and (2) into
account.

Client Firewall Server

Nc
$
← {0, 1}λ Rf

$
← {0, 1}λ Ns, Rs

$
← {0, 1}λ

x, c
$
← Zp, X = gx, C = gc α1, α2

$
← Zp y, d, β1, β2

$
← Zp, Y = gy, D = gd

e = Encpkf (c)
(Nc, X,C, e)

c = Decskf (e)
If X /∈ G or C /∈ G or gc 6= C:

abort
Else: ẽ = Encpkf (c · α2)

Ñc = Nc ⊕Rf

X̃ = Xα1 , C̃ = Cα2
(Ñc, X̃, C̃, ẽ)

S1 ← (Ñc ⊕Rs)‖Ns‖Y ‖D‖X̃
β1‖C̃β2

(Ns, Rs, Y,D, β1, β2)
σ ← Signsks(S1)

If (Y,D) /∈ G
2: abort.

Else: γ1 = α1 · β1, γ2 = α2 · β2

R = Rf ⊕Rs

kcs ← H1(Y
x·γ1)

(Ns, R, Y,D, γ1, γ2)
kcs ← H1(X̃

y·β1)

kcfs ← H2(D
c·γ2) kcfs ← H2(D

c·γ2) kcfs ← H2(C̃
d·β2)

S1 ← (Nc ⊕R)‖Ns‖Y ‖D‖X
γ1‖Cγ2 S1 ← (Ñc ⊕Rs)‖Ns‖Y ‖D‖X̃

β1‖C̃β2

Compute hs, C.hs, S.hs, C.htk, Compute S.hs, S.htk, S.fk Compute hs, C.hs, S.hs, C.htk,
S.htk, C.fk, S.fk S.htk, C.fk, S.fk

Decrypt cCVf to M1
cCVf

cCVf ← AE(S.htk; Cert, σ)
If M1 6= ⊥ and Cert, σ valid: S2 ← S1‖Cert‖σ

Decrypt cCVf to M1
cCVf

S2 ← S1‖Cert‖σ FinS ← MAC(S.fk; H(S2))
If M1 6= ⊥ and Cert, σ valid: Else: abort cFinS ← AE(S.htk; FinS )

S2 ← S1‖Cert‖σ Decrypt cFinS to M2

cFinS
S3 ← S2‖FinS

Else: abort If M2 6= ⊥ and FinS valid: Compute ms,C.tk, S.tk

Decrypt cFinS to M2

cFinS
S3 ← S2‖FinS

If M2 6= ⊥ and FinS valid: Else: abort

S3 ← S2‖FinS ˜FinC ← MAC(C.fk; S3)

FinC ← MAC(C.fk; S3) c̃FinC ← AE(C.htk; ˜FinC )
Else: abort

cFinC ← AE(C.htk; FinC )
cFinC

Compute ms,C.tk, S.tk, Decrypt cFinC to M3

If M3 = ⊥ or FinC not valid:

abort
c̃FinC

Decrypt c̃FinC to M3

If M3 = ⊥ or ˜FinC not valid:
abort

Record Layer: protocol of Fig. 4 with C.tk instead of kcs
Key scheduling:

0

hsH3(S1‖kcfs)

C.hs
C.htk

C.fk

S.hs
S.htk

S.fk

0

msH4(kcs)

C.ts C.tk

S.ts S.tk

Fig. 5. A reverse firewall for a TLS 1.3-like protocol.

– The session nonces. TLS 1.3 uses session nonces Nc and Ns, which can be
used to exfiltrate arbitrary information; hence, they require randomization
by the firewall. We use the same method as for Diffie-Helman key parts
randomization: the firewall picks Rf and rerandomizes the client nonce as
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Ñc = Nc⊕Rf , then the firewall picks Rs and rerandomizes the client nonce

as Ñc ⊕Rs. The server signs Ñc ⊕Rs and its own nonce Ns in σ. The client
receives Rf ⊕Rs, which allows it to verify the signature.

– A different session hash. We adapt the session hash as in our previous con-
struction, to account for the controlled malleability induced by the firewall
in the transcript.

– Hash-based KDM encryption. We also maintain the hash-based KDM en-
cryption used at the record layer, which helps us prevent exfiltration over
the secure channel.

Addressing problems (3) and (4) is more difficult, because of the use of
symmetric-key primitives. Without the corresponding key, it indeed seems im-
possible to preserve security of the encrypted parts of the handshake. We leverage
the fact that the key exchange of Fig. 3 actually generates two keys kcs and kcfs,
the latter being known to all three parties. Using the alternative key-schedule
process described in Fig. 5, we ensure that the keys used at the encrypted steps
of the handshake will be derived from kcfs, and so will be known to the RF,
allowing it to preserve security of this part. Obviously, this provides additional
information to the RF and thus slightly modifies our trust model. We stress that
this will not provide additional information on the other parts of the protocol
due the use of another key-scheduling tree, only depending on kcs. In particular,
data exchanged at the record layer will still be protected, even against a corrupt
RF.

Efficiency. To estimate the additional performance overheads incurred our pro-
tocol, we compared ourselves to the Mint TLS 1.3 implementation 9. Our choice
of the Mint implementation (written in Go) rests on the fact that it is a minimal
TLS 1.3 implementation and is therefore well-suited to expeditious comparison.
We ran the Mint client and server test executables (included in the Mint pack-
age) to measure the timing of an initial TLS 1.3 handshake using the P256 curve,
then estimated the additional performance costs that may be added by our con-
struction. We focused on the public key operations, which are computationally
expensive, and the most likely source of significant overhead. We added a firewall
agent to the handshake, and all client, server and firewall test instances were ex-
ecuted on a MacBook Pro (64-bit architecture) running OS X 10.9.2 (13C64),
kernel version Darwin 13.1.0. We observed an execution time of a straightfor-
ward TLS 1.3 initial handshake between a client and a server to be in the region
of 70ms. In Mint, generating additional DH key shares (gx) takes about 6ms,
and the computation of DH exponentiation (gxy) takes roughly 4ms. Assuming
the use of ElGamal [11] for the encryption of c as defined in our protocol, the
additional overhead on the client agent stems from two additional creations of
new key shares, and four additional DH exponentiations (to account for ElGamal
encryption, key derivation, and the mutation of the session hash), adding an ad-
ditional 28ms to the client agent’s performance costs. On the firewall, to account
for similar additional operations, we see an incurred overhead of 34ms, due to

9 https://github.com/bifurcation/mint
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the creation of one additional key share and seven extra DH exponentiations.
On the server agent, one new key share and three additional DH exponentiations
result in 18ms of added performance cost.

In total, focusing only on the expensive public key operations, this means an
additional 80ms for the running of our protocol.

We note that Mint was not necessarily designed with performance in mind
and that modification of a performant TLS 1.3 implementation will arguably
not add significant overhead to connections, particularly in a real network where
the server may be many hops away from the client. Basic network testing puts
typical TLS 1.3 connection times between 30 ms and 130 ms and we doubt
that an optimized reverse firewall protocol would deviate significantly from this
range.

From one to many groups. Our construction is easily extendable to consider
multiple groups and cipher suites. We would have to account for this in the setup
phase, generating one public key pkf for each group supported by the firewall10.
The Client Hello would contain cipher suites and extensions, and the firewall
would have to filter these according to the standard, ensuring for instance that
no downgrade attacks are possible. This must be done for the return trip as well,
when the firewall must verify that the cipher suites and extensions chosen by
the server were picked among the legitimate alternatives forwarded by the client
through the firewall.

Our TLS-like protocol described in Fig. 5 is AKE-secure even if the firewall is
corrupted. If the firewall is honest, our protocol achieves exfiltration resistance.
Finally, it is oblivious and transparent. The security proofs follow the same
sketch as our basic protocol, and are given in Appendix G.

Theorem 5. The protocol given in Fig. 5 is cs-AKE secure (Definition 2), exfil-
tration resistant (Definition 6) and oblivious (Definition 8) in the random oracle
model under the CDH assumption, and assuming Sig is EUF-CMA secure and
Enc is IND-CPA secure.

G Security of the TLS-like protocol.

We separate the proof of Theorem 5 in the three following lemmas.

Lemma 1. The protocol given in Fig. 5 is cs-AKE secure (Definition 2) under
the DDH assumption, and assuming Sig is EUF-CMA secure.

The proof of this lemma follows the same sketch as for Theorem 2. There are
two mains differences:

– Transmission of (cCVf , cFinS ) and cFinC : these messages do not exist in our
basic protocol. However, they are ciphertexts and MACs on the transcript

10 If the malicious client tries to bypass the firewall by suggesting groups that the latter
does not support, the firewall could just end the session.
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using keys that are derived from kcfs. At each game hop, the adversary B is
able to generate this key as in the real game, so it can generates cCVf , cFinS
and cFinC as in the real game to simulate the interactions between the client,
the firewall and the server.

– σ is encrypted in cCVf . This does not impact our game hops, except for Game
3. We detail this game hop in the following.

Game 3. This is the same as Game 2 except that the challenger aborts, sets
abort3 = 1 and returns a random bit if:

– A makes a Send(label, (Ns, R, Y,D, γ1, γ2, cCVf , cFinS )) query before than A

makes any query to the oracle CorruptS,
– Send(label, init) previously outputs a triplet (Nc, X,C, e) such that σ is

a valid signature on (Nc ⊕ R)||Ns||Y ||D||X
γ1 ||Cγ2 (where (Cert, σ) is the

decryption of cCVf), and
– the server did not previously output a c′CVf that encrypts (Cert, σ).

Since |Pr[S2]−Pr[S3]| ≤ Pr[abort3], we claim that: Pr[abort3] ≤ AdvEUF-CMA
Sign (λ).

Proof. We use the same argument as for Theorem 1.

Lemma 2. The protocol given in Fig. 5 is exfiltration resistant (Definition 6)
under the CDH assumption, and assuming Sig is EUF-CMA and Enc is IND-
CPA secure.

The proof of this lemma follows the same sketch as for Theorem 2. There are
two mains differences:

– σ is encrypted in cCVf . This only has an impact on Game 2.
– Transmission of (cCVf , cFinS ) and cFinC . No impact until Game 4.

We detail these changes in the following.

Game 2. This is the same game as Game 1 except that the challenger aborts,
sets abort2 = 1 and returns a random bit if:

– A makes a Send(labelFW , (Ns, R, Y,D, γ1, γ2, cCVf , cFinS )) query such that σ
is a valid signature on (Nc ⊕R)||Ns||Y ||D||X

γ1 ||Cγ2 (where (Cert, σ) is the
decryption of cCVf), and

– the server did not previously output a c′CVf that encrypts (Cert, σ).

Since |Pr[S1]−Pr[S2]| ≤ Pr[abort2], we claim that: Pr[abort2] ≤ AdvEUF−CMA
Sign (λ).

Proof. We use the same argument as for Theorem 3.

Game 4. At the ith key exchange response, the challenger simulates the server
by choosing Di. This game proceeds as in Game 3, except that if the challenger
chooses Di such that there exists j < i with Di = Dj , then the challenger
aborts the experiment, sets abort4 = 1 and returns a random bit. We have
|Pr[S0] − Pr[S1]| ≤ Pr[abort4], let qs be the number of server labels, we get:
Pr[abort1] ≤ q2s/2

λ.
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Game 5. We recall that in Game 3, each time that Pb sends a message (ri, si, ti)
to the firewall, the firewall picks r̃i and computes k̃1,i ← H1(r̃i‖kcfs). We set
hi = r̃i‖kcfs. Moreover, at the end of each key exchange, each instance com-
putes H3(S1‖kcfs). Game 5 proceeds as in Game 4, but now the challenger sets
abort5 = 1, aborts and returns a random bit if the adversary sends one of the
hi to the random oracle that simulates H1 or H2, or one of the S1‖kcfs to the
oracle H3. Since |Pr[S4] − Pr[S5]| ≤ Pr[abort5], we claim that: Pr[abort] ≤
nf · ns · (q1 + q2 + q3) · Adv

CDH(λ) where qi is the number of queries sent to
the random oracle Hi, and nf (resp. ns) is the number of firewall (resp. server)
labels.

Proof. This proof follows the same sketch as for the game 4 of Theorem 3,
excepts for the simulations of the values (cCVf , cFinS ) and cFinC . To simulate this,
B picks a random key hs instead of hashing S1‖kcfs, then it derives it as in the
real protocol. At the end of the experiment, if q1 + q2 + q3 = 0 then B aborts,

else B picks q∗
$
← {1, . . . , q1 + q2 + q3}. if q∗ ≤ q1 + q2, then B proceeds as in

Theorem 3. Else, it parses the (q∗ − q1 − q2)
th query sent to the random oracle

H3 by A as S1||K and computes Z = K1/β∗ . Finally, B returns Z.

Analysis Assume that A sends the query S1||label
if
FW

.kcfs to the random oracle.

In this case, setting A = ga and B = gb, the key label
if
FW

.kcfs should be equal

to (Ab·β∗) = (ga·b)β∗ , so label
if
FW

.kcfs
1/β∗ = ga·b, which is the correct answer of

the Diffie-Hellman statement (A,B). When A picks q∗, the probability that it
chooses the query that triggers abort5 is 1/(q1 + q2 + q3). Moreover, when B

picks if (resp. js), the probability that B guesses the firewall (resp. server) label
that will use the key kcfs sent by A to the random oracle is 1/nf (resp. 1/ns).

We deduce that Pr[abort5] ≤ nf ·ns · (q1+ q2+ q3) ·Adv
CDH(λ), which concludes

the proof of the claim.

Game 6. This step is the same as Game 5 in the proof of Theorem 3, the
conclusion follows.

Lemma 3. The protocol given in Fig. 5 is unconditionally oblivious (Defini-
tion 8).

The proof is similar to the one of our basic protocol, except for the trans-
mission of (cCVf , cFinS ) and cFinC . First, note that the firewall just forwards
(cCVf , cFinS ) from the server to the client, so no adversary is able to distinguish
the firewall output from the server one. Secondly, the firewall re-computes cFinC
in c̃FinC from the same input as the client denoted S3.
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