
Noname manuscript No.
(will be inserted by the editor)

Designing Secure Business Processes with SecBPMN

Mattia Salnitri · Fabiano Dalpiaz ·

Paolo Giorgini

Received: date / Accepted: date

Abstract Modern information systems are increasingly large and consist of

an interplay of technical components and social actors (humans and organi-

zations). Such interplay threatens the security of the overall system, and calls

for verification techniques that enable determining compliance with security

policies. Existing verification frameworks either have a limited expressiveness

that inhibits the specification of real-world requirements, or rely on formal lan-

guages that are difficult to use for most analysts. In this paper, we overcome

the limitations of existing approaches by presenting the SecBPMN framework.

Our proposal includes: (1) the SecBPMN-ml modeling language, a security-

oriented extension of BPMN for specifying composite information systems; (2)

M. Salnitri

Department of Information Engineering and Computer Science,

University of Trento, Italy

E-mail: mattia.salnitri@unitn.it

F. Dalpiaz

Department of Information and Computing Sciences,

Utrecht University, the Netherlands

P. Giorgini

Department of Information Engineering and Computer Science,

University of Trento, Italy



2 Mattia Salnitri et al.

the SecBPMN-Q query language for representing security policies; and (3) a

query engine that enables checking SecBPMN-Q policies against SecBPMN-ml

specifications. We evaluate our approach by studying its understandability and

perceived complexity with experts, running scalability analysis of the query

engine, and through an application to a large case study concerning air traffic

management.

Keywords Information systems · Security policies · BPMN · Compliance

1 Introduction

Information systems are becoming increasingly large, complex, and decentral-

ized. Air Traffic Management (ATM) systems, smart grids, and smart cities

are not just monolithic software systems, but rather they are socio-technical

systems [10, 54] that consist of multiple autonomous, heterogeneous, and mu-

tually interdependent social (humans, organizations) and technical (software,

embedded systems, etc.) components. Humans are an essential part of socio-

technical systems; they constitute, along with the organizations they shape,

the social part of such systems, through the creation of a complex network of

social dependencies.

The complexity of these systems and their blending with society calls for

new design techniques, for their crashes entail severe effects in the broader

societal context where the systems operate [54]. Furthermore, due to the large

amount of private and confidential information that they manage, their de-

sign shall treat information assurance and security as primary concern that is

analyzed from both a social/organizational and a technical perspective [44].

Business process models are an adequate design abstraction to support the

design of socio-technical systems, for they enable specifying the interactions be-

tween humans, organizations, and technical systems. However, two challenges

shall be addressed to effectively use business process models in the design of

secure socio-technical systems: (i) including explicit primitives for modeling se-



SecBPMN 3

curity aspects, and (ii) developing automated verification techniques to check

the compliance of a business process model with certain security policies.

To overcome the security modeling challenge, languages have been pro-

posed that extend BPMN (Business Process Modelling and Notation) [39]—

the de-facto standard for representing business processes—with security an-

notations that constrain individual BPMN elements [44, 59]. However, these

annotations do not support specifying security policies about the admissible

behavior of the whole process. Some other BPMN extensions employ a prede-

fined set of policies—BPMN patterns which specify the desirable behavior—

but they do not allow the definition of custom security policies [7, 35].

Concerning the verification challenge, existing techniques suffer from two

main limitations: (i) they focus on general-purpose policies and provide no

explicit support to security policies [2, 18, 31, 45], thereby relying on a too

generic vocabulary; and (ii) they include a too limited set of policy types,

mainly concerning access control [34, 35, 44], thereby covering a little part of

the information security spectrum.

In this paper, we address both challenges through SecBPMN, a framework

for modeling and verifying the compliance of a business process model with

security policies. We take BPMN-Query (BPMN-Q) [2]—a query language

that enables expressing and verifying generic queries over a BPMN model—as

our baseline. We extend BPMN-Q with a number of annotations for expressing

security policies. Our contributions are as follows:

1. The SecBPMN-modeling language (SecBPMN-ml) extends BPMN with

annotations to express security aspects in a business process model.

2. The SecBPMN-Query (SecBPMN-Q) language, an extension of BPMN-Q

for specifying security policies as queries.

3. A software toolset for modeling in SecBPMN-ml, specifying security poli-

cies in SecBPMN-Q, and checking for compliance of SecBPMN-Q queries

against SecBPMN-ml diagrams.



4 Mattia Salnitri et al.

4. An evaluation of the SecBPMN framework that includes (i) a study of

the understandability and perceived complexity with expert modelers; (ii)

a scalability analysis of the compliance verification engine; and (iii) an

application to a large-scale case study in the ATM domain.

This paper extends our previous work [48] with the following: (i) we present

a process to support analysts in using SecBPMN; (ii) we conduct a study with

expert modelers about understandability and perceived complexity; (iii) we

run experiments to analyze the scalability of our verification engine; (iv) we

provide an extended description of the related works.

The research conducted for the original paper and for this extension fol-

lows the six steps proposed in the Design Science Research Methodology

(DSRM) [42]: (i) problem identification and motivation, we identified the need

of representing security aspects in business processes, and we looked for exist-

ing solution in the existing literature; (ii) definition the objectives for a solu-

tion, we determined the best solution that an adequate solution is a framework

that enables modeling business processes with security aspects, representing

security policies and verifying the latter against the former; (iii) design and

development, we identified BPMN as our baseline modeling language, the set

of concepts to be added and how to extend BPMN; (iv) demonstration, by

applying it to a case study, we show the validity of the solution we created;

(v) evaluation, we conducted an online survey with experts and ran a set of

scalability tests; (vi) communication, through the publication of the original

paper [48], the present extension, and technical reports available on [52].

The rest of the paper is structured as follows. Section 2 describes our base-

line. Sections 3 and 4 introduce SecBPMN-ml and SecBPMN-Q, respectively.

Section 5 presents our proposed process for using the SecBPMN framework.

Section 6 reports on our evaluation, while Section 7 discusses related works.

Finally, Section 8 presents our conclusions and outlines future directions.



SecBPMN 5

2 Baseline

In this section, we introduce the baseline of our research: the BPMN-Q lan-

guage for querying business process models, and the RMIAS security reference

model that constitutes a comprehensive high-level ontology of security.

While BPMN is adequate for expressing the interactions among the com-

ponents in a complex socio-technical system, it does not natively support the

verification of compliance with certain security properties that should hold in

the model. For example, when modeling the landing procedure in ATM, one

may want to verify that in the process it is always the case that pilots will

confirm the landing trajectory of the plane.

Visual analysis of BPMN models works only for small scenarios, but it

becomes ineffective when many models exist, or when they are as large as

hundreds of elements. Moreover, when safety and security properties are at

stake, relying on an informal analysis is not an option, due to the harmful

effects of adopting a model that violates them.

BPMN-Q is a diagrammatic query language which partially overcomes

this limitation, by expressing properties concerning business process models

through graphical queries that can be checked against a BPMN model [3].

These queries can be seen as patterns that a given BPMNmodel should comply

with. BPMN-Q introduces relations that are functional to define the queries,

i.e., the concepts of path, negative path and negative flow.

Figure 1 shows an example of a BPMN-Q query, using the SWIM ATM

case study1 that we use throughout this paper. The query enables checking

whether the flight plan (Reference Business Trajectory or simply RBT) is ap-

proved and if the landing documents are checked at least once. The query

will match against any business process model which: (i) contains an activity

labeled “Plane RBT generation service” and such activity generates the data

object “RBT [Proposed]” (the text within brackets denotes the state of the

1 The System Wide Information Management (SWIM) [15] is a next-generation commu-

nication system for the secure exchange of information among ATM decision makers.



6 Mattia Salnitri et al.

data object); (ii) contains a path, i.e., a sequence of BPMN elements connected

through a control flow, that connects the first activity to a parallel gateway;

(iii) contains a path that connects the gateway to “Control Tower communica-

tion service” that generates the data object “RBT [Accepted]”; (iv) contains

another path that connects the gateways to an activity with any label (“@Y”)

that reads the data object “Landing documents [Approved]”.

Plane RBT 

generation 

service

@Y

RBT

[Proposed]
Control Tower 

communication 

service

RBT

[Accepted]

Landing 

documents

[Approved]

//

//

//

Fig. 1 A BPMN-Q query for the SWIM ATM case study

BPMN-Q enables expressing generic properties over BPMN elements, but

does not provide any explicit modeling primitive for specifying security prop-

erties. We intend to overcome this limitation by defining security annotations

that adhere with a state-of-the-art reference model for information security.

A prominent family of reference models relies on the Confidentiality In-

tegrity Availability (CIA) triad [40]. However, their adequacy has been ques-

tioned for they characterize a too limited set of properties of a system [41].

Richer models exist, such as McCumber’s cube [33], which conceives system

security from three perspectives: information states, critical information char-

acteristics, and security measures. The Business Model for Information Secu-

rity (BMIS) [22] addresses four interconnected elements: organization design

and strategy, people, process, and technology.

In our work, we choose the Reference Model on Information Assurance and

Security (RMIAS) [8], which was assembled through an analysis and classifica-

tion of security aspects proposed by the most known reference models on infor-

mation assurance and security. As far as our knowledge goes, RMIAS proposes

the most comprehensive set of security aspects, for it aggregates and classifies

security aspects proposed in the most reknown reference models on security



SecBPMN 7

and information assurance, such as the Confidentiality-Integrity-Availability

(CIA) triad and BMIS [22]. The security aspects proposed in RMIAS are listed

in Table 1.

Table 1 Security aspects covered by the RMIAS reference model [8]

Name Definition

Accountability
An ability of a system to hold users responsible for their actions

(e.g. misuse of information).

Auditability

An ability of a system to conduct persistent, non-by passable

monitoring of all actions performed by humans or machines

within the system.

Authenticity
An ability of a system to verify identity and establish trust in a

third party and in information it provides.

Availability
A system should ensure that all system’s components are avail-

able and operational when they are required by authorised users.

Confidentiality
A system should ensure that only authorised users access infor-

mation.

Integrity
A system should ensure completeness, accuracy and absence of

unauthorised modifications in all its components.

Non-

Repudiation

The ability of a system to prove (with legal validity)

occurrence/non-occurrence of an event or participation/non-

participation of a party in an event.

Privacy

A system should obey privacy legislation and it should enable

individuals to control, where feasible, their personal information

(user-involvement).

3 SecBPMN-ml: a modeling language for secure business processes

We extend BPMN with security annotations to cover each of the security

aspects in the RMIAS reference model (Table 1). Every annotation has a

graphical syntax and has to be linked with an existing element of a BPMN

model: an activity, a data object, or a message flow. Moreover, annotations

have attributes that are used to specify detailed information on the security



8 Mattia Salnitri et al.

mechanisms2 that enforce the policy. Attributes are optional except for the

one linking the annotation with a BPMN element.

More precisely, SecBPMN-ml extends the subset of BPMN that serves for

specifying orchestrations, which enables expressing interactions among infor-

mation system components: activities, gateways and data objects. Each secu-

rity annotation is formalized in terms of one or more predicates, one for every

type of BPMN element that the annotation can be linked with.

We designed the graphical syntax of the primitives following Moody’s

guidelines for increasing the usability and comprehensibility of modeling lan-

guages [36]. Moody classifies the visual differences between graphical elements

of modeling languages in 8 visual variables: horizontal and vertical position,

shape, size, color, brightness, orientation and texture. Graphical elements that

represent similar concepts should share as many variables as possible, while

they should be easily distinguishable among themselves, i.e. they have at least

one visual variable not in common.

Security annotations share three common visual variables: they all have an

orange fill color, a solid texture, and a circular shape; they differ for the icon

in the middle of the circle. Every security annotation has a visual distance of

three from non-security annotations, i.e., they can be easily recognized from

other elements of the modeling language, and a visual distance of one from

other security annotations.

We decided to use icons instead of abstract symbols because icons are

deemed as easier to remember and faster to recognize [36]. For example, the

icon for the availability security annotation is a clock face, which should re-

call the concept of “time” and, therefore, should be easily linked to the def-

inition of availability security concepts (see Table 1). Leitner et al. [26–28]

conducted empirical studies to propose guidelines for representing a set of se-

curity aspects. We did not apply these suggestions because they conflict with

the recommendation by the security experts that helped us define the security

2 The low level (software and hardware) functions that implement the controls imposed

by the policy [50]



SecBPMN 9

annotations and, moreover, the set of security aspects Leitner et al. took into

account covers only partially the security aspects proposed in RMIAS.

Figure 2 shows a model in SecBPMN-ml of the negotiation process for the

RBT between a control tower and the pilots of a flight. This process heavily

relies on the human participants of the socio-technical system, since most tasks

are human-conducted activities.

Constraints of the software tool we developed (available online on [52])

impose to deviate from BPMN 1.1 specifications: SecBPMN allows the speci-

fication of only one business process for each diagram. Therefore, subsequent

activities executed by different participants, for instance two activities that

exchange a message, must be connected with a sequence flow. For example, in

Figure 2 Create report and Examine results are linked with a control flow, i.e.

they are part of the same business process, even if the former is executed by

co-pilot and the latter by Control tower.

The security annotations specify the security aspects that the implemented

services and human activities will comply with. The annotations are defined

in Table 2 and explained below. Security annotations can be associated only

with tasks, data objects and message flows.

In particular, security annotations cannot be linked to events, which rep-

resent changes in the environment of a socio-technical system. Events could

be associated with two security annotations: auditability and non-repudiation.

The former is equivalent to modeling an event in SecBPMN-ml, for its pres-

ence in a model implies its monitoring. For what concerns the latter security

annotation, an event in BPMN 1.1 is “something that happens during the

course of a business process”. If an event is external, i.e. not generated by the

business process, then its existence is publicly available, and there is no need

of a proof of its existence. Instead, if an event is internal, i.e. it is generated as

consequence of an internal action, then the non-repudiation shall be applied

to the action that generated the event.

Accountability. It applies only to activities—thus, only one corresponding

predicate called AccountabilityAct exists—, and expresses the need of mon-



10 Mattia Salnitri et al.

Select 

destination

Approve 

destination

Select 

intermediate 

stops

Approve 

intermediate 

stops

Create RBT 

proposal

Check 

coherency

Check 

authorizations

Check 

collisions

Examine 

results

Refine RBT

Examine 

RBT

Accept RBT

Upload RBT

Create 

report

RBT 

proposal
RBT

RBT 

valid?

Yes

No

RBT 

accepted?

Yes

No

P
ilo

ts
C

o
n
tr

o
l 
to

w
e
r

C
o
-p

ilo
t

C
a
p
ta

in

Legend

Task Start

End

Control flow

Data flow
Data object

Report

Association

P
o
o

l

Pool and swimlane

Inclusive gateway

Exclusive gateway

L
a

n
e

Fig. 2 Example of a SecBPMN-ml business process model

itoring a set of users when executing the activity. The predicate has three

parameters: the activity a that is being monitored, a set of security mecha-

nisms enfBy used to enforce accountability for the activity, and the set of users

monitored which are monitored.

If the activity is executed by a user that is not in monitored, the security

property is satisfied without using the enforcement mechanism. This situation



SecBPMN 11

Table 2 Security annotations in SecBPMN: predicates and their graphical syntax

AccountabilityAct (a: Activity, enfBy: {SecMechanisms}, monitored: {Users})

AuditabilityAct (a: Activity, enfBy: {SecMechanisms}, frequency: Time)

AuditabilityDO (do: DataObject, enfBy: {SecMechanisms}, frequency: Time)

AuditabilityMF (mf: MessageFlow, enfBy: {SecMechanisms}, frequency: Time)

AuthenticityAct (a: Activity, enfBy: {SecMechanisms}, ident: Bool, auth: Bool,

trustValue: Float)

AuthenticityDO (do: DataObject, enfBy: {SecMechanisms})

AvailabilityAct (a: Activity, enfBy: {SecMechanisms}, level: Float)

AvailabilityDO (do: DataObject, enfBy: {SecMechanisms}, authUsers: {Users},

level: Float)

AvailabilityMF (mf: MessageFlow, enfBy: {SecMechanisms}, level: Float)

ConfidentialityDO (do: DataObject, enfBy: {SecMechanisms}, readers: {Users},

writers: {Users})

ConfidentialityMF (mf: MessageFlow, enfBy: {SecMechanisms}, readers: {Users},

writers: {Users})

IntegrityAct (a: Activity, enfBy: {SecMechanisms}, personnel: Bool,

hardware: Bool, software: Bool)

IntegrityDO (do: DataObject, enfBy: {SecMechanisms})

IntegrityMF (mf: MessageFlow, enfBy: {SecMechanisms})

NonRepudAct (a: Activity, enfBy: {SecMechanisms}, execution: Bool)

NonRepudMF (mf: MessageFlow, enfBy: {SecMechanisms}, execution: Bool

PrivacyAct (a: Activity, enfBy: {SecMechanisms}, sensitiveInfo: {Info})

PrivacyDO (do: DataObject, enfBy: {SecMechanisms}, sensitiveInfo: {Info})

would typically occur with trusted users that do not need to be monitored.

Security designers can specify the keyword ALL in monitored, to indicate that

all users are held for their actions.

Consider, for example, the predicate AccountabilityAct(“Approve destina-

tion”, {RBAC}, {juniorPilots}), which details one of the accountability security

annotations in Figure 2. The first attribute details the activity linked with the



12 Mattia Salnitri et al.

security annotation, the second one indicates that RBAC (Role-Based Access

Control) [16] will be used to enforce accountability, while the third one specifies

that only junior pilots have to be monitored while executing that activity.

Auditability. This security annotation comes in three variants, expressing

different types of auditability in a business process: (i) AuditabilityAct indi-

cates that it should be possible to keep track of all the actions performed by

the executor of the activity a when trying to execute that activity; (ii) Au-

ditabilityDO indicates that it should be possible to keep track of all the actions

(e.g., write, read, store) concerning a data object do; (iii) AuditabilityMF in-

dicates that it should be possible to keep track of all the actions executed to

handle the communication (send/receive actions) within a message flow mf.

The predicates share two parameters: enfBy to express the set of security

mechanisms to be used, and frequency to specify how often the security checks

are performed. If frequency is set to zero, continuous verification is required.

For instance, consider the predicate AuditabilityAct(“Approve destination”,

{}, 10d), which formalizes one of the auditability annotations in Figure 2. It

applies to activity Approve destination, does not require a specific technology

for checking auditability, and requires audits to be performed every 10 days.

Authenticity. It comes in two versions, depending on which BPMN elements

the annotation applies to. AuthenticityAct imposes that the identity and/or

authenticity of the users of activity a are verified. The attribute enfBy is the

set of security mechanisms to be used, while trustValue is the minimum level

of trust [23] the executor of activity a must have. If attribute ident is true,

anonymous users should not take part in the execution of the activity, while

if auth is set to true, the identity of users should be verified. AuthenticityDo

indicates that it should be possible to prove the data object do is genuine: the

fact that do was not modified by unauthorized parties, and it contained proofs

of the identity of the entities who generated and/or modified it.

For example, consider the predicate AuthenticityDO (“RBT”, {TLS, X.509}),

which formalizes an authenticity security annotation in Figure 2. The predi-



SecBPMN 13

cate specifies that the integrity of RBT data object should be guaranteed using

TLS (Transport Security Layer) and X.509 security mechanisms.

Availability. It applies to three BPMN elements, hence we defined three

different versions: (i) AvailabilityAct specifies that the activity a should be

ready for execution whenever the activity is encountered in the control flow of

the business process; (ii) AvailabilityDO specifies that the data object do should

be available when required by the authorized users specified in the attribute

authUsers; (iii) AvaliabilityMF specifies that it should always be possible to

communicate through the message flow mf.

The predicates share two parameters: enfBy, described above, and level,

i.e., the minimum time percentage that the resource (i.e., activity, data object

or message flow, depending on the variant of availability annotation) should

be available. In AvailabilityDO, security designers can specify that all users are

authorized to request the data object, simply specifying the keyword ALL in

the attribute authUsers.

For instance, the predicate AvailabilityAct(“Check coherency”, {SAVE}, 99.5)

specifies that Check coherency has to process at least 99.5% of the total re-

quests, using the SAVE (Source Address Validity Enforcement) [29] protocol

to prevent denial of service attacks.

Confidentiality. It has two variants: ConfidentialityDO specifies that the data

object do can be accessed only by authorized users, and ConfidentialityMF

specifies that only authorized users can use (i.e., send or receive through)

the message flow mf. Both predicates share three parameters: enfBy, already

described; readers, i.e., the set of users that are authorized to read the data

object (or receive from the message flow); writers, i.e., the set of users that are

authorized to write the data object do (or send through the message flow). The

attributes readers and writers allow the usage of the keyword ALL to specify

that all the users are authorized.

For example, consider the predicate ConfidentialityMF (mf(“Refine RBT”,

“Examine RBT”), {TLS, RBAC}, {towerControl, controlAuthority, RBTOwner},



14 Mattia Salnitri et al.

{towerControl, RBTOwner}), which details one of the confidentiality annota-

tions in Figure 2. It specifies that only the users controlTower, controlAuthority

and RBTOwner can receive from the message flow between Refine RBT and

Examine RBT, and only RBTOwner and controlTower can send data objects

through that channel. This security annotation must be enforced using both

TLS and RBAC security mechanisms.

Integrity. It comes in three variants: (i) IntegrityAct specifies that the func-

tionalities of activity a should be protected from intentional corruption. At-

tributes personnel, hardware and software determine which entities—involved

in the execution of the a—are protected from intentional corruption [17]; (ii)

IntegrityDO specifies that the data object do should be protected from in-

tentional corruption; (iii) IntegrityMF specifies that every message exchanged

through mf should be protected from intentional corruption. All the predicates

share the attribute enfBy.

For instance, the predicate IntegrityAct(“Check collisions”, {} , false, true,

true) specifies one of the integrity annotations in Figure 2. It indicates that soft-

ware and hardware used to execute Check collisions will be protected from in-

tentional corruption, e.g., unauthorized modifications of the software or hard-

ware robbery.

Non-Repudiation. It comes in two variants, depending on the element it

applies to: NonRepudiationAct and NonRepudiationMF. The former indicates

that the execution (or non-execution) of activity a should be provable, while

the latter specifies that the usage (or non-usage) of the message flow mf should

be verifiable. Both predicates share two attributes: enfBy, already described

before, and execution. The latter specifies that: (i) a proof of execution of ac-

tivity a or a proof of usage of the communication channel mf shall be provided,

if set to true; (ii) a proof of non-execution for a or a proof of non-usage for mf

shall be provided, if set to false.

For example, the predicate NonRepudiationAct(“Create RBT proposal”, {},

false) defines one of the non-repudiation annotations in Figure 2. It specifies



SecBPMN 15

that it should be possible to prove that Create RBT proposal has never been

executed. There are no constraints on the security mechanisms that have to

be implemented because the parameter is an empty set.

Privacy. It has two variants: (i) privacyACT specifies that activity a should

be compliant with privacy legislation, and it should let users to control their

own data; (ii) privacyDO is similar to the former one, but is targeted to a

specific data object do. Both predicates share two parameters: enfBy, already

described, and sensitiveInfo, i.e., the set of sensitive information to protect.

For example, consider the predicate PrivacyDO(“Report”, {} , {name, sur-

name, dateOfBirth}), which refines one of the privacy annotations in Figure 2.

It specifies that, if the content of Report is published, name, surname and date

of birth information shall be anonymized as required by law, e.g., only partial

information can be published.

4 Modeling and verifying security policies

We introduce the SecBPMN-Q language, an extension of BPMN-Q query lan-

guage, to model security policies using the security annotations that we de-

scribe in Table 2. Our query language permits the graphical modeling of secu-

rity policies, which is a useful feature to facilitate the communication among

modelers and with other stakeholders.

Consider, for example, a textual policy such as “The RBT document must

be authenticated and it must be sent through a secure channel which assures

the information will not be sniffed or modified by third parties, implementing

TLS and X.509 security mechanisms”. Figure 3 shows an equivalent modeling

of this policy in SecBPMN-Q.

Beside the two generic tasks and the path, that are elements of BPMN-

Q, the model features a message flow (represented as a dashed arrow) that

transfers a data object called “RBT”. When executed, this query will match

any message flow between two activities which exchange the “RBT” data ob-

ject. The confidentiality annotation linked with the message flow requires the



16 Mattia Salnitri et al.

communication channel to assure the data object will be received only by

“RBTOwner”, “controlAuthority” and “towerControl”. Moreover, the “RBT”

data object has to be protected by unauthorized modifications, implementing

the “MD5” security mechanism specified by integrity annotation, and its orig-

inality has to be provable using “TLS” and “X.509” security mechanisms,

specified in the authenticity annotation.

Note that some attributes are not specified, meaning that the security

designer is imposing fewer constraints on the specific security mechanism; for

example, enfBy and writers parameters of ConfidentialityMF are not defined in

Figure 3 (see the underscore wildcard), hence the predicate will be satisfied

regardless the security mechanisms implemented or the set of users authorized

to send data objects through the channel.

Fig. 3 Example of a security policy and predicates expressed with SecBPMN-Q

In order to verify if a SecBPMN-ml business process is compliant with

security policies modeled with SecBPMN-Q, we extended the BPMN-Q engine

as described in Algorithm 1. The algorithm takes in input a SecBPMN-ml

business process and a SecBPMN-Q security policy, and it verifies if there

exists a path in the business process that satisfies the security policy. For each

path (Line 4), the algorithm verifies if the security annotations of the business

process are of the same type of those in the security policy (Line 8) and if

they are linked to the same SecBPMN-ml element (Line 9). If so, the security

annotations of the security policy are verified against the security annotations

in the business process (Line 10).



SecBPMN 17

Algorithm 1 Compliance check of a security policy
Compliance(SecBPMN-ml bp, SecBPMN-Q secPolicy)

1 paths← findPath(bp, secPolicy)

2 if paths = ∅ then

3 return false

4 for each path ∈ paths do

5 satisfied← true

6 for each secAnnPolicy ∈ getSecurityAnnotations(secPolicy) do

7 for each secAnnPath ∈ getSecurityAnnotations(path) do

8 if secAnnPolicy.type = secAnnPath.type then

9 if checkTarget(secAnnPath, secAnnPolicy) then

10 satisfied← satisfies(secAnnPath, secAnnPolicy) ∧ satisfied

11 if satisfied then

12 return true

13 return false

A security annotation of a business process satisfies a security annotation

of a security policy if all the attributes of the former are more restrictive of the

attributes of the latter. The function satisfies, defined in Algorithm 2, checks

this property. As first step, Algorithm 2 checks if the security mechanisms

specified in the security annotation of the policy are all specified in the security

annotation of the business process (Line 1); if not, it returns false, meaning

that the security policy specifies at least a security mechanism that is not

implemented in the business process. After that, depending on the type of

annotation, the algorithm performs different checks:

– Accountability (lines 4-5): are all the monitored users specified in the policy

also monitored by the business process?

– Auditability (lines 6-7): is the frequency of the checks specified in the busi-

ness process higher than or equal to the one specified in the business pro-

cess?

– Authenticity (lines 8-11): if the attribute ident is true in the security an-

notation specified in the security policy (every user has to be identified),

then is the same attribute specified in the business process also true? The



18 Mattia Salnitri et al.

Algorithm 2 Pseudo-code of function “satisfies”
satisfies(SecurityAnnotation SecAnnPath, SecurityAnnotation SecAnnPolicy)

1 if (secAnnPolicy.enfBy 6⊆ secAnnPath.enfBy) then

2 return false

3 switch (SecAnnPolicy.type)

4 case AccountabilityAct :

5 return (SecAnnPolicy.monitored ⊆ SecAnnPath.monitored)

6 case AuditabilityAct ∨ AuditabilityDO ∨ AuditabilityMF :

7 return (SecAnnPolicy.frequency ≤ SecAnnPath.frequency)

8 case AuthenticityAct :

9 return ((SecAnnPolicy.ident→ SecAnnPath.ident)∧

10 (SecAnnPolicy.auth→ SecAnnPath.auth)∧

11 (SecAnnPolicy.trustValue ≤ SecAnnPath.trustValue))

12 case AvailabilityAct ∨ AvailabilityDO ∨ AvailabilityMF :

13 return (SecAnnPolicy.value ≤ SecAnnPath.value)

14 case ConfidentialityDO ∨ ConfidentialityMF :

15 return ((SecAnnPolicy.readers ⊇ SecAnnPath.readers)∧

16 (SecAnnPolicy.writers ⊇ SecAnnPath.writers))

17 case IntegrityAct :

18 return ((SecAnnPolicy.personnel→ SecAnnPath.personnel)∧

19 (SecAnnPolicy.hardware→ SecAnnPath.hardware)∧

20 (SecAnnPolicy.software→ SecAnnPath.software))

21 case NonRepudiationAct ∨ NonRepudiationMF :

22 return (SecAnnPolicy.exeution↔ SecAnnPath.execution)

23 case privacyAct ∨ privacyMF :

24 return (SecAnnPolicy.sensitiveInfo ⊆ SecAnnPath.sensitiveInfo)

same criteria is used also for attribute auth. The trustValue defined in the

security annotation of the security policy has to be less or equal that the

value defined in the one specified in the business process, since the secu-

rity annotation is satisfied when the trust provided by the executor of the

activity is higher than that required by the policy.

– Availability (lines 12-13): is the value specified in the business process

higher than the value specified in the policy?



SecBPMN 19

– Confidentiality (lines 14-16): is the set of authorized users specified in the

business process a subset of the set of authorized users of the security

annotation of the security policy?

– Integrity (lines 17-20): if the personnel attribute (of IntegrityAct) is true in

the security policy, is it also true in the business process? The same criteria

applies for hardware and software. The other two variants of integrity do not

need special criteria because they are characterized only by the attribute

enfBy, that is already checked in the first two lines of the algorithm.

– Non-repudiation (lines 21-22): is the attribute execution set to the same

value in both security annotations?

– Privacy (lines 23-24): is the set of sensitive information specified in the

security policy included in the set specified in the business process?

Our developed software tool, available on [52], permits to model SecBPMN-

ml and SecBPMN-Q diagrams and fully implements the algorithms described

in this paper.

When a SecBPMN-Q security policy is checked, the interface of our engine

returns which ones among the analyzed business processes have at least one

path (graphically highlighted in the business process) that satisfies a given

security policy. Figure 4 shows the result of the SecBPMN-Q query shown in

Figure 3 with the SecBPMN-Q process shown in Figure 2. The path high-

lighted in Figure 4 satisfies the security policy in Figure 3: (i) the first activity

of the path, “Refine RBT”, is linked with a message flow to the last activity of

the path, “Examine RBT”; (ii) the message flow is used to exchange the data

object “RBT” and it assures confidentiality of the transferred data object; (iii)

integrity and authenticity of the “RBT” data object are preserved. When the

predicates that detail the security annotations of the security policy are less

restrictive than the predicates of the business process, the path—and, thus,

the business process—satisfies the security policy.



20 Mattia Salnitri et al.

Select 

destination

Approve 

destination

Select 

intermediate 

stops

Approve 

intermediate 

stops

Create RBT 

proposal

Check 

coherency

Check 

authorizations

Check 

collisions

Examine 

results

Refine RBT

Examine 

RBT

Accept RBT

Upload RBT

Create 

report

RBT 

proposal
RBT

RBT 

valid?

Yes

No

RBT 

accepted?

Yes

No

P
ilo

ts
T

o
w

e
r 

c
o
n
tr

o
l

C
o
-p

ilo
t

C
a
p
ta

in

Report

Legend

Task Start

End

Control flow

Data flow
Data object

Association

P
o
o

l

Pool and swimlane

Inclusive gateway

Exclusive gateway

L
a

n
e

Fig. 4 Result of the query based on SecBPMN-Q policy in Figure 3 against the SecBPMN-

ml model in Figure 2

5 A process for SecBPMN

We describe a reference process that details how to use the SecBPMN frame-

work to keep the business processes describing an information system com-

pliant with the security policies specified by the stakeholders. The process is

conducted by a team composed of security experts—who have the necessary



SecBPMN 21

security knowledge—, and business analysts—who are capable of modeling the

business processes that the information system will execute.

The process, illustrated in Figure 5, starts with a study of the context,

where business analysts, security experts, and stakeholders engage with each

other in order to produce a textual description of the business processes and of

the security requirements. This activity is conducted with the use of traditional

techniques for requirements elicitation and organizational analysis.

Specify/update 

security 

policies

Model/update 

business 

processes

Verify 

complianceContext study

Requirement 

document

SecBPMN-Q 

security 

policies

BP 

description

SecBPMN-ml 

BP

Yes/No 

answer

Analyze 

evolution

System 

dismissed?

Change in the 

system
Compliant?

Yes

No
No

Yes

Fig. 5 Suggested process when using SecBPMN framework

The documentation produced in the first step feeds two tightly-coupled

activities: modeling the business processes using SecBPMN-ml and specifying

security policies using SecBPMN-Q. These two activities are conducted in

parallel following an iterative and agile cycle, and they feed each other.

The specification or update of the security policies, which results in the

creation of SecBPMN-Q queries, is led by the security experts, with the sup-

port of business analysts to evaluate the functional aspects of the security

policies. For example, when designing an ATM information system, the best

method to protect the communication with the control tower from network



22 Mattia Salnitri et al.

attacks would be to block all communications, but such policy cannot be put

into effect, as if would hinder the control tower’s operation.

The modeling or update of the business process, which results in the defini-

tion of SecBPMN-ml models, is led by the business analysts, with the support

of security experts to enrich the diagrams with the annotations that spec-

ify the security choices. In the previous ATM example, the business analysts

would model the business processes that describe the interaction between the

control tower and the other participants, while the security experts will enrich

the business process models with security choices; for example, specifying the

message flow to preserve the integrity of the transmitted data.

The last step consists in the automated verification—using the SecBPMN

verification engine—of the compliance between SecBPMN-ml business pro-

cesses with SecBPMN-Q security policies. If non-compliance is identified, the

security policies and/or the business processes are updated by initiating a new

iteration in the process.

Complex information systems may need post-deployment adaptations to

cope with external changes. For example, in the ATM system, a renewal in the

luggage distribution system would require a new procedure, but such proce-

dure must be verified against all the existing security policies before the new

information system is deployed. Security policies can change too; for exam-

ple, if the privacy legislation changes, all the relevant security policies shall

be updated, thereby requiring all business processes to be re-verified against

the updated policies. In order to accommodate these situations, our process

supports continuous monitoring; when changes occur in the system, or policies

are modified, an analysis is conducted to determine whether the system should

be evolved—initiating a new iteration in our process—or dismissed.

6 Evaluation

We evaluate the SecBPMN framework in three ways. First, we conduct an em-

pirical study with experts to evaluate the understandability and the perceived



SecBPMN 23

complexity of our modelling languages (Section 6.1). Second, we run a scala-

bility analysis of our verification engine, to determine its suitability for large

business process models and security policies (Section 6.2). Third, we evaluate

the applicability of our framework on a large ATM case study (Section 6.3).

6.1 Modeling languages understandability and perceived complexity

We designed and conducted an experiment to test the understandability and

the perceived graphical complexity of SecBPMN-ml and SecBPMN-Q; we de-

fine the latter concept as semiotic clarity [36] and diagrammatic complex-

ity [36]. Our experiment was conducted through an online survey as a way to

maximize the number of subjects.

6.1.1 Empirical experiment design

The design of our experiment was conducted following Wohlin’s guidelines [58].

We used the Goal, Question, Metric (GQM) template [4] to define the scope

and objectives of the survey; in particular, the GQM template specifies: (i) the

focus of the experiment; (ii) the objective of the experiment; (iii) the variables

to test; (iv) the subjects; and (v) the context of the experiment.

Table 3 shows the two GQM templates for our experiment. The first part

of the experiment analyzes SecBPMN-ml for evaluating its perceived graphi-

cal complexity and understandability. The experiment targets the main roles

involved in the process (Figure 5): security experts and business process mod-

elers. The latter category is a prominent subset of business analysts. The

evaluation is performed by asking the subject to read SecBPMN models. The

second part of the experiment compares SecBPMN-Q with a formal approach

for expressing policies, i.e., Computational Tree Logic (CTL) [14] formulas.

Table 4 shows the hypotheses that we tested with the experiments. We

divide hypothesis into two sets, one per experiment: the first set compares

SecBPMN-ml with BPMN models with a textual description of the security

policy (BPMNts); the second set compares SecBPMN-Q with CTL.



24 Mattia Salnitri et al.

Table 3 GQM template for our experiments

Analyze SecBPMN-ml

for the purpose of evaluation

with respect to their perceived graphical complexity and understandability

from the point of view of the security experts and business process modellers

in the context of reading SecBPMN models.

Analyze SecBPMN-Q

for the purpose of compare it with CTL formulas

with respect to their perceived graphical complexity and understandability

from the point of view of the security experts and business process modellers

in the context of reading security policies.

We chose BPMNts, instead of BPMN, in order to compare SecBPMN with

a modeling language with the same expressiveness. Other languages, such as

SecureBPMN, can express only a part of the security aspects and, therefore,

the comparison would be unfair. For the same reason we chose to compare

SecBPMN-Q with CTL: they can express the same type of time patterns.

Table 4 Hypotheses of the experiments

Experiment 1: SecBPMN-ml vs. BPMNts

H0-1.1: SecBPMN-ml is more complex than BPMNts

H1-1.1: SecBPMN-ml is less complex than BPMNts

H0-1.2: SecBPMN-ml is less understandable than BPMNts

H1-1.2: SecBPMN-ml is more understandable than BPMNts

H0-1.3: SecBPMN-ml is more complex and less understandable than BPMNts

H1-1.3: SecBPMN-ml is less complex and more understandable than BPMNts

Experiment 2: SecBPMN-Q vs. CTL

H0-2.1: CTL is preferable to SecBPMN-Q for communication with stakeholders

H1-2.1: SecBPMN-Q is preferable to CTL for communication with stakeholderss

We opted for convenience sampling as a means to recruit subjects: we

did spread the word about the survey through mailing lists, used by security

experts and business process modelers. We left the survey available on line for

20 days, and then we analyzed the answers.



SecBPMN 25

To evaluate the perceived complexity and the readability of SecBPMN and

BPMNts, we created three pairs of diagrams, each consisting of a SecBPMN-

ml diagram and BPMNts diagram. To ensure a fair comparison, both diagrams

modeled the same business processes, with the same security choices. We also

use the same layout, except of the message flow that was colored differently

(we discuss the implications in Section 6.1.2).

The survey was structured in different parts (for the details see [52]):

– General questions concerning the background of the subject;

– An introduction to SecBPMN-ml;

– Questions on a small-size business process (SecBPMN-ml/BPMNts);

– Questions on a slightly bigger business process (SecBPMN-ml/BPMNts);

– Questions on a medium-size business process (SecBPMN-ml/BPMNts);

– An introduction to SecBPMN-Q;

– Questions on security policies (SecBPMN-Q/CTL).

6.1.2 Validity of our experiments

We report the main threats to the validity of our experiment, using Wohlin’s

categorization [58].

Threats to conclusion validity. The relevant threats in this category are the

following: (i) low statistical power, as we cannot determine the size of the

mailing lists and how many respondents in advance; (ii) random irrelevancies

in the experimental setting, for we opted for an on line survey, thereby having

no control on external factors which could affect the results of the experiment;

(iii) random heterogeneity of subjects, as we distribute the survey on line and

we were not able to select adequate participants. Looking at the obtained

results, the statistical power threat is only partially addressed: while 30 re-

spondents do not yield strong statistical power, the number is in the average

for PhD studies [32]; concerning the third threat, most of the participants had

knowledge in business process modeling (28 out of 30 had experience in either

BPMN, Petri nets, or UML activity diagrams), and with the subjects having



26 Mattia Salnitri et al.

a knowledge above average in information security average x̄ = 3.13 (range

from 1 to 5), standard deviation σ = 1.41.

Threats to internal validity. The only relevant threat is mortality. We miti-

gated such threat by allowing subjects to interrupt the survey at the end of

each part. 10% of the subjects interrupted the experiment after the questions

about small-size business process, 7%, of the remaining subjects interrupted it

in the following part, and 3% in the part about medium-size business processes.

Overall, we collected results on the small-size processes from all subjects, on

slightly larger models from 90% of the subjects, and on medium-size models

from 80% of the sample.

Threats to construct validity. This type of validity is threatened by the re-

stricted generalizability across constructs. In other words, some constructs

(diagrams) can influence the valuation of other diagrams. In our case, the

danger is that by looking at a diagram in one notation, the user already gets

a sense about its meaning, and is facilitated in understanding the alternative

notation. We mitigated this threat in different ways. First, since we aimed

to assess the SecBPMN framework, we presented our notation first, so that

most of the cognitive effort was put on understanding the process using our

languages. Second, we modeled the same business processes throughout the

survey but with different level of details. For the same threat, we avoid to

influence subjects with factors that are not tested in the survey using for each

part the same layout and the same detail. Construct validity is also threaten

by a difference in the coloring of the diagrams: while we did our best to keep

the layouts as similar as possible between business processes of the same pairs,

the message flows of the SecBPMN-ml diagrams are colored in blue while the

same message flows in BPMN diagrams are black. Another threat to construct

validity is hypothesis guessing, where the subjects can be conditioned by the

results they are providing. We mitigated this threat by carefully formulating

questions as much impartially as possible, and by clearly stating the purpose

of the questionnaire.



SecBPMN 27

Threats to external validity. External validity is threatened by the interaction

of setting and treatment. In our case, this would occur with business process

diagrams that are not an accurate representation of the real process. Due

to time constraints, the first two proposed business processes were relatively

small; the third one, however, is medium-sized, and constitutes therefore a fair

representation of a real-world business process for the chosen domain.

6.1.3 Experiment results

The survey was completed by 30 subjects; the large majority (96%) were famil-

iar with at least one business process modeling language, 60 % where familiar

with BPMN standard. The majority of the subjects (60%, N = 18) declared to

have good or wide knowledge of security, while 40% of the subjects (N = 12)

are not security experts (x̄ = 3.13 on a scale from 1 to 5, σ = 1.41). The

original results are publicly available on [52]. Let us review some key results:

– For small diagrams (respondents N = 30), SecBPMN-ml is largely consid-

ered more understandable and less complex than BPMNts: 80% preferred

it to BPMNts, 13% rated both diagrams understandable, 7% found none

of them understandable, no-one preferred BPMNts.

– For slightly larger diagrams (N = 27), the preference for SecBPMN-ml is

confirmed, even though a smaller percentage (67%); 11% of the respondents

opted for BPMNts diagrams, 18% of the respondents found both of them

understandable, and 4% of the sample found no notation understandable.

– For medium-size diagrams (N = 25), the majority of the subjects found

SecBPMN-ml more useful to define secure business processes (80%), 8%

preferred BPMNts, 8% of the subjects would choose either, and 4% of the

sample would use none. When asked about which language would be more

effective to communicate with stakeholders, 60% chose SecBPMN-ml, 12%

chose BPMNts, 20% chose both of them and, 8% wouldn’t use neither

SecBPMN-ml nor BPMNts.



28 Mattia Salnitri et al.

An interesting result is about the perceived level of security of business

process modeled with SecBPMN-ml, that we tested with the second couple of

diagrams. While both diagrams expressed the same security information, the

majority of the subjects (74%, N = 27) thought that the SecBPMN diagram

represents a more secure business process, 15% chose BPMNts diagram, and

11% thought that both diagram represent a business process with the same

level of security. This seems to indicate that SecBPMN is more understandable

than BPMNts, in the sense that it is easier to identify the security choices.

For what concerns the comparison between SecBPMN-Q and CTL, the

former is preferred for communication with customers (88%), none of the sub-

jects chose the CTL formula, 4% would use either of them, and 8% none of

them. Regarding the use for verifying compliance, a CTL formula was cho-

sen by the majority of the subjects (54%), 21% would use SecBPMN-Q, 21%

would use either of them and 4% would use neither SecBPMN-Q nor CTL.

This result shows that the subjects think that SecBPMN-Q is not expressive

enough for the verification of security policies. However, SecBPMN-Q is based

on temporal logics, and our verification engine fully supports it. It is probably

the case that the respondents’ opinion is due to the common knowledge about

the expressiveness of temporal logic formulas, and had no knowledge on the

expressiveness of SecBPMN-Q.

The last question investigated the usefulness of highlighting those paths

in a model that satisfy a given security policy; this is a key feature of our

modeling and verification toolset. We asked whether this could help security

experts to find causes of non-compliance; the respondents (N = 23) rated this

feature positively, even though not extremely positively: on as scale from 1

(not useful at all) to 5 (extremely useful), we obtained x̄ = 3.78 and σ = 1.00.

With the results collected in the survey is possible to refute H0-1.1, H0-

1.2, and H0-1.3 and hence confirm H1-1.1, H1-1.2, and H1-1.3. For the set of

hypotheses we defined for SecBPMN-Q, it is possible to refute H0-2.1 and to

confirm H1-2.1. In other words, the results of the survey constitute a prelimi-

nary evidence of the fact that SecBPMN-ml is more understandable and has a



SecBPMN 29

lower perceived complexity than BPMNts, and that SecBPMN-Q is preferred

to CTL for communicating security policies with stakeholders.

6.2 Scalability analysis

To assess the adequacy of the SecBPMN verification engine for real-world

scenarios, we conducted a scalability analysis concerning the engine’s perfor-

mance in terms of execution time. We defined two sets of experiments: the

former checks how the performance is affected by increasing the complexity

of the business process model in SecBPMN-ml, while the latter analyzes the

performance trend by increasing the complexity of the security policies in

SecBPMN-Q. Each of the experiments was repeated three times, and we took

the average time of execution to perform the verification. The models used for

the tests can be found online on [52]. We ran our experiments on a virtual

machine with a 1Ghz processor, 1GB of RAM memory, and equipped with

Microsoft Windows XP.

6.2.1 Scalability with increasingly complex SecBPMN-ml business process

Our first set of experiments aimed at checking which are the factors that af-

fect the scalability of the verification of SecBPMN-ml processes, and to what

extent these factors play a role. We chose to test artificially generated models

of growing complexity in terms of the number of activities, gateways, loops,

data objects, and security annotations. These are all the relevant factors that

may affect the verification of a SecBPMN-ml business process. In this experi-

ment, we kept the security policy unaltered, in order to properly test only the

factors of the business processes. We used a SecBPMN-Q security policy with

8 activities, 8 security annotations, and 7 paths.

Figure 6 shows the results of the experiments. The dots represent the values

for each of the conducted tests, and the continuous line, whenever shown, is

a heuristic plot of the scalability curve. The raw results from our results can



30 Mattia Salnitri et al.

Fig. 6 Scalability analysis with increasingly complex SecBPMN-ml business processes

be found online [52]. The experiments show positive results—linear growth—

when increasing complexity in the number of gateways, security annotations,

and data objects. The increase in the number of activities leads to a polynomial

trend. The number of loops does not influence at all the complexity of the

compliance verification problem, thanks to the heuristics and optimizations of

the engine implementation.

The absolute execution time of the tests is relatively low, also consider-

ing the low computational power of the chosen virtual machine. The longest

execution took 14.71 seconds on a business process which consisted of 50 activ-

ities, 8 security annotations, 60 data objects and 16 gateways. The execution

time for the business process with the highest number of activities (100) took



SecBPMN 31

5.09 seconds. We can confidently claim that these are acceptable times. We

repeated the tests on a similar machine, with more RAM memory (4 GB).

The results followed the same trend as the ones reported in Figure 6, but 0.5

seconds faster. The execution time can be reduced with optimizations such

as the adoption of an in-memory object-oriented database, or the usage of an

ah-hoc graphical interface.

6.2.2 Scalability with increasingly complex SecBPMN-Q security policies

The objective of the second set of experiments was to discover what factors in a

SecBPMN-Q policy affect most the complexity of the verification problem. Just

like for the scalability of SecBPMN-ml models, we chose to analyze the number

of activities, paths, data objects, security annotations, and gateways. In this

experiment we kept the business process unaltered: we used a SecBPMN-ml

business process with 50 activities, 30 security annotations, 10 data objects,

and 16 gateways.

Figure 7 shows the results of our experiment. Again, the raw results can be

consulted online [52]. The results are encouraging, showing that all the consid-

ered factors of complexity have a linear impact on the verification execution

time.

The absolute execution time is positive. For example, the policy which

required the longest execution time, only 10.06 seconds, contains 14 activities,

6 paths, 10 data objects, and 30 security annotations. The execution time of

the security policy with the highest number of activities (30) is 1.64 seconds.

The execution time for multiple policies is the sum of the execution time of

each security policy.

6.3 Application to a case study

We applied the SecBPMN framework to a case study about the SWIM [15]

ATM system, part of the Aniketos3 European FP7 project. The ATM system

3 www.aniketos.eu



32 Mattia Salnitri et al.

Fig. 7 Scalability analysis with increasingly complex SecBPMN-Q security policies

consists of a large number of autonomous and heterogeneous components,

which interact with each other to enable air traffic management operations:

pilots, airport personnel, national airspace managers, meteo services, radars,

etc. In such a complex socio-technical system, ensuring security is critical, for

security leaks may result in severe consequences on safety and confidentiality.

Security experts involved in Aniketos project analyzed the security re-

quirement documents of the SWIM ATM information system and identified

27 active participants and 60 textual security policies. We analyzed those tex-

tual security policies and transformed all of them in SecBPMN-Q security

policies. In certain cases we transformed a single textual policy into multiple

SecBPMN-Q security policies; for example, we transformed a non-disclosure



SecBPMN 33

security policy into a SecBPMN-Q policy concerning the disclosure of elec-

tronic documents, and another one about the print of documents. In general,

the transformation process was easy, and critical points were about the in-

terpretation of the textual security policy, and never due to limitations of

SecBPMN-Q language.

SecBPMN-Q enabled us model all the security policies elicited by the ex-

perts except for two specific cases:

– security policies concerning redundancy, which we could represent only at

a high-level of abstraction, without managing to express if the fallback

activities have to be performed by the same or a different executor. This

limitation was inherited by BPMN-Q, which does not support verifying

policies that concern swim-lanes and pools.

– security policies about the non-delegation of an activity, i.e., preventing

that third parties execute one activity or parts of it. Even in this case, our

future work includes introducing additional elements to the meta-model to

support this type of policy.

The dimensions of SWIM ATM information system are considerably wide

but with similar, redundant, sub-parts. Therefore, when we used SecBPMN-

ml to model the business processes, we opted to focus on three representative

aspects of the information system: the management of external services, the

landing and the taking-off. We also chose to minimize the number of diagrams,

aggregating, where possible, the processes in a single, comprehensive, model.

This led to the creation of four SecBPMN-ml diagrams: two for the service

management, one for the taking-off and one for the landing. With this choice

we used SecBPMN-ml language with medium-size business processes instead

of small-size ones. The SecBPMN-ml diagrams are not included because their

dimension prevent their readability, but they can be found online on [52].

We modeled one business process for the taking-off procedure. In such

procedure the RBT is negotiated between the tower control and the pilots,

after that, some services are called to check the consistencies of the RBT then,



34 Mattia Salnitri et al.

if the FO (Flight Object) is authorized, the takeoff can start. This procedure

is executed for each airspace, an area controlled by a control tower, crossed by

the RBT of the FO. This business process is composed by 48 elements that

are executed by 3 different participants. It contains 13 message flows and 17

data objects and 31 security annotations.

For the landing process, we modeled a business process in which the FO

negotiates, with the tower control, a RBT to the landing point. When the FO

reaches the landing position (i.e., the airspace above the airport to land) it

waits flying on the RBT defined by the tower control that is controlling the

landing point. When its turn arrives, it starts the RBT to land. This business

process is composed by 59 elements executed by 4 participants. It contains 14

message flows and 14 data objects and 31 security annotations.

In a SWIM ATM information system external services can be used, for

example, to retrieve weather forecasts. But once external services can access

to the internal network of the ATM, they may threat a number of assets,

therefore special procedures are executed to permit internal components to

use the external services and to evaluate the quality of services offered by such

services.

A SWIM ATM information system grants to internal users the reliability

and trustworthiness of external services with a trust-basted mechanism. When

an unknown service is allowed to access the internal network, the ATM system

assigns a predefined, low, trust value. Every time a functionality of a external

service is used, internal components evaluate that functionality: if the evalua-

tion is positive the trust value of the service provider is increased, otherwise is

decreased. This mechanism is used to evaluate external services and to filter

the virtuous services from the ones that do not offer a good-enough quality

of service. This business process contains 55 elements that are executed by 5

participants. It contains 15 message flows and 16 data objects and 18 security

annotations.

Before to be allowed to access to the internal network, an external service

and the SWIM ATM information system negotiate the quality of service that



SecBPMN 35

will be offered to SWIM ATM users. The business process we modeled for such

procedure is composed by 28 elements that are performed by 4 participants. It

contains 5 message flows and 7 data objects. In this business process 14 security

annotations are used to represent, on the SecBPMNmodel, the security aspects

of each activity.

During the analysis of the security policy of the case study we realized how

different the interpretations of the same security policy can be. This confirms

the usefulness of the flexibility of SecBPMN. We found that the understand-

ability of SecBPMN-ml is a key point, because when business processes grow in

size and complexity, the security choices can still be easily recognized, giving a

good first impression of how the security is handled. On the other side the en-

gine performed very well: during the design of the business processes we check

the security policies many times and all the executions took seconds, allow-

ing to check the compliance at each incremental step of the design. For more

information on how we used SecBPMN framework to model the procedural

aspects of this case study please refer to [49].

7 Related works

The literature offers a number of approaches for expressing and verifying secu-

rity in business process models. We analyze the most relevant and prominent

works. We review extensions of business process modeling languages for se-

curity (Section 7.1), methods and guidelines for the design of secure business

processes (Section 7.2), approaches for business process compliance verifica-

tion, i.e., query languages for business processes (Section 7.3) and verification

techniques that employ formal languages (Section 7.4).

7.1 Security extensions of business process modeling languages

A natural solution to represent the security aspects of business process is to

create or extend a modeling language. Such languages are easy to learn and



36 Mattia Salnitri et al.

to use [36], thereby requiring a moderately low effort for security designers to

specify a secure business process.

Menzel et al. [34] propose security extension of BPMN that enables gen-

erating security specifications for service-oriented applications. They intro-

duce two security annotations and a set of security properties. Their proposed

transformation rules generate machine-readable specification of such security

properties in Rampart [56]. The major limitation of this approach consists in

the fixed set of security properties that are checked, which disallows for the

creation of custom and domain-specific security properties.

Rodriguez et al. [44] take a subset of BPMN and introduce extensions to

express a predefined set of security requirement types. However, this approach

has limited expressiveness, as it does not take into account the information flow

of business processes, and it does not decouple the specification of the policy

from the modeling of the security solutions that the process implements.

Saleem et al. [46] extend BPMNwith security objectives for Service-oriented

Architecture (SoA) applications. They include a set of security concepts in

BPMN: confidentiality, integrity, availability, traceability, and auditing. Like

the previous ones, the language does not decouple policies from security solu-

tions in the processes. Moreover, their work is specific for the SoA domain.

Wolter et al. [59] propose a modeling language for business processes and

business security goals, to be used to graphically define security specifications.

They also develop a framework which transforms security goals in security

policies specified in XACML [38] and Rampart [56]. The framework automati-

cally extracts specifications of security mechanisms which enforce the security

goals, but it does not permit security experts to compose security goals and,

therefore, to create complex security policies.

Wolter and Schaad [60] propose an extension of BPMN for specifying task-

based authorization constraints. Their approach includes a graphical extension

of BPMN as well as a formalization of task-based authorization constraints.

Their approach permits to specify dynamic resource allocation such as dy-

namic separation of duty and role-based resource allocation. Their approach



SecBPMN 37

is focused on authorization constraints of executors of tasks, and it is not pos-

sible to use it to specify other security aspects, such as availability or integrity.

Salnitri et al. [47] propose a verification engine for verifying whether a busi-

ness process is compliant with a given set of security requirements. They use

SecureBPMN [7] to represent business processes. The main drawback consists

in the fixed set of security requirements that the approach supports.

Schmidt et al. [51] propose two ontologies for defining quality constraints

and for defining service processes, respectively. Such ontologies are used to

check if a service process complies with the imposed quality constraints. The

main drawback of this approach is in the fixed set of constraints that can be

specified and checked.

SecureBPMN [7] extends BPMN with access control and information flow

constraints. It uses the hierarchic structure of the organization, in which the

business process will be executed, to help security designers to define security

properties such as, for example, binding of duty [30] and separation of duty [30,

53]. However, SecureBPMN is limited in that it is not possible to specify other

central security aspects such as, for instance, confidentiality or availability.

UMLSec [24] is a security-oriented extension of the Unified Modeling Lan-

guage (UML) [19]. In particular, the extension of UML activity diagrams can

be used to define business process with security choices. However, UMLSec

does not allow security designers to define security policies and verify them

against a process.

7.2 Methods and guidelines

Some approaches provide methods and guidelines that help security experts

in the process of constructing sound business process models.

Gruhn and Laue [20] propose a heuristic approach for finding common de-

sign errors in business process models, represented using Event Process Chains

(EPCs) [57]. They defined a set of rules to check if a business process is not

sound or it matches some bad design patterns. Security experts could adopt



38 Mattia Salnitri et al.

this approach to verify the compliance of the business process model against

a fixed set of rules. However, using a fix set of rules is a major limitation

when dealing with security policies, as it forces security experts to adopt an

interpretation of security policies which may not fit the original policy.

Blanc et al. [6] propose an incremental inconsistency checker. Such frame-

work is based on the hypothesis that the definition of a business process is an

incremental task, and, thus, inconsistency checking shall be done incremen-

tally. They offer a software tool, based on Prolog [9], which checks if a fixed

set of well-formedness rules are satisfied by a business process model. The

framework can be applied to any modeling language that can be translated

in Prolog. The fixed set of queries is a major limitation, as it inhibits custom

security policies.

7.3 Query languages for business processes

Security policies can be seen as patterns, and the their verification against

business processes corresponds to the problem of checking if a pattern holds

in a business process. Query languages and their software tooling can be used

to solve this type of problems, as they allow the creation of queries (patterns),

and compliance verification against a business process model.

Dolman et al. [11] propose a pattern matching approach for conceptual

models. Such approach consists in algorithms for solving the relaxed graph

isomorphism problem, i.e., verifying if the nodes of a labeled graph match with

a given pattern (isomorphism problem), and the existence of a path among

the graph nodes as indicated in the pattern (homeomorphism problem). They

created a tool that implements their algorithms to verify the compliance of a

graph with a pattern. The approach is not specific to any modeling language,

being rooted in labeled graph theory. However, such approach has to be ex-

tended to support the verification of security aspects in a business process.

Beeri et al. [5] propose BP-QL (Business Process Query Language), a

pattern-based graphical query language for business processes. They also pro-



SecBPMN 39

vide software tooling to determine the compliance of a business process—

defined using WS-BPEL [37]—with a pattern. The decision of using WS-

BPEL, a machine-readable standard, hinders the readability of the business

process, especially with real case scenarios, where business process easily reach

hundreds of elements.

APQL (A Process model Query Language), proposed by Hofstede at al. [21],

is a textual query language, based on 20 predicates that can be composed to

create complex queries. This approach suffers of scalability issues: the defini-

tion of complex queries is a challenging task that will lead to errors due to the

complexity of the task. Moreover, as far as our knowledge goes, this approach

is not supported by a software framework.

VMQL (Visual Model Query Language) [55] is a graphical query language

based on UML activity diagrams [13]. It permits to define custom proper-

ties, which are evaluated when the compliance of a query is verified against

a business process. But VMQL was not created for security purposes: even if

the custom properties can be used to represent security concepts, the VMQL

software engine can not interpret them limiting their usage only as a repre-

sentation of security concepts.

The Business Process Query Language (BPQL) [12] permits to graphically

define both queries and business process models using the same language.

Unfortunately, BPQL is not based on BPMN, hence the learning process is

likely to be slower than that with by BPMN-Q. Moreover, BPQL (just like

BPMN-Q), does not include security concepts.

7.4 Verification of properties using formal languages

Some approaches build on logic languages (e.g., first-order, temporal, etc.) for

determining compliance. These works are characterized by high expressiveness,

but poor usability, for they require a substantial effort for formalizing business

processes and security policies.



40 Mattia Salnitri et al.

Sadiq et al. [45] propose to use a Formal Contract Language (FCL) to

express normative specifications. Their approach includes a modeling language

to visualize business processes as well as normative constraints. They also

define a compliance distance, which denotes the extent to which the process

model has to be changed to become compliant with the declared constraints.

The limitation of this approach is the complexity of the language, despite the

provision of a tool to graphical represent normative requirements and business

processes. In future work, it would be interesting to compare the usability of

the SecBPMN framework with the FCL-based approach.

Liu et al. [31] propose a language and a framework which statically veri-

fies a business process against a formally expressed regulatory requirements.

The framework accepts as input a business process specified in WS-BPEL [37]

and a set of regulatory requirements, expressed with a temporal logic lan-

guage called “Business Process Specification Language”. While powerful, this

approach is hardly usable for large scenarios, due to the complexity of express-

ing regulatory requirements.

The approaches for business process compliance verification we analyzed

do not take in consideration security aspects, therefore is not possible to use

them for the purposes of this paper. Moreover, only few of them provide a

graphical modeling language for the definition of the patterns to verify, even

if it is essential for the usability of such approaches [25, 31].

Other research works [1, 43] use extensions of Petri nets to define busi-

ness processes with security choices of stakeholders. Petri net modeling lan-

guage is simple and easy to use but it does not include all the graphical con-

structs of BPMN. This influence negatively the understandability of models

about medium-size or large business processes, limiting the applicability to

only small-size business processes.



SecBPMN 41

8 Conclusions and future work

This paper has introduced SecBPMN, a framework for establishing and main-

taining compliance between security-annotated business processes and secu-

rity policies. It is composed by (i) SecBPMN-ml, a modeling language for

representing security-annotated business processes; (ii) SecBPMN-Q, a query

language for specifying security policies; and (iii) a software toolset that sup-

ports both modeling and checking queries against processes. Furthermore, we

presented a process that guides analysts while using the SecBPMN framework,

and presented an evaluation of our approach.

Our approach overcomes some limits of existing approaches, which either

suffer from a low expressiveness—being graphical languages that support only

a predefined set of security annotations—, or are hard to use—begin reliant

on temporal logics, which are hardly usable by most analysts.

Our approach opens the doors to several future directions, including: (1)

applying the languages to different domains; (2) creating a catalog of patterns

representing common security policies; (3) including our engine in a work-

flow system to support security policy-compliant runtime reconfiguration;(4)

extending SecBPMN to specify inter-organizational processes; and (5) extend-

ing SecBPMN to specify constraints on roles.

Acknowledgements This research was partially supported by the ERC advanced grant

267856, ‘Lucretius: Foundations for Software Evolution’, www.lucretius.eu and by Euro-

pean Union’s Horizon 2020 research and innovation programme under grant agreement No

653642 - VisiON.

References

1. Atluri, V., Huang, W.: An Extended Petri Net Model for Supporting Workflows in a

Multilevel Secure Environment. In: Database Security X: Status and Prospects, pp.

199–216 (1996)

2. Awad, A.: Bpmn-q: A language to query business processes. In: EMISA, vol. P-119, pp.

115–128 (2007)



42 Mattia Salnitri et al.

3. Awad, A.: A compliance management framework for business process models. Ph.D.

thesis (2010)

4. Basili, V.R., Caldiera, G., Rombach, D.H.: The Goal Question Metric Approach. John

Wiley & Sons (1994)

5. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with BP-QL.

Information Systems 33(6), 477–507 (2008)

6. Blanc, X., Mougenot, A., Mounier, I., Mens, T.: Incremental Detection of Model Incon-

sistencies Based on Model Operations. In: Proc. of CAiSE, pp. 32–46 (2009)

7. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: Modeling and

Enforcing Access Control Requirements in Business Processes. In: Proc. of SACMAT,

pp. 123–126 (2012)

8. Cherdantseva, Y., Hilton, J.: A Reference Model of Information Assurance and Security.

In: Proc. of ARES, pp. 546–555 (2013)

9. Clocksin, W., Mellish, C.: Programming in PROLOG. Springer Science & Business

Media (2003)

10. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Adaptive Socio-Technical Systems: a

Requirements-driven Approach. Requirements Engineering 18(1), 1–24 (2013)

11. Delfmann, P., Dietrich, H., Havel, J., Steinhorst, M.: A Language-independent Model

Query Tool. In: Proc. of DESRIST, pp. 453–457 (2014)

12. Deutch, D., Milo, T.: Querying Structural and Behavioral Properties of Business Pro-

cesses. In: Proc of DPL, pp. 169–185 (2007)

13. Dumas, M., Hofstede, A.H.M.: UML Activity Diagrams As a Workflow Specification

Language. In: Proceedings of UML, pp. 76–90 (2001)

14. Emerson, E.A., Halpern, J.Y.: Decision Procedures and Expressiveness in the Temporal

Logic of Branching Time. In: Proc. of STOC, pp. 169–180 (1982)

15. Federal Aviation Administration: SWIM ATM case study, last visited March

2014. http://www.faa.gov/about/office org/headquarters offices/ato/service

units/techops/atc comms services/swim/ (2014)

16. Ferraiolo, D., Cugini, J., Richard Kuhn, D.: Role-Based Access Control (RBAC): Fea-

tures and Motivations (1995)

17. Firesmith, D.: Specifying Reusable Security Requirements. JOT 3(1), 61–75 (2004)

18. Ghose, A., Koliadis, G.: Auditing Business Process Compliance. In: Proc. ISOC, pp.

169–180 (2007)

19. Group, O.M.: OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2.

Tech. rep. (2007). URL http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

20. Gruhn, V., Laue, R.: A heuristic method for detecting problems in business process

models. Business Process Management Journal pp. 806–821 (2010)

21. Hofstede, A., Ouyang, C., La Rosa, M., Song, L., Wang, J., Polyvyanyy, A.: APQL: A

Process-Model Query Language. In: Proc. of AP-BPM, vol. 159, pp. 23–38 (2013)



SecBPMN 43

22. ISACA: An Introduction to the Business Model for Information Security. Tech.

rep. (2009). http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/

Pages/An-Introduction-to-the-Business-Model-for-Information-Security.aspx

23. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online

service provision. Decision Support Systems 43(2), 618 – 644 (2007)

24. Jurjens, J.: UMLsec: Extending UML for Secure Systems Development. In: Proc. of

UML, pp. 412–425 (2002)

25. Kharbili, M.E., de Medeiros, A.K.A., Stein, S., van der Aalst, W.M.P.: Business process

compliance checking: Current state and future challenges. In: P. Loos, M. Nttgens,

K. Turowski, D. Werth (eds.) MobIS, LNI, vol. 141, pp. 107–113. GI (2008)

26. Leitner, M., Miller, M., Rinderle-Ma, S.: An Analysis and Evaluation of Security Aspects

in the Business Process Model and Notation. In: Proc. of ARES, pp. 262–267 (2013)

27. Leitner, M., Rinderle-Ma, S.: A Systematic Review on Security in Process-Aware Infor-

mation Systems- Constitution, Challenges, and Future Directions. Information Software

Technology 56(3), 273–293 (2014)

28. Leitner, M., Schefer-Wenzl, S., Rinderle-Ma, S., Strembeck, M.: An Experimental Study

on the Design and Modeling of Security Concepts in Business Processes. In: Proc. of

PoEM, pp. 236–250 (2013)

29. Li, J., Mirkovic, J., Wang, M., Reiher, P., Zhang, L.: SAVE: Source address validity

enforcement protocol. In: Proc. of INFOCOM, vol. 3, pp. 1557–1566 (2002)

30. Li, N., Tripunitara, M.V., Bizri, Z.: On mutually exclusive roles and separation-of-duty.

TISSEC 10(2), 5 (2007)

31. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business process

models. IBM System Journal 46(2), 335–361 (2007)

32. Mason, M.: Sample size and saturation in PhD studies using qualitative interviews.

Forum: Qualitative Social Research 11(3) (2010)

33. McCumber, J.: Information Systems Security: A Comprehensive Model. Proc. of NCSC

(1991)

34. Menzel, M., Thomas, I., Meinel, C.: Security Requirements Specification in Service-

Oriented Business Process Management. In: Proc. ARES, pp. 41–48 (2009)

35. Monakova, G., Brucker, A.D., Schaad, A.: Security and safety of assets in business

processes. In: Applied Computing 27, pp. 1667–1673 (2012)

36. Moody, D.: The Physics of Notations: Toward a Scientific Basis for Constructing Visual

Notations in Software Engineering. IEEE Transaction on Software Engineering 35,

756–779 (2009)

37. OASIS: Web Services Business Process Execution Language. http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.html (2007). URL http://docs.oasis-open.org/

wsbpel/2.0/wsbpel-v2.0.html

38. OASIS: eXtensible Access Control Markup Language (XACML)Version 3.0.

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html (2013)



44 Mattia Salnitri et al.

39. OMG: BPMN 2.0 (2011). URL http://www.omg.org/spec/BPMN/2.0

40. Parker, D.: Our Excessively Simplistic Information Security Model and How to Fix It.

ISSA pp. 12–21 (2010)

41. Parker, D.B.: Fighting computer crime - a new framework for protecting information.

Wiley (1998)

42. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research

methodology for information systems research. J. Manage. Inf. Syst. 24(3), 45–77 (2007)

43. Rasmussen, J.L., Singh, M.: Designing a Security System by Means of Coloured Petri

Nets. In: Proc. of ICATPN, pp. 400–419 (1996)

44. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the modeling

of security requirements in business processes. IEICE Transaction on Information and

Systems 90(4), 745–752 (2007)

45. Sadiq, S., Governatori, G., Namiri, K.: Modeling Control Objectives for Business Process

Compliance. In: Proc. of BPM, pp. 149–164 (2007)

46. Saleem, M., Jaafar, J., Hassan, M.: A Domain- Specific Language for Modelling Security

Objectives in a Business Process Models of SOA Applications. AISS 4(1), 353–362

(2012)

47. Salnitri, M., Dalpiaz, F., Giorgini, P.: Aligning Service-Oriented Architectures with

Security Requirements. In: Proc. of OTM, pp. 232–249 (2012)

48. Salnitri, M., Dalpiaz, F., Giorgini, P.: Modeling and Verifying Security Policies in Busi-

ness Processes. In Proc. of BPMDS pp. 200–214 (2014)

49. Salnitri, M., Giorgini, P.: Modeling and Verification of ATM Security Policies with

SecBPMN. In Proc. of SHPCS (2014)

50. Samarati, P., Vimercati, S.: Access Control: Policies, Models, and Mechanisms. In: In

FOSAD, vol. 2171, pp. 137–196 (2001)

51. Schmidt, R., Bartsch, C., Oberhauser, R.: Ontology-based Representation of Compli-

ance Requirements for Service Processes. In: Proc. of CEUR (2007)

52. SecBPMN Website: SecBPMN website, last visited September 2014.

http://www.secbpmn.disi.unitn.it (2014)

53. Simon, R., Zurko, M.: Separation of duty in role-based environments. In: Proc. of

CSFW, pp. 183–194 (1997)

54. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M., Mcder-

mid, J., Paige, R.: Large-scale Complex IT Systems. Communication of the ACM 55(7),

71–77 (2012)

55. Störrle, H.: VMQL: A Visual Language for Ad-hoc Model Querying. J. Vis. Lang.

Comput. 22, 3–29 (2011)

56. The Apache Software Foundation: Apache Rampart website, last visited August 2014.

http://axis.apache.org/axis2/java/rampart/ (2014)

57. W.M.P. van der Aalst: Formalization and Verification of Event-Driven Process Chains.

Information and Software Technology 41(10), 639 – 650 (1999)



SecBPMN 45

58. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experi-

mentation in Software Engineering: An Introduction (2000)

59. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven business

process security requirement specification. JSA 55(4), 211 – 223 (2009)

60. Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in bpmn. In:

G. Alonso, P. Dadam, M. Rosemann (eds.) Business Process Management, Lecture Notes

in Computer Science, vol. 4714, pp. 64–79. Springer Berlin Heidelberg (2007)


