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Abstract. The conventional way to speedup queries execution is by
using indexes. Designing secure indexes for an encrypted database envi-
ronment raises the question of how to construct the index so that no in-
formation about the database content is exposed. In this paper, the chal-
lenges raised when designing a secure index for an encrypted database
are outlined; the attacker model is described; possible attacks against se-
cure indexes are discussed; the difficulty posed by multiple users sharing
the same index are presented; and the design considerations regarding
keys storage and encryption granularity are illustrated. Finally, a secure
database-indexing scheme is suggested. In this scheme, protection against
information leakage and unauthorized modifications is provided by us-
ing encryption, dummy values and pooling. Furthermore, the new scheme
supports discretionary access control in a multi-user environment.

1 Introduction

Increasingly, organizations prefer to outsource their data center operations to
external application providers. As a consequence of this trend toward outsourc-
ing, highly sensitive data is now stored on systems that are not under the data
owners’ control. While data owners may not entirely trust providers’ discretion,
preventing a provider from inspecting data stored on their own machines is dif-
ficult. For this kind of service to work successfully, it is of primary importance
to provide means of protecting the secrecy of the information remotely stored,
while guaranteeing its availability to legitimate clients [1].

Communication between the client and the database service provider can be
secured through standard means of encryption protocols, such as SSL (Secure
Socket Layer), and is therefore ignored in the remainder of this paper. With
regard to the security of stored data, access control has proved to be useful, on
condition that data is accessed using the intended system interfaces. However,
access control is useless if the attacker simply gains access to the raw database
data, thus bypassing the traditional mechanisms [2]. This kind of access can



easily be gained by insiders, such as the system administrator and the database
administrator (DBA).

Database encryption introduces an additional layer to conventional network
and application security solutions and prevents exposure of sensitive information
even if the raw data is compromised [3]. Database encryption prevents unautho-
rized users from viewing sensitive data in the database and, it allows database
administrators to perform their tasks without having access to sensitive infor-
mation. Furthermore, it protects data integrity, as unauthorized modifications
can easily be detected [4].

A common technique to speed up the execution of queries in databases is
to use a pre-computed index [5]. However, once the data is encrypted, the use
of standard indexes is not trivial and depends on the encryption function used.
Most encryption functions preserve equality, thus, ”Hash” indexes can be used,
however information such as the frequencies of indexed values is revealed. Most
encryption functions do not preserve order, so ”B-Tree” indexes, can no longer
be used once the data is encrypted.

Moreover, if several users with different access rights use the same index,
each one of them needs access to the entire index, possibly including indexed
elements that are beyond his access rights. For example, Google Desktop, allows
the indexing and searching of personal computers data. Using this tool, a legit-
imate user is able to bypass user names and passwords and view personal data
belonging to others who use the same computer, since it is stored in the same
index [6].

The contribution of this paper is threefold. First, we describe the challenges
arising when designing a secure index for an encrypted database. Second, we
outline design considerations regarding keys storage and encryption granularity.
Third, we present a new indexing scheme that answers most of these challenges.

The remainder of the paper is structured as follows: in section 2, related
works are outlined; in section 3, the problem statement is defined; in section 4,
design considerations regarding database encryption are described; in section 5,
we present a new secure database index; and section 6 presents our conclusions.

2 Related Work

The indexing scheme proposed in [7] suggests encrypting the whole database
row and assigning a set identifier to each value in this row. When searching a
specific value, its set identifier is calculated and then passed to the server, who,
in turn, returns to the client a collection of all rows with values assigned to the
same set. Finally, the client searches the specific value in the returned collection
and retrieves the desired rows. In this scheme, equal values are always assigned
to the same set, so some information is revealed when statistical attacks are
applied, as stated in [1].

The indexing scheme in [1] suggests building a B-Tree index over the table
plaintext values and then encrypting the table at the row level and the B-Tree at
the node level. The main advantage of this approach is that the B-Tree content



is not visible to the untrusted database server. However, only the client can now
perform the B-Tree traversal, by executing a sequence of queries. Each query
retrieves a node located at a deeper level of the B-Tree.

The indexing scheme provided in [2] is based on constructing the index on
the plaintext values and encrypting each page of the index separately. Whenever
a specific page of the index is needed for processing a query, it is loaded into
memory and decrypted. Since the uniform encryption of all pages is likely to
provide many cipher breaking clues, the indexing scheme provided in [8] pro-
poses encrypting each index page using a different key depending on the page
number. However, these schemes, which are implemented at the level of the op-
erating system, are not satisfactory, since in most cases it is not possible to
modify the operating system implementation. Moreover, in these schemes, it is
not possible to encrypt different portions of the database using different keys.
The disadvantage of using only one key is discussed in subsection 3.6.

The database encryption scheme in [4] suggests encrypting each database cell
with its unique cell coordinates µ (T,R, C) and each index value concatenated
with its unique row identifier, as illustrated in Fig. 1.

Fig. 1. Database and index encryption as described in [4]



Figure 1 illustrates the database and index encryption as described in [4].
The use of cell coordinates for the encryption of the database table and of row
identifiers for the index entries, ensures that there is no correlation between
the indexed values and the database ciphertext values. However, this indexing
scheme is not resistant to tampering attacks.

The encryption function suggested in [9] preserves order, and thus allows
range queries to be directly applied to the encrypted data without decrypting
it. In addition it enables the construction of standard indexes on the ciphertext
values. However, the order of values is sensitive information in most cases and
should not be revealed.

In [10], a smart card with encryption and query processing capabilities is
used to ensure the authorized and secure retrieval of encrypted data stored on
untrusted servers. Encryption keys are maintained on the smart card. The smart
card can translate exact match queries into equivalent queries over encrypted
data.

In [11], the security of databases stored on smart cards is explored. However,
retrieval performance is not the focus of their work and it is not clear how much
of their techniques applies to general-purpose databases not stored on smart
cards, as stated in [9].

3 The Problem Statement

3.1 The Attacker Model

The attacker can be categorized into three classes: Intruder - A person who gains
access to a computer system and tries to extract valuable information. Insider -
A person who belongs to the group of trusted users and tries to get information
beyond his own access rights. Administrator - A person who has privileges to
administer a computer system, but uses his administration rights in order to
extract valuable information [10].

All of the above attackers can use different attack strategies: Direct storage
attacks - Attacks against storage may be performed by accessing database files
following a path other than through the database software, by physical removal
of the storage media or by access to the database backup disks. Indirect Storage
attacks - An adversary can access schema information, such as table and column
names, metadata, such as column statistics, and values written to recovery logs in
order to guess data distributions. Memory attacks - An adversary can access the
memory of the database software directly [9] (The last one is usually protected
by the Hardware/OS level).

3.2 Information Leakage

According to [4], a secure index in an encrypted database should not reveal any
information on the database plaintext values. We extend this requirement, by
categorizing the possible information leaks:



Static leakage - Gaining information on the database plaintext values by
observing a snapshot of the database at a certain time. For example, if the
index is encrypted in a way that equal plaintext values are encrypted to equal
ciphertext values, statistics about the plaintext values, such as their frequencies
can easily be learned.

Linkage leakage - Gaining information on the database plaintext values by
linking a database value to its position in the index. For example, if the database
value and the index value are encrypted in the same way (both ciphertext values
are equal), an observer can search the database ciphertext value in the index,
determine its position and estimate its plaintext value.

Dynamic leakage - Gaining information about the database plaintext values
by observing and analyzing the changes performed in the database over a period
of time. For example, if a user monitors the index for a period of time, and if in
this period of time only one value is inserted (no values are updated or deleted),
the observer can estimate its plaintext value based on its position in the index.

3.3 Unauthorized Modification

In addition to the passive attacks that monitor the index, active attacks that
modify the index should also be considered. Active attacks are more problematic,
in the sense that they may mislead the user. For example, modifying index
references to the database rows may result in queries returning erroneous set of
rows, possibly benefiting the adversary.

Unauthorized modifications can be made in several ways: Spoofing - Replac-
ing a ciphertext value with a generated value. Splicing - Replacing a ciphertext
value with a different ciphertext value. Replay - Replacing a ciphertext value
with an old version previously updated or deleted [11].

3.4 Structure Perseverance

When applying encryption to an existing database, it would be desirable that
the structure of the database tables and indexes is not modified during the
encryption. This ensures that the database tables and indexes can be managed
in their encrypted form by a database administrator as usual, while keeping the
database contents hidden. For example, if a hash index is used and the values
therein do not distribute equally, performance might be undermined, and the
DBA might wish to replace the hash function. In such a case, the DBA needs to
know structure information, such as the number of values in each list, but does
not need to know the values themselves.

3.5 Performance

Indexes are used in order to speed up queries execution. However, in most cases,
using encrypted indexes causes performance degradation due to the overhead of
decryption. Indexes in an encrypted database raise the question of how to con-
struct the index so that no information about the database content is revealed,
while performance in terms of time and storage is not significantly affected.



3.6 Discretionary Access Control (DAC)

In a multi-user (discretionary) database environment each user only needs access
to the database objects (e.g., group of cells, rows and columns) needed to perform
his job.

Encrypting the whole database using the same key, even if access control
mechanisms are used, is not enough. For example, an insider who has the en-
cryption key and bypasses the access control mechanism can access data that
are beyond his security group. Encrypting objects from different security groups
using different keys ensures that a user who owns a specific key can decrypt only
those objects within his security group [15]. Following this approach, different
portions of the same database column might be encrypted using different keys.
However, a fundamental problem arises when an index is used for that column
as illustrated in Fig. 2.

Fig. 2. An Indexed Column Encrypted using Different Keys.

Figure 2 illustrates an index that is queried by users who belong to different
security groups. Each one of them needs access to the entire index, possibly to
indexed elements, which are beyond their access rights. The same problem arises
when the index is updated.

4 Design Considerations

4.1 Key Storage

One important issue in any encrypted database is that of keys storage [1, 2, 12].
Several alternatives were proposed in the literature:



Storing the encryption keys at the server side - The server has full access to
the encryption keys. All computations are performed at the server side.

Storing encryption keys at the client side - The client never transfers the
keys to the server and is solely responsible for performing all encryption and
decryption operations. When the database server has no access to the encryption
keys, most computations cannot be performed at the server side, since they
require decryption.

Keys per session - The database server has full access to the encryption keys
during the session but does not store them on disk. This ensures that during the
session, the user transaction can be performed entirely at the server side.

Table 1 summarizes the dependency between the trust in the server and the
keys storage. If we have no trust in the database server, we would prefer to keep
the encryption keys at the client side only. In cases where the database server
itself is fully trusted, but its physical storage is not, we can store the keys at the
server side in some protected region.

Table 1. Keys Storage vs. Trust in Server

Server Side Keys per Session Client Side

Absolute + + +
Partial - + +
None - - +

4.2 Encryption Granularity

Index encryption can be performed at various levels of granularity: single values,
nodes, pages or whole index. When choosing the level of granularity, the following
should be considered (see Table 2):

Information Leakage - The higher the level of encryption granularity, the
less information is revealed. Single values level encryption of the index reveals
sensitive information, such as frequencies of the index values. Whole Index level
encryption ensures that information about the indexed data cannot be leaked,
since the index is encrypted as one unit.

Unauthorized Modifications - Encryption at higher levels of granularity makes
it harder for the attacker to tamper with the data. Single values level encryption
of the index allows an attacker to switch two ciphertext values without being
noticed. Whole Index level encryption implies that a minor modification to the
encrypted index has a major effect on the plaintext index and can easily be
detected.

Structure Perseverance - Higher levels of encryption granularity conceal the
index structure. Whole Index level encryption changes the structure of the index



since the basic element of reference is changed from a single value to the entire
index. Single values level encryption of the index preserves its structure.

Performance - Finer encryption granularity affords more flexibility in allow-
ing the server to choose what data to encrypt or decrypt. Whole Index level
encryption requires the whole index to be decrypted, even if a small number of
index nodes are involved in the query. Single values level encryption of the index
enables decryption of values of interest only.

Table 2. Comparing Different Levels of Encryption Granularity

Information Unauthorized Structures Performance
Leakage Modifications Perseverance

Single values Worst Worst Best Best
Nodes Low Low Medium Medium
Pages Medium Medium Low Low

Whole Index Best Best Worst Worst

Better performance and preserving the structure of the database cannot be
achieved using pages or whole index encryption granularity. However, special
techniques can be used in order to cope with unauthorized modifications and
information leakage, when single values or nodes granularity encryption are used.

In our scheme, which is presented in the remainder of this paper, we assume
that the encryption keys are kept per session and that the index is encrypted at
the single values level of granularity.

5 A New Secure Database Index

In this section, a secure database index, encrypted at the single values level
of granularity is suggested. Best performance and structure perseverance are
simply obtained since single values granularity encryption is used. Information
leakage and unauthorized modifications are protected against using encryption,
dummy values and pooling. Finally, a technique that supports discretionary
access control in a multi-user environment is presented.

5.1 Encryption

Let us assume that a standard index entry is of the form:

(Vtrc, IRs,ER) (1)

Where:
Vtrc - An indexed value in table t, row r and column c.
IRs - The internal reference (references between index entries)



ER - The external reference (reference to the database row).

An entry in the proposed secure index is defined as follows:

(Ek (Vtrc) , IRs, E′
k (ER) ,MACk (Vtrc ‖ IRs ‖ ER ‖ SR)) (2)

Where:
k - An encryption key.
Ek - A nondeterministic encryption function.
E′

k - An ordinary encryption function.
SR - The entry self reference.
MACk - A message authentication code function.

The Ek function The implementation of Ek introduces a tradeoff between sta-
tic leakage and performance (see Table 3). If Ek is a non-deterministic encryption
function (that is, equal plaintext values are encrypted to different ciphertext val-
ues), statistics such as the frequencies and distribution of values are concealed,
but comparing index values requires their decryption. On the other hand, if Ek

is an order preserving encryption function, some information about the index
values is revealed (e.g., their order) but it is possible to compare values without
the need to decrypt them.

Table 3. The Tradeoff between Security and Performance for Ek implementation

Security Performance

Nondeterministic High Worst
Equality Preserving Medium Low
Order Preserving Low Medium
No Encryption Worst High

We suggest using a non-deterministic Ek. A possible implementation of Ek

follows:
Ek(x) = E′′

k (x||r) (3)

Where:
k - An encryption key.
E′′

k - An ordinary encryption function.
r - A random number with a fixed number of bits.

Using the above implementation of Ek there is no correlation between Ek(Vtrc)
and the corresponding column ciphertext value (random numbers are used before
encryption) and thus linkage leakage attacks are eliminated.



The MACk function Most commercial databases implement indexes like ta-
bles (as heap files). In this implementation, index entries are uniquely identified
using the pair: page id and slot number [5] (in our notations SR and IR).

Message authentication codes (MAC) are used to protect against unautho-
rized modifications of messages. They mix the message cryptographically under
a secret key, and the result is appended to the message. The receiver can then
recompute the MAC and verify its correctness. It should be impossible for an at-
tacker to forge a message and still be able to compute the correct MAC without
knowing the secret key.

In our scheme, we use a MACk function to protect the index entries against
unauthorized modifications. Spoofing attacks are eliminated, since the MAC
value depends on Vtrc, and once Ek(Vtrc) is tampered with, Vtrc will not match
the Vtrc used in the MAC. Splicing attacks are eliminated since the MAC value
depends on SR and trying to substitute two encrypted index entries will be
detected, since SR would not match the SR used in the MAC. Replay attacks
can be eliminated by adding a new dimension, that of time, to each index node.
This enables the validity of the node version to be verified, just as SR was used
in order to verify its logical location.

The MAC value added to each index entry causes data expansion and thus,
its size introduces a tradeoff between security and data expansion.

Evaluating a Query The following pseudo code illustrates a query evaluation
using the encrypted index 3:

INPUT:

A table: T

A column: C

A value: V

A query: SELECT * FROM T WHERE T.C>=V

OUTPUT:

A collection of row-ids.

X := getIndex(T, C).getRootNode();

While (not X.isLeaf()) Do

If (not x.isValid())

Throw IllegalStateException();

Else

If X.getValue()<V Then

X := X.getRightSonNode();

Else

X := X.getLeftSonNode();

End If;

End If;

End While;

3 The encrypted index is assumed to be implemented as a binary tree. However, the
pseudo code can be easily be generalized to handle a B-Tree implementation.



RESULT := {};

While X.getValue()<V Do

X := X.getRightSiblingNode();

End While;

While X is not null Do

RESULT := RESULT union {X.getRowId()};

X := X.getRightSiblingNode();

End While;

Return RESULT;

While isLeaf, getRightSonNode, getLeftSonNode and getRightSiblingNode meth-
ods relate to the index structure and their implementation does not change,
getValue and getRowId are implemented differently so that encryption and de-
cryption support is added. The new method, isValid, verifies the index entry
integrity using the MAC value.

Performance can be furthermore improved, if entries’ verification is performed
periodically on the entire index and not as part of each index operation.

5.2 Using Dummy Values and Pooling

In order to cope with dynamic leakage attacks, we need to reduce the level of
confidence an adversary has about the effect of new inserted data on the database
indexes. There is a trade-off between how much of the index is updated and
how much information an adversary is able to learn [13]. In this subsection, we
propose two techniques for reducing the adversary level of confidence:

Dummy values - We can insert dummy values to the index with each insertion
made by the user, and thus reduce the level of confidence. However, inserting
dummy values with each insertion results in data expansion. The number of
dummy values added in each insertion determines the level of confidence an
adversary has about the position of a value within the index.

Pooling - The use of pooling in order to improve performance of insertions
to database indexes was suggested by [14]. We suggest the use of pooling for
security reasons. We define a fixed size pool for each index holding the new
inserted values. Only when the pool is full, will the indexes be updated with
these values. Furthermore, the extraction of values from the pool should be
done in a random order, since it makes it difficult to link the extracted values
and their corresponding inserted values. When a query is to be executed, we
first need to search the pool, and then to search the rest of the index. The pool
size determines the level of confidence an adversary has about the position of a
value within the index. Note that a full scan has to be performed on the pool
whenever the index is used. Thus, the size of the pool is a privacy-performance
trade-off. Using a pool size that has space complexity of O(log |table size|) will
not affect the time complexity of the queries.



Fig. 3. A Database Index Using Pooling.

Figure 3 illustrates a database index using pooling. Figure 3a illustrates the
database table, index and pool after the insertion of three values: 17,5,24 where
the pool size is four values. Figure 3b illustrates the database table, index and
pool after the insertion of a fourth value: 36, that fills the pool. The values in the
pool are then extracted in random order and inserted into the database table
and index.

5.3 Supporting DAC

If indexes are used only by one user or if they are never updated, it is possible to
maintain a local index for each user. Securing indexes stored locally is relatively
easy. However, such local indexes do not work well in a multi-user environment,
since synchronizing them is difficult. Thus, it is necessary to store the indexes
in one site, such as the database server, and share them between users.

As mentioned in subsection 3.6, a fundamental problem arises when multiple
users share the same encrypted index and each user has different access rights.
We suggest a simple but elegant solution to this problem: split the index into sev-
eral sub-indexes where each sub-index relates to values in the column encrypted
using the same key. A similar approach for disseminating XML documents was
proposed in [15].

Figure 4 illustrates sub-indexes where each sub-index relates to values in
the column encrypted using the same key. In order to evaluate a query, only
ciphertext values with the same access right are queried. All the values in a sub-
index belong to the same security group, and thus the problem that is illustrated
in Fig. 2 is eliminated.



Fig. 4. An Encrypted Database Column and its Corresponding Sub-Indexes.

Figure 5 illustrates how a query is executed using sub-indexes. A secure
session between the user and the database server is created (step 1). The user
supplies his encryption keys4 (step 2). During the secure session, the user submits
queries to the server (step 3). The server uses the encryption keys in order to
find the set of indexes that the current user is entitled to access5 (step 4). The
query is executed on the set of indexes found (step 5). The result set is returned
to the user (step 6).

Fig. 5. Query Execution Using Sub-Indexes.

4 The encryption keys can be supplied using smart card architecture.
5 The database server can maintain a directory that maps the hash of a given encryp-

tion key to the corresponding sub-index.



6 Conclusions

In this paper, we outlined the challenges raised when designing a secure index
for an encrypted database. The challenges include: prevention of information
leakage; detection of unauthorized modifications; preserving the structure of the
index; and supporting discretionary access control; while performance in terms
of time and storage is not significantly affected. In addition, two design consider-
ations, keys storage and encryption granularity, were discussed. For each design
consideration, we proposed several alternatives and elaborated on the tradeoffs
between them.

A secure database index encrypted at the single values level of granularity
was suggested. Performance and structure perseverance are simply obtained since
single values granularity encryption is used. We used encryption, dummy values
and pooling in order to prevent information leakage and unauthorized modifi-
cations. Finally, in order to support discretionary access control in a multi-user
environment, we suggested splitting the index into several sub-indexes, where
each sub-index relates to values in the column encrypted using the same key.

Table 4 summarizes the challenges and solutions that were suggested through-
out this paper.

Table 4. Summary of Challenges and Solutions

Challenge Solution

Static Leakage Ek is nondeterministic
Linkage Leakage Different encryption functions for the index and the table

Dynamic Leakage Dummy Values and Pooling

Spoofing MAC (Vtrc - the indexed value)
Splicing MAC (SR - the node self reference)
Replay MAC (Version)

Structure Perseverance Single values granularity; Structure data is not encrypted

Performance Single values granularity; Periodic verification

DAC Sub-Indexes
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