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Abstract. We propose a learning and prediction based paradigm for designing 
smart home environments. The foundation of this paradigm lies in information 
theory as it manages uncertainties of the inhabitants’ contexts (e.g., locations or 
activities) in daily lives. The idea is to build compressed dictionaries of context-
aware data collected from sensors and devices monitoring and/or controlling the 
smart environment, efficiently learn from these profiles, and finally predict in-
habitant’s future contexts. Successful prediction helps automate device control 
operations and tasks within the environment as well as to identify anomalies. 
Thus, the learning and prediction based paradigm optimizes such goal functions 
of smart environments as minimizing maintenance cost, manual interactions 
and energy utilization. After identifying important features of smart environ-
ments, we present an overview of our MavHome architecture and apply the 
proposed paradigm to the inhabitant’s location and activity tracking and predic-
tion, and automated decision-making capability.  

1   Introduction 

We live in an increasingly connected and automated society. Smart environments em-
body this trend by linking computers and other devices to everyday settings and 
commonplace tasks. Although the desire to create smart environments has existed for 
decades, research on this multidisciplinary topic has become increasingly intense in 
the recent years. Indeed, tremendous advances in smart devices, wireless mobile 
communications, sensor networks, pervasive computing, machine learning, robotics, 
middleware and agent technologies, and human computer interfaces have made the 
dream of smart environments a reality. To our understanding, a smart environment is 
a small world where sensor-enabled and networked devices work continuously and 
collaboratively to make lives of inhabitants more comfortable. “Smart” or “intelli-
gent” means “the ability to autonomously acquire and apply knowledge”, while an 
“environment” refers to our surroundings. Thus, a “smart environment” is able to ac-
quire and apply knowledge about an environment and adapt to its inhabitants, thereby 
improving their experience [7]. 

The type of experience that individuals wish from an environment varies with the 
individual and the type of environment considered. This may include the safety of in-
habitants, reduction of cost of maintaining the environment, optimization of resources 
(e.g., utility/energy bills or communication bandwidth), or task automation.  
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Reflecting the increased interest in smart environments, research labs in academia 
and industry are picking up the theme and creating environments with their own indi-
vidual spin and market appeal. For example, the Aware Home [1, 21], Adaptive 
House [26], and MavHome [9, 32] use sensors to learn models of the inhabitants and 
automate activities accordingly. Other designs include smart offices, classrooms, kin-
dergartens, tables, and cars [1, 3, 13, 22, 30]. Connected homes with device commu-
nications capability have become the focus of companies such as Philips, Cisco [5], 
Verizon, Sun, Ericsson, and Microsoft [4]. Projects on smart environments to assist 
individuals with health challenges are discussed in [10, 12, 14, 17, 20]. Refer to [7], 
for a comprehensive treatment of necessary technologies, architectures, algorithms, 
and protocols to build smart environments for a variety of applications. 

This paper presents our research experience in developing MavHome [9, 32], a 
smart home project funded by the US National Science Foundation. In particular, we 
propose “learning and prediction” as a paradigm for designing efficient algorithms 
and smart protocols in smart environments. This paradigm lies in information theory 
as it manages inhabitants’ uncertainties in mobility and activities in daily lives. The 
underlying idea is to build intelligent (compressed) dictionaries of inhabitants’ mobil-
ity and activity profiles collected from sensor data, learn from this information, and 
predict future mobility and actions. Such prediction helps device automation and effi-
cient resource management, thus optimizing the goals of the smart environment. 

2   Features of Smart Environments 

Important features of smart environments are that they possess a degree of autonomy, 
adapt themselves to changing environments, and communicate with humans in a natu-
ral way [7]. Intelligent automation can reduce the amount of interactions required by 
the inhabitants, as well as reduce resource consumption and other potential wastages. 
These capabilities can provide additional features such as detection of unusual or 
anomalous behavior for health monitoring and home security, for example. 

Remote Control of Devices: The most basic feature is the ability to control devices 
remotely or automatically. By plugging devices into simple power-line controllers 
like X10, inhabitants can turn lights, coffee makers, and other appliances on or off in 
much the same way as couch potatoes switch television stations with a remote con-
trol. Computer software can additionally be employed to program sequences of device 
activities and capture device events. This capability allows inhabitants to be free from 
the requirement of physical access to devices.  Individuals with disabilities can con-
trol devices from a distance. Automated lighting sequences can give the impression 
that an environment is occupied while inhabitants are gone, thus handling routine pro-
cedures without human intervention. 

Device Communications: With the maturity of wireless communications and  
middleware technology, smart environment designers and inhabitants have been able 
to raise their standards and expectations. In particular, devices use these technologies 
to communicate with each other, share data to build a more informed model of the 
state of the environment and/or inhabitants, and retrieve information from outside 
sources over the Internet or wireless network infrastructure. With these capabilities, 
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for example, the environment can access the weather page to determine the forecast 
and query the moisture sensor in the lawn to determine how long the sprinklers should 
run. Devices can access information from the Internet such as menus, operational 
manuals, or software upgrades, and can post information such as a grocery store list 
generated from monitoring inventory with an intelligent refrigerator or trash bin. 

Activation of one device can also trigger other sequences, such as turning on the 
bedroom radio, kitchen coffee maker, and bathroom towel warmer when the alarm 
goes off. Inhabitants can benefit from the interaction between devices by muting the 
television sound when the telephone or doorbell rings; temperature as well as motion 
sensors can interact with other devices to ensure that the temperature is kept at a de-
sired level wherever the inhabitants are located within the environment. 

Sensory Information Acquisition: Recent advancements in sensor technology have 
made it possible to make low-level decisions from monitored data.  As a result, envi-
ronments can provide dynamic adjustments based on sensor readings and can better 
customize behaviors to the nuances of the inhabitants' surroundings.  Motion detectors 
or force sensors can detect the presence of individuals in the environment and accord-
ingly adjust lights, music, or climate control. Water and gas sensors can monitor po-
tential leaks and force the valves, thus closing them when a danger arises. Low-level 
control of devices offers fine-tuning in response to changing conditions, such as ad-
justing window blinds as the amount of daylight coming into a room changes. Net-
works composed of these sensors can share data and offer information to the envi-
ronment at speeds and complexity not experienced before. For example, a Smart Sofa 
[29] can identify individuals based on the weight and thus customize device settings 
around the house. 

Enhanced Services by Intelligent Devices: Smart environments are usually 
equipped with numerous networked and sensor-enabled devices/appliances that pro-
vide varied and impressive capabilities. For example, Frigidaire and Whirlpool offer 
intelligent refrigerators with features that include web cameras to monitor inventory, 
bar code scanners, and Internet-ready interactive screens. Through interactive cam-
eras, inhabitants away from home can view the location of security or fire alerts; simi-
larly remote caregivers can check on the status of their patients or family. Merloni’s 
washing machine uses sensor information to determine appropriate cycle times. In 
addition, specialized equipments have been designed in response to the growing inter-
est in assistive environments. Researchers at MIT's Media Lab are investigating new 
specialized devices, such as an oven mitt that can tell if food has been warmed all the 
way through. A breakthrough development from companies such as Philips is an in-
teractive tablecloth that provides cable-free power to all chargeable objects placed on 
the table's surface. An environment that can combine the features of these devices 
with information gathering and remote control capability will realize many of the in-
tended goals of smart environment designers. 

Predictive Decision Making Capabilities: Full automation and adaptation of smart 
environments rely on the software itself to learn, or acquire information that allows 
the software to improve its performance with experience. Specific features of recent 
smart environments that meet these criteria incorporate predictive and automatic deci-
sion-making capabilities into the control paradigm. Contexts (mobility or activity) of 
inhabitants as well as of the environment can be predicted with good accuracy based 
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on observed activities and known features. Models can also be built of inhabitant pat-
terns that can be used to customize the environment for future interactions. For exam-
ple, an intelligent car can collect information about the driver including typical times 
and routes to go to work, theatre, restaurant, and store preferences, and commonly 
used gas stations. Combining this information with data collected by the inhabitant's 
home and office as well as Internet-gathered specifics on movie times, restaurant 
menus and locations, and sales at various stores, the car can make recommendations 
based on the learned model of activity patterns and preferences. Similarly, building 
device performance model can allow the environment to optimize its behaviors and 
performance. For example, smart light bulbs may warn expiry time, letting the factory 
deliver replacements before the need is critical. 

As a complement to predictive capabilities, a smart environment will be able to de-
cide on how to automate its own behaviors to meet the specified goals. The environ-
ment should control device settings and timings; it should also elect between alternate 
methods of achieving a goal, such as turning on lights in each room entered by an in-
habitant or anticipating where the inhabitant is heading and illuminating just enough 
of the environment to direct the individual to their goal.  

3   The MavHome Smart Home 

The MavHome [9, 32] at the University of Texas at Arlington represents an environ-
ment that acts as an intelligent agent, perceiving the state of the home through sensors 
and acting upon the environment through device controllers with a goal to maximize 
inhabitants’ comfort and minimize home’s operating cost. To achieve this goal, the 
house must reason about, learn, predict, and adapt to its inhabitants. 

In MavHome, the desired smart home capabilities are organized into an agent 
based software architecture that seamlessly connects the components. Figure 1  
describes the architecture of a MavHome agent that separates the technologies and 
functions into four cooperating layers: (i) the Decision layer selects actions for the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. MavHome agent architecture
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agent to execute; (ii) the Information layer collects information and generates  
inferences useful for making decisions; (iii) the Communication layer is responsible 
for routing and sharing information between agents; and (iv) the Physical layer  
consists of devices, transducers, and network equipments. The MavHome software 
components are connected using a distributed inter-process communication interface. 
Because controlling an entire house is a large-scale complex learning and reasoning 
problem, it is decomposed into reconfigurable tasks. Thus, the Physical layer for one 
agent may represent another agent somewhere in the hierarchy, which is capable of 
executing the task selected by the requesting agent. 

Perception is a bottom-up process. Sensors monitor the environment (e.g., lawn 
moisture level) and transmit information to another agent through the Communication 
layer. The database records the information in the Information layer, updates its 
learned concepts and predictions, and alerts the Decision layer of the presence of new 
data. During action execution, information flows top down. The Decision layer selects 
an action (e.g., run the sprinklers) and relates the decision to the Information layer. 
After updating the database, the Communication layer routes the action to the appro-
priate effector to execute. Specialized interface agents allow interaction with users 
and external resources such as the Internet. Agents communicate with each other us-
ing the hierarchical flow as shown in Fig. 1. In the following, a smart home will gen-
erically represent a smart environment. 

4   Automation Through Learning and Prediction 

In order to maximize comfort, minimize cost, and adapt to the inhabitants, a smart 
home must rely upon sophisticated tools for intelligence building such as learning, 
prediction, and making automated decisions. We will demonstrate that learning and 
prediction indeed play an important role in determining the inhabitant’s next action 
and anticipating mobility patterns within the home. The home will need to make this 
prediction based solely on the history of mobility patterns and previously seen inhabi-
tant interactions with various devices (e.g., motion detectors, sensors, device control-
lers, video monitors), as well as the current state of the inhabitant and/or the house. 
The captured information can be used to build powerful models that aid in efficient 
prediction algorithms. The number of prediction errors must be minimal, and the al-
gorithms must be able to deliver predictions with minimal processing delays. Predic-
tion is then handed over to a decision-making algorithm that selects actions for the 
house to meet its desired goals. The underlying concepts of MavHome prediction 
schemes lie in the text compression, on-line parsing and information theory. Well-
investigated text compression methods [8, 31] have established that good compression 
algorithms are also good learners and hence good predictors. According to informa-
tion theory [8], a predictor with an order (size of history used) that grows at a rate ap-
proximating the entropy rate of the source is an optimal predictor. We summarize be-
low a novel paradigm for inhabitant’s mobility and activity predictions. 

4.1   Inhabitant Location Prediction 

Location is perhaps the most common example of context. Hence, it is crucial for  
a smart environment to track inhabitant’s mobility accurately by determining and  
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predicting his location. The prediction also helps in optimal allocation of resources 
and activation of effectors in location-aware applications [11, 24]. In [2], we proposed 
a model-independent algorithm for location prediction in wireless cellular networks, 
which we later adopted for indoor location tracking and predicting inhabitant’s future 
locations [15, 28]. Our approach uses symbolic representation of location information 
that is relative to the access infrastructure topology (e.g., sensor ids or zones through 
which the inhabitant passes), making the approach universal or model-independent. 
At a conceptual level, prediction involves some form of statistical inference, where 
some sample of the inhabitant’s movement history (profile) is used to provide intelli-
gent estimates of future location, thereby reducing the location uncertainty associated 
with the prediction [11, 27]. 

Hypothesizing that the inhabitant’s mobility has repetitive patterns that can be 
learned, and assuming the inhabitant’s mobility process as stochastically random, we 
proved that [2]: It is impossible to optimally track mobility with less information ex-
change between the system (i.e., smart environment) and the device (detecting inhabi-
tant’s mobility) than the entropy rate of the stochastic mobility process. Specifically, 
given the past observations of inhabitant’s position and the best possible predictors of 
future position, some uncertainty in the position will always exist unless the device 
and the system exchange location information. The actual method by which this ex-
change takes place is irrelevant to this bound. All that matters is that the exchange ex-
ceeds the entropy rate of the mobility process. Therefore, a key issue in establishing 
bounds is to characterize the mobility process (and hence entropy rate) in an adaptive 
manner. To this end, based on information-theoretic framework, we proposed an op-
timal on-line adaptive location management algorithm, called LeZi-update [2]. Rather 
than assuming a finite mobility model, LeZi-update learns his movement history 
stored in a Lempel-Ziv type of compressed dictionary [31], builds a universal model 
by minimizing entropy, and predicts future locations with high accuracy. In other 
words, LeZi-update offers a model-independent solution to manage mobility related 
uncertainty. This framework is also applicable to other contexts such as activity pre-
diction [16], resource provisioning [11, 27], and anomaly detection. 

The LeZi-update framework uses a symbolic space to represent sensing zone of the 
smart environment as an alphabetic symbol and thus captures inhabitant’s movement 
history as a string of symbols. That is, while the geographic location data are often 
useful in obtaining precise location coordinates, the symbolic information removes 
the burden of frequent coordinate translation and is capable of achieving universality 
across different networks [24, 27]. The blessing of symbolic representation also helps 
us hierarchically abstract the indoor connectivity infrastructure into different levels of 
granularity.  We assume that the inhabitants’ itineraries are inherently compressible 
and allow application of universal data compression algorithms [31], which make 
very basic and broad assumptions, and yet minimize the source entropy for stationary 
Ergodic stochastic processes [26]. 

In LeZi-update, the symbols (sensor-ids) are processed in chunks and the entire  
sequence of symbols withheld until the last update is reported in a compressed  
(encoded) form.  For example, referring to the abstract representation of mobility in 
Figure 2(a), let the inhabitant’s movement history at any instant be given as  
ajlloojhhaajlloojaajlloojaajll… . This string of symbols can be parsed as distinct sub-
strings (or phrases) “a, j, l, lo, o, jh, h, aa, jl, loo, ja, aj, ll, oo, jaa, jll, …”. As shown in 
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Figure 2(b), such a symbol-wise context model, based on variable-to-fixed length 
coding, can be efficiently stored in a dictionary implemented by a trie. Essentially, the 
mobile node acts as an encoder while the system acts as a decoder and the frequency 
of every symbol is incremented for every prefix of every suffix of each phrase. By ac-
cumulating larger and larger contexts, one can affect a paradigm shift from traditional 
position update to route update. For stationary Ergodic sources with n symbols, this 
framework achieves asymptotic optimality, with improved location update cost 
bounded by o(lg n – lg lg n) where lg n denotes logarithm base 2.     

 

                        
 

Fig. 2. (a) Symbolic representation of mobility, (b) Trie holding zones and their frequencies 

Table 1. Phrases and their frequencies at context "jl", "j" and Λ 

jl j  Λ 
l|jl(1) a|j(1) a(4)      aa(2)      aj(1) 
Λ|jl(1) aa|j(1) j(2)      ja(1)       jaa(1) 
 L|j(1) jl(1)      jh(1)      l(4) 
 ll|j(1) lo(1)     loo(1)    ll(2) 
 h|j(1) o(4)      oo(2)     h(2) 
 Λ|j(2) Λ(1) 

One major objective of the LeZi-update scheme is to endow the prediction process, 
by which the system finds nodes whose position is uncertain, with sufficient informa-
tion regarding the node mobility profile. Each node in the trie preserves the relevant 
frequencies provided by the update mechanism in the current context. Thus, consider-
ing “jll” as the latest update phrase (route), the usable contexts are its prefixes: “jl”, 
“j” and Λ (null symbol). A list of all predictable contexts with frequencies is shown in 
Table 1. Following the blending technique of prediction by partial match (PPM) [6], 
the probability computation starts from the leaf nodes (highest level) of the trie and 
escapes to the lower levels until the root is reached. Based on the principle of insuffi-
cient reasoning [26], every phrase probability is distributed among individual symbols 
(zones) according to their relative occurrence in a particular phrase. The total resi-
dence probability of every zone (symbol) is computed by adding the accumulated 



 Designing Smart Environments: A Paradigm Based on Learning and Prediction 87 

probabilities from all possible phrases at this context. The optimal prediction order is 
now determined by polling the zones in decreasing order of residence probabilities. 

So overall, the application of information-theoretic methods to location prediction 
allowed quantification of minimum information exchanges to maintain accurate loca-
tion information, provided an on-line method by which to characterize mobility, and 
in addition, endowed an optimal prediction sequence [11]. Through learning this ap-
proach allows us to build a higher order mobility model rather than assuming a finite 
model, and thus minimizes entropy and leads to optimal performance. 

While the basic LeZi-Update algorithm was used to predict only the current loca-
tion from past movement patterns, this approach has also been extended in [28] to 
predict the likely future routes (or trajectories) of inhabitants in smart homes and also 
for heterogeneous environments [23]. The route prediction exploits the asymptotic 
equi-partition property in information theory [8], which implies the algorithm predicts 
a relatively small set (called typical set) of routes that the user is likely to take. A 
smart home environment can then act on this information by activating resources in 
an efficient manner (for example, by turning on the lights lying only on these routes). 
Our experiments [28] demonstrate that the predictive framework can save up to 70% 
electrical energy in a typical smart home environment. The prediction accuracy is up 
to 86% while only 11% of routes constitute the typical set. 

4.2   Inhabitant Action Prediction 

A smart home inhabitant typically interacts with various devices as part of routine ac-
tivities. These interactions may be considered as a sequence of events, with some in-
herent repeatability pattern, that can be modeled as a stationary stochastic process. In-
habitant action prediction consists of first mining the data to identify sequences of 
actions that are regular and repeatable enough to generate predictions, and using a se-
quence matching approach to predict the next action. 

To mine the data, a window can be moved in a single pass through the history of 
inhabitant actions, looking for sequences within the window that merit attention.  
Each sequence is evaluated using the Minimum Description Length principle [26], 
which favors sequences that minimize the description length of the sequence once it is 
compressed by replacing each instance of the discovered pattern with a pointer to the 
pattern definition. A regularity factor (daily, weekly, monthly) helps compress the 
data and thus increases the value of a pattern. Action sequences are first filtered by 
the mined sequences. If a sequence is considered significant by the mining algorithm, 
then predictions can be made for events within the sequence window. Using this algo-
rithm as a filter for two alternative prediction algorithms, the resulting accuracy in-
creases on an average by 50%. This filter ensures that MavHome will not erroneously 
seek to automate anomalous and highly variable activities [18,19].  

As above, the action prediction algorithm parses the input string (history of interac-
tions) into substrings representing phrases. Because of the prefix property used by the 
algorithm, parsed substrings can be efficiently maintained in a trie along with the fre-
quency information. To perform prediction, the algorithm calculates the probability of 
each symbol (action) occurring in the parsed sequence, and predicts the action with 
the highest probability. To achieve optimal predictability, the predictor must use a 
mixture of all possible order models (phrase sizes) when determining the probability 
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estimate. To accomplish this, techniques from the PPM family of predictors are in-
corporated, that generate weighted Markov models of different orders. This blending 
strategy assigns greater weight to higher-order models, in keeping with the advisabil-
ity of making the most informed decision. 

In our experiments run on sample smart home data, predictive accuracy of this ap-
proach converged on 100% for perfectly-repeatable data with no variation, and con-
verged on 86% accuracy for data containing variations and anomalies [16]. 

4.3   Automated Decision Making   

The goal of MavHome is to enable automation of basic functions so as to maximize 
the inhabitants’ comfort and minimize the operating cost of the home. We assume 
comfort is a function of the number of manual interactions with the home, and the op-
erating cost of energy usage. Because the goal is a combination of these two factors, 
blind automation of all inhabitant actions is frequently not the desired solution. For 
example, an inhabitant might turn on the hallway light in the morning before opening 
the blinds in the living room. MavHome could, on the other hand, open the blinds in 
the living room before the inhabitant leaves the bedroom, thus alleviating the need for 
the hallway lights.  Similarly, turning down the air conditioning after leaving the 
house and turning it back up before returning would be more energy efficient than 
turning the air conditioning to maximum after arriving home in order to cool it as 
quickly as possible [28]. 

To achieve its goal, MavHome uses reinforcement learning to acquire an optimal 
decision policy. In this framework, the agent learns autonomously from potentially 
delayed rewards rather than from a teacher, reducing the requirement for the home’s 
inhabitant to supervise or program the system. To learn a strategy, the agent explores 
the effects of its actions over time and uses this experience to form control policies 
that optimize the expected future reward. 

5   Conclusion 

This paper summarizes our experience on the effectiveness of learning and prediction 
based paradigm in designing a smart home environment. Efficient prediction algo-
rithms provide information useful for future locations and activities, automating ac-
tivities, optimizing design and control methods for devices and tasks within the envi-
ronment, and identifying anomalies. These technologies reduce the work to maintain a 
home, lessen energy utilization, and provide special benefits for elderly and people 
with disabilities. In the future, these abilities will be generalized to conglomeration of 
environments, including smart offices, smart roads, smart hospitals, smart automo-
biles, and smart airports, through which a user may pass through in daily life. Another 
research challenge is how to characterize mobility and activity profiles of multiple in-
habitants (e.g., living in the same home) in the same dictionary and predict or trigger 
actions to meet the common goals of the house under conflicting requirements of in-
dividual inhabitants. 
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