| Speech Home | Java Speech API | Java Speech Technologies | SpeechActs | Publications | Staff |

Published in CHI ' 95 Proceedings, Conference on Human Factorsin Computing Systems, Denver, CO,
May 7-11, 1995.

Designing SpeechActs:
| ssuesin Speech User Interfaces

Nicole Yankelovich, Gina-Anne Levow*, Matt M ar x*
Sun Microsystems Laboratories

Two Elizabeth Drive

Chelmsford, MA, USA 01824

* Current addresses listed below.

nicole.yankel ovich@east.sun.com

gina@ai.mit.edu

groucho@media.mit.edu

Postscript Version - 8 Pages

ABSTRACT

SpeechActs is an experimental conversational speech system. Experience with redesigning the system
based on user feedback indicates the importance of adhering to conversational conventions when
designing speech interfaces, particularly in the face of speech recognition errors. Study results also
suggest that speech-only interfaces should be designed from scratch rather than directly transated from
their graphical counterparts. This paper examines a set of challenging issues facing speech interface
designers and describes approaches to address some of these challenges.

Keywords. Speech interface design, speech recognition, auditory 1/O, discourse, conversational
interaction.

INTRODUCTION

Mobile access to on-line information is crucial for traveling professionals who often feel out of touch
when separated from their computer. Missed messages can cause serious inconvenience or even spell
disaster when decisions are delayed or plans change.

A portable computer can empower the nomad to some degree, yet connecting to the network (by
modem, for example) can often range from impractical to impossible. The ubiquitous telephone, on the
other hand, is necessarily networked. Telephone access to on-line data using touch- tone interfacesis
already common. These interfaces, however, are often characterized by alabyrinth of invisible and
tedious hierarchies which result when menu options outnumber tel ephone keys or when choices
overload users short-term memory.

Conversational speech offers an attractive alternative to keypad input for telephone-based interaction. It
isfamiliar, requires minimal physical effort for the user, and leaves hands and eyes free. And since
physical space presents no constraint for a speech system, the number of commandsis virtually
unlimited.

Implementing a usable conversational interface, however, involves overcoming substantial obstacles.
Error-prone speech recognizers require the system to emphasize feedback and verification, yet the time
it takes to identify and repair errors can be tiring. Further, conversational interfaces are young, and
transferring design principles from other media such as graphics can lead to unusable systems. Despite
these problems, we, along with others [6, 9, 10, 11], believe the technology good enough and the
promise exciting enough to make experimentation worthwhile.

In the SpeechActs project, we seek to identify principles and challenges of conversational interface
design and to pinpoint limitations of current technology. In so doing, we hope to define useful avenues
for research and suggest strategies for addressing the difficult problems facing speech user interface
designers.

In this paper, we first describe the functionality of the SpeechActs system. We then explain our
methodology, including usability testing and iterative redesign. We conclude with speech user interface
design challenges and strategies for meeting those challenges in a speech-only environment.

THE SpeechActs SYSTEM

SpeechActs is aresearch prototype that integrates third-party speech recognition and synthesis with
telephony, natural language processing capabilities, and other tools for creating speech applications. For
an overview of the SpeechActs architecture, see [13]. To date, the system includes speech-only
interfaces to a number of applications including electronic mail, calendar, weather, and stock quotes.

With the mail application, which uses Sun’s Mail Tool backend, users can hear their messages, skip
forward or backward from one header to the next, fax a message, reply to a message, or initiate a new
message to a person on their short list of names known to the speech recognizer. To fax messages, users
can say the name of a predefined location (i.e., work, home) or can specify afax number by using
telephone keypad input. When sending a message, the user has the option of including the current
message and/or including a recorded audio attachment. Following is an example of atypical interaction
with the mail application:

SpeechActs: You have 14 new nessages and 47 old
nessages. The first new nessage is from
Eric Baatz regarding "report conpleted.”

User: Let ne hear it.

SpeechActs: "The first draft is ready for your comments.
Eric."

User: Reply and include the current nessage.

SpeechActs: Preparing nessage to Eric Baatz. Begin
recording after the tone. Wen finished,
pause for several seconds.

User: Eric, 1'Il get those to you this afternoon
SpeechActs: Say cancel, send, or review

User: Send.

SpeechActs: Message sent. What now?

User: Next message.

SpeechActs: New nessage two from Stuart Adans,
subj ect "Can we neet at 3:00 today?"

User: Switch to cal endar. .

The SpeechActs calendar interface, based on Sun’s Calendar Manager application, allows usersto
browse their own calendar as well as the calendars of other users on their short list. When the user
requests information, the application reads them all the events on a selected day. Typical caendar
queries include:

VWhat do | have tonorrow?

What about Bob?

What di d he have | ast Wednesday?

And next Thursday?

VWhat was Paul doing three days after Labor Day?

The weather application provides an interface to the University of Michigan's on-line Weather
Underground forecasts. Users can call up and ask for weather for states and for major cities around the
country. For example, the user can say:

What's the weather in Seattle?
How about Texas?
I"d li ke the extended forecast for Boston

Like the weather application, the stock quotes application provides a speech interface to a dynamic data
feed. The user is ableto ask for the prices of selected stocks, ask about their highs, lows, and volume, or
ask for the prices of stocks in their portfolio (a stored list of stocks). Sample queriesinclude:

VWat's the price of Sun?
What was the vol une?

Tell me about | BM

How s my portfolio doing?

Aswith multiple graphical applications running in the same environment, SpeechActs supports a
standard set of functions that are always available in any application. For example, the user may always
switch to a different application, ask for help, or end a session by saying "good bye."

USER STUDY / ITERATIVE DESIGN

Before the SpeechA cts software was written, we conducted a survey and afield study [12] which served
asthe basis for the preliminary speech user interface (SUI) design. Once we had aworking prototype,
we conducted a usability study in which we adhered to Jakob Nielsen’s formative evaluation philosophy
of changing and retesting the interface as soon as usability problems are uncovered [8]. As aresult, the
formative evaluation study involved small groups of users and a substantial amount of iterative redesign.

Formative Evaluation Study Design

Fourteen users participated in the study. The first two participants were pilot subjects. After the first
pilot, we redesigned the study, solved major usability problems, and fixed software bugs. After the
pilots, nine users, all from our target population of traveling professionals, were divided into three
groups of three. Each group had two males and one female. An additional three participants were,
unconventionally, members of the software devel opment team. They served as a control group. As
expert SpeechActs users, the devel opers provided a means of factoring out the interface in order to
evaluate the performance of the speech recognizer.

After testing each group of target users, we altered the interface and used the next group to validate our
changes. Some major design changes were postponed until the end of the study. These will be tested in
the next phase of the project when we plan to conduct alonger-term field study to measure the
usefulness of SpeechActs as users adapt to it over time.

Tasks

During the study, each participant was led into aroom fashioned like a hotel room and seated at atable
with atelephone. They were asked to complete a set of 22 tasks, taking approximately 20 minutes, and
then participate in afollow-up interview.

The tasks were designed to help evaluate each of the four SpeechActs applications, as well astheir
interoperation, in area-life situation. To complete the tasks, participants had to read and reply to
electronic mail, check calendar entries for themselves and others, look up a stock quote, and retrieve a
weather forecast.

Instead of giving explicit directions, we embedded the tasks in the mail messages. Thus the single,
simple directive "answer all new messages that require aresponse” led to the participants executing most
of the tasks desired. For example, one of the messages read as follows: "l understand you have access to
weather information around the country. If it’s not too much trouble, could you tell me how warm it is
going to be in Pittsburgh tomorrow?" The participant had to switch from the mail application to the
weather application, retrieve the forecast, return to the mail application, and prepare areply.

Although the instructions for completing the task were brief, participants were provided with a"quick
reference card" with sample commands. For example, under the heading "Mail" were phrases such as
"read me the first message,”" "let me hear it," "next message,” "skip that one," "scan the headers,” and
"go to message seven.” In addition, keypad commands were listed for stopping speech synthesizer
output and turning the recognizer on and off.

Summary of Results

After testing the first group of users, we were able to identify the main problems in the interface. Each
of our users bemoaned the slow pace of the interaction, most of them thought the computer gave too
much feedback, and almost everyone insisted that they be able to interrupt the speech output with their
voice. Most egregious was our inappropriate trandation of the Sun Mail Tool message organization into
speech. A technique that worked well in the graphical interface turned out to be confusing and
disorienting in the speech interface. Details about this problem with message organization along with
other design-related study results are woven into the discussion on design challengesin the following
section.

In the study, our main aim was not to collect quantitative data; however, the data we gathered did
suggest several trends. As hoped, we noticed a marked, consistent decrease in both the number of
utterances and the amount of time required to complete the tasks from one design cycle to the next,
suggesting that the redesigns had some effect. On average, the first group of userstook 74 utterances
and 18.5 minutes to complete the tasks compared to the third group which took only 62 utterances and
15 minutes (Table 1).

Partici pants Ut t erances Time (m nutes)
Goup 1 74 18. 67
G oup 2 63 16. 33
G oup 3 62 15. 00
Devel opers 43 12. 33

Table 1. Average nunber of utterances and time to
conpl ete tasks.

At the start of the SpeechActs project, we were aware that the state of the art in speech recognition
technology was not adequate for the conversationa applications we were building. One of our research
guestions was to determine if certain types of interface design strategies might increase users success
with the recognizer. Unfortunately, none of our redesigns seemed to have an impact on recognition rates
- the number of utterances that resulted in the system performing the correct action. They remained
consistent among the groups, with the developers showing about a 10% better rate than the first-time
users. More significant than the design was the individual; for instance, femal e participants, on average,
had only 52% of their utterances interpreted correctly compared to 68.5% for males. Even with these
low recognition rates, the participants were able to complete most of the 22 tasks. Males averaged 20
completed tasks compared to 17 for females (Table 2).

Femal e 52% 17
Mal e 68. 5% 20
Devel opers 75. 3% 22

Tabl e 2. Average recognition rates and nunmber of tasks
conpl et ed.

Paradoxically, we found that recognition rates were a poor indicator of satisfaction. Some of the
participants with the highest error rates gave the most glowing reviews during the follow-up interview. It
isour conclusion that error rates correlate only loosely with satisfaction. Users bring many and varying
expectations to a conversation, and their satisfaction will depend on how well the system fulfills those

expectations.

Moreover, expectations other than recognition performance colored users opinions. Some participants
were expert at using Sun’s voice mail system with its touch-tone sequences that can be rapidly issued.
These users were quick to point out the slow pace of SpeechActs; almost without exception they pointed
out that a short sequence of key presses could execute a command that took several seconds or longer
with SpeechActs.

Overall, participants liked the concept behind SpeechActs and eagerly awaited improvements. Barriers
still remain, however, before a system like SpeechActs can be made widely available. The next section
provides a more in-depth discussion of the challenges inherent in speech interfaces as well as solutions
to some of these suggested by our users' experience with SpeechActs.

DESIGN CHALLENGES

In analyzing the data from our user studies, we have identified four substantial user interface design
challenges for speech-only applications. Below is a description of each challenge along with our
approach to addressing the challenge.

Challenge: Simulating Conver sation

Herb Clark saysthat "speaking and listening are two parts of a collective activity" [1]. A major design
challenge in creating speech applications, therefore, isto simulate the role of speaker/listener
convincingly enough to produce successful communication with the human collaborator. In designing
our dialogs, we attempt to establish and maintain what Clark calls a common ground or shared context.

To make the interaction feel conversational, we avoid explicitly prompting the user for input whenever
possible. This means that there are numerous junctures in the conversational flow where the user must
take the initiative. For example, after amail header isread, users hear a prompt tone. Almost all users
comfortably take the lead and say something appropriate such as "read the message,” or "skip it." In
these cases, we adequately establish a common ground and therefore are rewarded with a conversation
that flows naturally without the use of explicit prompts.

When we engaged users in a subdialog, however, study participants had trouble knowing what to say, or
even if it was their turn to speak, when the subdialog concluded. The completion of a subdialog
corresponds to a discour se segment pop in the discourse structure terminology described by Grosz &
Sidner [3]. When the subdialog is closed, the context returns to that preceding the subdialog. For
example, the user might read a string of messages and then come across one that requires aresponse. In
the reply subdialog, the user has to decide whether or not to include the current message, hasto record
the new message, and, perhaps, has to review the recording. When finished, the user is back to a point
where he or she can continue reading messages. In the Mail Tool graphical user interface (GUI), the
reply sequence takes place in a pop-up window which disappears when the user sends the message, and
their previous context is revealed. We found that we needed an analogous signal.

Our first attempt to provide a discourse pop cue - a prompt tone at the end of the subdialog - failed. We
considered the use of an intonational cue, which is one technique used by human speakers. Since our
synthesizer could not produce a clear enough intonational cue, we included an explicit cue phrase -
"What now?" - to signal the discourse pop. Surprisingly, this small prompt did, in fact, act to signal the

subdialog’ s completion and return the user to the main interactional context.

Prosody. Prosody, or intonation, is an important element in conversations, yet many of the synthesizers
available today do a poor job reproducing human-sounding intonational contours. This means that many
types of utterances used by humans cannot be employed in the speech interface design. For example, as
an alternative to the phrase "What did you say?', we tried to use "hmm?' and "huh?", but could not
reproduce the sounds convincingly.

Despite the lack of good prosodics, most of our study participants said the speech output was
understandable. On the other hand, many complained that the voice sounded "tinny," "electronic,” or

"choppy.”

Pacing. Another important aspect of conversation involves pacing. Due to a variety of reasons, the
pacing in SpeechA cts applications does not match normal conversational pacing. The pausesin the
conversation resulting from recognition delays, while not excessively long by graphical interaction
standards, are just long enough to be perceived as unnatural. One user commented: "1 had to get adjusted
to it in the beginning...I had to slow down my reactions."

In addition, the synthesizer is difficult to interrupt due to cross-talk in the telephone lines which prevents
the speech recognizer from listening while the synthesizer is speaking. In the implementation used by
study participants, users had to use keypad input to stop the synthesizer from speaking. Unfortunately, as
Stifelman also found [11], users had a strong preference for using their voice to interrupt the synthesizer.
A user said: "I kept finding myself talking before the computer was finished. The pacing was off."

We have identified several strategiesto improve pacing. First, we are experimenting with abarge-in
technique that will allow users to interrupt the speech synthesizer using their voice. Second, we would
like usersto be able to speed up and slow down the synthesized speech. Thisway they could listen to
familiar prompts and unimportant messages quickly, but slow the speaking down for important
information. We are also considering adding keypad short-cuts for functions common to all applications
(e.g., next, previous, skip, delete, help, etc.). Thiswill alow advanced users to move more quickly
through the information, skipping prompts when appropriate. Another potential aid for advanced users,
which Stifelman recommends [11], is replacing some of the spoken prompts with auditory icons or
sounds that evoke the meaning of the prompt.

Challenge: Transforming GUIsinto SUIs

Since one of the goals of the SpeechActs project is to enable speech access to existing desktop
applications, our initial SUI designs were influenced by the existing graphical interfaces. Our user
studies, however, made it apparent that GUI conventions would not transfer successfully to a
speech-only environment. The evolution of our SUI design shows a clear trend towards interpersonal
conversational style and away from graphical techniques.

Vocabulary. An important aspect of conversation is vocabulary. We discovered early on that the
vocabulary used in the GUI does not transfer well to the SUI. As much as they may use a piece of
software, users are not in the habit of using the vocabulary from the graphical interface in their work-
related conversations. Here is one of many examples from our pre-design field study where we analyzed
human- human conversations relating to calendars: On the telephone, a manager who is a heavy user of
Sun’s calendar GUI, asked his assistant to ook up information on a colleague’' s calendar:

Manager : Next Monday - Can you get into John's
cal endar ?

To access another user’ s calendar in the GUI, the assistant had to select an item (johnb@lab2) from the
Browse menu. In his request, the manager never mentioned the word "browse," and certainly did not
specify the colleague’ s user ID and machine name. Also note his use of arelative date specification. The
graphical calendar has no concept of "next Monday" or other relative dates such as "aweek from
tomorrow" or "the day after Labor Day." These are not necessary with agraphical view, yet they are
almost essential when a physical calendar is not present.

It turned out that the assistant could not, in fact, access John’'s calendar. She received the error message:
"Unable to access johnb@lab2" Her spoken reply was:

Assi st ant: CGosh, | don’'t think I can get into his
cal endar .

In designing each of the SpeechActs applications, we tried to support vocabulary and sentence structures
in keeping with users’ conversational conventions rather than with the words and phrases used in the
corresponding graphical interface. The field study as well as the formative study both indicate that it is
unlikely users will have success interacting with a system that uses graphical items as speech buttons or
spoken commands.

I nformation Organization. In addition to vocabulary, the organization and presentation of information
often does not transfer well from the graphical to the conversational domain. The difficulties we
encountered with the numbering of electronic mail messages illustrates the transation problem. In Sun’s
Mail Tool GUI, messages are numbered sequentially, and new messages are marked with the letter "N."
Thus, if you have 10 messages and three are new, the first new message is number 8. The advantage of
this scheme is that messages retain the same number even when their status changes from new to old.
The"N" issimply removed after a message is read.

We initially used the same numbering scheme in the SUI, but with poor results. Even though the start-up
message told the user how many new and old messages they had, users were uniformly confused about
the first new message having a number greater than one. When asked about their concept of message
numbering, users generally responded that they expected the messages to be organized like Sun’s
internal voice mail where new messages start with number 1. No one aluded to the Mail Tool
organization of messages.

We improved the situation by numbering new messages 1 to n and old messages 1 to n. Of course, this
introduced a new problem. Once a message was read, did it immediately become old and receive a
different number? Since we wanted users to be able to reference messages by number (e.g., " Skip back
to message four."), renumbering the messages seemed unwise. Instead, we added the concept of "read
messages,” so if users revisited a message, they were reminded that they had already read it, but the
message numbers stayed constant until the end of the session. Following the changes, users consistently
stated that they knew where they were in the system, and specifically mentioned the hel pfulness of the
reminder messages.

I nformation Flow. Just as one way of organizing information can be clear on the screen and confusing
when spoken, so it iswith information flow. A frequently used flow-of-control convention in GUI
design is the pop-up dialog box. These are often used to elicit confirmation from the user. A typical

exampleisaYes/No or OK/Cancel dialog box that acts as a barrier to further action until the user makes
aselection. The pop-up isvisually salient, and thus captures the user’ s attention. The closing of the
dialog box also serves as important feedback to the user.

We attempted to create speech dialog boxes. For example, we wanted a confirmation from the user
before sending a new message (e.g., Y our message is being sent to Matt Marx. Okay?"). The only
acceptable answers to this question were "yes," "okay," "no" and some synonyms. Users were highly
non-compliant! Some seemed confused by the question; others simply ignored it. Some of the confusion
was understandable. Occasionally, users had said something other than "send.” If this happened, users
often repeated or rephrased their command (e.g., "review") instead of answering the question with a
"no." Even without recognition problems, only afew users answered the yes/no question directly.
Instead, many simply proceeded with their planned task (e.g., "Read the next message."). Sometimes
they added "yes' or "no" to the beginning of their phrase to acknowledge the prompt. This phenomenon
was al so observed by researchersat NTT [5].

When considered in the context of spoken dialog, this behavior is actually quite natural. Asthe classic
example "Do you have the time?" illustrates, yes/no questions rarely require yes/no answers. The
listener frequently hasto infer yes or no, or pick it out from the context of alarger utterance.

Not being able to count on reliable answers to yes/no questions can be problematic from a design
standpoint since designing for errorsis a necessity in the speech arena. We handled this problemin a
number of different ways. First, we removed as many of these spoken dialog boxes as possible. Where
we felt confirmation was necessary, we allowed users to preface commands with yes or no. If they did
not, we treated a valid command as an implicit request to "do the right thing." For example, in the case
of the exit dialog, "Did you say to hang up?’, we treated any valid input as an implicit "no." In the few
rare cases where we wanted to be absolutely sure we were able to understand the user’ s input, we used
what Candace Kamm calls directive prompts [4] instead of using a more conversational style. For
instance, after the user has recorded a new mail message, we prompt them to " Say cancel, send, or
review."

Challenge: Recognition Errors

Ironically, the bane of speech-driven interfacesis the very tool which makes them possible: the speech
recognizer. One can never be completely sure that the recognizer has understood correctly. Interacting
with arecognizer over the telephone is not unlike conversing with a beginning student of your native
language: sinceit is easy for your conversational counterpart to misunderstand, you must continually
check and verify, often repeating or rephrasing until you are understood.

Not only are the recognition errors frustrating, but so are the recognizer’ s inconsistent responses. It is
common for the user to say something once and have it recognized, then say it again and have it
misrecognized. Thislack of predictability isinsidious. It not only makes the recognizer seem less
cooperative than a non-native speaker, but, more importantly, the unpredictability makes it difficult for
the user to construct and maintain a useful conceptual model of the applications behaviors. When the
user says something and the computer performs the correct action, the user makes many assumptions
about cause and effect. When the user says the same thing again and some random action occurs dueto a
misrecognition, all the valuable assumptions are now called into question. Not only are users frustrated
by the recognition errors, but they are frustrated by their inability to figure out how the applications
work.

A variety of phenomena result in recognition errors. If the user speaks before the system isready to
listen, only part of the speech is captured and thus almost surely misunderstood. An accent, acold, or an
exaggerated tone can result in speech which does not match the voice model of the recognizer.
Background noise, especially words spoken by passersby, can be mistaken for the user’ s voice. Finally,
out- of-vocabulary utterances - i.e., the user says something not covered by the grammar or the
dictionary - necessarily result in errors.

Recognition errors can be divided into three categories: rejection, substitution, and insertion [10]. A
rejection error is said to occur when the recognizer has no hypothesis about what the user said. A
substitution error involves the recognizer mistaking the user’ s utterance for a different legal utterance,
aswhen "send amessage" isinterpreted as " seventh message." With an insertion error, the recognizer
interprets noise as alegal utterance - perhaps others in the room were talking, or the user inadvertently
tapped the telephone.

Rejection Errors. In handling rejection errors, we want to avoid the "brick wall" effect - that every
rgiection is met with the same "l didn’t understand" response. Based on user complaints as well as our
observation of how quickly frustration levels increased when faced with repetitive errors, we eliminated
the repetition. In its place, we give progressive assistance: we give a short error message the first couple
of times, and if errors persist, we offer more assistance. For example, here is one progression of error
messages that a user might encounter:

VWhat did you say?

Sorry?

Sorry. Pl ease rephrase.

| didn't understand. Speak clearly, but don't overenphasi ze.
Still no luck. Wait for the pronpt tone before speaking.

As background noise and early starts are common causes of misrecognition, simply repeating the
command often solves the problem. Persistent errors are often a sign of out-of-vocabulary utterances, so
we escalate to asking the user to try rephrasing the request. Another common problem is that users
respond to repeated rejection errors by exaggerating; thus they must be reminded to speak normally and
clearly.

Progressive assistance does more than bring the error to the user’ s attention; the user is guided towards
speaking alegal utterance by successively more informative error messages which consider the probable
context of the misunderstanding. Repetitiveness and frustration are reduced. One study participant
praised our progressive assistance strategy: "When you’ ve made your request three times, it’s actually
nice that you don’t have the exact same response. It gave me the perception that it’ s trying to understand
what I’m saying."

Substitution Errors. Where rejection errors are frustrating, substitution errors can be damaging. If the
user asks the weather application for "Kuai" but the recognizer hears "Good-bye" and then hangs up, the
interaction could be completely terminated. Hence, in some situations, one wants to explicitly verify that
the user’ s utterance was correctly understood.

Verifying every utterance, however, is much too tedious. Where commands consist of short queries, as
in asking about calendar entries, verification can take longer than presentation. For example, if auser
asks "What do | have today?", responding with "Did you say ‘what do | have today’ 7', adds too much to
the interaction. We verify the utterance implicitly by echoing back part of the command in the answer:

"Today, at 10:00, you have a meeting with..."

As Kamm suggests [4], we want verification commensurate with the cost of the action which would be
effected by the recognized utterance. Reading the wrong stock quote or calendar entry will make the
user wait afew seconds, but sending a confidential message to the wrong person by mistake could have
Serious consequences.

The following split describes our verification scheme: commands which involve the presentation of data
to the user are verified implicitly, and commands which will destroy data or set in motion future events
are verified explicitly. If auser asks about the weather in Duluth, the system will indicate that it is the
report for Duluth before reading the contents. The user is then free to regain control of the interaction by
interrupting the synthesizer (unfortunately using a touch-tone command in our current implementation).
If, on the other hand, the user wants to fax a 500 page mail message, the system will check to make sure
that’ s what was really meant.

Although not its primary purpose, the SpeechActs natural language component, called Swiftus, helps to
compensate for minor substitution errors[7]. It does so by alowing the application devel oper to convert
phrases meaning the same thing into a canonical form. For example, the following calendar queries will
al beinterpreted the same way:

VWat does Nicol e have May sixth?
VWhat do Nicole have on May six?
What is on Nicole' s schedule May sixth?

This means that some substitution errors (e.g., "Switch to weather,” misrecognized as " Please weather")
will still result in the correct action.

Insertion Errors. Spurious recognition typically occurs due to background noise. Theillusory utterance
will either be rejected or mistaken for an actual command; in either case, the previous methods can be
applied. Thereal challengeisto prevent insertion errors. Users can press a keypad command to turn off
the speech recognizer in order to talk to someone, sneeze, or ssmply gather their thoughts. Another
keypad command restarts the recognizer and prompts the user with "What now?" to indicate that it is
listening again.

Challenge: The Nature of Speech

Current speech technologies certainly pose substantial design challenges, but the very nature of speech
itself is also problematic. For users to succeed with a SUI, they must rely on adifferent set of mental
abilities than is necessary for successful GUI interactions. For example, short- term memory, the ability
to maintain amental model of the system’s state, and the capacity for visualizing the organization of
information are all more important cognitive skills for SUI interactions than for GUI interactions.

Lack of Visual Feedback. The inherent lack of visual feedback in a speech-only interface can lead
usersto feel lessin control. In agraphical interface, a new user can explore the interface at leisure,
taking time to think, ponder, and explore. With a speech interface, the user must either answer questions,
initiate a dialog, or be faced with silence. Long pauses in conversations are often perceived as
embarrassing or uncomfortable, so users feel aneed to respond quickly. Thislack of think time, coupled
with nothing to look at, can cause users to add false starts or "ums" and "ahs" to the beginning of their
sentences, increasing the likelihood of recognition errors.

Lack of visuals also means much less information can be transmitted to the user at one time. Given a
large set of new mail messages or a month’s worth of calendar appointments, there is no quick way to
glance at the information. One user said: "Not being able to view it - | was surprised at the level of
frustration it caused.”

To partially compensate for the lack of visual cues, we plan to use both scanning and filtering
techniques. For example, during the iterative redesign we added the ability to scan mail headers. We
also plan to add functionality so that users can have their mail filtered by topic or by user, and their
calendar entries summarized by week and by month. Thisway, important messages and appointments
will be called out to the user first, eliminating some of the need to glance at the information.

Speed and Persistence. Although speech is easy for humans to produce, it is much harder for usto
consume [10]. The slowness of the speech output, whether it be synthesized or recorded, is one
contributing factor. Almost everyone can absorb written information more quickly than verbal
information. Lack of persistence is another factor. This makes speech both easy to miss and easy to
forget.

To compensate for these various problems, we attempted to follow some of the maxims H.P. Grice
states as part of his cooperative principle of conversation [2]. Grice counsels that contributions should
be informative, but no more so than is required. They should also be relevant, brief, and orderly.

Because speech is an inherently slow output medium, much of our dialog redesign effort focused on
being brief. We eliminated entire prompts whenever possible and interleaved feedback with the next
conversational move so as not to waste time.

We aso eliminated extraneous words whenever possible. By using a technique which we call tapered
presentation, we were able to shorten output considerably in cases where we had alist of similar items.
This technigue basically involves not repeating words that can be implied. In the stock quotes
application, for example, when a user asks for his or her portfolio status, the response is something like:

Currently, Sun is trading at 32, up 1/2 since yesterday.
Sd is at 23, down 1/4.
IBMis at 69, up 1/8.

With the first stock, we establish the pattern of how the datais going to be presented. With successive
stocks, we streamline the presentation by eliminating repetitive words.

Also in the pursuit of brevity and in an attempt not to stress user’ s short-term memory, we avoid the use
of lists or menus. Instead, we use conversational conventions to give users an idea of what to say next.
In the calendar application, for example, we always start with "Today, you have..." By initiating the
conversation and providing some common ground, it seems natural for users to respond by saying,
"What do | have tomorrow?' or "What does Paul have today?'

Ambiguous Silence. Another speech-related problem, also observed by Stifelman [11], isthe difficulty
users have in interpreting silence. Sometimes silence means that the speech recognizer isworking on
what they said, but other times, it means that the recognizer simply did not hear the user’sinput.

Thislast problem is perhaps the easiest to overcome. Clearly, the user needs immediate feedback even if

the recognizer is abit slow. We plan to add an audio cue that will serve the same purpose as a graphical
watch cursor. Thiswill let users know if the computer isworking on their request, leaving silence to
mean that the system iswaiting for input.

CONCLUSIONS

Based on our experience designing SpeechActs, we have concluded that adhering to the principles of
conversation does, in fact, make for a more usable speech-only interface. Just as in human-human
dialog, grounding the conversation, avoiding repetition, and handling interruptions are al factors that
lead to successful communication.

Due to the nature of speech itself, the computer’ s portion of the dialog must be both as brief and as
informative as possible. This can be achieved by streamlining the design, using tapered presentation
techniques, providing short-cuts that make use of another medium (such as touch-tones), and making
verification commensurate with the cost of the action.

Aswith all other interface design efforts, immediate and informative feedback is essential. In the speech
domain, users must know when the system has heard them speak, and then know that their speech was
recognized correctly.

Finally, we have strong evidence to suggest that translating a graphical interface into speech is not likely
to produce an effective interface. The design of the SUI must be a separate effort that involves studying
human-human conversations in the application domain. If users are expected to aternate between
modalities, care must be taken to ensure that the SUI design is consistent with the corresponding
graphical interface. Thisinvolves consistency of concepts and not adirect trandation of graphical
elements, language, and interaction techniques.

While interface challenges abound, we hope that working with speech technology at this stagein its
development will provide speech vendors with the impetus to make the improvements necessary for the
creation of truly fluent speech interfaces.

ACKNOWLEDGEMENTS

The SpeechActs project is a collaborative effort. Eric Baatz and Stuart Adams have implemented major
portions of the framework while Paul Martin and Andy Kehler are responsible for the natural language
components. Special thanks to Bob Sproull for his contributions to the architectural design of the
system.

REFERENCES

1. Clark, Herbert H. Arenas of L anguage Use. University of Chicago Press, Chicago, IL, 1992.

2. Grice, H. P. "Logic and Conversation,” Syntax and Semantics. Speech Acts, Cole & Morgan, editors,

Volume 3, Academic Press, 1975.

3. Grosz, Barbara, and Candy Sidner. "Attention, Intentions, and the Structure of Discourse,"”
Computational Linguistics, Volume 12, No. 3, 1986.

4. Kamm, Candace. "User Interfaces for Voice Applications,” Voice Communication Between Humans
and Machines, National Academy Press, Washington, DC, 1994.

5. Kitai, Mikia, A. Imamura, and Y. Suzuki. "Voice Activated Interaction System Based on HMM-based
Speaker-Independent Word Spotting,” Proceedings of the Voice I/0 Systems Applications Conference,
Atlanta, GA, September 1991.

6. Ly, Eric, and Chris Schmandt. "Chatter: A Conversational Learning Speech Interface," AAAI Spring
Symposium on Intelligent Multi-Media Multi-Modal Systems, Stanford, CA, March 1994.

7. Martin, Paul and Andrew Kehler. "SpeechActs: A Testbed for Continuous Speech Applications' (7
PostScript pages), AAAI- 94 Workshop on the Integration of Natural Language and Speech Processing,
12th National Conference on Al, Seattle, WA, July 31-August 1, 1994.

8. Nielsen, Jakob. "The Usability Engineering Life Cycle," IEEE Computer, March 1992.

9. Roe, David, and Jay Wilpon, editors. Voice Communication Between Humans and M achines,
National Academy Press, Washington, DC, 1994.

10. Schmandt, Chris. Voice Communication with Computers: Conversational Systems, Van
Nostrand Reinhold, New Y ork, 1994.

11. Stifelman, Lisa, Barry Arons, Chris Schmandt, and Eric Hulteen, "V oiceNotes: A Speech Interface
for aHand-Held Voice Notetaker, ACM INTERCHI ‘93 Conference Proceedings, Amsterdam, The
Netherlands, April 24-29, 1993.

12. Yankelovich, Nicole. "Talking vs. Taking: Speech Accessto Remote Computers' (2 PostScript
pages). ACM CHI ‘94 Conference Companion, Boston, MA, April 24-28, 1994.

13. Yankelovich, Nicole and Eric Baatz. " SpeechActs: A Framework for Building Speech Applications’
(9 PostScript pages). AVIOS ‘94 Conference Proceedings, San Jose, CA, September 20-23, 1994.

Current Addresses:

Gina-Anne Levow

MIT Al Laboratory

545 Technology Square, Room 810
Cambridge, MA 02139
gina@ai.mit.edu

Matt Marx
MIT Media Laboratory

Weisner Building, #E 15
20 Ames Street
Cambridge, MA 02139
groucho@media.mit.edu

| Sun Microsystems, Inc. Home | Sun Microsystems L aboratories Home |

| Speech Home | Java Speech API | Java Speech Technologies | SpeechActs | Publications | Staff |

