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Abstract 

In this paper, a computer aided system for designing nonwoven materials is presented. As an original approach in 

the field of nonwoven research, both quality measurement analysis and human knowledge processing are integrated 

in the system. It allows designers to optimize the structure of nonwoven materials with limited trials according to 

the functional properties given in customers’ specifications. This system aims at modeling the relation between 

functional or physical properties (outputs) and structural parameters (inputs) of nonwoven products. In order to 

reduce the complexity of the system, a procedure is proposed for selecting the most relevant input variables based 

on a ranking criterion, which takes into account both the expertise of manufacturers and the measured data. In this 

criterion, fuzzy logic is used to establish a good compromise or a fusion between these two uncertain and 

incomplete information sources. Then, two models are set up by utilizing multilayer feed forward neural networks, 

which take into account the generality and the specificity of the product families respectively. The presented 

models have been validated with the use of experimental data concerning several families of nonwoven products.  

Keywords: nonwoven material structures, physical properties, fuzzy-neural design support system, parameter 

selection 

1. Introduction 

Nonwoven products are fibrous materials characterized 

by a large range of interesting properties, due mainly to 

the diversity of raw materials, forming, bonding and 

finishing technologies. As durable or semi-durable 

materials, they are employed in various application 

fields such as manufacturing, civil engineering, building 

or transportation. Their increasing success is also due to 

the good ratio performance/cost price. Consequently, 

the number of end-products designed with nonwoven 

materials has significantly grown in the last decades 

while the production in Western Europe has risen by 

8%.
1
 

 

Due to the international competition in the textile 

market, nonwoven materials should be designed and 

produced in order to satisfy more and more complex 

specifications (e.g. insulation, protection, filtration, 

durability, breathiness…) and increasing requirements 

for international standards in different application fields. 

In parallel, nonwoven product designers are actively 

involved in projects to reduce cost by applying value 

analysis during the design and the development of these 

manufacturing products. Several criteria of the product 

design are given as follows. 

1) Satisfying all specific values of the functional 

properties of nonwoven materials (i.e. customer’s 

specifications),  

2) Minimizing the cost and the quantity of raw 

materials,  

3) Optimizing the final structure of materials.  

 

Recently, great attention has been paid to explore the 

relationship between the structural parameters of 

nonwoven materials (thickness, basis weight, raw 
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material, number of layers…) and their functional 

properties. This approach enables nonwoven 

manufacturers to obtain a better understanding of the 

effect of the material structure and the corresponding 

process parameters on the product quality.  

Fig. 1. Modeling the relations between structural parameters 

and functional properties of nonwovens. 

The aim of our project is to develop a design support 

system for product designers using fuzzy logic and 

neural networks. The system includes a number of 

mathematical models for characterizing the relations 

between the structural parameters (input variables) and 

the functional properties (output variables) in order to 

optimize material structure and predict quality of new 

nonwoven products
2
 (Fig. 1). However, this procedure 

of modeling is very complex because of the nonlinear 

relationship between inputs and output variables, the 

large number of structural parameters, the 

interdependencies between them and the critical lack of 

available learning data. In practice, the amount of 

learning data or learning samples is strongly constrained 

by the production costs or experiment costs. Moreover, 

the production lines are not always available for trials. 

Given these constraints, a small set of learning samples 

have been used to model the relationship between 

structural parameters and functional properties of 

materials. 

 

 

 

 

 

 

Fig. 2. Framework of the proposed design support system. 

The structure of the proposed support system for 

designing new nonwoven products is shown in Fig.2. In 

this system, an exhaustive list of structural parameters 

(SP) and functional properties (FP) related to a specific 

application problem are firstly extracted according to 

the physical knowledge of nonwoven experts. Then, the 

most relevant structural parameters are selected from 

the list by combining the measured data obtained from a 

small number of experiments and the human knowledge 

of operators on processes and products. Fuzzy logic is 

used in the generation of this selection criterion in order 

to find a good compromise or a fusion between these 

two information sources. Finally, for each product 

family, a neural network is set up for modeling the 

relationship between the selected structural parameters 

and the concerned functional property. Based on this 

model, designers can optimize the structure of the 

nonwoven product according to the specifications. 

 

This paper is organized as follows. In Section 2, a 

procedure is given for selecting the most relevant input 

variables (structural parameters) based on a ranking 

criterion for reducing the complexity of the models. 

This fuzzy logic based selection criterion has been 

developed by properly integrating both human 

knowledge of operators on processes and products and 

measured data. In Section 3, we present the modeling 

procedure for characterizing the relationship between 

the selected relevant structure parameters and each 

functional property of the nonwoven. Multilayer feed 

forward Artificial Neural Network (ANN) models
3
 have 

been built with specific architectures adapted to the 

product diversity. In Section 4, the proposed models 

have been successfully applied to the prediction of 

hydraulic properties of filtration media nonwoven 

products. Finally, a general conclusion is given in 

Section 5. 

2. Selection of Relevant Structural Parameters  

2.1. Analysis of the existing work 

When studying the effect of each structural parameter 

on the functional properties selected from the final 

product specifications, it is quite difficult to produce a 

large number of samples. Therefore, small-scaled ANN 

models are built from a limited number of learning data 

and the most relevant structural parameters are selected 

before the modeling procedure. 

 

Relation 

between 

structure 

and 

properties 

Structural 

Parameters 

- raw material 

- number of layers 

- thickness 

- others … 

Functional 

Properties 

- hydraulic 

- dynamometric 

- phonic/thermal 

- others … 
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The existing algorithms of variable selection mostly use 

heuristic search for an optimal subset of the original 

variables, with each state in the search space specifying 

a subset of the possible variables. Generally, each 

variable selection method is designed according to the 

following basic issues that determine the nature of the 

heuristic process
4
: 

1) The direction of search and the operators used. Two 

methods are frequently used: forward selection and 

backward elimination. 

2) The organization of the search. 

3) The strategy used to evaluate alternative subsets of 

variables. 

4) The condition for halting the search. 

 

In literature, most of the variable selection methods deal 

with data based classification problems. Moreover, the 

strategy used for evaluating variables and the condition 

for halting the search are generally defined as the 

variable’s ability to discriminate among classes of the 

learning data. The optimal subset of variables 

corresponds to the case in which the separability 

between different classes is maximal and data inside 

each class are as compact as possible. 

 

Most of the existing work has been carried out in the 

frame of supervised variable selection, i.e. the objective 

of selection is to improve the classification accuracy or 

class label predictive accuracy of data samples.
5
 Several 

well-known methods are the decision-tree method,
6
 the 

nearest-neighbor method,
7
 the mutual information 

measure based method
8
 and the hyperbox generation 

based method,
9
 the information-theoretical connectionist 

network model for removing both irrelevant and 

redundant variables
10

 and the wrapper model, which 

evaluates alternative subsets of variables by running 

some induction algorithm on the learning data and using 

the estimated accuracy of the resulting classifier as its 

metric.
11

 There also exists some work on unsupervised 

variable selection using conditional Gaussian networks
5
 

and data clustering techniques.
12

 Recently, a new 

variable selection method has been developed using a 

modified fuzzy C-means algorithm with supervision.
13

 

 

In practice, the performance of these data based variable 

selection methods is strongly related to the quality and 

the quantity of data samples and the criterion defined, 

which may vary from task to task. These methods are 

not efficient to solve variable selection problems in 

some industrial processes. In these processes, limited by 

the cost and the time of measurement, the quantity of 

data is often too small to constitute a correct distribution 

for obtaining significant classification results. In this 

case, the class separability based criteria of variable 

selection should be replaced by variable sensitivity 

based criteria such as gradient descent. Moreover, if 

possible, physical knowledge related to the problem and 

measured numerical data should be used in a 

complementary way in order to improve the criterion of 

selection and cross-validate the results obtained from 

these two information sources. 

2.2. Formalization of the criterion for relevant 

variable selection 

In this paper, we first propose a criterion for ranking the 

nonwoven structural parameters by linearly combining 

the human knowledge based criterion and the data 

sensitivity to the properties. The related formalization is 

given below. 

 

Let m and n be the total number of structural parameters 

and the total number of functional properties 

respectively. The input and output variables are denoted 

as X={x1, x2, …, xm} and {y1, y2, …, yn} respectively. The 

relationship between {x1, x2, …, xm} and one output 

variable yl can be considered as a nonlinear function f so 

that ),...,( 21 ml xxxfy = . For a t sized subset of input 

variables in X denoted as { })()2()1( ,...,,
t

t
xxxX = , we 

create a new nonlinear function ),...,( )()2()1( txxxg  in 

which we aggregate the variables of 
t

XX !  by 

calculating the average of all values of ),...,( 21 mxxxf  

for these remaining variables. The elements in the t-

sized subset { })()2()1( ,...,,
t
xxx  are considered as the t 

most relevant variables if and only if their mean value 

of |f-g| is the smallest for all the t sized subsets of input 

variables in X.  

Let Xs = (xs1, xs2, …, xsk, …, xsm)
T
 and Ys = (ys1, ys2, …, 

ysl, …, ysn)
T
 be the input vector of structural parameters 

and the output vector of functional properties that 

correspond to the sample s (s∈{1, …, z}) respectively. 

All the measured data have been normalized to 

eliminate the scale effects and the learning data set 

contains z samples. In order to rank the relevant inputs 

for a given output yl, a criterion variable Fk,l (estimated 
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for each input variable xk and related to output variable 

yl) is defined as follows: 

 

 Fk,l = g1 . Hk,l + g2 . Sk,l (1) 

with k∈{1, …, m},  l∈{1, …, n},  g1 and g2 are two 

positive coefficients. 

 

The criterion Fk,l is designed for searching the best 

compromise between the sensitivity variation of 

measured data and the conformity of the human 

knowledge to measured data, represented by Sk,l and Hk,l 

respectively. The larger Fk,l is, the more relevant the 

input xk is to the output yl.  

2.3. Sensitivity of measured data 

The sensitivity is a distance based criterion for 

evaluating the effects of the input variables on the 

output variable. It is defined according to the following 

two assumptions: 

1) IF a small variation of the input variables 

corresponds to a large variation of the output variable, 

THEN the sensitivity of these variables is important. 

2) IF a large variation of an input variable corresponds 

to a small variation of the output variable, THEN the 

sensitivity of these variables is not important. 

 

The criterion of sensitivity for all input variables related 

to the output variable yl is defined by 

( )
( ){ }, 1,...

2
arctan

i j

il jl

l
i ji j z

d y ,y
S

d X ,X!

"

#

$ %
& '
& '
& '
& '
& '
( )

= *          (2) 

where d(Xi, Xj) is the Euclidean distance between two 

input data Xi and Xj and d(yil, yjl) the Euclidean distance 

between yil and yjl.  

 

Evidently, Sl varies between 0 and 1. This criterion is 

used for evaluating the sensitivity of the whole set of 

input variables related to the output variable yl. If values 

of Sl are close to 1, then we consider that small 

variations of input data can cause big variations in the 

output space and the input variables are sensitive to 

measured data. If the values of Sl are close to 0, then we 

consider that big variations of input data correspond to 

small variations in the output space and the input 

variables are insensitive to measured data.  

 

The criterion Sl can be considered as a measure of 

information content in the input variables. However, for 

selecting relevant variables, we need to evaluate the 

information content after removing one or a group of 

input variables. The criterion of sensitivity related to the 

output variable yl when removing the input variable xk is 

then defined by 
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where ),(),(),(' 22
jikjijik XXdXXdXXd != and 

dk(Xi, Xj) is the projection of d(Xi, Xj) on the axis xk.  

 

From Eq. (2) and Eq. (3), we can easily obtain 1> Sk,l > 

Sl. For a specific input variable xk, if the value of Sk,l is 

bigger than any other sensitivity value Spl after 

removing related input variable xp (p≠k), then we 

consider that xk is the most insensitive to measured data 

because the remaining input variables after removing xk 

are more sensitive than those after removing any other 

individual input variable. According to the same idea, if 

the value of Sk,l is smaller related to the other input 

variables, then we consider that xk is the most sensitive 

to measured data because the remaining input variables 

after removing xk. are the least sensitive.  

 

In order to be conform to the definition of Fk,l in Eq. (1), 

i.e. big values of sensitivities correspond to relevant 

variables and small values of sensitivities to irrelevant 

variables, we transform Eq. (3) into the following form: 

( )
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     (4) 

Evidently, values of Sk,l also vary between 0 and 1. The 

bigger the value of the sensitivity criterion Sk,l is, the 

more sensitive the corresponding variable xk is to 

measured data. 

2.4. Conformity of human knowledge to measured 

data  

In Eq. (1), Hk,l represents the degree of coherence 

between the human knowledge expressed in Table 1 and 
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the variation of measured data. Its principle is given as 

follows. If a variable xk has the same variation trend in 

learning data set as in the human knowledge, it will be 

considered as relevant. Otherwise, it will be considered 

as irrelevant. The universe of discourse of yl is divided 

into t equal intervals Clp (p=1, …, t). The set Akp is 

constructed using the projection of the input data set on 

the axis xk, which corresponds to the output interval Clp 

of yl. Ikp is generated by the overlap between Akp and 

Akp+1 (p∈{1, …, t-1}) (see Fig. 3). 

Table 1. Formalization of the human knowledge table. 

Structural parameters

(Input space) y 1 … y l … y n

x 1 R(x 1 ,y 1 ) … R(x 1 ,y l ) … R(x 1 ,y n )

… … … …

x k R(x k ,y 1 ) R(x k ,y l ) … R(x k ,y n )

… … … …

x m R(x m ,y 1 ) … R(x m ,y l ) … R(x m ,y n )

End-use functional properties (Output space)

 
positive influence: R(xi,yj) = +1 

negative influence: R(xi,yj) = -1 

no influence: R(xi,yj) = 0 

no human knowledge: Empty cell 

 

The human knowledge is summarized in Table 1. It is 

provided by a number of operators working on the 

related processes of nonwoven materials according to 

their experience. In practice, they have some incomplete 

qualitative knowledge on variation trends of end-use 

functional properties with non woven structural 

parameters. Each cell of Table 1 corresponds to one 

IF…THEN rule relating the input xk to the output yl. 

Several examples are given below. 

 

IF xk is increasing THEN yl is increasing: R(xk, yl) = +1 

IF xk is increasing THEN yl is decreasing: R(xk, yl) = -1 

There is no influence of xk on yl: R(xk, yl) = 0 

 

The element Hk,l can then be calculated using the 

following formula: 
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(5) 

 

As shown in Fig. 3, |Ikp| and |Ukp| are the lengths of the 

intervals, which respectively correspond to the 

intersection and union of Akp and Akp+1 (input space), 

related to Clp and Clp+1 (output space). 

 

xk yl

xkp
  inf

xkp+1
  inf xkp

  sup

xkp+1
  sup

C11
C1p C1p+1 C1t

Ukp Ikp

Akp

Akp+1

Input space
Output space

 

Fig. 3. Relationship between the input and output spaces. 

Eq. (5) can be interpreted as follows. hp represents the 

degree of coherence between the human knowledge and 

the variation of measured data in the two neighboring 

intervals Clp and Clp+1. Its value varies between 0 and 1. 

If Ikp=Φ and
supinf

1 kpkp xx !+ , then the input data Xs’s (s=1, 

…, z) projected on the axis xk are increasing when their 

corresponding output data ysl’s vary from Clp to Clp+1. In 

this case, if the human knowledge R(xk,yl)=1 (xk has a 

positive influence on yl), then we consider that this 

human knowledge is strongly coherent with the data 

variation trend of xk in the two neighboring intervals Clp 

and Clp+1. From Eq. (5), we obtain hp=1 (the best case). 

If the human knowledge R(xk,yl)=-1 (xk has a negative 

influence on yl), then we consider that this human 

knowledge is strongly incoherent with the data variation 

trend of xk in the two neighboring intervals Clp and 

Clp+1. Then, we obtain hp=0 from Eq. (5) (the worst 

case). Similar interpretation can be given to the case of 

Ikp=Φ and
infsup

1 kpkp xx !+ . If Ikp≠Φ and 
supsup

1 kpkp xx !+ , then 

we obtain a situation between the above two extreme 

cases (see Fig. 3) and the input data projected on xk are 

slightly increasing when their corresponding output data 

vary from Clp to Clp+1. If R(xk,yl)=1, then we consider 

that the human knowledge is weakly coherent with the 

data variation of xk in Cp and Clp+1. The degree of 

coherence hp is related to the overlap between the two 

data sets of xk corresponding to Clp and Clp+1. The 

smaller this overlap is, the closer the data variation of xk 

is to a strongly increasing case and the closer the value 

of hp is to 1. If R(xk,yl)=-1, the human knowledge is 

incoherent with the data variation of xk and we have 

hp=0. The other cases of hp can be interpreted in the 

same way. If we obtain big values for all hp (p=1, …, t-

1), then the value of the criterion Hk,l is also big and the 
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data variation related to xk is coherent with the human 

knowledge. 

 

After computing Hk,l and Sk,l, the value of the criterion 

Fk,l expressing the relevancy of each input xk to a given 

output yl can be determined. Then all the Fk,l’s (k=1, …, 

m) can be ranked in a descending order. Consequently, 

the input corresponding to the highest value of Fk,l will 

be the most relevant input to this output, and so on.  

2.5. Fuzzy logic based criterion for relevant 

variable selection 

Two main drawbacks exist when using the raking 

criterion Fk,l.  

- The coefficients g1 and g2 are difficult to be 

determined because the precise importance of the 

data sensitivity Sk,l, related to the coherence 

between human knowledge and measured data Hk,l, 

as well the precise ranges of these two variables, 

are generally unknown. 

- Some changes of Fk,l are not significant because the 

linear combination of Hk,l and Sk,l is too sensitive to 

data variation. 

 

In this paper, fuzzy logic is used to obtain a more robust 

ranking criterion of input variables. This new criterion 

is built according to the following fuzzy rules extracted 

from the human knowledge on the physical meaning of 

these two elements Sk,l and Hk,l. 

If Sk,l is big and Hk,l is big, then Fk,l is big. 

If Sk,l is big and Hk,l is medium, then Fk,l is medium. 

If Sk,l is big and Hk,l is small, then Fk,l is medium. 

If Sk,l is medium and Hk,l is big, then Fk,l is medium. 

If Sk,l is medium and Hk,l is medium, then Fk,l is medium. 

If Sk,l is medium and Hk,l is small, then Fk,l is small. 

If Sk,l is small and Hk,l is big, then Fk,l is medium. 

If Sk,l is small and Hk,l is medium, then Fk,l is medium. 

If Sk,l is small and Hk,l is small, then Fk,l is small. 

 

According to these knowledge based fuzzy rules, it can 

be seen that the coherence degree between human 

knowledge and measured data plays a more important 

role in the ranking of variables than the data sensitivity 

criterion. 

 

These fuzzy rules permit to build a fuzzy model in 

which Sk,l and Hk,l are taken as two input variables and 

Fk,l as an output variable. After the fuzzification 

procedure, each of them is transformed into a fuzzy 

variable with three fuzzy values: big, medium and 

small. For these three variables, we adopt triangular 

membership functions for the following reasons: 

- For a specific product family, the ranges of Sk,l, Hk,l 

and Fk,l can be approximately determined from 

experiments. These ranges permit to determine for 

each variable, three core numerical values 

corresponding to their linguistic values “big” (right 

extreme), “small” (left extreme) and “medium” 

(medium of the range). 

- For each of these three variables, their core values 

should not be overlapped between them. For 

example, if one variable is absolutely “medium”, 

then the membership degrees for “small” and “big” 

should be both 0.  

- To simplify, for any value between “small” and 

“medium” and between “medium” and “big”, the 

corresponding membership degree can be 

considered as a linear combination between its two 

extreme cases.    

 

 

 

 

 

 

 

 

Fig. 4. Membership functions of Sk,l  

The Mamdani method
14

 is used for calculating the 

output value from input values. 

 

We consider that the output variable Fk,l varies in the 

range of [0,1]. The more the value of Fk,l is close to 1, 

the more the corresponding variable xk is relevant. The 

membership functions of Sk,l are shown in Fig. 4 and 

can be denoted as Triangle(a,a,b), Triangle(a,b,c) and 

Triangle(b,c,c). The corresponding parameters a, b, c 

are defined by 

 

{ }
lk

k

Sa ,min= , { }
lk

k

Sc ,max=  and  

The membership functions of Hk,l and Fk,l are defined in 

the same way. 

 

2

ca
b

+
=
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This fuzzy logic based selection criterion takes into 

account both the conformity of human knowledge on 

process technology and the sensitivity of measured data 

to the functional properties. Moreover, it is a robust 

criterion and less sensitive to measuring noises than 

linear combinations. It is closer to human knowledge on 

the corresponding process and products. According to 

this procedure, the most relevant structural parameters 

of nonwoven products are obtained and will be used in 

the further modeling procedure. In this way, the 

complexity of the model can be largely decreased and 

the parameters of the model will be more concise and 

easier to be interpreted physically.  

3. Modeling with Artificial Neural Networks 

The artificial neural networks (ANNs) have been used 

for modeling complex nonlinear problems including 

various fiber product-related applications.
15, 16

  

 

The existing work on neural network design for small 

training sets of high dimension has been studied in Ref. 

17, 18 and 19. In Ref.17, a diffusion-neural-network has 

been developed for learning from a small number of 

samples. In this learning procedure, a number of derived 

samples are generated from original samples using the 

method of information distribution.
20

 According to 

Ref.19, modeling with few learning data can be solved 

by 

- reducing the number of input variables by feature 

selection;  

- deploying a rapid, greedy algorithm to identify a 

good number of nodes to use in hidden layer 

configuration. 

  

The feature selection problem has been discussed in 

Section 2. In order to find an optimal neural network 

architecture, the projection pursuit regression
21

 

combined with slicing inverse regression
22

 is used. 

Projection pursuit regression introduces a regression 

family that can be modeled as a sum of subnets of a 

single hidden layer neural network. This idea can be 

used for determining the number of nodes in a single 

hidden layer.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5a. General model including only public structural 

parameters 

 

 

 

 

 

 

Fig. 5b. Special model including public and special structural 

parameters 

In this section, we use ANNs for modeling the 

relationship between the structural parameters and the 

properties of nonwoven fabrics. In general, different 

nonwoven materials have different structural parameters 

determined by specific applications, applied 

technologies and production conditions. Even in the 

same application field, different technologies are used to 

manufacture nonwoven products. In this case, the 

structure of materials varies with applied technology 

and the corresponding nonwoven products are then 

classified into a number of families each corresponding 

to one type of structure. Consequently, all the structural 

parameters are divided into two groups. One group 

includes public structural parameters available for all 

the families of products and the other group includes 

special structural parameters available for each specific 

family. Accordingly, two neural network models are 

built. The general model (Fig. 5a) takes all the public 

structural parameters as its input variables. This general 

model can be used by all the families of products. For 

each specific family, a special model is developed (Fig. 

5b). It takes both the public and the special structural 

parameters of this family as its input variables.  

 

In order to solve the problems related to the lack of 

available learning data or samples, small scaled ANN 

models are built. In practice, the performance of an 

ANN model is strongly related to the relationship 

between the number of its input variables m and the 

total number of learning data w. According to Ref. 16, 

 

x 1 

x k 

x 
m0 

y l 
public  parameters 

Structural  parameters Functional property 

l ! {1, …, n} 

 

x 1 

x k 

x m0 

x m 

y l 

special parameters 

public  parameters 

x m0+1 

Structural  parameters Functional property 

l ! {1,…, n} 
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for a three layered neural network used in this paper, 

this relationship can be described as follows. 

 

The neural network includes m input variables (m 

neurons) each corresponding to one structural 

parameter. The output layer includes only one neuron 

corresponding to the specific functional property of 

interest. The number of hidden neurons, denoted as m2, 

should be at least 2. In this case, we have m×m2 weights 

connecting the input layer to the hidden layer and m2 

weights connecting the hidden layer to the output layer. 

Also, we have m2+1 biases in this neural network 

(hidden layer and output layer). Then, the total number 

of unknown variables in the model (weights and biases) 

is m2(m+2)+1. In order to maintain that the number of 

unknown variables is no bigger than the number of 

learning data or constrained conditions, we should have 

 m2(m+2)+1 ≤ w (6) 

Given a fixed number of learning data w and 

considering a minimum of 2 hidden neurons, the 

maximal value of the number of input variables should 

be (w-5)/2.  

 

In our experiments, only 18 learning data are available. 

Then, we take five input variables in the general model 

and six input variables in each special model. 

 

In the general model, the transfer functions of the 

hidden neurons and the output neuron are the hyperbolic 

tangent function and pure linear function, respectively. 

The Levenberg-Maquardt fast learning procedure,
3
 

based on a second order error back propagation 

algorithm, is then used for determining the parameters 

of the neural network from the public learning data sets. 

 

In the special model of each family, the weights and 

biases connecting the public inputs to the hidden layer 

neurons, as well as those connecting the hidden layer to 

the output layer, are kept as the same values as in the 

general model. Only the weights connecting the special 

input neurons to the hidden layer neurons are adjusted 

using the error back propagation algorithm. 

4. One Industrial Application 

In our work, 18 samples describing 3 nonwoven 

families (6 samples per family) have been used for 

studying the following functional properties: water 

permeability, filtration level, breaking resistance in both 

the Machine Direction (MD) and the Cross Direction 

(CD), elongation at peak (MD/CD) and bursting 

strength. The number of samples is rather limited 

because of their high production cost and long 

production time. In fact, these 18 samples are rather 

diversified and representative because their 

corresponding process parameters can cover almost all 

the important working points.   

 

These three nonwoven families are different in the 

formation (drylaid or spunlaid webs) and the bonding 

technologies (thermal or chemical bonding). For 

simplicity, only the modeling procedure and the results 

related to the water permeability are discussed in this 

section.  

4.1.  Identification and selection of the structural 

parameters 

In general, the nonwoven structural parameters are 

firstly listed according to their own characteristics (raw 

material, fiber count, crimp and length, thickness, basis 

weight, porosity, basis weight uniformity, fiber 

orientation, etc.) and then selected by nonwoven experts 

according to their possible influence on each functional 

property. Some structural parameters are difficult to be 

obtained due to the lack of characterization techniques 

or measuring instruments. 

 

In our study, 24 public structural parameters are 

selected by the experts for all the families. They are the 

fiber length, fiber count, total pore volume, basis weight 

uniformity, thickness, fiber density, basis weight and so 

on. The special structural parameters of these three 

families are the binder rate, the spunbond and the 

calendaring surface ratio, respectively. 

 

If we take all these 24 structural parameters as input 

variables, the corresponding model can not be efficient 

because the number of learning samples is limited to 18, 

which is too small related to 24 input variables. In that 

case, the number of parameters for the ANN model 

would increase to 53 according to the formula (4), 

considering only 2 hidden neurons. 

 

In order to reduce the complexity of the model and 

effectively learn the parameters of the model from a 

small number of data, we select the most relevant 
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structural parameters using three methods, i.e. the data 

sensitivity based ranking method, the linear 

combination based ranking method and the fuzzy logic 

based ranking method. In the linear combination 

ranking, the same weight (0.5) is assigned to each of the 

human knowledge criterion (H) and the data sensitivity 

(S). Table 2 gives the most relevant structural 

parameters related to the water permeability, obtained 

using these three ranking methods respectively.  

Table 2. Ranking of the structural parameters according to 

their relevancy to water permeability. 

 

Structural 

parameters 

Data 

sensitivity 

S       rank 

Cohe-

rence 

degree 

H 

Ranking by 

linear 

combination 

F1       rank 

Fuzzy logic 

based ranking 

F2        rank 

Basis 

weight 

0.1000 7 0.6177 0.3588 1 0.5000 3 

Thickness 0.1006 6 0.5212 0.3109 2 0.5000 3 

Fiber 

density 

0.1086 1 0.4574 0.2830 3 0.5574 1 

Total pore 

volume 

0.1036 5 0.4248 0.2642 4 0.5000 3 

Basis 

weight 

uniformity 

0.1052 2 0.3333 0.2193 5 0.5020 2 

Fiber count 0.1052 2 0 0.0526 6 0.3287 6 

Fiber 

length 

0.1045 4 0 0.0523 7 0.2119 7 

 

Table 2 shows that the fuzzy logic based ranking (F2) 

takes the fiber density, the basis weight uniformity and 

the total pore volume as the most relevant structural 

parameters for the property of water permeability. This 

result completely conforms to the knowledge of 

nonwoven experts on the process and the products and 

is more efficient than the ranking results of S and F1. 

Also, Table 2 denotes a significant difference between 

the result of the data sensitivity criterion (S) and those 

of the combination of human knowledge and data 

sensitivity (F1 and F2). The result of data sensitivity 

does not give high ranking orders to total pore volume, 

thickness and basis weight but emphasizes the fiber 

count, which is not significant in physical knowledge. In 

the result of the linear combination based ranking F1, 

basis weight uniformity is considered as an irrelevant 

parameter, which is quite different from the physical 

knowledge. 

 

In general cases, we can conclude that when using small 

sets of data for selecting relevant variables, human 

knowledge seems to positively affect the final ranking 

result and more relevant than data sensitivity based 

criterion. Moreover, the use of the fuzzy logic based 

ranking brings more efficient results. As this procedure 

aims at finding a suitable compromise between the data 

sensitivity and the human knowledge, it gives better 

results in the combination of the two sources of 

information.  

4.2. Modeling the FP/SP relations for each 

product family 

 

fiber density

uniformity

basis weight

binder rate

water permeability

special parameter

public parameters

Structural parameters Functional property

 

Fig. 6. Special model concerning water permeability for the 

chemical bonded family 

A general model is built using a neural network for all 

the nonwoven samples. It characterizes the relationship 

between the selected structural parameters and the 

corresponding functional property. For the property of 

water permeability, using the fuzzy logic based ranking 

method, we take the five most relevant structural 

parameters as public input variables.  

 

A special model is built for the family of nonwoven 

materials produced using a specific bonding technology 

(chemical bonding). Its architecture and parameters are 

built based on the corresponding general model. The 

binding rate is added to the set of the input variables of 

the general model. Fig. 6 shows the special model built 

for predicting the water permeability with five public 

parameters (basis weight, thickness, fiber density, total 

pore volume and basis weight uniformity) as input 

variables. The special structural parameter (binder rate) 

is then added to the set of these five input variables. 

 

In this application, the general model is based on 18 

samples of three product families. Each family is 

composed of 6 samples. We use the leave one out 

technique to test the effectiveness of the general model 

and the special model. This technique is described as 

follows. We carry out 18 tests. In each test, we remove 

one sample from the learning base for testing the 

models. The remaining 17 samples are used for learning 
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the general model and the remaining 5 samples of the 

corresponding family are used for learning the special 

model. Next, for the testing sample, we calculate the 

difference between the real value of the water 

permeability, the output of the general model and the 

output of the special model. This procedure is repeated 

for 18 times so that all samples can be removed from 

the learning base for testing the models. 

 

According to Eq. (6), the number of learning data 

related to 5 input variables should be no smaller than 

15. Then, the leave one out technique with 17 learning 

data permits to obtain efficient results in the general 

model. 

4.3. Prediction assessment of the product 

functional properties 

Table 3. Experimental results on the functional property 

“water permeability” for three product families. 

Removed 

sample

Experimental 

value (l/m?/s)

Predicted value 

(l/m?/s)
Error (%)

Predicted value 

(l/m?/s)
Error (%)

1 1103 1004 9.0% 1093 0.9%

2 972 997 2.6% 985 1.3%

3 889 832 6.4% 905 1.8%

4 735 692 5.9% 723 1.6%

5 723 676 6.5% 709 1.9%

6 721 775 7.5% 708 1.8%

7 609 583 4.3% 598 1.8%

8 607 629 3.6% 618 1.8%

9 562 532 5.3% 571 1.6%

10 539 502 6.9% 529 1.9%

11 445 410 7.9% 453 1.8%

12 427 394 7.7% 419 1.9%

13 374 405 8.3% 369 1.3%

14 324 301 7.1% 318 1.9%

15 318 288 9.4% 324 1.9%

16 221 204 7.7% 219 0.9%

17 217 226 4.1% 219 0.9%

18 181 167 7.7% 184 1.7%

Average prediction error (%): 6.55% 1.60%

General model Special model

 
 

Table 3 gives the details of the experimental results on 

the water permeability and the corresponding predicted 

results obtained from the general model and the special 

model. Fig. 7 compares the predicted and the 

experimental values of the water permeability obtained 

from the general and the special models and the real 

physical measures, respectively. 

 

In this experiment, we found that the proposed ANN 

models give satisfying results with low values of the 

averaged prediction error, despite the restricted amount 

of data. 
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Fig. 7. Comparison general/special models, related to water 

permeability 

From these experimental results, we can see that the 

special model gives lower prediction errors (averaged 

error: 1.60%) than the general model (averaged error: 

6.55%). This observation can be explained as follows: 

1. The general model makes use of samples from 

several families which differ from each other in 

many aspects while the special model only uses 

samples from the same family. The specificity of 

each family can not be taken into account in the 

general model. 

2. The special model is built based on the same 

structure as the general model. Only the weights 

connecting the specific input to hidden neurons are 

introduced. So, it takes into account both the 

specificity of each product family and the 

generality of all families.  

5. Conclusions 

In this paper, a support system is proposed for 

optimizing the design of nonwoven products, in 

accordance with the specifications. The relationship 

between structural parameters and functional properties 

of nonwoven products is modeled using artificial neural 

networks. In order to reduce the complexity of the 

models and solve the difficulty of insufficient available 

data, the most relevant structural parameters are selected 

according to data sensitivity and human knowledge 

conformity. A fuzzy logic based selection criterion is 

developed in order to find the best compromise between 

these two sources of information. The selection 

procedure of structural parameters allows designers to 

focus on the most relevant parameters in order to 

conduct production experiments related to the new 

product. In the modeling procedure, two models are 
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defined. A general model is firstly developed for all 

families of products. It is built from the set of public 

input variables. A special model is then built for each 

family of products by adding special structural 

parameters to the set of public input variables. The 

simulation of these models allows designers to optimize 

structure of materials and minimize the number of 

experiments. 

 

The proposed method has been successfully applied to 

the nonwoven industry to predict three functional 

properties: water permeability, breaking resistance and 

elongation at peak in machine direction. The simulation 

results show low prediction errors for both the general 

and the special models. In our future work, this 

modeling procedure can be further improved by finding 

new methods to process the existing constraints such as 

small amount of data, interdependencies between 

structural parameters and integrate human knowledge 

on processes and products.  
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