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ABSTRACT

The value of a system usually diminishes over its lifetime, but some systems depreciate more

slowly than others. Diminished value is due partly to the increasing needs and wants of the

system’s stakeholders and partly to its decreasing capabilities relative to emerging alterna-

tives. Thus, systems are replaced or upgraded at substantial cost and disruption. If a system

is designed to be changed and upgraded easily, however, this adaptability may increase its

lifetime value. How can adaptability be designed into a system so that it will provide increased

value over its lifetime? This paper describes the problem and an approach to its mitigation,

adopting the concept of real options from the field of economics, extending it to the field of

systems architecture, and coining the term architecture options for this next-generation method

and the associated tools for design for adaptability. Architecture options provide a quantitative

means of optimizing a system architecture to maximize its lifetime value. This paper provides

two quantitative models to assess the value of architecture adaptability. First, we define three

metrics—component adaptability factors, component option values, and interface cost factors—which are

used in a static model to evaluate architecture adaptability during the design of new systems.

Second, we enhance a dynamic model to evaluate architecture adaptability over the mainte-

nance and upgrade lifetime of a system, formulating a Design for Dynamic Value (DDV) optimi-

zation model. We illustrate both models with quantitative examples and also discuss how to

obtain the socio-economic data required for each model. © 2008 Wiley Periodicals, Inc. Syst

Eng 11: 125–146, 2008
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1. INTRODUCTION

1.1. The Problem

Systems provide value through their ability to fulfill
stakeholders’ needs and wants. These needs evolve over
time and may diverge from a fielded system’s capabili-
ties. Thus, a system’s value to its stakeholders dimin-
ishes over time. Some reasons for this decrease include
growth in stakeholder wants and technological oppor-
tunities, which make an existing system seem inade-
quate, and growth in a system’s maintenance costs, due
to effects such as depreciation and component obsoles-
cence. As a result, systems have to be periodically
upgraded at substantial cost and disruption. Since com-
plete replacement costs are often prohibitive, system
adaptability is a valuable characteristic. While most of
a system’s value to its stakeholders accrues as it is used
(the usage phase), the extent of this value is largely
determined by key decisions made when it is designed
(the development phase) [Murman et al., 2002]. There-
fore, increasing a system’s lifetime value requires im-
proved methods of design. However, these new
methods and tools cannot be stand-alone solutions;
rather, they must be harmonized with existing and
emerging system design methodologies. It is not trivial
simply to add design for adaptability (DFA) to current
design methods, because there are costs of including
increased flexibility and upgradeability in a design.
Thus, an economic model is needed to help designers
determine the optimal amount of “adaptability” a sys-
tem should possess. Unfortunately, the current con-
cepts, methods, and tools for the design of systems
(emanating from the traditional engineering disci-
plines) lack vital business and economic components,
resulting in designs that are not easily and quickly
adaptable to evolving needs. Three major features of
large-scale engineering projects are that they: (1) last a
long time, which means they need to be designed with
the demands of a distant future in mind; (2) typically
exhibit economies of scale, which motivates large quan-
tities of products and infrastructure; and (3) exhibit
highly uncertain future requirements, since forecasts of
the distant future are almost always wrong. Thus, DFA
requires systems engineering, economic, and longitudi-
nal perspectives.

1.2. Key Terms

1. Adaptability1 is a characteristic of a system ame-
nable to change to fit altered circumstances,
where “circumstances” include both the context
of a system’s use and its stakeholders’ desires.

2. System upgrades are externally imposed changes
that aim to increase the value and profitable life
of a system by closing emerging gaps between
stakeholder desires and system capabilities.

3. Stakeholders are any person, group, or organiza-
tion with a vested interest in a system, now or in
the future.

4. Value to stakeholders is provided by congruence
between stakeholder desires and system capabili-
ties. Stakeholder needs and wants are defined in
terms of various desired benefits and acceptable
sacrifices, and system capabilities are defined in
terms of various quality attributes and levels of
performance [Browning, 2003; Browning and
Honour, 2008].2

5. System architecture is “the fundamental organi-
zation of a system embodied in its components,
their relationships to each other, and to the envi-
ronment, and the principles guiding its design
and evolution” [IEEE, 2000].

6. A modular system has a one-to-one mapping
from functional elements (in its function struc-
ture) to its physical components and specifies
decoupled interfaces between components,
whereas an integral system has a complex (non-
one-to-one) mapping from functional elements
to physical components and/or coupled inter-
faces between components [Ulrich, 1995].

1.3. The State of the Art

Currently, typical systems are designed solely to meet
stated requirements at a point in time. Many designers
do not account for the fact that systems and their envi-
ronments evolve, although ample literature [e.g.,

1According to the dictionary, to adapt means “to make fit (as for a
specific or new use or situation), often by modification” [Webster,
2007]. We distinguish adaptability from “flexibility,” which is de-
rived from the Latin word flexus (past participle of flectere [to bend])
and literally refers to what is capable of withstanding stress without
injury and figuratively to what may naturally change and adapt when
needed.  
2See these references for additional discussion and definition of
value.
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Schulz and Fricke, 1999] indicates that systems un-
dergo major upgrades every few years. Furthermore, as
shown in Figure 1, various subsystems may evolve at
different rates. Thus, certain parts of a system should be
designed so as to be easily decoupled from the rest of
the system to facilitate partial upgrades. However, a
system that is not designed to provide such changes
over its lifetime is said to be “inflexible.” Consequences
of low system flexibility include: (1) extensive upgrade
costs, (2) significant disruptions to users, due to system
outages caused by both failures and upgrades, (3) lost
opportunities, and (4) unnecessary value loss for stake-
holders.

Alexandridis [1986] considered DFA in the context
of computer hardware and software design. Such phi-
losophies contributed to the development of computer
devices and software packages possessing “open” sys-
tems architectures (e.g., object-oriented). An alternative
DFA methodology, the Product Line Practice Initiative
(PLPI) [Cohen, 2003], guides organizations away from
traditional, one-at-a-time system development and to-
wards the paradigm of systematic, large-scale reuse of
product lines. Several other research centers are also
interested in various aspects of software DFA. For
example, the Distributed Systems Research Group
(DSRG) is interested in identifying, understanding, and
constructing technology that facilitates adaptable soft-
ware systems. However, all of these efforts are oriented
towards a narrow band of existing systems within the
software domain.

Open systems provides another limited DFA ap-
proach emphasizing standard interfaces and subsystem
modularity. This is both a technical approach to systems
engineering and a preferred business strategy applied
by the U.S. Department of Defense (DoD) for large and

complex systems [Hanratty, 1999]. Yet, the issue of
DFA is much wider than the scope of open systems.

Fricke and Schulz [2005] recognize the importance
of Design for Changeability (DfC), suggesting that
flexibility, agility, robustness, and adaptability are four
key aspects of changeability and discussing incorporat-
ing changeability into a system’s architecture. Larses
[2005] describes quantitative efforts to optimize prod-
uct modularization at the Swedish truck company
Scania. The automotive industry requires a system ar-
chitecture to be optimized for use over a range of
products and also for reuse over time with continuous
improvements. While Fricke and Schulz stress qualita-
tive issues, Larses addresses quantitative design optimi-
zation, yet with only nominal explanation of the model.

Researchers at the Massachusetts Institute of Tech-
nology (MIT) have been developing a theoretical ap-
proach to the value of flexibility [de Neufville et al.,
2004]. These concepts, defined as real options “in”
projects, are options created by changing the design of
a technical system. Real options in systems can be very
effective [Wang, 2005; Kalligeros, 2006]. Wang and de
Neufville [2006] propose a procedure to identify real
options “in” engineering systems. The method consists
of a screening and simulation procedure. The screening
model is a low-fidelity representation of a system that
reflects its most important issues, and the simulation
model is used to validate critical considerations, such
as design robustness and reliability. Bartolomei et al.
[2006] discuss the end-to-end representation of a com-
plex socio-technical system through the concept of an
engineering system matrix (ESM), “a holistic repre-
sentation of an engineering system that captures the
critical variables and causal interactions across archi-
tectural elements.” The authors propose a definition for

Figure 1. Boeing data on system upgrades, adapted from Gartz [2001]. [Color figure can be viewed in online issue, which is
available at www.interscience.wiley.com.]
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an engineering system as “a complex socio-technical
system that is designed, developed, and actively man-
aged by humans in order to deliver value to stakehold-
ers” and note that what separates an engineering system
from other complex systems is the aspect of value
delivery. Nilchiani [2005] and Nilchiani and Hastings
[2007] use an extensive review of the literature on space
systems to quantify system flexibility, manufacturing
flexibility, and systems engineering. They identify six
key elements that affect the value of flexibility: uncer-
tainty, time window of change, system boundary, re-
sponse to change, the system aspect to which the
flexibility is applied, and access to the system. Based
on this framework, they propose a 12-step procedure for
assessing the value of flexibility. Ross [2006] proposed
a framework for increasing the value of robustness of
systems in the face of changing value perceptions dur-
ing the lifetime of systems. Both unarticulated value,
which is not explicitly communicated to the system de-
signers, and dynamic value, which changes over time, are
used to motivate the dynamic exploration process. Sup-
porting the value-adding approach, the system properties
of flexibility, adaptability, rigidity, robustness, scalability,
and modifiability are proposed to be different aspects of
the same concept: changeability.

Yu, Yassine, and Goldberg [2007] also address how
to architect a system for flexibility and adaptability.
They propose an architecture clustering metric based on
a Minimal Description Length (MDL) model. MDL
views interfaces as consisting of transmitting an ap-
proximate description of a given dataset together with
information describing the inherent mismatch. The
MDL concept is used as an objective function for a
genetic algorithm optimization, which may generate an
optimal number of clusters as well as their composition.
In this paper, while we advocate a similar optimization
approach, we frame the design problem differently,
considering needs for adaptability over the lifetime of
a system.

1.4. Research Need

Although various methods exist to improve system
value in a dynamic context (see Fig. 2), there is still a

need for improved methodologies that quantify the
value and achievable benefits of DFA (e.g., modularity,
open systems, object orientation, interface stand-
ardization, etc.) in system architectures. We still need
greater insight into the question: How can adaptability

be designed into systems so that they will provide

greater value to stakeholders over a longer time?

1.5. Overview of Our Approach

We seek to provide an extension to system design theory
in the context of dynamic value. To do this, we incor-
porate basic aspects of economic options theory, which
we call architecture options (AOs), into the design and
evaluation of systems. Our approach harmonizes DFA
techniques with existing design methodologies to pro-
vide the system development community with the gene-
sis of a useable DFA methodology and a quantitative
DFA economic model. As Figure 2 shows, existing
product development philosophies that address the dy-
namic desires of stakeholders provide a good basis for
the development of a DFA methodology. However,
none of them alone is sufficient. Since modularity has
made a major contribution to product flexibility (i.e.,
the capability to make inexpensive changes in a design;
e.g., Alexander [1964], Ulrich [1995], Baldwin and
Clark [2000]), it provides the main focus of our re-
search. However, we also seek to investigate, evaluate,
and incorporate other methods that contribute to adapt-
ability. Much of this work remains, so in this paper we
seek merely to provide an introduction and some pre-
liminary results.

Economic options theory has been applied to engi-
neering design in an effort to “design in” flexibility [de
Neufville, 2001, 2003]. The current theory of economic
options distinguishes between three types: (1) financial
options, (2) real options, and (3) real “in” options. Our
research seeks to develop an optimal approach to DFA
by proposing a new, further stage: architecture options

(see Fig. 3). AOs provide a quantitative means of ex-
ploring the optimal degree of design flexibility in a
system to maximize its lifetime value for varied stake-
holders.

Figure 2. Research context. [Color figure can be viewed in online issue, which is available at www.interscience.wiley.com.]
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In finance and economics, an option is “the right but
not the obligation to exercise a feature of a contract at
a future date” [Higham, 2004]. This can be translated
into systems engineering by identifying certain flexibil-
ity vis-à-vis the system’s future evolution. In other
words, we associate the set of software and hardware
components and interfaces embodying the system ar-
chitecture with a set of economic options that can be
exercised in the future as the system is upgraded. In
general, the more modules in a system, the more options
there are (representing adaptability “options value”).
However, the more modules, the more interfaces there
are (representing “options price”). In balancing these
costs, and given a set of assumptions about rates of
change and future states of stakeholder desires, there
exists at least one system architecture with optimal
adaptability value. Therefore, we propose the following
steps for a DFA methodology: (1) identify potentially
desired functions, associating each with a systems com-
ponent and determining its option value; (2) identify
each interface between components and determine its
option cost; and (3) combine analytical (e.g., Taguchi
loss function) [Taguchi and Wu, 1980; Barad and Engel,
2006] and meta-heuristic (e.g., genetic algorithm) opti-
mization techniques, to identify optimal architectures
for different stakeholders. The value of systems to their
stakeholders is a combination of many subjective fac-
tors related to technical quality and capability, timeli-
ness, and cost. In practice, these factors are converted
to a monetary value through personal biases toward
utility and risk [Vollerthun, 2002].

The rest of this paper is organized as follows. In the
next section, we provide a fuller discussion of options
theory as the basis for AOs, which we describe in
Section 3. We then present our AO model and analysis
in two parts. The first part, in Section 4, applies AO to
a static architecture—i.e., at a single point in time. The
second part, in Section 5, applies AO to a dynamic
situation, exploring value over time. Section 6 discusses
how to gather the data required for the model, and
Section 7 concludes the paper. Again, our primary aim
is to provide some introduction to the ideas of DFA and
AO for the systems engineering community and to
present some preliminary results with static and dy-

namic models. We see this as a basis for much future
research.

2. OPTIONS THEORY

Before introducing AOs, we provide a brief overview
of three other types of economic options.

2.1. Financial Options

In finance, an option is a contract whereby the contract
buyer has a right to exercise a feature of the contract
(the option) at future date (the exercise date), and the
seller (or “writer”) has the obligation to honor the
specified feature of the contract. Since the option gives
the buyer a right and the seller an obligation, the buyer
has received something of value. The amount the buyer
pays the seller for the option is called the option pre-
mium. The term “financial options” refers to a deriva-
tive security, an option which gives the holder of the
option the right to purchase or sell a security at a
predefined time in the future, for a predetermined
amount.

Historically the pricing of options was entirely ad
hoc. Traders with good intuition about how other trad-
ers would price options made money and those without
it lost money. Then in 1973 Fischer Black and Myron
Scholes published a paper proposing what became
known as the Black-Scholes pricing model [Black and
Scholes, 1973], which led to a 1997 Nobel Prize. The
model gave a theoretical value for simple put and call
options, given assumptions about the behavior of stock
prices. The availability of a good estimate of an option’s
theoretical price contributed to the explosion of trading
in options. Researchers have subsequently generalized
Black-Scholes to the Black model, and have developed
other methods of option valuation, including Monte
Carlo and binomial models. The Black-Scholes formula
is an important mathematical tool in modem finance
theory. However, its derivation is based on several sim-
plifying assumptions,3 so it may not be as universally
applicable in the real financial world as is often thought.

3According to Clarkson [1995], the Black-Scholes formula uses the
following critical assumptions:
a. The short-term interest rate is known and is constant through time.
b. The stock price follows a random walk in continuous time with a
variance rate proportional to the square of the stock price. Thus, the
distribution of possible stock prices at the end of any finite interval is
lognormal and the variance rate of the return on the stock is constant.
c. There are no transaction costs in buying or selling the stock or the
option.
d. It is possible to borrow any fraction of the price of a security to buy
or hold it, at the short-term interest rate.
e. There are no penalties for short selling. A seller who does not own
a security will accept the price of the security from a buyer, and will
agree to settle with the buyer at some future date by paying him an
amount equal to the price of the security on that date.

Figure 3. From “financial options” to “architecture options.”
[Color figure can be viewed in online issue, which is available
at www.interscience.wiley.com.]
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The interested reader may refer to Clarkson [1995] for
a detailed analysis of these simplifying assumptions
and their practical implications.

2.2. Real Options

The concept of real options originated in the field of
finance [Myers, 1984] but is concerned with physical
assets traded in markets. Specifically, they refer to
elements of a system that provide rights to achieve some
goal without obligations. For example, a modular sys-
tem architecture, in which components such as comput-
ers can be easily replaced, gives the system’s
stakeholders an ability to do so (at a particular level of
cost) which they otherwise would not have (at the same
level of cost) if the system was highly integral. Real
options analysis blends technical and market considera-
tions. This observation has important implications for
how financial options analysis translates into system
design. Since the early 1990s, numerous authors [e.g.,
Baldwin and Clark, 2000] have extended this analysis
to engineering systems. Zhao and Tseng [2003] and
other researchers offer case studies demonstrating the
practicality and the effectiveness of real options. For
general information about real options, readers are re-
ferred to Copeland and Antikarov [2003], who provide
guidance on how to maximize investment opportunities
by utilizing uncertainty as an asset while reducing
downside risk.

The real options approach to systems design at-
tempts to manage the major risks confronting the de-
sign. It seeks opportunities to build real options into
design, evaluates these possibilities, and implements
the best ones. Unlike conventional decision analysis,
which works with a predetermined set of possible deci-
sion paths, the options approach seeks to identify new
paths and change the decision tree by adding flexibility
for its own sake. Thinking in terms of real options
illuminates opportunities that designers may have pre-
viously underused or ignored. Real options analysis
hints at a way to estimate the value of system flexibility.

In this context, it often might be cost-effective to
stage or stream the development of systems (incremen-
tally) to bring parts of it into service as needed. Stream-
ing avoids the development of unnecessary capability
and capacity. It also defers some expenses, which can
considerably reduce the (present value) cost of a sys-
tem. Moreover, when the implementation of later stages
is deferred until needed, the design of the system can
accommodate the latest technology and cater more
precisely to the latest needs.

2.3. Real “In” Options

Real “in” options [de Neufville, 2001] is a recent exten-
sion to real options that categorizes them as either “on”
or “in” projects. Real options “on” projects are financial
options taken on technical things, treating the particular
system as a “black box,” while real options “in” projects
(ROIP) are options created by changing the system
design. A simple example of a real option “in” a system
is a spare tire on a car: It gives the driver the right
(without the obligation) to change a tire at any time
[Wang, 2005].

In general, ROIP require a deep technical under-
standing of the system being developed. Because such
knowledge is not readily available among options ana-
lysts, there have so far been few analyses of ROIP,
despite the important opportunities available. More-
over, because the data available for analyzing ROIP are
of much poorer quality than those for financial options
or real options “on” projects, ROIP require their own
appropriate analysis framework. Nevertheless, ROIP
can be very effective. For example, de Weck, de
Neufville, and Chaize [2004] evaluated real options
“in” a satellite communication system and determined
that their use could increase the value of the system by
at least 25%. In that case, the real options “in” the
satellite constellation were additional positioning rock-
ets and fuel, which provided a flexible design that could
adjust capacity according to need.

3. ARCHITECTURE OPTIONS

Our proposed AO theory is an extension of ROIP theory.
One aspect of AO involves system modularity. Here, we
consider all the modules constituting a system as op-
tions in an economic sense and seek to identify an
optimal system architecture in terms of “adaptability
attributes” that support recurring, originally unfore-
seen, upgrades of the system.

3.1. Theory

Our AO theory is based on ideas adopted from Baldwin
and Clark [2000] and expanded for this research. When
a design is “modularized,” the system components are
divided up and assigned to modules according to a given
architecture. Each module within the architecture is a
part of a larger system and must fit with the other
modules to function together as a whole. From an
engineering perspective, modularization has three main
purposes:

1. To make a system’s complexity manageable,
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2. To enable parallel work by different design
teams, and

3. To accommodate future uncertainty.

Modularity accommodates uncertainty because the
particular elements of a modular design may be
changed after the fact, and in unforeseen ways, as long
as the design rules are obeyed [Baldwin and Clark,
2000]. These design rules dictate the architecture and
the interfaces of the system. Thus, “modularizing” a
system involves specifying its architecture—i.e., it is a
key aspect of system architecting [Rechtin, 1991].
Modularity in the design of a system allows modules to
be changed more easily over time while improving the
functionality of the system as a whole. In this sense the
modular design of a complex system facilitates adapta-
tions to future uncertainty by decreasing the cost of the
option to modify the system.

Even at the point when a system is introduced into a
market or delivered to a customer, the final outcome in
terms of ultimate stakeholder satisfaction is uncertain.
Uncertainty about a system design concept translates
into uncertainty about its long-term success, which
causes alternative designs to have “optionlike” proper-
ties. In engineering, a new design creates the ability but
not the necessity (the right but not the obligation) to do
something in a better way. In general, the new design
will be adopted only if it is superior to the current one.
This “option” property of designs has important conse-
quences. In an option-rich environment, taking more
risk can create more value. That is, increased uncer-
tainty (variation or volatility) in consequences gener-
ally increases the value of the options. “Taking more
risk” means accepting greater dispersion in the range of
potential outcomes. Intuitively, a risky design is one
with high technical potential but less guarantee of suc-
cess.

3.2. Architecture Option Value in Terms of
System Lifetime Value

Different system architecture alternatives must be
evaluated. To that end, the DFA-relevant design risks
and opportunities are considered that describe the de-
sign aspects that may have to be changed in the future
to maintain the increased value desired by stakeholders.
After an analysis of the design alternatives, this step
provides the lifetime value evaluation results with a
ranking of the different design alternatives. Moreover,
the evaluation provides insights about strengths and
weaknesses of the different design alternatives, which
informs subsequent optimization.

Bahsoon and Emmerich [2003] proposed the con-
cept of architectural stability as a measure of software

system flexibility to endure evolutionary changes in
stakeholders’ requirements and the environment. They
extended the Black-Scholes method to optimize soft-
ware architecture flexibility via refactoring4 [Bahsoon
and Emmerich, 2004] and middleware5 design
[Bahsoon, Emmerich, and Macke, 2005]. The flexibil-
ity of the software architecture is determined by the
volatility of requirements and their influence on the
evolving architecture.

Browning and Honour [2008] defined a procedure
for measuring the lifecycle or lifetime value of a system
on a very high level, emphasizing that lifetime value
depends on several system parameters (not only adapt-
ability) and the stakeholders. Different stakeholders
have different, often conflicting views on the lifetime
value of a system. We refine this approach for measur-
ing lifetime value in the case of AOs with respect to
system modularity. Fitch and Cooper [2005a, 2005b]
also presented a lifecycle model for design and identi-
fied the need to assess uncertainty related to knowledge
of a product design’s final attributes. In addition, they
presented a material substitution case study from the
automotive industry to illustrate the methodology.

Banerjee and de Weck (2004) discussed the condi-
tions where a flexible architecture is advantageous rela-
tive to a “fixed architecture.” Using the Black-Scholes
model and the binomial model, they developed a theo-
retical and quantitative analysis to demonstrate how
alternative valuation methods can yield an estimate of
product option value, yielding information on the rela-
tive value of flexibility during product design. They
applied the flexible product option valuation frame-
work to the case of a handset processor in a 2G/3G
wireless network.

Sharman and Yassine [2007] outlined a methodol-
ogy for the valuation of the architecture of a system
through an appropriate level of modularization to maxi-
mize the societal value created. This method was devel-
oped through the application of the design structure
matrix and real options theory. The method is utilized
to develop an improved visibility estimate for non-hier-
archic system architectures. The proposed method is
illustrated using an industrial gas turbine example.
Their clustering approach is similar to ours, although
we suggest modeling the cost of the interface as a key
mechanism to ascertain the effectiveness of any given
architecture.

4Refactoring is changing the architecture of a computer program
without changing its functionality.
5Middleware technologies (e.g., J2EE and CORBA) simplify the
construction of distributed systems by providing high-level primi-
tives, which shield the application engineers from the distribution
complexities.
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Our approach incorporates ideas from several mod-
eling approaches, including the System Modeling Lan-
guage (SysML) [Hause, Thom, and Moore, 2004], an
extension of the popular Unified Modeling Language
(UML) [Booch, Rumbaugh, and Jacobson, 1999] that
supports integrated modeling of the hardware and soft-
ware components of a complex system, and the compo-
nent-based design structure matrix (DSM) [Browning,
2001], which represents the element-to-element rela-
tionships between components in an (N-square) matrix.

4. STATIC EVALUATION OF
ARCHITECTURE FLEXIBILITY

First, to evaluate architecture flexibility in a static case,
we define three helpful metrics: component adaptabil-
ity factor, component option values, and interface cost
factors. Each is defined in one of the following sub-sec-
tions, after which we demonstrate their use with an
example.

4.1. Component Adaptability Factor (CAF)

We start with a minimal building block, the component.
A component is a software or hardware object with
clearly defined interfaces. It encapsulates specific func-
tionality and interacts with other components and/or
with the environment. As an initial approach to the issue
of component adaptability, we define a metric called the
component adaptability factor (CAF).6 We adopted
standard ISO/IEC 9126-1, “Software Engineering -
Product quality - Part 1: Quality model,” which de-
scribes six categories of software quality (see Fig. 4).
While we are concerned with a broader set of system
types than pure software systems, these metrics also
pertain to systems more generally.

We use the ISO/IEC 9126-1 standard as a starting
point to derive six metrics, described in Table I, that
collectively quantify the CAF.

Each metric is measured on a continuous [0,1] (per-
cent) scale. The weights given in Table I are arbitrary
and provided for demonstration only. For example, we
assume that a component’s adaptability is affected more
significantly by its maintainability than by, say, its
reliability. The weights may therefore be changed but
must meet the following criterion:

∑ 

i={F, R, U, E, M, P}

           Wi = 1. (1)

An initial model describing the CAF is defined as the
weighted average of the six constituent metrics:

SAF = wFF + wRR + wUU + wEE + wMM + wPP. (2)

Since each metric lies in the range [0,1], and since the
weights sum to one, CAF  [0,1] as well.

We further derive submetrics for each of the six
constituent metrics, as described in Table II. (Again, the
weights are for demonstration only; calibrating them is
a subject for future research.)

Therefore, each of the six constituent metrics for
CAF may be computed as follows, where, again, each
metric’s factor weights must sum to 1:

F = ∑ 

i=1

5

wF
i

Fi,    R = ∑ 

i=1

3

wR
i

Ri,    U = ∑ 

i=1

3

wU
i

Ui,

E = ∑ 

i=1

2

wEi
Ei,    M = ∑ 

i=1

4

wMi
Mi,    P = ∑ 

i=1

4

wPi
Pi. (3)

4.2. Component Option Values (COV)

We seek to determine the option value of a module
analogously to the approach used in financial options.

Figure 4. ISO/IEC 9126-1 standard components. [Color figure can be viewed in online issue, which is available at www.inter-
science.wiley.com.]

6The CAF and other variables used in this paper are summarized in
a nomenclature list at the end of the paper.
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The economic value of options is determined in finan-
cial markets through the mechanism of supply and
demand. Options buyers and sellers assess the value of
an options contract by how likely it is to meet their
expectations. In the language of options, that is deter-
mined by whether or not the option is likely to be

“in-the-money.” A call option (giving the holder an
option to buy) is in-the-money if the current market
value of the underlying instrument is above the exercise
price of the option. A put option (giving the holder the
option to sell) is in-the-money if the current market
value of the underlying interest is below the exercise

aAs shown in Figure 4, the ISO/IEC 9126-1 definition of maintainability includes “Changeability” (ease of modification), which is

perhaps the single most important factor in overall system adaptability.
bWhile portability includes “Adaptability” as defined by the ISO/IEC 9126-1 standard, this is a narrower view of adaptability than

we are concerned with, as it pertains chiefly to “re-port-ability.”

     Table I. CAF Constituent Metrics (Initial Values)

  Table II. CAF Submetrics (Initial Values)
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price. Therefore, the intrinsic value of an option is the
profit that would be received if the option were exer-
cised immediately. Unfortunately, there is no way to
know this final intrinsic value in advance. However
several models, notably the Black-Scholes Option Price
Model (OPM), provide quantitative means to estimate
this value based on the following key parameters:

• Current price of the underlying instrument:

As it increases, so does the value of a call option;
as it decreases, so does the value of a put option.

• Exercise (or strike) price is fixed for the life of
the option, but every underlying instrument has
several exercise prices for each expiration time.
The higher the strike price, the lower the value of
a call option, and the higher the value of a put
option.

• Volatility is measured as the annualized standard
deviation of the returns on the underlying instru-
ment. Options increase in value as volatility in-
creases, since options with higher volatility have
a greater chance of expiring in-the-money.

• Time to expiration is measured as the fraction
of a year. As with volatility, longer times to expi-
ration increase the value of options, since there is
a greater chance that the option will expire in-the-
money with a longer time to expiration.

• Risk-free interest rate is the rate of interest
needed to fund the purchase of the underlying
instrument or exercise it under a no-risk assump-
tion.

Further research is needed to define a method for
generating options values estimates in AOs. A natural
approach is to continue the analogy between financial
options and AOs. This means adopting the Black-
Scholes financial option pricing method and expanding
it to calculate AO values. Table III depicts the parame-
ters of the Scholes model for calculating a financial
option price at any given time.

The expected value of a European call option is
given by E[Max(St – X, 0)]—i.e., the expected value of
the call will be either the amount by which the stock
price (St) exceeds the strike price at time t, or zero,
whichever is larger. The European call option price (C)
is the value discounted at a risk-free rate of interest:

C = e−rT E[Max(St − X, 0)]. (4)

Assuming risk-free conditions, ln St can be approxi-
mated by the following probability distribution, written
in terms of φ [Mean, Standard Deviation]:

ln ST ≈ φ[ln S + (r − σ2
 / 2)T,  σ√T ]. (5)

Evaluating the right-hand side of (5) leads to the
Black-Scholes valuation of a call option:

C = S N(d1) − Xe−rTN(d2), (6)

where

d1 = 
ln(S / X) + (r + σ2

 / 2)T
σ√T

,
(7)

d2 = 
ln(S / X) + (r − σ2

 / 2)T
σ√T

 = d1 − σ√T ,
(8)

and N(x) is the cumulative probability distribution func-
tion for a standardized normal variable.

Now, we calculate the option price (C) of a given
architecture from Eq. (6) by considering an interpreta-
tion of the Black-Scholes model in the context of AOs.
Table IV provides a mapping between the parameters
of the Black-Scholes model and AOs.

As mentioned, the assumptions underlying option-
pricing as well as estimates used as input data for such
models contain substantial levels of uncertainty. This
uncertainty should be reflected in option valuations

    Table III. The Parameters of the Black-Scholes Model
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calculations. Therefore, what is needed is a probability
distribution of valuations rather than solely a point
estimate. For example, the Technology Investment Ad-
visor software tool [Rouse et al., 2000] enables model-
ing of uncertain parameter values as well as technology
maturity, production learning, and competitive posi-
tions. Calculation of a component option value (COV)
is rather simple when one uses tools readily available
on the internet.7 For example, the COV associated with
a component used in a later example (component “G”
in Fig. 7 in subsection 4.5) is calculated to be $40.00
based on equation (6) and the parameters depicted in
Table V. The input parameters could be elicited from a
group of experts as we describe in Section 6. The
experts may be asked to estimate: 

• The current and future contribution of the com-
ponent to the overall sales price of the system

• The uncertainty in the lifetime-value of the up-
graded component within the system, in terms of
the standard deviation of the distribution of po-
tential future values

• The planned time horizon for deploying the up-
graded system

• The prevailing interest rate over the planned time
horizon.

4.3. Interface Cost Factors

Pimmler and Eppinger [1994] and later Sharman and
Yassine [2007] developed a methodology for the analy-
sis of product design decomposition. They assert that
component interfaces may represent one or more differ-
ent types of interactions, including the transmission of
physical material, mechanical force, energy, and/or in-
formation. Other particular types of interactions could
include electromagnetic, thermal, and vibrational. We
build on this idea to determine interface cost factors (Iin, k

and Ien,l) and further suggest specifying the importance
and desirability of each interaction with respect to its
functional role—i.e., the intensity of the interaction on
a 0–1 scale, where 0 indicates no interaction and 1
suggests maximal importance or intensity. For example,
a model based on Pimmler and Eppinger’s four basic
forms of interaction is depicted in Table VI. We further
consider each interface cost factor as the sum of the four
individual interaction values.

For example, consider the interface between a per-
sonal computer to a wireless mouse unit. There is no
material interaction (IM = 0.0). There are some limita-
tions on the spatial interaction, but there is no force
transferred from the PC to the mouse, and a large
latitude in the orientation of the mouse relative to the

    Table IV. Mapping Financial Options to AOs

7For further discussion on the Black-Scholes Option Price Model and several references to simple-to-operate, on-line tools, we refer interested
readers to http://en.wikipedia.org/wiki/Black-Scholes.

         Table V. Example Calculation of the OV of a Component
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PC is possible. And while the physical interface be-
tween the computer and the mouse’s USB plug has
spatial limitations and specifications, these are highly
standardized and relatively simple (IS = 0.2). There is
no energy transmission via this interface, as the mouse
contains its own battery (IE = 0.0). Finally, the infor-
mation interaction, which is the main interface charac-
teristic, occurs in terms of highly standardized
protocols (II = 0.6). Therefore, the overall interface cost
factor is the sum of the above interactions values; thus
Ii = 0.8, where Ii ∈ [0,4].

Note that the low and especially the high range for
each factor can be adjusted by the design team if nec-
essary. For example, information interactions may be
easier to handle than spatial ones, in which case a fairly
intensive information interaction may need to be rated
lower than a moderate spatial one. While the range and
the setting of each factor may be determined subjec-
tively by a system’s designers, the important things are
that the measures make sense relative to each other (i.e.,
that any biases are applied equally to all interface meas-
ures) and that the designers at least come close to
agreement regarding them. Once quantified, the inter-
face measures should be checked for consistency across
the system.

4.4. Modeling the Adaptability Value of a
System Architecture

One or more components may be combined to create a
module which has also an expected option value. A
large module composed of ten components has a lower
expected option value than five smaller modules, each
composed of two components. This claim is based on a
special case of Merton’s theorem [Merton, 1973],
which states that for general probability distributions,
the aggregate value of a “portfolio of options” is more
valuable than an “option on a portfolio.” Therefore, we
assume that the expected economic value of the jth

engineering module, Xj, is normally distributed and
related:

• Positively: to an appropriate function (for exam-
ple, the vector sum) of each of n components’
expected options values, COVn, each multiplied
by its corresponding adaptability factors, CAFn.

• Negatively: to an appropriate function (for exam-
ple, the algebraic sum) of the expected costs
associated with all (1) internal (module-to-mod-
ule) interfaces, Iin,k, and (2) all external (module-
to-environment) interfaces, Ien,l.

Thus, the module value of the first architecture variant
is

Xj
(1) = √∑ 

n=1,2,...

 (OVn ∗ SAFn)
2     

− ∑ 

n=1,2,....

       



   ∑ 

k=1,2,....

 Iin,k + ∑ 

l=1,2,....

 Ien,l




 . (9)

While this model might seem arbitrary, using a vec-
tor sum to model the positive side of the architecture
value corresponds nicely with Merton’s theorem, which
can be interpreted as implying that there is more overall
architectural option value in many small design clusters
than in a few large ones. On the negative side, it is
reasonable to assume that the overall cost of interfaces
increases linearly with their number and individual
attributes. Thus, the “best architecture” should contain
some number of modules that is less than the number
of components (or else the interface costs become too
high) but also greater than 1 (because the option value
would be too low). The linear assumption on the cost of
interfaces seems reasonable when one deals with rela-
tively simple interfaces (e.g., mechanical, electrical,
computer, etc.). This may not be the case in very com-
plex and often unpredicted, human interfaces where a
nonlinear cost model may be more appropriate.

We also assume that the economic value of the entire
first architecture variant V(1) can be expressed as the
sum of its modules’ values:

    Table VI. Modeling Interface Cost Factors by Means of Basic Interactions
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V(1) = 



    ∑ 

j=1,2,....

   Xj
(1)




(10)

During the optimization process or during system
upgrades we add, replace, or repackage modules in
search of the highest-value architecture variant, which
we designate V*.

4.5. Static Example

The DSM in Figure 5 depicts a system of 10 compo-
nents (A–J) with both internal and external interfaces.
An output from a component is indicated by an “X” in
its row, and an input to a component is indicated by an
“X” in its column (e.g., component F generates an
output to component B, which is seen by the latter as
an input).

One possible system architecture, shown in both the
DSM in Figure 5 and the architecture block diagram in
Figure 6, consists of module 1 (components A–D) and
module 2 (components E–J). In this case, the interface
from F to B is also an interface from module 2 to module
1. Note that internal interfaces within a module (e.g.,
interface from component “I” to component “H”) are
hidden within the module and, therefore, do not affect
cost calculations. Note also that the last row and column
in the matrix show interactions with the system’s envi-
ronment.

Figure 7 depicts the option values OVn and adapt-
ability factors SAFn for each component and the costs
for each interface, Iin, k and Ien, l, associated with this
example. (In Section 6 we discuss how to gather these

data.) Note that these data are provided for demonstra-
tion only and that the actual values are not as important
as their consistency, since only relative comparisons are
made with the results.

We use Eqs. (9) and (10) to calculate the adaptability
value of the first architecture variant:

X 1
(1) = √(50 ∗ .7)2 + (20 ∗ .9)2 + (30 ∗ .7)2 + (20 ∗ .6)2

 − (3 + 1 + 2 + 2 + 3 + 1 + 4 + 3.2 + 3) = 24.0

X 2
(1) =                   

√(10 ∗ .1)2 + (30 ∗ .5)2 + (40 ∗ .2)2 + (50 ∗ .1)2 + (30 ∗ .7)2 + (20 ∗ .3)2

 − (2 + 3 + 3 + 2 + 1 + 1 + 4 + 2 + 4 + 3) = 4.8

V 
(1) = X 1

(1) + X 2
(1) = 28.8

The above example demonstrates a simple, static
evaluation of a single architecture variant. Clearly, dif-
ferent design solutions that combine components into
different modules will yield varied system adaptability
values. Since real systems have an immense number of
potential architectures, we need to facilitate the identi-
fication of the optimal system architecture. Optimiza-
tion techniques such as genetic algorithms or simulated
annealing seem quite promising in this regard, perhaps
following an approach similar to that used by Yu,
Yassine, and Goldberg [2007]. While initial results look
promising, further work is needed to fine-tune the

Figure 5. An example system architecture shown using a DSM. [Color figure can be viewed in online issue, which is available
at www.interscience.wiley.com.]
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model’s factor weights and perhaps even its aggregative
structure.

5. DYNAMIC EVALUATION AND DESIGN
FOR DYNAMIC VALUE

In designing products and product platforms, it is es-
sential to consider the role of technology evolution and
other parameters to avoid frequent redesign costs or
premature obsolescence of key components. Limited

research on "multi-generational design" has shown that
existing design tools and processes fail to delineate
different technologies and therefore capitalize on tech-
nological change (Khadke and Gershenson, 2007).
These authors stressed the need to analyze technology
change at both the single product and the product plat-
form levels. They proposed a framework for assessing
technology change in products to generate qualitative
measures of change potential. These measures can also
be used to identify and isolate components with fre-

Figure 6. The example system architecture shown using a block diagram. [Color figure can be viewed in online issue, which is
available at www.interscience.wiley.com.]

Figure 7. Example of option values, adaptability factors and interface costs. [Color figure can be viewed in online issue, which
is available at www.interscience.wiley.com.]
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quent technology change. Earlier researchers indicated
several key issues related to technology evolution:

1. Performance level describes how well a techno-
logical entity performs its function in current
products. The potential for change in technology
performance levels can be predicted, using tech-
nology sigmoid curves (known as S-curves)
(Twiss, 1992).

2. Principle of operation is the specific mecha-
nism through which a technological entity per-
forms its functions. The potential for change in
principle of operation can be assessed using tech-
nology roadmaps. These are tools developed by
practitioners to outline the future of technologies
with a proposed timeline (DeGregorio, 2000).

3. Technology architecture refers to the funda-
mental configuration of a technology. Product
architectures tend to evolve over time, becoming
more or less modular depending on the amount
of design energy dedicated to architecting.
Shibata, Yano, and Kodama (2005) conclude that
product architectures tend to evolve over time
from an integral architecture to a modular archi-
tecture.

In this paper, we also seek to design systems for
repeated upgrades over their lifetime in order to meet
stakeholders’ revised perceptions of value. In this sec-
tion, we formulate a Design for Dynamic Value (DDV)
optimization model and demonstrate it with an exam-
ple.

5.1. DDV Model

Initial Cost & Value (IC&V). We measure the IC&V

of a system in monetary units (e.g., dollars). We assume

that a system’s initial value to its stakeholders (upon
delivery) is equal to the sum costs of developing, manu-
facturing, and deploying the system.

Value Desired by Stakeholders (VD). We also
measure the VD in monetary units. The value desired
from systems tends to increase over time due to ex-
pected economic growth, EG, and technological ad-

vances, TA:

VDi(t) = fEG
i
(t) + fTA

i

(t) + IC&V. (11)

Thus, we assume that IC&V = VD at time zero,
although this assumption is easily relaxed.

Increase in Maintenance Cost (MC). We measure
the MC in monetary units. The MC of a system tends to
increase because of hardware and software wear-out

costs, WC, and components and infrastructure obsoles-

cence costs, OC:

MCi(t) = fWC
i
(t) + fOC

i

(t). (12)

The difference between VD and MC is also supposed
to account for depreciation and related costs, although
this and any other terms relevant to a particular context
may be added to the model (as long as one is careful to
avoid double-counting).

Stakeholder Value Loss (VL). We measure the VL

in monetary units. The instantaneous value loss during
the time period leading up to the ith upgrade
(ti−1 → ti) equals the accumulated VD and MC of the
system, less its IC&V:

VLi(t) = ∫ 
t
i−1

t
i

 [VDi(t) + MCi(t)] dt − IC&V. (13)

Figure 8. Value loss and system upgrade model (single upgrade). [Color figure can be viewed in online issue, which is available
at www.interscience.wiley.com.]
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Upgrade Cost (UC). Our aim is to increase the value
of the system by enhancing its ability to adapt to chang-
ing stakeholder desires. A system’s UC is equal to its
development and production costs, DPC, plus its sus-

pension of service costs, SSC (i.e., costs of any disrup-
tion to the existing system while the upgrade occurs):

UCi(t) = DPCi(t) + SSCi(t). (14)

Optimal Upgrade Strategy. Figure 8 depicts the
overall value loss and upgrade model. We seek to design
systems such that the sum of the VL and UC for system
lifetime upgrades is minimized over n upgrade cycles.

Min






    ∑ 

i=1,2....

n

  [VLi(t) + UCi(t)]






 . (15)

It makes sense to upgrade only at a time when UC

≤ VL. (Note that premature upgrades might serve to
increase VD faster than it might otherwise grow.). Fig-
ure 9 illustrates the result of repeated upgrades, where
the intent is to minimize the value loss over the lifetime
of the system and to increase the system’s lifetime, thus
increasing the lifetime value provided by the system
[Browning and Honour, 2008].

5.2. Dynamic Example

We consider a system with an IC&V of $20 million. The
system is operated within an environment where certain
economic growth and technical advances are predicted,
as forecast 10 years out in Table VII and Figure 10,
where the (undiscounted) VD is calculated using Eq.
(11). The wear-out and obsolescence costs are also
forecast, so we can calculate the expected maintenance
cost with Eq. (12) (see Table VIII and Fig. 11). The
yearly and cumulative value losses are computed with
Eq. (13) (see Table IX and Fig. 12).

The above example demonstrates a simple evalu-
ation of a system’s dynamic value. Clearly, increased
stakeholder expectations combined with a reduction in
system performance lead to a repeated call for system
upgrade or replacement. The above model can provide
a quantitative basis for an analysis of the timing of such
a move. For example, if the cost of an upgrade is $10M,
then it is advisable to upgrade the system after 2 years
of operations, as the yearly value loss exceeds the
upgrade cost. When we expand the analysis and seek to
optimize the upgrade strategy for a system’s entire
lifetime, the problem becomes much more complex.
Again, advanced optimization techniques can be ap-
plied, although the result is likely to depend much more
on the forecasts than on the optimization technique.

Figure 9. Value is higher over the system lifetime due to adaptability (adapted from Browning and Honour [2005]). [Color figure
can be viewed in online issue, which is available at www.interscience.wiley.com.]

      Table VII. A 10-Year Forecast of the Value (in $M) Desired by a System’s Stakeholders
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The DDV model is a great simplification of the
various costs that can matter, so it will have to be
tailored to particular contexts. However, its general
insights would appear to hold. This method is also
susceptible to limitations in forecasting future vari-
ables. This vulnerability tends to increase as we project
economic, social, and technological trends into the
remote future. Nevertheless, we assert that rough pre-
dictions are better than none. We also remind the reader
that any actual upgrade decision is an “option.” It
provides “the right but not the obligation” to exercise it
once the actual information about costs and values is
available. For further discussion of the background and
issues surrounding this model, see Browning and Hon-
our [2005].

6. OBTAINING THE REQUIRED
SOCIO-ECONOMIC DATA

The utilization of real options in engineering has been
slow to develop because of the complexity of the tech-
niques and the difficulty of fitting them to the realities
of corporate strategic decision-making. Such complex-
ity and the resulting challenge of getting senior man-
agement acceptance has been a major barrier to wider
adoption of real option techniques. For related discus-
sion, Mathews and Datar [2007] describe Boeing’s
approach for valuing development projects by means of
real options.

The AO models require product design data that may
not be readily available and often must be solicited from

domain experts. Frequently, engineers and profession-
als related to the domains of more exact sciences look
with disdain on such models and information. This may
be attributed to a lack of training, or possibly to person-
ality traits. In fact, there is a large body of knowledge
about methods to obtain and process such data, and
much valuable information is routinely gathered in
diverse domains like sociology, economics, marketing,
and political science using these techniques. The fol-
lowing sections describe a typical procedure for data
acquisition, the Delphi method, and a way to collect and
aggregate the results. A practical estimation of quality
cost parameters, using this method in a real-life project,
is depicted in Engel and Shachar [2006].

6.1. The Delphi Process

In general, the purpose of eliciting data from experts is
to bridge the gap between available records and re-
quired information. Cooke [1991] provides an exten-
sive survey and critical examination of literature on the
use of expert opinion in scientific inquiry and policy-
making. The elicitation, representation, and use of ex-
pert opinions have become increasingly important since
advanced technology requires more and more complex
decisions. Cooke considers how expert opinions are
being used today, how an expert’s uncertainty is repre-
sented, how people reason with uncertainty, how the
quality and usefulness of expert opinion can be as-
sessed, and how the views of several experts can be
combined. Loveridge [2002] expands on Cooke’s semi-
nal work and covers topics such as the selection of
people for expert committees. These authors suggest a
practical Delphi elicitation procedure comprised of the
following steps:

1. Orientation, issue familiarization, and training
2. Elicitation and collection of opinions
3. Aggregation and presentation of results
4. Group interaction, discussion, and revision of

findings (data scrubbing)
5. Conclusions.

We will discuss further the most important two of
these steps in the following subsections.

Figure 10. A 10-year forecast of the value (in $M) desired by
a system’s stakeholders. [Color figure can be viewed in online
issue, which is available at www.interscience.wiley.com.]

Table VIII. A 10-Year Forecast of an Example System’s Maintenance Costs (in $M)
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6.2. Eliciting Experts’ Data 

Application of the AO model requires the attainment of
a certain state in the design process. We assume that the
general characteristics of a planned system are known
and its general structure is defined. More specifically,
we assume that a set of functionalities associated with
its components, internal and external interfaces, and
design constraints has been established. Thus, we envi-
sion the latter stages of what is sometimes called con-
ceptual design.

At this point in the design process, a group of system
architects, systems engineers, and domain experts fa-
miliar with the target system must be identified. The
experts are gathered for an initial meeting and given a
questionnaire with the relevant information. They re-
ceive an explanation of the Delphi procedure as well as
instructions regarding the nature and meaning of each
question on the questionnaire. One effective technique
is to elicit data as triplets composed of minimum (a),
most likely or mode (m), and maximum (b) values, such
that a ≤ m ≤ b. In this case, the collected data will
contain the following:

• Static Model: (1) the COV of each component, (2)
all parameters for Eq. (2) to compute the CAF

associated with each component, and (3) the cost
associated with each internal and external inter-
face, Iin,k and Ien,l.

• Dynamic Model: (1) the EG and TA functions, (2)
the WC and OC functions, (3) the IV&C, and (4)
the DPC and SSC of the system to be upgraded.

Once collected, the data are aggregated and the
results presented to the experts during a second meet-
ing. At this second meeting, each expert has a chance to
review his original responses in light of the group’s
aggregated data and possibly change his or her opinion
based on further discussions.

6.3. Aggregating Expert Data 

If these data are gathered in terms of a, m, and b, then
some distribution of outcomes (such as a triangle or beta
distribution) can be assumed across each range, and
therefore each of the above variables can be treated as
a random variable with an expected value and other
characteristics [Vose, 2000]. Here each expert is as-
sumed to have a probability p,i of being correct, and
often all experts dealing with such matters are assumed
to be equally likely to be correct. The reader should note
that, other than in the case of a trivial straight line,
summing probability distributions obtained from sev-
eral experts yields nonlinear results, suggesting that
closed mathematical expressions for statistical mo-
ments of the aggregated distribution are impractical.
Therefore, a credible data aggregation could be accom-

Figure 11. A 10-year forecast of an example system’s main-
tenance costs (in $M). [Color figure can be viewed in online
issue, which is available at www.interscience.wiley.com.]

Figure 12. A 10-year forecast of an example system’s value
loss. [Color figure can be viewed in online issue, which is
available at www.interscience.wiley.com.]

     Table IX. A 10-Year Forecast of an Example System’s Maintenance Costs (in $M)
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plished by means of a numerical analysis such as Monte
Carlo simulation [Vose 2006].8

7. CONCLUSION

The proposed static modeling approach enables us to
measure the adaptability of a given system architecture
in terms of the likely ease with which its modules can
be changed without disrupting other modules. The pro-
posed dynamic modeling approach enables us to esti-
mate how the value of a system will fluctuate over its
lifetime. In determining this dynamic value, we con-
sider the dual effects of gradual increases in stakehold-
ers’ expectations coupled with increases in system
maintenance costs. Our goal is to select a system archi-
tecture with maximum lifetime value, which may not be

the same architecture that maximizes customer value at

the point of initial delivery (unless the customer appro-
priately values adaptability).

The proposed approaches represent only an initial
step in efforts to apply options theory to engineering
design. Much additional work is needed to explore,
apply, verify, and further develop the methods and
models. Several of these opportunities are as follows:

• Compare the results of the static and dynamic
models and outline the conditions under which
maximizing (as opposed to satisficing) initial
customer value might diminish lifetime value.

• Extend the analyses from individual, local sys-
tems like aircraft and automobiles to multilayered
systems and “system of systems.”

• Provide a quantitative basis for planning system
upgrades. Optimize the system architecture and
upgrade strategy to maximize the long-term sat-
isfaction of dynamic stakeholders.

• Apply the methodology to an industrial project
for further verification and insight.

NOMENCLATURE

CAFn  Component adaptability factor associated
with the nth component of a system; a function
of Fn, Rn, Un, En, Mn, and Pn

COVn The component option value associated with
the nth component of a system

Iin,k The kth internal (module-to-module) interface
leaving the nth component of a system

Ien,l The lth external (module-to-environment) in-
terface leaving the nth component of a system

X j
(s)  Adaptability value of module j in the system

architecture associated with design variant s
V(s) Economic value of system architecture associ-

ated with design variant s
VDi Expected value desired by stakeholders of a

system at the ith system upgrade
fEGi(t) Function of the expected economic growth

during the ith system upgrade
fTAi(t) Function of the expected technological ad-

vances during the ith system upgrade
MCi(t) Expected system maintenance cost during

the ith system upgrade
fWCi(t) Function of the expected hardware and soft-

ware wear-out cost during the ith system upgrade
fOCi(t) Function of the expected components and

infrastructure obsolescence cost during the ith
system upgrade

VLi(t) Expected value loss during the ith system
upgrade

IC Initial cost of the system
UCi Expected upgrade cost of the ith system up-

grade
DPCi Expected development and production costs

during the ith system upgrade
SSCi Expected suspension of service cost during

the ith system upgrade
IM  Interaction identifies needs for materials ex-

change between two elements
IS Interaction identifies needs for adjacency, force

transfer or orientation between two elements
IE Interaction identifies needs for energy transfer

between two elements
II Interaction identifies needs for information or

signal exchange between two elements
S Current stock price
St Future stock price
X Strike price
T Time to option expiration
σ Volatility
r Risk-free interest rate
N(x) Cumulative probability distribution function

for a standardized normal variable
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