
 1

Designing Tangible Programming Languages for
Classroom Use

Michael S. Horn

Tufts University

Department of Computer Science

161 College Ave, Medford, MA 02155

michael.horn@tufts.edu

Robert J.K. Jacob

Tufts University

Computer Science

161 College Ave, Medford, MA 02155

jacob@cs.tufts.edu

ABSTRACT

This paper describes a new technique for implementing

educational programming languages using tangible

interface technology. It emphasizes the use of inexpensive

and durable parts with no embedded electronics or power

supplies. Students create programs in offline settings—on

their desks or on the floor—and use a portable scanning

station to compile their code. We argue that languages

created with this approach offer an appealing and practical

alternative to text-based and visual languages for classroom

use. In this paper we discuss the motivations for our project

and describe the design and implementation of two tangible

programming languages. We also describe an initial case

study with children and outline future research goals.

Author Keywords

Tangible UIs, education, children, programming languages

ACM Classification Keywords

H5.2. Information interfaces and presentation (e.g., HCI):

User Interfaces.

INTRODUCTION

Recent research involving tangible user interfaces (TUIs)

has created exciting new opportunities for the productive

use of technology in K–12 classrooms. One area that might

benefit from the application of this technology is that of

tangible programming languages for education. A tangible

programming language is similar to a text-based or visual

programming language. However, instead of using pictures

and words on a computer screen, tangible languages use

physical objects to represent various programming

elements, commands, and flow-of-control structures.

Students arrange and connect these objects to form physical

constructions that describe computer programs.

By giving programming a physical form, we believe that

tangible languages have the potential to ease the learning of

complicated syntax, to improve the style and tone of student

collaboration, and to make it easier for teachers to maintain

a positive learning environment in the classroom. However,

tangible interfaces are not without drawbacks. The

technology involved is often delicate, expensive, and non-

standard, causing substantial problems in classroom settings

where cost is always a factor and technology that is not

dependable tends to gather dust in the corner. Thus, in order

to better explore potential benefits of tangible

programming, we began with the development of tangible

languages that are inexpensive, reliable, and practical for

classroom use.

In this paper, we describe the design and implementation of

two tangible languages for middle school and late

elementary school children: Quetzal (pronounced ket-zal’),

a language for controlling LEGO Mindstorms
TM
 robots, and

Tern, a language for controlling virtual robots on a

computer screen. In our design, we emphasize the use of

inexpensive and durable parts with no embedded

electronics or power supplies. Students create programs in

offline settings—on their desks or on the floor—and use a

© ACM, 2007. This is the author's version of the work.
It is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive
version was published in the proceedings of the 1

st

International Conference on Tangible and Embedded
Interaction TEI’07, February 2007.
http://doi.acm.org/10.1145/1226969.1227003

Figure 1. A collection of tangible programming parts from

the Quetzal language

portable scanning station to compile their code. Because it

is no longer necessary for teams of children to crowd

around a desktop computer, collaboration between children

is less constrained and less formal. Code snippets and

subroutines become physical objects that can be passed

around the room and shared between groups. Furthermore,

because one compiler can be shared by several teams of

children, teachers are able introduce programming concepts

to entire classrooms of children even when there are a

limited number of computers available.

It is important to note that tangible programming languages

are not yet commercially available, and their use has been

restricted almost entirely to laboratory and research

settings. Thus, the advantages outlined above are

hypothetical. Indeed, one of the primary goals of this

project is to better understand how tangible languages

might affect student learning in classroom environments

compared to more conventional languages.

BACKGROUND

Related work

Several tangible programming projects influenced our work

in this area. An early example of a tangible language is

Suzuki and Kato’s AlgoBlocks [8], in which interlocking

aluminum blocks represent the commands of a language

similar to Logo. More recently, McNerney developed

Tangible Computation Bricks [6], LEGO blocks with

embedded microprocessors. He also described several

tangible programming languages that could be expressed

with the bricks. In a similar project, Wyeth and Purchase of

the University of Queensland created a language for

younger children (ages four to eight) also using stackable

LEGO-like blocks to describe simple programs [10].

Zuckerman and Resnick’s System Blocks project [11]

provides an interface for simulating dynamic systems.

Wood blocks with embedded electronics express six simple

behaviors in a system. By wiring combinations of the

blocks together, children can experiment with concepts

such as feedback loops through real-time interaction

provided by the blocks. Blackwell, Hague, and Greaves at

the University of Cambridge developed Media Cubes [1],

tangible programming elements for controlling consumer

devices. Media Cubes are blocks with bidirectional, infra-

red communication capabilities. Induction coils embedded

in the cubes also allow for the detection of adjacency with

other cubes. Finally, Scratch is an educational language

being developed by the Lifelong Kindergarten Group at the

MIT Media Lab [5]. While not a tangible language, Scratch

uses a building-block metaphor, in which students build

programs by connecting graphical blocks that look like

pieces of a jigsaw puzzle.

In these examples, the blocks that make up the various

tangible programming languages all contain some form of

electronic components. When connected, the blocks form

structures that are more than just abstract representations of

algorithms. They form working, specialized computers that

can execute algorithms through the sequential interaction of

the blocks. Our model differs from these languages in that

programs are purely symbolic representations of

algorithms—much in the way that Java or C++ programs

are only collections of text files. An additional piece of

technology, a compiler, must be used to translate the

abstract representations of a program into a machine

language that will be executed on some computer system.

This approach cuts cost, increases reliability, and allows

greater freedom in the design of the physical components of

the language.

Reality-Based Interaction

Tangible programming languages exhibit two fundamental

principles of the reality-based interaction framework

described by Jacob [4]. First, interaction takes place in the

real world. That is, students no longer program behind large

computer monitors where they have easy access to

distractions such as games, IM, and the Web. Instead they

program in more natural classroom settings such as on their

desks or on the floor. Ideally, this gives teachers more

flexibility to determine the structure and timing of in-class

programming activities. It may also allow students to more

easily transition between computer and non-computer work.

Second, interaction behaves more like the real world. That

is, tangible languages take advantage of students’

knowledge of the everyday, non-computer world to express

and enforce language syntax. For example, Tern parts are

shaped like jigsaw puzzle pieces. This provides a physical

constraint system that prevents many invalid language

constructions from being assembled as physical

constructions. Furthermore, the metaphor of the jigsaw

puzzle provides culturally-specific hints which imply

syntax. In other words, the form of the parts suggests that

they are to be connected in a particular way.

LANGUAGE OVERVIEW

Quetzal

Quetzal is a programming language for controlling the

LEGO Mindstorms
TM
 RCX brick. It consists of interlocking

plastic tiles that represent flow-of-control structures,

actions, and parameters. Statements in the language are

connected together to form flow-of-control chains. Simple

programs start with a Begin statement and end with a single

End statement. For example, figure 2 shows a program that

starts a motor, waits for three seconds, and then stops the

motor. Programmers can add or change parameter values to

adjust the wait time and the motor’s power level. The order

in which the statements are connected is important, but the

overall shape of a program does not change its meaning. By

inserting a Merge statement into the program, we can create

an infinite loop. Here we don’t need an End statement—the

robot will execute this program until turned off. With

Quetzal, loops in a program’s flow-of-control form physical

loops program structure. Using other statements,

programmers can add conditional branches and concurrent

tasks. Certain statements also accept parameter values

 3

which can include constants and sensor readings. Parameter

tokens are plastic tiles with specific shapes to represent

their data type. These tiles can be inserted into slots in the

top face of statements.

Figure 2. A merge statement creates a loop in the program.

Figure 3. Tern programs may include conditional branches,

loops, and subroutines

Tern Overview

The Tern language is based on the text-based programming

language described in Karel the Robot: A Gentle

Introduction to the Art of Programming [7]. With Tern,

programmers connect wooden blocks shaped like jigsaw

puzzle pieces to form flow-of-control chains. These

programs control simple virtual robots in a grid world on a

computer screen. Multiple robots can interact in the same

world, and teams of students can collaborate to solve

challenges such as collecting objects and navigating

through a maze. A teacher might project the grid world on

the wall of a classroom, so that all students can participate

in one shared activity. Like Quetzal, Tern programs can

include loops, branches, and parameter values. The Tern

language also includes the ability to create subroutines

called skills. Skills are defined using a special Start Skill

block and can be invoked from anywhere in the flow-of-

control chain. Figure 3 shows a sample program with a skill

definition. Coiled wire connects special Jump and Land

statements. These statements work in a way similar to a

GOTO statement in a text-based language.

Tern was developed after Quetzal. In our initial evaluations

with Quetzal, we found that children tended to spend more

time building and playing with their LEGO creations than

did programming them. While this is certainly not a bad

thing, from a research perspective we are more interested in

the programming aspect of the children’s activities than the

building aspects. Thus, one of our primary goals with Tern

is to provide activities more focused around programming.

Accordingly, the only way for children to control their on-

screen robots is to write programs that tell them what to do.

To enable robots to accomplish more sophisticated tasks,

children must learn to write more sophisticated programs.

IMPLEMENTATION

The implementation of these languages uses a collection of

image processing techniques to convert physical programs

into machine code. Each statement in a language is

imprinted with a circular symbol called a SpotCode [2, 3].

These codes allow the position, orientation, relative size,

and type of each statement to be quickly determined from a

digital image. Parameter tokens are also imprinted with

similar visual codes. The image processing routines use an

adaptive thresholding algorithm [9] and work under a

variety of lighting conditions without the need for human

calibration.

Our prototype uses a digital camera attached to a tablet or

laptop PC. The camera has an image resolution set to 1600

x 1200 pixels. A programming surface approximately 3

feet wide by 2 feet high can be reliably compiled as long as

the programming surface is white or light-colored. A Java

application controls the flash, optical zoom, and image

resolution. Captured images are transferred to the host

computer through a USB connection and saved as JPEG

images on the file system. With this image, the compiler

converts a program directly into virtual machine code (in

the case of Tern) or into an intermediate text-based

language such as NQC (http://bricxcc.sourceforge.net/nqc)

in the case of Quetzal. Students initiate a compilation by

pressing an arcade button on the scanning station. The

entire process takes only a few seconds, and, with Quetzal,

programs are automatically downloaded to a LEGO

computer. Any error messages are reported to the user.

Error messages include a picture of the original program

with an arrow pointing to the statements that caused the

problem. With Tern there are no language syntax errors.

The only possible errors are due system problems such as

the camera being disconnected.

INITIAL EVALUATION

We conducted an initial evaluation with nine first and

second grade children in a week-long day camp called

“Dinosaurs and Robots” conducted at the Eliot-Pearson

School at Tufts University. The purpose of this

investigation was to iron out any usability problems and get

a basic sense for how students would react to physical

programming. As part of the camp, the children used a

Quetzal prototype to program robots that they had

constructed. This investigation provided encouraging

evidence that Quetzal can be viable and appropriate

language for use with children in educational environments.

For example, all of the children were easily able to

construct and flow-of-control chains and read the sequence

of actions out loud when asked. While not all of the

children were able to understand the effects their programs

would have on their robots, some were able to make

predictions and correctly identify bugs in their code. After

initial instruction, the children were able to build programs

without direct adult help. There were also several examples

of ad hoc collaboration between the children.

Figure 4. A student constructs a program with Quetzal during

a week-long day camp on dinosaurs and robots.

NEXT STEPS

Our work with tangible programming languages is ongoing.

We would like to expand the capabilities of the languages,

improve the existing prototypes, and conduct more formal

evaluations of their effectiveness in classroom settings.

Future evaluations will be conducted with late elementary

and middle school students. After our experience with first

and second graders, we feel that programming activities

will be more developmentally appropriate for older

children. We also believe that it is important to conduct

these evaluations in real-life educational settings such as

after school programs or classrooms.

CONCLUSION

In this paper we described the design and implementation

of two tangible programming languages for use in

educational settings. Unlike many other tangible

programming languages, our languages consist of parts with

no embedded electronics or power supplies. Instead of real-

time interaction, our languages are compiled using a

portable scanning station and reliable computer vision

technology. This allows us to create durable and

inexpensive parts for practical classroom use. We described

an initial usability session and also outlined future

directions in our research.

ACKNOWLEDGEMENTS

We thank the Tufts University Center for Children (TUCC)

and the University College of Citizenship and Public

Service (UCCPS) for their generous financial support. We

acknowledge the Center for Engineering Education

Outreach (CEEO) at Tufts University for materials used in

this project. Kevin Joseph Staszowski was the principal

Investigator for the Dinosaurs and Robots project. Finally,

we thank the National Science Foundation for support of

this research (NSF Grant No. IIS-0414389). Any opinions,

findings, and conclusions or recommendations expressed in

this article are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES

1. Blackwell, A.F. and Hague, R. Autohan: An architecture

for programming in the home. In Proc. IEEE Symposia

on Human-Centric Computing Languages and

Environments 2001, pp 150-157.

2. de Ipina, D.L., Mendonca, P.R.S. and Hopper, A. TRIP:

A low-cost vision-based location system for ubiquitous

computing. Personal and Ubiquitous Computing, 6

(2002), pp 206–219.

3. High Energy Magic. http://www.highenergymagic.com

4. R.J.K. Jacob. "CHI 2006 Workshop Proceedings: What

is the Next Generation of Human-Computer

Interaction?," Technical Report 2006-3, Dept. of

Computer Science, Tufts University, Medford, Mass.

(2006)

5. Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman,

B., and Resnick, M. Scratch: a sneak preview. In Proc.

Second International Conference on Creating,

Connecting, and Collaborating through Computing C5

‘04. IEEE (2004), pp 104-109.

6. McNerney, T.S. From turtles to Tangible Programming

Bricks: explorations in physical language design.

Personal Ubiquitous Computing, 8(5), Springer-Verlag

(2004), pp 326–337.

7. Pattis, R.E., Roberts J., Stehlik, M. Karel the Robot: a

Gentle Introduction to the Art of Programming, 2nd

edition. John Wiley and Sons, Inc. 1995.

8. Suzuki, H. and Kato, H. Interaction-level support for

collaborative learning: Algoblock–an open

programming language. In Proc. CSCL ’95, Lawrence

Erlbaum (1995).

9. Wellner, P.D. Adaptive thresholding for the

DigitalDesk. Technical Report EPC-93-110, EuroPARC

(1993).

10.Wyeth, P. and Purchase, H.C. Tangible programming

elements for young children. In Proc. CHI’02 extended

abstracts, ACM Press (2002), pp 774–775.

11.Zuckerman, O. and Resnick, M. A physical interface for

system dynamics simulation. In Proc. CHI ’03 extended

abstracts, ACM Press (2003), pp 810-811.

