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ABSTRACT 

This paper describes a new technique for implementing 

educational programming languages using tangible 

interface technology. It emphasizes the use of inexpensive 

and durable parts with no embedded electronics or power 

supplies. Students create programs in offline settings—on 

their desks or on the floor—and use a portable scanning 

station to compile their code. We argue that languages 

created with this approach offer an appealing and practical 

alternative to text-based and visual languages for classroom 

use. In this paper we discuss the motivations for our project 

and describe the design and implementation of two tangible 

programming languages. We also describe an initial case 

study with children and outline future research goals. 
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INTRODUCTION 

Recent research involving tangible user interfaces (TUIs) 

has created exciting new opportunities for the productive 

use of technology in K–12 classrooms. One area that might 

benefit from the application of this technology is that of 

tangible programming languages for education. A tangible 

programming language is similar to a text-based or visual 

programming language. However, instead of using pictures 

and words on a computer screen, tangible languages use 

physical objects to represent various programming 

elements, commands, and flow-of-control structures. 

Students arrange and connect these objects to form physical 

constructions that describe computer programs.   

By giving programming a physical form, we believe that 

tangible languages have the potential to ease the learning of 

complicated syntax, to improve the style and tone of student 

collaboration, and to make it easier for teachers to maintain 

a positive learning environment in the classroom. However, 

tangible interfaces are not without drawbacks. The 

technology involved is often delicate, expensive, and non-

standard, causing substantial problems in classroom settings 

where cost is always a factor and technology that is not 

dependable tends to gather dust in the corner. Thus, in order 

to better explore potential benefits of tangible 

programming, we began with the development of tangible 

languages that are inexpensive, reliable, and practical for 

classroom use.  

In this paper, we describe the design and implementation of 

two tangible languages for middle school and late 

elementary school children: Quetzal (pronounced ket-zal’), 

a language for controlling LEGO Mindstorms
TM
 robots, and 

Tern, a language for controlling virtual robots on a 

computer screen. In our design, we emphasize the use of 

inexpensive and durable parts with no embedded 

electronics or power supplies. Students create programs in 

offline settings—on their desks or on the floor—and use a 
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Figure 1. A collection of tangible programming parts from 

the Quetzal language 



 

portable scanning station to compile their code. Because it 

is no longer necessary for teams of children to crowd 

around a desktop computer, collaboration between children 

is less constrained and less formal. Code snippets and 

subroutines become physical objects that can be passed 

around the room and shared between groups. Furthermore, 

because one compiler can be shared by several teams of 

children, teachers are able introduce programming concepts 

to entire classrooms of children even when there are a 

limited number of computers available.   

It is important to note that tangible programming languages 

are not yet commercially available, and their use has been 

restricted almost entirely to laboratory and research 

settings. Thus, the advantages outlined above are 

hypothetical. Indeed, one of the primary goals of this 

project is to better understand how tangible languages 

might affect student learning in classroom environments 

compared to more conventional languages.   

BACKGROUND 

Related work 

Several tangible programming projects influenced our work 

in this area. An early example of a tangible language is 

Suzuki and Kato’s AlgoBlocks [8], in which interlocking 

aluminum blocks represent the commands of a language 

similar to Logo. More recently, McNerney developed 

Tangible Computation Bricks [6], LEGO blocks with 

embedded microprocessors. He also described several 

tangible programming languages that could be expressed 

with the bricks. In a similar project, Wyeth and Purchase of 

the University of Queensland created a language for 

younger children (ages four to eight) also using stackable 

LEGO-like blocks to describe simple programs [10].  

Zuckerman and Resnick’s System Blocks project [11] 

provides an interface for simulating dynamic systems. 

Wood blocks with embedded electronics express six simple 

behaviors in a system. By wiring combinations of the 

blocks together, children can experiment with concepts 

such as feedback loops through real-time interaction 

provided by the blocks. Blackwell, Hague, and Greaves at 

the University of Cambridge developed Media Cubes [1], 

tangible programming elements for controlling consumer 

devices. Media Cubes are blocks with bidirectional, infra-

red communication capabilities.  Induction coils embedded 

in the cubes also allow for the detection of adjacency with 

other cubes. Finally, Scratch is an educational language 

being developed by the Lifelong Kindergarten Group at the 

MIT Media Lab [5]. While not a tangible language, Scratch 

uses a building-block metaphor, in which students build 

programs by connecting graphical blocks that look like 

pieces of a jigsaw puzzle. 

In these examples, the blocks that make up the various 

tangible programming languages all contain some form of 

electronic components.  When connected, the blocks form 

structures that are more than just abstract representations of 

algorithms.  They form working, specialized computers that 

can execute algorithms through the sequential interaction of 

the blocks.  Our model differs from these languages in that 

programs are purely symbolic representations of 

algorithms—much in the way that Java or C++ programs 

are only collections of text files. An additional piece of 

technology, a compiler, must be used to translate the 

abstract representations of a program into a machine 

language that will be executed on some computer system.  

This approach cuts cost, increases reliability, and allows 

greater freedom in the design of the physical components of 

the language. 

Reality-Based Interaction 

Tangible programming languages exhibit two fundamental 

principles of the reality-based interaction framework 

described by Jacob [4].  First, interaction takes place in the 

real world. That is, students no longer program behind large 

computer monitors where they have easy access to 

distractions such as games, IM, and the Web.  Instead they 

program in more natural classroom settings such as on their 

desks or on the floor. Ideally, this gives teachers more 

flexibility to determine the structure and timing of in-class 

programming activities. It may also allow students to more 

easily transition between computer and non-computer work. 

Second, interaction behaves more like the real world.  That 

is, tangible languages take advantage of students’ 

knowledge of the everyday, non-computer world to express 

and enforce language syntax.  For example, Tern parts are 

shaped like jigsaw puzzle pieces. This provides a physical 

constraint system that prevents many invalid language 

constructions from being assembled as physical 

constructions. Furthermore, the metaphor of the jigsaw 

puzzle provides culturally-specific hints which imply 

syntax.  In other words, the form of the parts suggests that 

they are to be connected in a particular way.  

LANGUAGE OVERVIEW 

Quetzal 

Quetzal is a programming language for controlling the 

LEGO Mindstorms
TM
 RCX brick. It consists of interlocking 

plastic tiles that represent flow-of-control structures, 

actions, and parameters. Statements in the language are 

connected together to form flow-of-control chains. Simple 

programs start with a Begin statement and end with a single 

End statement. For example, figure 2 shows a program that 

starts a motor, waits for three seconds, and then stops the 

motor. Programmers can add or change parameter values to 

adjust the wait time and the motor’s power level. The order 

in which the statements are connected is important, but the 

overall shape of a program does not change its meaning. By 

inserting a Merge statement into the program, we can create 

an infinite loop. Here we don’t need an End statement—the 

robot will execute this program until turned off. With 

Quetzal, loops in a program’s flow-of-control form physical 

loops program structure. Using other statements, 

programmers can add conditional branches and concurrent 

tasks. Certain statements also accept parameter values 
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which can include constants and sensor readings. Parameter 

tokens are plastic tiles with specific shapes to represent 

their data type. These tiles can be inserted into slots in the 

top face of statements. 

Figure 2. A merge statement creates a loop in the program. 

Figure 3. Tern programs may include conditional branches, 

loops, and subroutines 

Tern Overview 

The Tern language is based on the text-based programming 

language described in Karel the Robot: A Gentle 

Introduction to the Art of Programming [7].  With Tern, 

programmers connect wooden blocks shaped like jigsaw 

puzzle pieces to form flow-of-control chains. These 

programs control simple virtual robots in a grid world on a 

computer screen. Multiple robots can interact in the same 

world, and teams of students can collaborate to solve 

challenges such as collecting objects and navigating 

through a maze. A teacher might project the grid world on 

the wall of a classroom, so that all students can participate 

in one shared activity. Like Quetzal, Tern programs can 

include loops, branches, and parameter values. The Tern 

language also includes the ability to create subroutines 

called skills.  Skills are defined using a special Start Skill 

block and can be invoked from anywhere in the flow-of-

control chain. Figure 3 shows a sample program with a skill 

definition.  Coiled wire connects special Jump and Land 

statements. These statements work in a way similar to a 

GOTO statement in a text-based language.  

Tern was developed after Quetzal. In our initial evaluations 

with Quetzal, we found that children tended to spend more 

time building and playing with their LEGO creations than 

did programming them. While this is certainly not a bad 

thing, from a research perspective we are more interested in 

the programming aspect of the children’s activities than the 

building aspects. Thus, one of our primary goals with Tern 

is to provide activities more focused around programming. 

Accordingly, the only way for children to control their on-

screen robots is to write programs that tell them what to do. 

To enable robots to accomplish more sophisticated tasks, 

children must learn to write more sophisticated programs. 

IMPLEMENTATION 

The implementation of these languages uses a collection of 

image processing techniques to convert physical programs 

into machine code. Each statement in a language is 

imprinted with a circular symbol called a SpotCode [2, 3].  

These codes allow the position, orientation, relative size, 

and type of each statement to be quickly determined from a 

digital image. Parameter tokens are also imprinted with 

similar visual codes.  The image processing routines use an 

adaptive thresholding algorithm [9] and work under a 

variety of lighting conditions without the need for human 

calibration.  

Our prototype uses a digital camera attached to a tablet or 

laptop PC. The camera has an image resolution set to 1600 

x 1200 pixels.  A programming surface approximately 3 

feet wide by 2 feet high can be reliably compiled as long as 

the programming surface is white or light-colored. A Java 

application controls the flash, optical zoom, and image 

resolution. Captured images are transferred to the host 

computer through a USB connection and saved as JPEG 

images on the file system. With this image, the compiler 

converts a program directly into virtual machine code (in 

the case of Tern) or into an intermediate text-based 

language such as NQC (http://bricxcc.sourceforge.net/nqc) 

in the case of Quetzal. Students initiate a compilation by 

pressing an arcade button on the scanning station. The 

entire process takes only a few seconds, and, with Quetzal, 

programs are automatically downloaded to a LEGO 

computer. Any error messages are reported to the user. 

Error messages include a picture of the original program 

with an arrow pointing to the statements that caused the 

problem. With Tern there are no language syntax errors. 

The only possible errors are due system problems such as 

the camera being disconnected. 

INITIAL EVALUATION 

We conducted an initial evaluation with nine first and 

second grade children in a week-long day camp called 

“Dinosaurs and Robots” conducted at the Eliot-Pearson 

 



 

School at Tufts University. The purpose of this 

investigation was to iron out any usability problems and get 

a basic sense for how students would react to physical 

programming. As part of the camp, the children used a 

Quetzal prototype to program robots that they had 

constructed. This investigation provided encouraging 

evidence that Quetzal can be viable and appropriate 

language for use with children in educational environments. 

For example, all of the children were easily able to 

construct and flow-of-control chains and read the sequence 

of actions out loud when asked. While not all of the 

children were able to understand the effects their programs 

would have on their robots, some were able to make 

predictions and correctly identify bugs in their code. After 

initial instruction, the children were able to build programs 

without direct adult help. There were also several examples 

of ad hoc collaboration between the children. 

 
 

Figure 4. A student constructs a program with Quetzal during 

a week-long day camp on dinosaurs and robots. 

NEXT STEPS 

Our work with tangible programming languages is ongoing.  

We would like to expand the capabilities of the languages, 

improve the existing prototypes, and conduct more formal 

evaluations of their effectiveness in classroom settings. 

Future evaluations will be conducted with late elementary 

and middle school students. After our experience with first 

and second graders, we feel that programming activities 

will be more developmentally appropriate for older 

children. We also believe that it is important to conduct 

these evaluations in real-life educational settings such as 

after school programs or classrooms.  

CONCLUSION 

In this paper we described the design and implementation 

of two tangible programming languages for use in 

educational settings. Unlike many other tangible 

programming languages, our languages consist of parts with 

no embedded electronics or power supplies.  Instead of real-

time interaction, our languages are compiled using a 

portable scanning station and reliable computer vision 

technology. This allows us to create durable and 

inexpensive parts for practical classroom use. We described 

an initial usability session and also outlined future 

directions in our research. 
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