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Designing temporal networks that synchronize
under resource constraints
Yuanzhao Zhang 1✉ & Steven H. Strogatz 1✉

Being fundamentally a non-equilibrium process, synchronization comes with unavoidable

energy costs and has to be maintained under the constraint of limited resources. Such

resource constraints are often reflected as a finite coupling budget available in a network to

facilitate interaction and communication. Here, we show that introducing temporal variation

in the network structure can lead to efficient synchronization even when stable synchrony is

impossible in any static network under the given budget, thereby demonstrating a funda-

mental advantage of temporal networks. The temporal networks generated by our open-loop

design are versatile in the sense of promoting synchronization for systems with vastly dif-

ferent dynamics, including periodic and chaotic dynamics in both discrete-time and

continuous-time models. Furthermore, we link the dynamic stabilization effect of the chan-

ging topology to the curvature of the master stability function, which provides analytical

insights into synchronization on temporal networks in general. In particular, our results shed

light on the effect of network switching rate and explain why certain temporal networks

synchronize only for intermediate switching rate.
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S
ynchronization is critical to the function of many inter-
connected systems1, from physical2 to technological3 and
biological4. Many such systems need to synchronize under

the constraint of limited resources. For instance, energy dissipa-
tion is required to couple molecular biochemical oscillators
through oscillator–oscillator exchange reactions, which are
responsible for synchronization in systems such as the cyano-
bacterial circadian clock5. For multiagent networks with dis-
tributed control protocols, including robotic swarms, the
synchronization performance is limited by the available budget of
control energy6.

Similarly, for networks of coupled oscillators, one important
resource is the total coupling budget7, which determines how
strongly the oscillators can influence each other. For a typical
oscillator network, a minimum coupling strength σc is needed to
overcome transversal instability and maintain synchronization.
The network structures that achieve synchronization with the
minimum coupling strength are optimal, and they are char-
acterized by a complete degenerate spectrum8—all eigenvalues of
the Laplacian matrix are identical, except the trivial zero eigen-
value associated with perturbations along the synchronization
trajectory. Below σc, there is no network structure that can
maintain synchrony without violating the resource constraint.

The results above, however, are derived assuming the network
to be static. That is, the network connections do not change over
time. Previous studies have shown that temporal networks9–15

can synchronize better than two of their static counterparts—
namely, those obtained either by freezing the network at given
time instants16–19 or by averaging the network structure over
time20–22. But it remains unclear whether there are temporal
networks that can outperform all possible static networks. In
particular, can temporal variations synchronize systems beyond
the fundamental limit set by the optimal static networks? This
question is especially interesting given that past studies have often
focused on the fast-switching limit, for which the network
structure changes much faster than the node dynamics.
These fast-switching networks are equivalent to their static,
time-averaged counterparts in terms of synchronization
stability17,23–25. Thus, no temporal networks can outperform
optimal static networks in the fast-switching limit.

In this article, we show that the full potential of temporal
networks lies beyond the fast-switching limit, a message echoed
by several recent studies21,26,27. Importantly, by allowing a net-
work to vary in time at a suitable rate, synchronization can be
maintained even when the coupling strength is below σc for all
time t. We also develop a general theory to characterize the
synchronizability of commutative temporal networks. The use of
commutative graphs in synchronization was pioneered in
refs. 18,20 and subsequently adopted in numerous studies22,26,28

for its potential of generating analytical insights beyond the fast-
switching limit. An insight provided by our theory is that the
effectiveness of introducing time-varying coupling depends cri-
tically on the curvature of the master stability function29 at its
first zero, which extends the results presented in ref. 30. Moreover,
we demonstrate analytically that the condition for improved
synchronizability in temporal networks is universally satisfied by
coupled one-dimensional maps.

Results
Networks of coupled oscillators. We start by considering sys-
tems described by the following dynamical equations:

_xi ¼ FðxiÞ � σ ∑
n

j¼1
LijðtÞHðxjÞ; i ¼ 1; ¼ ; n; ð1Þ

where L= (Lij) is the normalized Laplacian matrix representing a

diffusively coupled network. Here, Lij= δij∑kAik−Aij, with δij
being the Kronecker delta and Aij encoding the edge weight from
node j to node i. An overall normalization factor is chosen so that
the sum of all entries in A, ∑1≤i,j≤nAij, equals n−1. As a con-
sequence, 1

n�1
∑

n
i¼1 LiiðtÞ ¼

1
n�1

∑
n
i¼2 λiðtÞ ¼ 1, where the sum

over the eigenvalues λi(t) starts from i= 2 because the trivial

eigenvalue λ1 associated with the eigenvector v1= ð1; 1; ¼ ; 1Þ> is
always 0. As a result of the normalization, the amount of
resources (per node) used to maintain synchronization can be
quantified solely by the coupling strength σ for networks of dif-
ferent sizes and densities. The d-dimensional vector xi describes
the state of node i, F is the vector field dictating the intrinsic node
dynamics, and H is the coupling function mediating interactions
between different nodes.

To determine the stability of the synchronization state x1(t)=
x2(t)=⋯= xn(t)= s(t), we study the variational equation

_δ ¼ 1n � JFðsÞ � σLðtÞ � JHðsÞ
� �

δ: ð2Þ

Here, δ ¼ ðx1 � s; ¼ ; xn � sÞ> is the perturbation vector, 1n is
the n × n identity matrix, ⊗ represents the Kronecker product,
and J is the Jacobian operator. When the Laplacian matrices L(t)
and Lðt0Þ commute for any t and t0, following the master stability
function formalism18,29, we can find an orthogonal matrix Q such
that Q⊤L(t)Q is diagonal for all time t, thus decoupling Eq. (2)
into n independent d-dimensional equations

_ηi ¼ JFðsÞ � σλiðtÞJHðsÞ
� �

ηi; i ¼ 1; ¼ ; n: ð3Þ

Here, {ηi} is linked to the original coordinates through the

relation ðη1; ¼ ; ηnÞ
> ¼ ðQ> � 1dÞδ. Each decoupled equation

describes the evolution of an independent perturbation mode ηi.
In order for synchronization to be stable, all perturbation modes
transverse to the synchronization manifold (namely, the modes
η2 to ηn) must asymptotically decay to zero. Since the decoupled
variational equations are all of the same form and only differ in
λi(t), it is informative to study the maximum Lyapunov exponent
of the equation

_ξ ¼ JFðsÞ � αJHðsÞ½ �ξ ð4Þ

as a function of α. We refer to this function as the master stability
function and denote it as Λ(α).

As we will show throughout the rest of the paper, if Λ″(α0) < 0
when Λ(α) first becomes negative at α0= σc (Fig. 1), then it is
guaranteed that there exist temporal networks that outperform
optimal static networks. Intuitively, this is because introducing
temporal variation in the network structure allows all nonzero
λi(t) to spend a significant amount of time above 1, the optimal
value achievable by static networks. (For static networks, because
∑

n
i¼2 λi ¼ n� 1, there must exist 0 < λi < 1 unless all nonzero

Fig. 1 Curvature of the master stability function at its first zero. Example

master stability function for which temporal networks can synchronize

stably below the critical coupling strength σc.
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eigenvalues are identical, in which case λi= 1 for all i ≥ 2 and the
network is optimal.) If Λ″(α0) < 0, the synchronization state can
gain more stability while λi(t) > 1 than the stability it loses during
the period when λi(t) < 1.

Temporal networks that outperform optimal static networks.
In order to illustrate a simple scheme for designing temporal
networks that synchronize for coupling strength below the critical
value σc, we construct a class of Laplacian matrices that have the
following spectrum (Fig. 2a):

λiðtÞ ¼

0 i ¼ 1;

1þ n�1
m

A sinðωtÞ i ¼ 2; ¼ ;mþ 1;

1� n�1
n�m�1

A sinðωtÞ i ¼ mþ 2; ¼ ; n:

8

><

>:

ð5Þ

The nonzero eigenvalues split into two groups with a time-
varying gap between them, whereas their sum remains equal to
n−1 for all time t. Intuitively, some of the perturbation modes
borrow resources from the others to remain stable and then
return the favor at a later time. As a result, this kind of dynamic
stabilization achieves global synchronization with very limited
resources.

One can design networks with a given spectrum by specifying a
set of orthonormal eigenvectors {vi}18. For our purpose, any
choice of {vi} containing v1= (1, 1,…, 1)⊤ is valid, which gives
rise to a whole range of synchronization-boosting temporal
networks. Here, for concreteness, we adopt the eigenbasis
proposed in ref. 31:

vi ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iði� 1Þ
p ; � � � ;

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iði� 1Þ
p

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i�1 copies

;�
i� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iði� 1Þ
p ; 0; � � � ; 0

|fflfflfflffl{zfflfflfflffl}

n�i copies

0

B
B
B
B
@

1

C
C
C
C
A

>

;

ð6Þ

where i ≥ 2. Combining Eqs. (5) and (6) using the formula LðtÞ ¼

∑
n
i¼2 λiðtÞviv

>
i gives rise to a temporal network described by the

following weighted adjacency matrix (Fig. 2b):

AijðtÞ ¼

λnðtÞ
n

þ
λ2ðtÞ�λnðtÞ

mþ1
i; j≤mþ 1; i≠ j;

λnðtÞ
n

i or j >mþ 1; i≠j:

(

ð7Þ

Substituting Eq. (5) into Eq. (7) shows that edges connecting the
first m+ 1 nodes have a time-dependent weight of
1
n
þ nðn�1Þ2�mðmþ1Þðn�1Þ

nmðmþ1Þðn�m�1Þ
A sinðωtÞ, whereas the weight of the other

edges evolves according to 1
n
� ðn�1Þ

nðn�m�1Þ
A sinðωtÞ. The choice of

the time-varying term sinðωtÞ is not essential; the sine function

can be replaced by any other periodic function p(t) with period T

that satisfies
R T

0 pðtÞ dt ¼ 0.
When assuming n odd and m ¼ n�1

2
, we get a particularly

simple class of temporal networks whose transverse perturbation
modes all have the same stability (analogous to the defining
property of optimal static networks):

λiðtÞ ¼

0 i ¼ 1;

1þ 2A sinðωtÞ i ¼ 2; ¼ ; nþ1
2
;

1� 2A sinðωtÞ i ¼ nþ3
2
; ¼ ; n;

8

><

>:

ð8Þ

AijðtÞ ¼

1þð6� 8
nþ1ÞA sinðωtÞ

n
i; j≤ nþ1

2
; i≠ j;

1�2A sinðωtÞ
n

i or j > nþ1
2
; i≠ j:

(

ð9Þ

Critical role of the switching rate. To demonstrate the effec-
tiveness of our design, we equip the temporal networks described
by Eq. (9) with concrete node dynamics and probe their syn-
chronizability in depth. Here, we choose Stuart–Landau oscilla-
tors as our first example, as they represent the canonical
dynamics of systems in the vicinity of a Hopf bifurcation32. The
oscillators evolve according to the following dynamical equation:

_Zj ¼ Zj � ð1þ ic2ÞjZjj
2Zj � σ ∑

n

k¼1
LjkðtÞð1þ ic1ÞZk; ð10Þ

where Zj ¼ xj þ iyj ¼ rje
iθj 2 C represents the state of the jth

oscillator. Equation (10) is the discrete-space counterpart of the
Ginzburg–Landau equation33 and admits a limit-cycle synchro-
nous state ZjðtÞ ¼ e�ic2t 8j. By writing the perturbations in polar

coordinates, we find that the Jacobian terms in Eq. (4) become

JF ¼
�2 0
�2c2 0

� �

and JH ¼
1 �c1
c1 1

� �

, both of which are

constant matrices. Thus, according to Eq. (4), the master stability
function can be obtained by solving a characteristic polynomial
equation and has the following form28:

ΛðαÞ ¼ �α� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2c1c2α� c21α
2

q

: ð11Þ

Figure 3a shows Λ(α) for c1=−1.8 and c2= 4, which clearly has
Λ″(α0) < 0 at its first zero α0 ≈ 3.

For Stuart–Landau oscillators coupled on temporal networks,
Eq. (3) dictates the stability of individual perturbation modes and
can be written as

_ηi ¼ BiðtÞηi; ð12Þ

where BiðtÞ ¼
�2� σλiðtÞ c1σλiðtÞ

�2c2 � c1σλiðtÞ �σλiðtÞ

� �

is periodic with

period T ¼ 2π
ω

(henceforth, we drop the subscript i to ease the
notation). According to Floquet theory34, the solution to Eq. (12)

Fig. 2 Designing temporal networks that synchronize better than optimal static networks. a Evolution of the nonzero Laplacian eigenvalues described in

Eq. (5), which are split into two degenerate groups. b Temporal network constructed from the Laplacian eigenvalues in a. The weight of each edge is

represented by its thickness. In addition, edges whose weight is larger than 1
n
are colored orange, whereas those with weight less than 1

n
are colored cyan.

For this network diagram, we set n= 11 and m= 5, and the corresponding weighted adjacency matrix is given by Eq. (9). Visually, we can see that different

parts of the network are being strengthened in an alternating fashion.
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must be of the form eμtP(t), where P(t) has period T. The Floquet
exponents μ1 and μ2 can be extracted by finding the principal
fundamental matrix, and their real parts are the corresponding
Lyapunov exponents35. Figure 3b shows the maximum Lyapunov
exponent Γ ¼ maxfReðμ1Þ;Reðμ2Þg as a function of ω for different
values of the temporal activity A. (It is clear from Eq. (8) that all
transverse perturbation modes have the same Γ. Thus, Γ is also
the maximum transverse Lyapunov exponent and determines the
synchronization stability.) We set the coupling strength to slightly
below σc at σ= 2.9 so that no static network can synchronize. As
the temporal activity A is increased, Γ becomes negative for an
increasingly wide range of switching rate ω, signaling that the
temporal variation in the network structure is successfully
stabilizing synchronization under the given coupling budget.

Since the only difference between Eqs. (3) and (4) is the
periodic λ(t) vs. the fixed α, it is natural to expect the stability of
the temporal network to be related to the master stability function
averaged over a suitable range of α. Specifically, one might
reasonably associate Γ with the averaged master stability
function18,22,26,27,30

�Λ ¼

Z λmax

λmin

WðλÞΛðσλÞ dλ; ð13Þ

where W(λ) is the probability distribution of λ (it follows that
R λmax

λmin
WðλÞ dλ ¼ 1). However, it is clear that �Λ cannot be used to

predict Γ in general. One immediate observation is that �Λ does
not depend on the rate in which λ(t) is changing (it only depends
on the distribution of λ), whereas the curves representing Γ in
Fig. 3b clearly depend on the switching rate ω. Indeed, in order to
go from Γ to �Λ, we are required to shuffle B(t) temporally in Eq.
(12). This operation is forbidden when the matrices fBðtÞjt 2 Rg
do not commute (or, equivalently, when fBðtÞjt 2 Rg cannot be
simultaneously diagonalized). To see why, we can look at the
formal solution to Eq. (12) expressed in terms of the matrix
exponential:

ηðtÞ ¼ ηð0ÞeΩðtÞ; ð14Þ

where Ω(t) is given by the Magnus expansion36:

ΩðtÞ ¼

Z t

0

BðτÞ dτ þ
1

2

Z t

0

dτ

Z τ

0

dτ0 BðτÞ;Bðτ0Þ½ �

þ higher-order terms involving nestedmatrix commutators:

ð15Þ

Here, BðτÞ;Bðτ0Þ½ � ¼ BðτÞBðτ0Þ � Bðτ0ÞBðτÞ is the matrix com-
mutator. Equation (15) makes it clear that {B(τ)∣0 < τ < t} can be
shuffled without affecting Ω(t) if and only if BðτÞ;Bðτ0Þ½ � ¼ 0 for
all τ0<τ < t, in which case everything on the right-hand side
except the first term vanishes.

However, �Λ is still extremely informative on whether a given
temporal network can synchronize or not. In particular, for ω→
0 (i.e., slow-switching networks30), Γ approaches the value of �Λ,
as demonstrated in Fig. 3b. Intuitively, this can be understood
through a process we call "grow and rotate”. When the matrices
fBðtÞjt 2 Rg commute, η can be decomposed into components
that grow independently along the eigendirections of B(t), whose
growth rates are dictated by the corresponding eigenvalues.
Eventually, the component along the direction with the largest
eigenvalue becomes dominant. However, when fBðtÞjt 2 Rg do
not commute, the growth along the eigendirections are often
"interrupted”, as the eigenvectors of B(t) are no longer fixed and
will rotate over time. To keep track of the growth of the dominant
component, we must project η onto the new dominant
eigendirection upon rotation. These frequent projections can
significantly influence the asymptotic growth rate (this is also why
the maximum Lyapunov exponent is usually not the mean of the
maximum local Lyapunov exponents). At the slow-switching
limit, η can grow along an eigendirection uninterrupted for long
enough that the effect of the projections becomes negligible. In
this case, Γ is determined by the average growth rate of η in the
dominant direction of each B(t), which is exactly �Λ.

It is worth noting that the equivalence between Γ and �Λ at the
slow-switching limit is not specific to Stuart–Landau oscillators
and can be expected for generic oscillator models26,30. As a result,
Λ″(α0) < 0 is a robust indicator that synchronization in a system
can benefit from temporal networks. This observation echoes
recent results in ref. 30, which demonstrates the importance of a
master stability function’s curvature for synchronization in the
special case of networks with fixed topology and time-varying
overall coupling strength. To see why curvature has such a critical
role, we assume the temporal variation of λ around 1 to be small
and Taylor expand Λ(α) around α0. Then, the averaged master
stability function for coupling strength σ= σc is

�Λ ¼

Z 1þϵ

1�ϵ

WðλÞΛðσcλÞ dλ

¼

Z 1þϵ

1�ϵ

WðλÞ ΛðσcÞ þ Λ
0ðσcÞðλ� 1Þ þ

1

2
Λ
00ðσcÞðλ� 1Þ2

� 	

dλþOðϵ3Þ

¼ ΛðσcÞ
|ffl{zffl}

¼0

þΛ
0ðσcÞ

Z 1þϵ

1�ϵ

WðλÞðλ� 1Þdλ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

þ
1

2
Λ
00ðσcÞ

Z 1þϵ

1�ϵ

WðλÞðλ� 1Þ2dλ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

> 0

þOðϵ3Þ:

ð16Þ

Thus, if Λ″(α0)=Λ″(σc) < 0, then �Λ< 0 at σ= σc and stability is
guaranteed to be improved at the slow-switching limit, where
Γ ¼ �Λ. This improvement is expected to extend into the
intermediate switching rate due to the continuity of Γ as a
function of ω.

Fig. 3 Temporal networks enable synchronization among Stuart–Landau oscillators. a Master stability function for Stuart–Landau oscillators. Parameters

are set to c1=− 1.8 and c2= 4. b Maximum Lyapunov exponent Γ as a function of the switching rate ω for different values of the temporal activity A (solid

lines). The dashed lines indicate the slow-switching limit predicted by the averaged master stability function Λ.
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At the other limit, for ω→∞ (i.e., fast-switching networks), Γ
clearly does not match with �Λ. In particular, Γ does not depend
on the temporal activity A. For the system in Fig. 3b, Γ

approaches Λ(σ) as ω→∞, which is the value expected for an
optimal static network at coupling strength σ (in this case the
time-averaged network is a complete graph with uniform edge
weights). The mapping from a temporal network to its time-
averaged counterpart at the fast-switching limit is intuitive and
well established in the literature17,23,25.

The results above provide new insights into the intriguing
phenomenon that certain temporal networks only synchronize
for intermediate switching rate21,26,27: when switching is too fast,
the temporal network reduces to its static counterpart and one
cannot take full advantage of the temporal variation in the
connections; when switching is too slow, although the asymptotic
stability might be maximized, the system would have desynchro-
nized long before the network experiences any meaningful
change. Thus, the sweet spot often emerges at an intermediate
switching rate.

In Fig. 4, we show typical trajectories of n= 11 Stuart–Landau
oscillators on the temporal networks described by Eq. (9), with
the temporal activity set to A= 0.15. Systems in all three panels
are initiated close to the synchronous state, and their only
difference lies in the switching rate ω, which allows us to compare
networks with static, moderate-switching, and fast-switching
topologies. By monitoring the synchronization error Δ(t), defined
as the standard deviation among Zj(t), we see that only the system
with an intermediate switching rate (ω= 1, panel b) can maintain
stable synchrony. Interestingly, Δ(t) in that system goes down
non-monotonically and is bounded from above by periodic
envelopes. The width of each envelope is 2π, which coincides with
the period of the changing network topology.

Universal stabilization of low-dimensional maps. The frame-
work developed so far can be readily transferred from differential
equations to discrete maps, from continuous variation in the
network topology to discrete switching, and from periodic oscil-
lator dynamics to chaotic ones. The discrete-time analog of
Eq. (1) can be written as

xi½t þ 1� ¼ βFðxi½t�Þ � σ ∑
n

j¼1
Lij½t�Hðxj½t�Þ; i ¼ 1; ¼ ; n: ð17Þ

To demonstrate the advantage of temporal networks in these
settings, we focus on the following class of coupled one-
dimensional discrete maps:

xi½t þ 1� ¼ βFðxi½t�Þ � σ ∑
n

j¼1
Lij½t�Fðxj½t�Þ; i ¼ 1; ¼ ; n; ð18Þ

where F : R ! R is the mapping function. As we show below,
this setup allows us to develop an elegant theory that offers new
insights.

Similar to the continuous-time case, the synchronization
stability is determined by the decoupled variational equations

ηi½t þ 1� ¼ β� σλi½t�

 �

F0ðs½t�Þ
� �

ηi½t�; i ¼ 2; ¼ ; n: ð19Þ

For fixed λ, the Lyapunov exponent of Eq. (19) is given by

ln jβ� σλj þ Γs, where Γs= limT !1
1
T
∑

T

t¼1 ln F0ðs½t�Þ
�
�

�
� is a finite

constant. Thus, the master stability function has a universal form
(illustrated in Fig. 1)

ΛðαÞ ¼ ln jα� βj þ Γs: ð20Þ

Taking the second derivative with respect to α, we see that

Λ
00ðαÞ ¼ �

1

ðα� βÞ2
<0: ð21Þ

Thus, synchronization in any system described by Eq. (18) can
benefit from the temporal networks designed in this paper. In
particular, this holds for any mapping function F, which
encompasses important dynamical systems such as logistic maps,
circle maps, and Bernoulli maps.

For concreteness, we set FðxÞ ¼ sin2ðx þ π=4Þ and β= 2.8 (the
corresponding Γs=− 0.5855), which models the dynamics of
coupled optoelectronic oscillators37 and exhibits chaotic
dynamics. The time-discretized version of the temporal networks
described by Eq. (7) works out-of-the-box for the optoelectronic
oscillators, despite the vastly different node dynamics. Here, to
demonstrate the flexibility of our network design, we consider the
following slightly modified switching scheme, which is also more
natural for discrete-time systems:

Aij½t� ¼

1þð�1Þbt=Tcð6� 8
nþ1ÞA

n
i; j≤ nþ1

2
; i≠ j;

1�ð�1Þbt=Tc2A
n

i or j> nþ1
2
; i≠ j;

8

<

:
ð22Þ

where ⌊⋅⌋ is the floor function. Basically, the network switches
between two configurations every T iterations, with each
configuration being the extremal in the continuous scheme
described by Eq. (9). Consequently, every nonzero eigenvalue of
the temporal Laplacian alternates between 1+ 2A and 1− 2A
with period T.

Again, the averaged master stability function �Λ accurately
predicts the stability of the temporal network at the slow-
switching limit. More interestingly, for systems described by Eq.
(18), the connection is much stronger: Λ determines the stability
of the temporal network for all switching periods T. To see why,
we note that the synchronization stability is determined by the
limit product

Q1
t¼1 β� σλ½t�


 �
F0ðs½t�Þ. Normally, these are matrix

products and cannot be reordered. However, since 1 × 1 matrix
multiplications commute, for one-dimensional maps we can

Fig. 4 Temporal networks that synchronize only for intermediate

switching rate. Evolution of the oscillator states x
i
and the synchronization

error Δ for a: ω=0, b: ω= 1, and c: ω= 100. The oscillator parameters are the

same as in Fig. 3 and the underlying temporal network is illustrated in Fig. 2b.
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reorder them to obtain

Γ ¼ lim
T !1

1

T
ln

YT

t¼1

β� σλ½t�

 �

F0ðs½t�Þ

�
�
�
�
�

�
�
�
�
�

¼

Z λmax

λmin

WðλÞln β� σλ
�
�

�
� dλþ lim

T !1

1

T
∑
T

t¼1
ln F0ðs½t�Þ
�
�

�
�

¼

Z λmax

λmin

WðλÞ ln β� σλ
�
�

�
�þ Γs


 �
dλ

¼

Z λmax

λmin

WðλÞΛðσλÞ dλ ¼ �Λ:

ð23Þ

This independence of Γ on T might seem contradictory to the fact
that, at the fast-switching limit, temporal networks can be
reduced to their static counterparts. But notice that there is
usually no fast switching in discrete-time systems—even if the
network topology changes at every iteration, it is still evolving at
the same timescale as the node dynamics. Moreover, unlike in
continuous-time systems16,17,23,25, the discrete nature of the
dynamics precludes the use of the averaging techniques16,25

essential for connecting fast-switching networks with their time-
averaged counterparts. Thus, one cannot map a temporal network
to its time-averaged counterpart in discrete-time systems even
when the network topology changes much more rapidly than the
node dynamics.

In Fig. 5, we show the maximum transverse Lyapunov exponent
Γ of the synchronization state in the optoelectronic system for
σ= 1, which is slightly below σc. The dashed line corresponds to
the theoretical prediction of Γ based on the averaged master
stability function �Λ ¼ 1

2
ln j1þ 2A� βj þ ln j1� 2A� βj

 �

þ Γs.
As expected, the static network (A= 0), despite being optimal, is
unstable. As the temporal activity A is increased, Λ deceases and
synchronization is eventually stabilized. On the other hand, the
solid lines represent Γ obtained numerically by evolving Eq. (19)
for different switching periods T. These lines are shifted vertically
by different amounts in Fig. 5, purely as an aid to the eye. The
unshifted versions are shown in the inset. Notice that all the lines
collapse onto a single curve, demonstrating the excellent
agreement between theory and simulations.

An interesting question is what happens when we introduce
random fluctuations to the network structure at each time step t,
which makes the temporal network aperiodic and the
graph Laplacians noncommutative. In Fig. 6, through direct
simulations35, we show that temporal networks still outperform
optimal static networks in the presence of these random
fluctuations. Here, we use the same model of optoelectronic
oscillators and the discrete-switching network considered in
Fig. 5, except that independent random Gaussian perturbations of
zero mean and standard deviation 0.1/n (10% of the average edge
weight) are added to the strength of each edge at every time step.
For temporal activity A= 0 (Fig. 6a), synchronization cannot be
sustained at coupling strength σ= 1.05. For temporal activity
A= 0.15 (Fig. 6b), synchronization is stabilized at the same
coupling strength by the variation in network structure. The
network size is set to n= 99 and the switching period to T= 10 in
our simulations, although the results do not depend sensitively on
these two parameters.

Discussion
To summarize, we have designed temporal networks that syn-
chronize more efficiently than optimal static networks. These
temporal networks are particularly relevant when the coupling
budget available in a system to maintain stable synchrony is
limited. We provided analytical insight into the synchronizability
of commutative temporal networks by linking it to the curvature
of the corresponding master stability function. In particular, our
analysis reveals the subtle relation between the performance of a
temporal network and its switching rate. The switching rate has
an especially critical role in systems with high-dimensional
oscillator dynamics, and networks with intermediate switching
rates often emerge as the most effective.

Our open-loop design has several advantages compared with
closed-loop schemes where the network structure is adjusted

Fig. 5 Temporal networks promote synchronization universally in

discrete-time systems with low-dimensional node dynamics. The

maximum transverse Lyapunov exponent Γ decreases as the temporal

activity A is increased. The dashed line represents the theoretical prediction

based on Λ, whereas the solid lines (shifted vertically for visibility) are

calculated directly from Eq. (19) for different switching periods T. Without

the shift, all curves completely overlap (inset), which confirms our

prediction that the stabilization provided by temporal networks does not

depend on the switching rate for coupled one-dimensional maps.

Fig. 6 Improved synchronization in aperiodic and noncommutative

temporal networks. The temporal networks are based on the discrete-

switching networks given by Eq. (22), which are further made aperiodic and

noncommutative by applying random Gaussian perturbations of zero mean

to the strength of each edge independently at every time step t. The

standard deviation of the perturbations is fixed at 0.1/n (10% of the average

edge weight). The spacetime plots show the evolution of the optoelectronic

oscillators on temporal networks with a: temporal activity A= 0 and b:

temporal activity A= 0.15. Both systems are initialized close to the

synchronous state. Synchronization persists only in the second system,

even though the network in the first system is an optimal static network (a

complete graph with uniform edge weights). Other parameters are set to

n= 99, T= 10, β= 2.8, and σ= 1.05.
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on-the-fly based on feedback from the node states (often modeled
by adaptive networks38). First, our design does not depend sen-
sitively on the node dynamics. As we have shown, the same
design works for systems with vastly different node dynamics,
and it applies readily to both continuous-time and discrete-time
systems. Second, we do not need to monitor all the nodes con-
stantly, which also eliminates the possibility of being detrimen-
tally influenced by measurement errors. Third, the evolution of
the network is highly predictable and we can easily control the
coupling budget allocated to the system at any given time t, a task
that is far more difficult in adaptive networks. On the other
hand, closed-loop schemes have the advantage of being readily
adaptive to the changing environment and can react quickly to
unexpected perturbations39,40. A promising future direction
would be to devise hybrid schemes that combine the best from
both worlds, which could enable even more efficient and robust
synchronization.

In this work, for the sake of analytical tractability, we mostly
focused on temporal networks whose Laplacian matrices from
different time instants commute. There is evidence that syn-
chronization in temporal networks can benefit when
LðtÞLðt0Þ≠Lðt0ÞLðtÞ20. It would therefore be interesting to see
whether our design of temporal networks could be further opti-
mized by allowing noncommuting Laplacian matrices. In parti-
cular, can random fluctuations in the network structure (which
give rise to noncommuting Laplacian matrices in general) out-
perform our designed temporal networks? More generally, do
optimal temporal networks exist for the purpose of synchroni-
zation, just like there are optimal static networks? And if so, what
are their defining characteristics?

Finally, we hope our results can serve as an important step
towards achieving efficient synchronization in complex inter-
connected systems. For example, many temporal networks arise
naturally in the real world through moving agents, whose inter-
actions depend on their spatial distance41–44. An exciting next
step is to understand how our design can be implemented in such
systems and how the time-varying connections can be translated
into the spatial movement of individual agents.

Data availability
All data needed to evaluate the conclusions are presented in the paper. Additional data

related to this paper may be requested from the authors.

Code availability
Code for performing network dynamics simulations and stability calculations are

available at https://github.com/y-z-zhang/temporal_sync. An archived version of the

code is also provided35. Additional source code may be requested from the authors.
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