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Abstract

Testing is an expensive but essential part of any software project. Having the right

methods to detect faults is a primary factor for success in the software industry.

Component based systems are problematic because they are prone to unexpected

interaction faults, yet these may be left undetected by traditional testing techniques.

In all but the smallest of systems, it is not possible to test every component inter-

action. One can use a reduced test suite that guarantees to include a defined subset

of interactions instead.

A well studied combinatorial object, the covering array, can be used to achieve

this goal. Constructing covering arrays for a specific software system is not always

simple and the resulting object may not closely mirror the real test environment.

Not only are new methods for building covering arrays needed, but new tools to

support these are required as well. Our aim is to develop methods for building

smaller test suites that provide stronger interaction coverage, while retaining the

flexibility required in a practical test suite. We combine ideas from combinatorial

design theory, computational search, statistical design of experiments and software

engineering.

We begin with a description of a framework for greedy algorithms that has formed

the basis for several published methods and a widely used commercial tool. We

compare this with a meta-heuristic search algorithm, simulated annealing. The

results suggest that simulated annealing is more effective at finding smaller test

suites, and in some cases improves on combinatorial methods as well.

We then develop a mathematical model for variable strength interaction testing.
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This allows us to balance the cost and the time of testing by targeting individual

subsets of components. We present construction techniques using meta-heuristic

search and provide the first known bounds for objects of this type.

We end by presenting some new cut-and-paste techniques that merge recursive

combinatorial constructions with computational search via a process we term aug-

mented annealing. This method leverages the computational efficiency and optimal-

ity of size obtained through combinatorial constructions while benefiting from the

generality of a meta-heuristic search. We present examples of specific constructions

and provide new bounds for strength three covering arrays. The results presented

provide the foundations for an interaction testing toolkit.
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Chapter 1

Introduction

Testing can account for 30 to 50 percent of software development costs [5, 13]. But

the cost of failures is even higher. In 2002, the National Institute for Standards in

the United States, explored the financial impact of an inadequate software testing

infrastructure. Failures in mission critical software were not considered because it

was impossible to assign dollar figures to lost lives. Even with the absence of this

factor it was determined that the annual cost of insufficient software testing methods

and tools in the United States is between 22.2 to 59.5 billion US dollars [13, 14]. This

study highlights the need for more efficient and more effective methods of software

testing. Given the magnitude of the problem, even small advances in testing can

equate to large cost savings.

In “Testing: A Roadmap” [50] M.J. Harrold points out that software quality

will become the main criteria for success in the software industry. She refers to

software testing as the critical element in software quality. She also highlights an

important issue, the gap in technology transfer. This is the long lag time that exists

for software research techniques to move into the industrial sector. This gap is an

important issue that must be addressed. Development of tools to support current

research enables the faster transfer of software testing advances into practice.

These issues provide strong motivation for new innovations in software testing,

and for the development of tools that support them. In essence they provide an

1



CHAPTER 1. INTRODUCTION

excellent guideline for effective research in this field. This thesis embraces these

ideas as it explores one method of software testing, interaction testing. It examines

current methods of building interaction test suites and presents new techniques to

generate stronger test suites that are more cost-effective to run. It then lays the

groundwork for extending these ideas to a practical test environment and for the

development of new tools that will exploit the results. The ultimate aim of the

research ideas presented here is the development of a comprehensive toolkit for

software interaction testing.

1.1 Motivation

A major initiative in software engineering is component based development. Compo-

nent based development allows one to build systems incrementally using previously

developed modules or parts. It supports and encourages re-use. As pre-built and

pre-tested modules are integrated to create a new system, new code is added and

the software is customized for the situation at hand.

Components that are re-used include individual software modules, entire software

libraries or hardware parts such as memory and controllers. In fact, many systems

today combine both hardware and software elements causing the term “component”

to have a liberal and varied interpretation.

1.1.1 An Example Component Based System

In this section we present an example component based system that will be used

throughout the rest of this thesis to illustrate ideas and concepts. This example is

based on an advertisement for a real product, although we have simplified it for our

purposes.

Company X builds integrated RAID controllers for the PC market. The con-

trollers are made from pre-built, pre-tested hardware components. The company

develops software to run the controller hardware interfaces and to configure the

2



CHAPTER 1. INTRODUCTION

COMPONENT

RAID 
Level

Operating
System

Memory 
Config 

Disk
Interface

RAID 0

RAID 1

RAID 5

Windows XP

Linux

Novell Netware 6.x

 64 MB 

 128 MB 

 256 MB 

 Ultra 320-SCSI 
 

 Ultra 160-SCSI  

 Ultra 160-SATA

VALUE

Table 1.1: RAID integrated controller system: 4 components, each with 3 values

RAID system. This is provided when the controller is sold to the customer. The

software is written to work on a variety of commercial operating systems and to sup-

port several different hard disk interfaces. To make the product scale, the company

allows the system to be sold with differing amounts of memory. When the company

sells this controller, the intention is to support many different system configurations

so that the user can customize the system to fit their environment. For instance the

user may be running Windows XP and want to use RAID Level 5 with Ultra 320

SCSI hard disks. Another user may be running Linux and want to use RAID Level

1, but may use the same type of hard disk.

Table 1.1 shows a simple system of this type1. This system consists of four

components (RAID level, operating system, memory configuration and hard disk

interface). Each of these has three supported values. The system user may select

RAID Level 0,1 or 5. They can run this controller software on Windows XP, Linux

or Novell Netware 6.x. In addition, they can purchase the system with one of three

levels of memory and can use one of three different hard disk interfaces. Company

X most likely builds many types of RAID controllers and supplies accompanying

software to support a variety of large and small systems. If they use component

based development then they will re-use the components in each of the controllers.

And many of the components will be used for other types of controllers as well.

In the example given, there are 34 = 81 possible system configurations. Of

1The real system supports at least five levels of RAID and at least five or six operating systems
as well as a variety of other components not mentioned here.

3



CHAPTER 1. INTRODUCTION

course, most real systems will be more complex than this. Suppose there are 10

components and each of these has five different supported values. The number of

system configurations has grown to 510 = 9765620.

1.1.2 Development Using Components

One advantage of component based software development is that components are

built and tested once, after which they can be used repeatedly as building blocks.

Given the high cost of initial design, development and testing, this model has the

potential to save on overall system development costs. Consequently, many organi-

zations are choosing a component based approach for both development and acqui-

sition. The United States military, for instance, has recently moved toward using

Commercial-Off-the-Shelf components (COTS), for both its software and hardware

purchases [42]. However component based development brings new challenges that

must be addressed, especially in the area of software testing [9, 100].

Re-use is where the savings occur, but when one re-uses components there is still

a considerable amount of testing to be done. In the component example given, each

hardware component has been individually tested. The software module controlling

RAID level has been tested for each level of RAID. The operating systems are not

built by this company, but will be hosting the software. They have been fully

tested elsewhere, but it is unlikely that they were built with the knowledge that

this particular RAID controller software would eventually run on their system. This

system, as we have seen, has 81 possible combinations of settings. Before company

X releases the controller it needs to test the software running it, in all of these

possible states. Otherwise unexpected results may occur. What happens when we

have 10 components with 5 values each? Testing all states is no longer possible,

therefore decisions must be made about what can be tested given the time and

money allocated. This is a central theme for the research that follows.

4
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1.2 Software Testing: An Overview

Testing is pervasive throughout the software development life cycle. In all but the

smallest systems, however, it is impossible to test all possible inputs. Therefore

testing must be done efficiently and systematically to optimize its effectiveness within

the given time and budget constraints [5]. There are many ways to look at the testing

process. Essentially however, all testing returns to the system functionality or system

requirements. When software is built, it is built to perform to a set of specifications.

This is the minimum standard that must be satisfied for system testing. Testing to

ensure that all system requirements are met is fundamental to software development.

In the broadest sense, testing may be viewed as structural (or white box) or it may

be viewed as functional (or black box). White box tests are designed using knowledge

of the data structures and algorithms within the program, while black box testing

uses only system specifications. The testing process proceeds from testing individual

modules, through to integration and system testing. As individual modules are built

unit testing occurs on these. Unit testing is done primarily by developers. At this

point a combination of white and black box testing can occur. As the system grows,

tests are conducted as the modules are combined together. This type of testing

may be done by testing teams, and may no longer involve the original developers.

This is called integration testing. Testing of the entire integrated system is called

system testing. Integration and system testing are commonly restricted to black

box testing. They rely heavily on documentation of system specifications. The

challenge in component based testing is the integration and system test [100], because

individual components have already been tested.

Testing at the integration and system level is dependent on the quality of the

unit tests and on the complexity of interactions that occur between components.

Usually the source code for software components is unavailable. Therefore testing

must be functional. One implication is that it is harder to use standard metrics to

determine how complex a system is, and to test the thoroughness of individual test
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suites.

One issue that arises in development of components at the unit level is that they

are tested without any a priori knowledge of their final operational uses [100]. Since

exhaustive testing is impossible, one common method that focuses testing where it

is most useful is to base it on the operational profile. This examines the module at

hand and classifies sections of the code based on the percentage of time it is used

under expected system use. The idea is to concentrate testing to uncover faults in

areas of the code base that are used most often. The result of this is that less testing

may occur in areas that are used rarely in initial development. This may not be a

problem when the final operational uses are known ahead of time, but in component

based development this is not possible, and therefore constitutes a risk.

When components are moved to a new operational environment, the component

interactions change, i.e. different areas of code are likely to be exercised. Previ-

ously untested code may suddenly be heavily used and undetected faults in this

area are likely to be exposed [100], leading to unexpected outcomes in component

behavior. System testing should prevent this from happening, but as the number of

components in a system grows, so does the number of possible interactions between

them. And as the software complexity increases these interactions and uses may

become more complex. This leaves component based systems prone to unexpected

interaction faults.

1.3 Software Testing: Code Coverage

To quantify the quality of testing, code coverage metrics have been defined. Code

coverage quantifies the amount of underlying program code that is executed by a

set of tests. It is usually presented as a percentage where 100% indicates complete

coverage. Higher code coverage is often used to indicate more thorough testing [5].

We examine a few specific metrics here; ones that have been used to equate the

effectiveness of the interaction testing methods examined in the rest of this thesis.
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For a more complete discussion of code coverage metrics see [5].

Some code coverage metrics are based on a program’s control flow. A process

block is defined as a sequence of program statements that contain no decisions or

junctions [5]. The simplest or weakest metric of code coverage is statement or block

coverage. This metric guarantees that each statement or process block has been

tested at least once. This is usually the minimum acceptable level of code coverage

[5]. Decision coverage indicates that all branches in the program’s control flow have

been tested at least once [5]. It is a stronger measure than block coverage.

Other types of code coverage are based on the data flow of a program. The data

flow of a program graphs the paths between objects or variables from their definitions

to their uses. This is often called a du or definition-use. Two basic types of uses can

be defined. A c-use is a computational use of an object. This occurs when an object

is used on the right hand side of an assignment statement. A p-use is a predicate

use of that object. This occurs when the object is used in a boolean evaluation to

determine the output of a branch. An assignment statement is a re-definition. The

phrases “all c-uses” and “all p-uses” mean that all paths from definitions to c-uses

or definitions to p-uses, respectively are tested [5, 55]. A stronger metric all-uses

includes all c-uses and all p-uses.

1.4 Interaction Testing

In an ideal test environment, we need to do more than just test that individual

system requirements are met. We must also ensure that our products do not fall

prey to interaction faults. These are unexpected interactions between components.

Examples are improper data validation, incorrect assumptions about values that

will be returned and failure to pass values needed by secondary structures. If these

assumptions are not properly documented then they may expose errors due to faulty

initializations or data overflow.

Interaction testing is a form of functional testing. Although studies have used
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metrics to examine how well underlying code is covered, this type of testing is done

independently from the control flow and data flow graphs of the program. It does not

replace other methods, rather it complements them. Our focus of software testing

is this type of test, the interaction test.

Returning to the RAID example, there are four components, each with three

different values, resulting in 81 possible system configurations. Each of the system

tests must be run in each of these 81 configurations in order to detect any unexpected

interaction faults that will occur between components. But testing of all system

configurations is usually impossible. For instance when we extended our system to

have 10 components with 5 values it gave us 9765620 configurations which is clearly

infeasible to test.

When this is the case, the goal is to generate test suites that test (cover) as

many interactions as possible given time and cost constraints. This can be done

randomly or one can select a particular set of rules that helps to choose the best

possible interaction coverage.

Interaction testing has been presented as a problem of component based de-

velopment. In the example component based system interactions are viewed as

interactions among values of components in a system, but the ideas are analogous

to those of a discrete set of functional inputs to a system.

There are many places where interaction testing occurs [8, 10, 19, 23, 24, 37,

40, 68, 99, 101, 108]. It can be used for example to examine all of the inputs to a

system, or at a white box level as variable inputs. It can also be used to test GUI

event interactions. In interaction testing one examines the interaction coverage, i.e.

the number of interactions in the system that have been tested.

1.5 Statistical Design of Experiments

When testing all combinations is not possible, a method for selecting a subset of

these is needed. One method of selecting a systematic and repeatable set of test
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cases for interaction testing is derived from statistical methods. The area of Design

of Experiments (DOE) was introduced by Sir R. A. Fisher in the 1920’s [85]. His

goal was to determine optimum water, sunshine, fertilizer and soil conditions for

producing the best crops.

Fisher called each of these four elements a factor in the system. Each value of

water, sunshine, etc. was considered a treatment. By testing all combinations of

these factors, he showed that one could determine the effect on the response variable

(in this case, the crop output). Fisher developed methods, called fractional factorial

designs, to reduce the size of the experiments when all combinations of tests was

prohibitive in size [85, 97]. This is analogous to our software testing system when

the number of components and values makes testing all combinations impossible.

We can use the same concepts to create a reduced set of system configurations for

testing our software systems; one that guarantees a set of rules are upheld [85, 97].

For instance one can decide to test all pairs of interactions between factors. Using

these methods we can quantify and repeat which interactions in our system are

tested.

Traditionally this approach uses continuous values for the response variable, such

as those in Fisher’s original crop experiments. In software testing we use discrete

binary valued outputs (i.e. pass or fail) for response variables since one is only

looking to find test failures. The DOE method has been adapted slightly in this

fashion for use in software testing.

Returning to the example RAID system, suppose it is not possible to test all

81 interactions. One can instead decide to test all pairs or triples of interactions.

Although this does not completely test all interactions, empirical evidence shows

that this may still provide good error detection and code coverage [10, 23, 39, 44].

The advantage of this method is that these are repeatable and systematic tests.

We can quantify what has and has not been tested and we can repeat our tests

as modules are changed. All possible two way interactions for this system can be

covered with only nine system configurations and all three way interactions with 27
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RAID 
Level

Operating
System

Memory 
Config 

Disk
Interface

RAID 5
RAID 5
RAID 1
RAID 1
RAID 5
RAID 1
RAID 0
RAID 0
RAID 1
RAID 0
RAID 5
RAID 5
RAID 0
RAID 1
RAID 1
RAID 5
RAID 1
RAID 5
RAID 5
RAID 0
RAID 0
RAID 0
RAID 1
RAID 5
RAID 0
RAID 1
RAID 0

Novell
Novell
Novell

Windows XP
Linux
Novell
Linux

Windows XP
Linux
Novell
Linux
Linux
Novell

Windows XP
Linux
Novell
Linux

Windows XP
Windows XP

Novell
Windows XP

Linux
Windows XP
Windows XP
Windows XP

Novell
Linux 

 128 MB 
 64 MB 
 256 MB 
128 MB
 256 MB 
  128 MB
 64 MB 
 128 MB 
 128 MB 
 128 MB 
64 MB 

 128 MB 
 64 MB 
 256 MB
 64 MB

 256 MB 
 256 MB 
 256 MB 
 64 MB 
 256 MB 
 256 MB 
 128 MB 
 64 MB 
 128 MB 
 64 MB 
 64 MB 
 256 MB 

  

 Ultra 160-SATA
 Ultra 320
Ultra 320
Ultra 320

Ultra 160-SATA
 Ultra 160-SCSI
Ultra 160-SATA
Ultra 160-SATA
Ultra 160-SATA

Ultra 320
Ultra 160-SCSI

Ultra 320
Ultra 160-SCSI
Ultra 160-SATA

Ultra 320
Ultra 160-SCSI
Ultra 160-SCSI

Ultra 320
Ultra 160-SATA
Ultra 160-SATA
Ultra 160-SCSI
Ultra 160-SCSI
Ultra 160-SCSI
Ultra 160-SCSI

Ultra 320
Ultra 160-SATA

Ultra 320

System
Configuration

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Table 1.2: Test suite covering all 3-way interactions for Table 1.1

system configurations. Table 1.2 is an example of a reduced test suite for Table 1.1.

Each of the 27 test configurations in this table has 4 components with one value

from each component selected. The first test configuration, (RAID 5, Novell, 128

MB, Ultra 160-SATA), covers six pairs of interactions (RAID 5 with Novell, RAID

5 with 128 MB of memory, RAID 5 with an Ultra 160-SATA disk interface, Novell

with 128 MB of memory, Novell with an Ultra 160-SATA interface, and 128 MB of

memory with an Ultra 160-SATA interface) or four triples of interactions (RAID 5

and Novell with 128 MB, RAID 5 and Novell with Ultra 160-SATA, RAID 5 and

128 MB with Ultra 160-SATA, and Novell and 128 MB with Ultra 160-SATA).

DOE methods were first used by Mandl [68] in software systems to test combina-
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tions of values in a compiler program. Taguchi popularized this method in industrial

testing and called it Robust Design [80, 97]. Brownlie et al. adapted this method to

testing input interactions for testing an internal email system at AT&T. D. Cohen et

al. [22, 23, 24, 25, 40] and Dalal et al. [39] used these concepts to build a commercial

software test generator that is available today from Telcordia, Inc. Moreover, DOE

methods have recently been proposed as part of the standard toolkit for software

testers [58] and are included in the Six Sigma methodology for testing quality [7].

This is strong evidence that this technique for software interaction testing is moving

into the broader software testing community [7, 58].

In the course of this work we have tried to quantify sizes of “real” problems from

industry but this is often domain specific or proprietary in nature. One such example

[33] indicates that the company has approximately 50 binary valued components

that can be configured in one of their software products. Running a full set of test

suites for just one configuration involves approximately 4000 man-hours of time. In

this environment only specific configurations are currently tested and certified. In

Section 2.2.5 we will examine some more examples of real systems.

Design of experiments benefits from a wide body of literature describing several

mathematical objects, or combinatorial designs, that have the properties needed for

these experiments. For instance if one wants to test all two-way or n-way interactions

in a system, then it may be possible to map the problem to a known mathematical

object, called an orthogonal array. This has been exploited by the software testing

community. Unfortunately, many of the results on combinatorial designs have been

developed from a mathematical point of view. They may be limited to a subset of

situations that can arise in testing or may not be flexible enough for use in practical

software testing environments where additional constraints occur. Additionally, the

ability to build these objects is not always straight forward thereby creating a longer

technology transfer gap.
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1.6 Research Aims

This brings us to the focus of this thesis. At the current time there are two dis-

tinct areas of active research on combinatorial designs for software testing. The

mathematics community is focusing on building smaller designs of higher interac-

tion strength [17, 18, 89, 95, 96]. Interaction strength determines how many system

interactions are tested. The goal of much of this research is producing mathe-

matically optimal objects without a concern for accessibility or generality. The

software testing community is focusing on greedy search algorithms to build these

in a more flexible environment, one that more closely matches real testing needs

[23, 25, 39, 44, 98, 102, 109, 110]. In addition, more powerful search techniques such

as simulated annealing have been employed recently [91, 92], but quite often these

results are mathematically sub-optimal.

Ideally we would like to combine these ideas and build higher strength interaction

tests that are minimal and efficient and easy to generate. This thesis aims to move

the research in the two disciplines closer together. In doing so, it attempts to bridge

the gap between software engineering research and combinatorial design research.

The mathematical models explored move closer to that of a real software testing

problem and the solutions provided are closer to mathematically optimal ones.

There are many areas that deserve further research in examining software in-

teraction testing, including empirical studies, the development of testing toolkits

and determining the best way to model and map the software test as an interaction

problem. Our focus lies in supplying the foundations for the second problem, that

of creating a useful toolkit to build efficient interaction test suites. The methods

of building interaction test suites are varied. Some are mathematically optimal,

but require in-depth mathematical knowledge and are inflexible when real system

constraints are added. Some are computationally very efficient, but may produce

larger test suites, or may not adapt well to a real software test environment. Some

provide flexibility and robustness for testing, but produce overly large test suites. A
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trade-off must occur between the computational power, the ability to model a real

test environment and the cost of running the final test suites.

1.7 Overview of Thesis

The main contributions of this thesis lie in three primary areas; meta-heuristic

search, software engineering and combinatorial mathematics. In meta-heuristic

search we have developed a guided search technique, augmented annealing. This

combines computational search with mathematical constructions. In software engi-

neering we have defined a model for software interaction testing that allows us to

weigh the cost and level of testing required to produce the best coverage where it can

be most beneficial. We call this the variable strength covering array. We have made

an initial investigation into its use for modeling testing problems. In combinatorial

mathematics the main contribution is the development of new constructions and

bounds for covering arrays of strength three. Beyond that this thesis attempts to

integrate several disciplines to enhance our techniques of software integration test-

ing. In the course of this work we have discovered new upper bounds for 21 covering

arrays, provided the first known bounds for 16 variable strength arrays and have

presented over 80 bounds for two other objects used in constructions of covering ar-

rays, two-one covering arrays and difference covering arrays without zero differences.

Although we focus this thesis on its applicability to software testing, the techniques

and methods developed may be useful in a broader context [15, 19, 61, 86, 108].

The rest of this thesis is structured as follows. Chapter 2 begins with a descrip-

tion of the mathematical objects underlying our research. It presents some general

results for constructing these mathematically and explores the related work in ap-

plying these to software testing. Chapter 3 examines computational methods for

building interaction test suites. We explore known algorithms and search techniques

as well as describe some useful data structures. Chapter 4 compares implementations

of several computational methods. Chapter 5 examines a new model for software
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interaction testing. It presents both computational methods and results for variable

strength covering arrays. Chapter 6 describes some new mathematical constructions

that leverage computational search and develops the idea of augmented annealing.

Chapter 7 presents our conclusions and future work.
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Chapter 2

Background

Mathematical models have been used for statistical design of experiments in many

disciplines [15, 54]. Some of these include manufacturing, testing of chemical inter-

actions and testing of pharmaceuticals. Recent work extends these ideas to testing

inputs into a biological system [86].

The literature in this area is broad and varied. We use this chapter to bring

together mathematical results that can be used for software interaction testing, and

use this to lay the mathematical foundation for the rest of the thesis. We begin

with some known combinatorial objects and show how these can be mapped to

represent interaction test suites. We present a sample of known results and conclude

with a discussion of how some of these have been applied to real software testing

environments.

2.1 Definitions and Examples

Returning to the example RAID integrated controller system, one can define a test

suite as follows. Each test suite is an N × k array. It has N test configurations.

A test configuration is one combination of the k component values, e.g. RAID 0,

Windows XP, 128 MB memory and Ultra 320-SCSI. In Table 1.2 there are 27 test

configurations. At this stage we shall assume that each component can take on v
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values. The components in this system are RAID level, operating system, memory

configuration and disk interface, with each component having three possible values.

For example the component operating system can take on the values XP, Linux and

Novell. The rest of this thesis will use the terms component and value for consistency

although the terms factor and level are often used in the literature for component

and value respectively.

This test suite provides us with a set of independent system configurations. We

can add constraints to this test suite. In our system we will require that all t-way

combinations of component values occur (i.e. for each set of t components every

t-tuple of component values is represented). We call t the strength of the test suite.

In this example, each test configuration represents a single setting of the system.

Therefore multiple tests cases will be run for each of the designated test configura-

tions. It is also possible to use this model without loss of generality to represent

individual inputs to a system. In this instance each test configuration represents an

individual test case and is run as-is (i.e. we have a one-to-one relationship between

test case and tests run). We will use this model of a system test throughout the rest

of this thesis.

2.1.1 Orthogonal Latin Squares

Definition 2.1.1 A latin square of order s is an s × s array with entries from a

set S of cardinality s with the condition that for all i in S, i appears exactly once

in each row and each column of the array. Two latin squares are orthogonal if,

when superimposed on each other, the ordered pairs created in each cell cover all s2

combinations of symbols[1, 54].

Definition 2.1.2 A set of mutually orthogonal latin squares or MOLS has the prop-

erty that the squares in the set are pairwise orthogonal [54]. A MOLS(s, w) 1 is a

set of w latin squares of order s in which any pair are orthogonal.

1This is often written as w MOLS(s).
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0          1        2

1          2        0

2          0        1

0          0         0
0          1         1
0          2         2
1          0         1
1          1         2
1          2         0
2          0         2
2          1         0
2          2         1

Row      Column     Cell 
                           

Latin Square

RAID 0      XP      
RAID 0      Linux  
RAID 0      Novell
RAID 1      XP     
RAID 1      Linux  
RAID 1      Novell 
RAID 5      XP       
RAID 5      Linux   
RAID 5      Novell   

64   MB
128 MB
256 MB
128 MB
256 MB
64   MB
256 MB
64   MB
128 MB 
  

Test Suite with 9 Test Configurations

Figure 2.1: A latin square of order 3 used to define a test suite

Table 2.1 is a MOLS(3, 2). Mandl [68] first proposed using latin squares and

mutually orthogonal latin squares for testing compiler software. A latin square of

order s can test all pairs of interactions in a system with three components, each with

s values. To do this, map the values of two components to the symbols (0, 1, ..., s−1).

Map the values of the third component to the s symbols found in the cells of the latin

square. Using these mappings, enumerate all of s2 column and row locations using

the first two components. The third component takes the value of the corresponding

cell entry.

Figure 2.1 shows how one can use a latin square to set up a test suite for the

first three components of the RAID example. We have chosen RAID Level as the

row index. RAID 0 maps to 0, RAID 1 maps to 1 and RAID 5 maps to 2. Operating

system is the column index. Windows XP maps to 0, Linux maps to 1 and Novell

maps to 2. Memory configuration is the cell entry. 64 MB maps to 0, 128 MB maps

to 1 and 256 MB maps to 2. A set of test configurations for pairwise coverage is

shown.

In order to use MOLS for software testing of pairs of interactions, k orthogonal

latin squares of size s are needed to test k + 2 components each with s values.
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0      1      2

1      2      0

2      0      1

0      1      2

2      0      1

1      2      0

Table 2.1: Two mutually orthogonal latin squares of order 3

The cell entries represent k components in the system, and the column and row

indices represent the remaining two components. As was the case with the previous

example, two components are mapped to the column and row indices. The rest of

the components are mapped to the symbols found in the cells of the latin squares.

Table 2.1 can be translated into a test suite for the entire RAID system example in

Table 1.1. Each test configuration is a 4-tuple of type (row,column,cell entry of 1st

latin square, cell entry of 2nd latin square).

First designate each of the levels of each component as an integer between 0

and 2. We have chosen the following mapping: RAID 0 = 0, RAID 1 = 1,RAID

5 = 2, Windows XP=0, Linux=1, Novell=2, 64 MB=0, 128 MB =1, 256 MB =2,

Ultra 320=0, Ultra 160-SCSI=1 and Ultra 160-SATA=2. Next enumerate all of

the column and row locations for the latin squares. Use RAID level as the row

and operating system as the column index. Map the other components, memory

configuration and disk interface to the cell entries obtained when the latin squares

are superimposed (see Table 2.2). This gives us 9 test configurations which cover all

pairs of interactions in the RAID system (see Table 2.3). The first test configuration

is row 0, column 0 (RAID 0, Windows XP). The cell entry for the array is (0,0) which

is 64 MB and Ultra 320.

For any set of MOLS(s, w), w ≤ s − 1 [54]. A MOLS(s, s − 1) exists when s

is a prime power [54]. No mutually orthogonal latin squares exist when s = 2, 6.

For all other values of s there is at least one set of pairwise orthogonal latin squares

[54]. For all s > 2 except 3, 6, 10 a MOLS(s, 3) exists, but there is limited knowledge

about the largest w for which MOLS(s, w) exists when s is not a prime power [54].

The limited existence of mutually orthogonal latin squares constrains our ability to
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(0,0) (1,1) (2,2)

(1,2)

(2,1)

(2,0)

(0,2)

(0,1)

(1,0)

Table 2.2: Superimposed MOLS from Table 2.1

RAID 
Level
(row)

Operating
System

(col)

Memory 
Config

(latin Sq 1) 

Disk
Interface

(latin Sq 2)

RAID 0
RAID 0
RAID 0
RAID 1
RAID 1
RAID 1
RAID 5
RAID 5
RAID 5

XP
Linux
Novell

XP
Linux
Novell

XP
Linux
Novell

 64 MB 
 128 MB 
 256 MB 
128 MB
 256 MB 
  64 MB
 256 MB 
  64 MB 
 128 MB 

Ultra 320
Ultra 160-SCSI

  Ultra 160-SATA
  Ultra 160-SATA

Ultra 320
Ultra 160-SCSI
Ultra 160-SCSI
Ultra 160-SATA

Ultra 320

RAID 0 = 0
RAID 1 = 1
RAID 5 = 2
Windows XP =0
Linux =1
Novell =2
Ultra 320 = 0
Ultra 160-SCSI =1
Ultra 160 SATA =2

Mappings

Table 2.3: Pairwise test suite derived from Table 2.2

use these for the general software testing problem. Therefore we need to find other

objects that have the desired property.

2.1.2 Orthogonal Arrays

Definition 2.1.3 An orthogonal array OAλ(N ; t, k, v) is an N ×k array on v sym-

bols such that every N × t sub-array contains all ordered subsets of size t from v

symbols exactly λ times [54].

As λ = N
vt in an orthogonal array we often leave out the parameter N , denoting the

array by OAλ(t, k, v). λ is often called the index of the array. When we drop λ from

our notation, it is assumed that is has the value one. Table 2.4 is an example of an

OA(2, 4, 3).
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2         1          2        2
0         2          1        2
1         2          2        1
2         2          0        0
2         0          1        1
0         0          2        0
0         1          0        1
1         1          1        0
1         0          0        2

Table 2.4: Orthogonal array OA1(2, 4, 3)

An OA(2, k+2, s) is equivalent to k orthogonal latin squares of order s. When a

MOLS(k, s) exists, we can transform k mutually orthogonal latin squares of order s

into an orthogonal array OA(s2; k+2, s, 2) [1]. Figure 2.2 shows this translation. We

use the column and row indices of the latin square as the first 2 columns. Then we

add a column to the orthogonal array for each of the k latin squares. This column

will contain the value found in the cell of the corresponding latin square indexed by

the first two columns. To use this for software testing one defines a mapping from

the components to the symbols.

There are various other mathematical constructions for orthogonal arrays. There-

fore we are not limited by the existence of specific MOLS. However, they still do

not exist for all combinations of the parameters t, k and v. The use of orthogonal

arrays for testing has been discussed in the literature [8, 102], but these may be of

less interest in interaction testing than some other objects because they can lead to

overly large test suites with λ > 1. If there is no orthogonal array of index 1 then

one approach used is to find the smallest value for λ where one exists. For software

testing we are primarily concerned with the situation when λ = 1, i.e. everything is

tested once. In situations where an orthogonal array with λ = 1 does exist, clearly

this is the optimal test suite. However, there are many values of t, k and v for which

an orthogonal array with λ = 1 does not exist so we must resort to a less restric-

tive structure; one that requires that subsets are instead covered at least once. We

present this object next.
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0   2   3   1
3   1   0   2
1   3   2   0
2   0   1   3

0   2   3   1
1   3   2   0
2   0   1   3
3   1   0   2

0   2   3   1
2   0   1   3
3   1   0   2
1   3   2   0

A. Pairwise orthogonal latin squares of order 4

B. Use the row and column indices as first 2 columns of OA

0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3
3 0
3 1
3 2
3 3

C. Fill in last 3 columns with cell entries 
of Latin squares

0  0  0  0  0
0  1  2  2  2
0  2  3  3  3
0  3
.
.
.

0   0   0   0   0 
0   1   2   2   2
0   2   3   3   3 
0   3   1   1   1
1   0   3   1   2
1   1   1   3   0
1   2   0   2   1
1   3   2   0   3
2   0   1   2   3
2   1   3   0   1
2   2   2   1   0
2   3   0   3   2
3   0   2   3   1
3   1   0   1   3
3   2   1   0   2
3   3   3   2   0

D. Orthogonal Array

Figure 2.2: Translating 3 orthogonal latin squares of order 4 into an OA(2, 5, 4)

2.1.3 Covering Arrays

Definition 2.1.4 A covering array, CAλ(N ; t, k, v), is an N ×k array on v symbols

such that every N × t sub-array contains all ordered subsets from v symbols of size

t at least λ times.

When λ = 1 we use the notation CA(N ; t, k, v). In such an array, t is called the

strength, k the degree and v the order.

Figure 2.3 is an example of a CA(5; 2, 4, 2). Since we are interested in exam-

ining interactions between components, the symbol mappings for covering arrays

are always arbitrary. As long as we consistently use the same symbol set for each

component, we maintain the desired properties.

There are often a number of different ways to represent the same combinatorial

object. Several other combinatorial objects have been defined with the same effec-

tive properties as a covering array. A strength t transversal cover, a qualitatively
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1  2  5  6
1  3  4  7
0  2  5  7
0  3  5  6
0  2  4  6

Component 1: {0,1}
Component 2: {2,3}
Component 3 :{4,5}
Component 4: {6,7}

Covering Array

Figure 2.3: CA(5; 2, 4, 2)

independent system and a t-surjective array [25, 89, 96] are three such objects. In

the rest of this document we will use the covering array definition for consistency.

D. Cohen et al. [23, 24] have developed the commercial product Automatic Effi-

cient Test Generator (AETG) to construct covering arrays for software interaction

testing. Williams et al. [102, 104] use orthogonal arrays as well as covering arrays

to design tests for the interactions of nodes in a network. Stevens et al. [94] suggest

creating a knowledge system for the tester that contains the best known covering

arrays applicable to testing.

Covering arrays only suit the needs of software testers when all components have

the same number of values. However, this is often not the case. The following

scenarios point to a more realistic test environment:

1. Components do not all have an equal number of values. For instance, we may

have 6 levels of RAID, 4 operating systems, 3 memory configurations and only

2 hard disk interfaces.

2. Certain value combinations can never occur. These are called avoids.

3. There are aggregate conditions among several components.

4. A set of fixed test configurations are added to each test suite, regardless of the

interaction strength required. These are called seeded test configurations.

These issues cause real testing environments to deviate from the covering array
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0  a  4  d
2  b  6  e
3  c  5  e
2  c  4  d
0  b  5  d
1  a  6  e
1  b  4  d
3  a  6  d
0  c  6  e
2  a  5  e
3  b  4  e
1  c  5  d 

Component 1: {0,1,2,3}
Component 2: {a,b,c}
Component 3 :{4,5,6}
Component 4: {d,e}

Mixed Level Covering Array

Figure 2.4: MCA(12; 2, 413221)

definition. Here we restrict our subsequent discussion to the first scenario, which we

feel is the most important deviation from a fixed level covering array; however we

address some of these other issues later on.

2.1.4 Mixed Level Covering Arrays

When the the number of component values varies this can be handled with the mixed

level covering array. Several authors have suggested its use for software testing (see

[17, 91, 105]), but few results are known about upper bounds and how to construct

these.

Definition 2.1.5 A mixed level covering array,

MCAλ(N ; t, k, (v1, v2, ..., vk)),

is an N × k array on v symbols, where v =
∑k

i=1 vi, with the following properties:

1. Each column i (1 ≤ i ≤ k) contains only elements from a set Si of size vi.

2. The rows of each N×t sub-array cover all t-tuples of values from the t columns

at least λ times.
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When λ = 1 we can omit the subscript. The array can now be represented as

MCA(N ; t, k, (v1, v2, ..., vk)). We use a shorthand notation to describe mixed cov-

ering arrays by combining equal consecutive entries in (vi : i ≤ 1 ≤ k). For ex-

ample three consecutive entries each equal to 2 can be written as 23. Consider an

MCA(N ; t, (wk1

1 , wk2

2 , ..., wks
s )). This can be written as an MCA(N ; t, k, (v1, v2, ..., vk))

(see Figure 2.4).

In this array we have:

1. k =
∑s

i=1 ki and v =
∑s

i=1 kiwi =
∑k

i=1 vi.

2. Each column i (1 ≤ i ≤ k) contains only elements from a set Si where

| ∪k
i=1 Si| = v.

3. The columns are partitioned into s groups g1, g2, ...gs where group gi contains

ki columns. The first k1 columns belong to the group g1, the next k2 columns

belong to group g2, and so on.

4. If column r ∈ gi, then |Sr| = vi.

In this thesis we often represent the vector (wk1

1 , wk2

2 , ..., wks
s ) as the string wk1

1 wk2

2 ...wks
s .

Although we use the order of the components in our notation, there is nothing struc-

tural that requires the underlying objects to use the same order. When components

of a covering array are permuted their properties hold. This notation can be used

for a fixed-level covering array as well. CA(N ; t, vk) indicates that there are k pa-

rameters each containing a set of v symbols. This makes it easier to see that the

values from different components can come from different sets.

2.2 Covering Array Bounds

The problem of finding the correct covering array for a particular test suite is not

always easy. The trivial mathematical lower bound for a fixed level covering array
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is vt. For a mixed level covering array we have the bound
∏t

i=1 vi, where v1 ≥ v2 ≥

· · · ≥ vk. This number, however, is often not achievable. Therefore a primary avenue

of research for covering arrays is to determine the achievable lower bounds. When we

have a provably optimal lower bound for a particular covering array this is known as

the covering array number, denoted CAN(t, k, v). For example, CAN(2, 5, 3) = 11

[17, 89].

Most of the time we either do not know the covering array number, or cannot

construct a covering array with the known minimum number of rows. Instead re-

searchers present the best known upper bound for covering arrays. The best upper

bound is the number of rows in the smallest constructible array. This is the number

we will focus on since the purpose is to build and use these for software testing.

When we refer to the best bound in the rest of this thesis we will refer to the best

upper bound for a covering array.

Because N is often unknown we can shorten our notation for both a covering

array and mixed level array by leaving out the N and denoting these objects as

CA(t, k, v) and MCA(t, k, (v1, v2, ..., vk)) or MCA(t, (wk1

1 , wk2

2 , ..., wks
s )).

There are several types of results known for covering arrays. These include

probabilistic bounds that provide us with the minimum value of N , but do not give

us any method for construction of an optimal array. There are constructive results

which provide us with a direct way to create such an object using mathematical

principles (we call these algebraic constructions), and finally, there are computational

results that are produced as the end product of a search. Of these, the last two are

probably the most useful for us, although knowing the probabilistic bounds helps to

guide us in a search for new constructions.

Not only are the techniques to build covering arrays varied, but there is no single

location for the best known results. N. Sloane [89] has an excellent summary of

results for binary covering arrays of strength 2 and 3. B. Stevens [92] summarizes

known results for t = 2 in his Ph.D. thesis and M. Chateauneuf [16] presents a

summary for t = 2 and t = 3 in his Ph.D. thesis. G. Sherwood [88] maintains a
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web site of orthogonal arrays and covering arrays built from permutation groups.

A. Hartman [51] presents a survey of results for both mixed and fixed level arrays,

which he terms “covering suites”.

In this section we briefly describe some of the known bounds for covering arrays,

most of which have been obtained through algebraic constructions. In Chapter 3 we

examine computational methods.

2.2.1 Known Results for Strength Two Arrays

As reported by Sloane [89], the first known results on covering array numbers are

due to Rényi [83] who solved the case for t = v = 2 when N is even. Kleitman and

Spencer [60] and Katona [59] simultaneously solved the case for all N . They showed

that the maximum value of k for a particular value of N is:

k =

(

N − 1

⌈N
2
⌉

)

For a large k, N grows logarithmically. The minimal N [59, 60, 89] satisfies:

N = log2 k +
1

2
log2 log2 k

Sloane [89] also mentions more results in the case of v > 2. In 1990 Gargano,

Körner and Vaccaro [45] gave a probabilistic bound for t = 2, v > 2.

N =
v

2
log k(1 + o(1))

However, this result was not constructive, i.e. they did not provide any method

to produce an array with such a bound [89]. They did provide a construction that

achieved N = 2.07 log k(1 + o(1)) [89]. Other constructions are given for individual

values of k by Poljak, Pultr, Rödl and Tuza [81, 82]. Österg̊ard [79] showed that

N ≤ 11 for k = 5 and v = 3, while Sloane [89] reports that Applegate showed
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N = 11 for the same parameters. Sloane [89] shows that when t = 2, v = 3 and

k = 3(N − 1), where N is the size of an optimal CA(2, k, 2), three copies of the

CA(2, k, 2) can be combined. One row of the CA(2, k, 2) can be relabeled to form

a row of zeros without changing the properties of the array. The zero rows are

removed. One copy of the remaining CA(2, k, 2) is written using symbols 0 and 1,

one is written using symbols 1 and 2 and one using symbols 0 and 2. This gives us

the following bound:

k =

(

N − 1

⌈N
2
⌉

)

D. Cohen et al. [25, 16] present a construction to show that:

CAN(2, k1k2 + 1, v) ≤ CAN(2, k1, v) + CAN(2, k2, v) − v

In [93] Stevens et al. use group divisible designs to obtain the following bound:

CAN(2, q + 2, q − 1) ≤ q2 − 1

Stevens et al. extend the constructions beyond v = 3 using recursive construc-

tions that utilize block structures with disjoint blocks [92, 95].

In addition to the work on finding upper bounds when t = 2 the problem of lower

bounds has also been tackled. Stevens, Moura and Mendelsohn [92, 96] examined

lower bounds for covering arrays. They proved:

CAN(2, k, v) ≥ v2 + 3 for k ≥ v + 2 ≥ 5

and for a large k ≥ 22v−2− 2

v

CAN(2, k, v) ≥ ⌈
v

2
log k⌉ + v + 1

Williams [51, 102] presents a recursive construction giving us the following bound
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when v is a prime power:

CA(2, vk + 1, v) ≤ CA(2, k, v) + v2 − v

2.2.2 Known Results for Strength Three Arrays

More recently, authors have moved to the case of t = 3. We mention a few of these

bounds here. G. Roux [84, 89] presents an upper bound of 7.56444 logk for the

case when t = 3 and v = 2. Roux also provided the following using a constructive

method which will be revisited again in Chapter 6 [84, 89].

CA(3, 2k, 2) ≤ CA(3, k, 2) + CA(2, k, 2)

In [18] Chateauneuf, Colbourn and Kreher present several constructions for

strength 3 arrays using transitive groups. They provide the following constructive

bounds

CAN(3, k, v) ≤







(2v−1)(q3−q)+v
(log(2v−1))2

(log k)2 if v ≡ 0, 1 mod 3

(2v−1)(q3−q)+v
(log(2v−3))2

(log k)2 if v ≡ 2 mod 3

where q ≥ v − 1 is a prime power. Chateauneuf and Kreher [17] provide a

summary of the known results for t = 3. They present some new constructions based

on known methods such as symbol collapsing and row collapsing as well as results

obtained from perfect hash families. In addition they generalize the construction

from Roux for v = 2 to that of any v > 2 to give the result [17]:

CAN(3, 2k, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v)

and they extend the group construction from [18]. In this paper they provide a

list of the best known upper and lower bounds for covering arrays of strength three

that were known in 2002 [17]. In [69], Martirosyan and van Trung extend the Roux
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construction to present bounds for t > 3. Hartman and Raskin [53] also present a

construction based on Roux for t = 4.

What is important about these results is the variety of methods used to build

them. There are recursive constructions that rely on other mathematical objects,

simple constructions, and ones that employ complex mathematical concepts. To

date there has been no detailed analysis of these arrays using other methods such as

computational search. Therefore many constructions that do exist for strength three

covering arrays may not be optimal. What is known about strength three arrays is

still in its early stages of research. We see many opportunities here for improving

and simplifying these techniques.

2.2.3 Mixed Level Covering Arrays

Less is known about bounds for mixed level covering arrays and orthogonal arrays.

In [54] Hedayat and Sloane discuss mixed level orthogonal arrays. Sloane et al. ex-

pand this work and present bounds for mixed level orthogonal arrays using linear

programming [90]. In [107], H. Xu presents an algorithm for mixed level orthogonal

arrays of small sizes. Stardom [91] and Chateauneuf [16] suggest the need for extend-

ing their work on fixed level covering arrays to mixed level, but most of the methods

known for constructing these apply only when t = 2 and the results are limited.

Recently, Moura et al. [73] presented some algebraic constructions for mixed level

covering arrays. These are limited to strength 2, but they have solved the problem

for constructing minimal covering arrays when k ≤ 4 and have solutions for many

cases when k = 5. To date, most of the methods and results for mixed level arrays

rely on algorithms built for software interaction testing. These will be explored in

Chapter 3.
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2.2.4 Covering Arrays for Software Testing

The ideas of experimental design, many of which were popularized and brought into

the field of manufacturing by Taguchi [97] as Robust Design, have been used to test

various aspects of computer software. We review the main areas where these have

been used and highlight some empirical studies in this section.

In 1985, Mandl [68] applied the principles of experimental design to test compiler

software. He proposed using orthogonal latin squares as a basis for designing test

suites for compiler software. He used this to test correctness of the operator ordering

of enumerated values in Ada. Tatsumi et al. [99] proposed using orthogonal arrays

to test inputs to software as an additional black box testing method. Brownlie et

al. [8] proposed the term Robust Testing which is modified from that of Taguchi

[97]. They extended the work of Mandl and Tatsumi by applying orthogonal array

testing (OATS) to an internal AT&T electronic mail system. The components in

this system were both hardware components such as the CPU type and software

components such as those developed to perform system functions. They compared

the use of orthogonal arrays with a traditional test plan constrained by time and

resources. They determined that the OATS method found 22% more faults in one

half of the testing time than did the traditional approach [8].

D. Cohen and Dalal et al.[22, 23, 24, 40] at Bellcore (now Telcordia) developed

the Automatic Efficient Test Case Generator (AETG). This is a patented commercial

test case generator that uses covering arrays to design test suites. The patent also

describes the use of some simple constructions and test case merging [22]. AETG

allows seeded test cases (fixed test configurations that are included regardless of

the covering array properties), and aggregate conditions (multiple components are

joined together and act as a single component), as well as constraints (avoids). The

AETG tool moves the use of covering arrays for software testing a step beyond the

mathematical model. In [23] D. Cohen et al. suggest a hierarchical test system to

allow two levels of interaction testing. This idea will be pursued further in Chapter 5.

They also prove that it is possible to build test suites to test all pairwise combinations
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of parameters within a logarithmic bound on the size of k [23].

Experiments that determine the effectiveness of the AETG tool in testing user

interface modules and several Unix system commands have been reported [23, 24].

Previously undetected faults were found when they applied interaction test suites to

already tested software programs. In addition code coverage metrics were gathered.

The pairwise method showed 92% block coverage, 85% decision coverage, 49% p-

uses and 72% c-uses. This coverage was comparable with experiments which tested

all combinations of interactions, and better than random test suites of comparable

sizes [23, 24].

Burroughs et al.[11] describe how one can use covering arrays for protocol con-

formance testing in telecommunication systems. They show that covering arrays

can be used to reduce the number of tests, while increasing the quality of testing

by including all pairwise combinations. Traditional protocol conformance testing

does not typically use this type of a heuristic to select tests. Instead it might test

all pairwise combinations from the two largest components, or it might use an even

weaker condition; including all values of each component at least once [11].

In [44] Dunietz et al. conducted empirical studies to examine the degree of code

coverage for various strength covering arrays. They show that when t = 2 good block

coverage is obtained, but higher strengths (t > 3) are required to obtain good path

coverage [44]. Dalal et al. [39] used AETG to generate test cases for a telephone

software system. In this study previously tested software was used. Approximately

15% of test cases revealed new system faults. In addition, several failures were found

to occur only under certain combinations of values [39].

Burr et al. [10] examined the effectiveness of pairwise testing and measured the

obtainable code coverage. In their experiments they tested a Nortel email system.

They determined that pairwise coverage provided higher block and decision coverage

than traditional methods of testing. In addition they found previously undetected

faults in a mature software system.

More recently others have taken these ideas and extended them to other types
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of software testing. Williams et al. [104] use orthogonal arrays to test interchange-

able network components. Kobayashi et al. [62] examine the use of covering arrays

for logic testing of software. They found that combinatorial testing was often com-

parable to specification-based testing, and was always better than random testing.

White [101] uses MOLS to test GUI event interactions and Chays et al. [19, 20]

propose the use of orthogonal arrays to test databases. Daich [35, 36] has developed

a spreadsheet macro that uses orthogonal arrays to build test suites.

Kuhn et al. [66] characterized faults in a large open source software system. In

this study they examined bug reports for several systems. They determined that

pairwise testing of combinations would have found 76% of the faults. Higher levels

of interaction coverage found more faults. For instance when t = 3, 95% of the faults

would have been found and when t = 6, 100% would have been found. This study

highlights the need for more than pairwise interaction testing, a point that will be

revisited in later chapters.

Yilmaz et al. [108] present a method to help with fault characterization in a

distributed testing environment. Covering arrays of varying strengths were used to

build reduced test configuration schedules. Classification trees were used to charac-

terize (or localize) the test configurations causing faults. Initial results show that

this method has promise to locate faults caused by interactions in large configuration

spaces.

In Lessons Learned in Software Testing [58], a book for software practitioners,

five pages are devoted to the pairwise testing method, indicating that the use of cov-

ering arrays for interaction testing is finding a niche in traditional software testing.

However, the manner for constructing these test suites is ad hoc. This points to a

need for reliable and flexible methods for building covering arrays.

2.2.5 Software Testing Parameters

A survey of software systems over a variety of domains begins to show how applicable

the methods that follow are to real software testing environments. Often the number
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of components in specific systems and the testing time is proprietary in nature or a

company cannot easily quantify where this type of testing can be used successfully.

An important factor is the method used to model the system, since often a system

can be modeled in more than one way. This can lead to different parameters for the

same system. We highlight two published examples to give a flavor for relative cost

reduction in testing time that can be obtained if we use covering arrays to design

test suites. We then quantify the size of the parameters for some common software

applications.

In [56], Huller examines a ground system for satellites developed at Raytheon

Company. He quantifies the cost savings that could be obtained through a reduction

in testing time if a pairwise testing strategy is used. The Raytheon system has five

components, three with three values each, and two with two values each. Although

there are only 144 combinations of these parameters, this is an expensive system

to test, therefore all 144 combinations would not normally be tested in practice.

A covering array for this system of size 12 is constructed as a comparison for cost

savings against the normal test strategy adopted by this company. The standard

testing strategy requires 370.5 hours at a cost of $36, 100 US dollars. The same

system, using only 12 test configurations would have required 118 hours and $11, 900

US dollars to test. This is a savings of almost 70%. Methods presented in later

chapters of this thesis can construct a covering array for the same set of parameters

with only 9 test configurations, providing an even larger reduction in time and

money.

In [70], Memon et al. describe the software configuration space as a challenge

to modern software development; i.e. software that must run on many hardware

platforms and work on many operating systems. These systems often have highly

configurable options that can be selected either at compile time or at run time.

The authors suggest that web servers such as Apache, object request brokers such

as TAO and databases such as Oracle, have dozens or even hundreds of options.

In their study they examine ACE + TAO which are middleware projects aimed
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at distributed software applications. The ACE+TAO system has over one million

lines of code, and is supported on multiple operating systems by multiple compilers.

There are several hundred components each of which can take on different values

independently.

Compilation of the system for their study requires 4 hours. The static configu-

ration space has 17 “options” with two values each, and 35 inter-option constraints

resulting in over 82, 000 valid configurations. A simplified model is used that only

examines 10 of the compile time options with additional constraints added between

certain options. This reduces the model to less than 100 configurations [70]. Once

the system is compiled in a particular configuration, a set of 96 tests has to be

compiled and run. There are 6 run time options in this system, with a range of two

to four values each. This creates 648 combinations of CORBA run time policies.

Each of these has to be tested with each of the valid compilation configurations

(29 configurations compiled successfully). The compilation of the test cases in each

configuration for this system requires an additional 3.5 hours and running the tests

requires 30 minutes. In total 8 hours is needed to compile and run the tests for each

configuration of the system [70]. The total configuration space for this study includes

18, 792 configurations which requires 9, 400 hours of computer time to compile and

test[108].

The same system is examined in [108] by Yilmaz et al. to determine if test

schedules defined by various strength covering arrays provide a useful method to find

and locate option related faults using only a subset of the configuration space. In this

study it is determined that covering arrays in conjunction with classification trees

are useful for finding and locating potential option related failures in the system.

This study models the system as an MCA(N ; t, 291413421). For this system, covering

arrays of various strengths are constructed using methods described in later chapters

of this thesis. Strength two arrays perform as well as higher strength arrays in finding

the failures, but higher strength arrays provide better fault localization.

The covering array for t = 2 reduces the configuration space to 116 configurations
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which is a 99% reduction in the number of configurations. This has potential to

reduce the testing cost by almost one year of machine time. Additionally, methods

to build variable strength arrays, described in Chapter 5 of this thesis, may provide

better localization if higher strength covering arrays can be included for the same

cost. This is yet to be explored.

There are many systems that have configurable options resulting in large config-

uration spaces. The following examples have been obtained from online documen-

tation for some common applications:

• SQL Server 7.0 [72] has 47 configurable options. Of these 10 are binary, while

the rest have a range of values. The number of equivalence classes per option

would depend on how each one is modeled.

• Oracle 9 [78] has 211 initialization parameters.

• The Apache HTTP Sever Version 1.3 [2] has 85 core configuration options, 15

of which are binary.

• The gcc-3.3.1 compiler [48] has over 1000 command line flags that control 14

options. More than 50 of these flags are used to control the optimization option

alone.

The examples in this section highlight the size of problems and potential savings if

efficient methods for building covering arrays are developed.

2.2.6 Limitations of Covering Arrays for Testing

Some common themes evolve from these studies. The first is that the use of covering

arrays for testing software systems is a complimentary testing method to the existing

ones. In some of these studies it has been used after other test techniques have been

applied, and has often found a different subset of faults. In [108] Yilmaz et al.

show how covering arrays can be used for fault characterization. However, they also

show that for certain faults, this is not possible. With only five pages in Lessons
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Learned in Software Testing [58] from the book’s 280+ pages dedicated to this topic,

it is clearly viewed as only one of a multitude of testing techniques. Therefore we

put the use of covering arrays for software testing into perspective. While this is a

complimentary tool, and one that can be beneficial under severe time constraints,

their use is not meant to replace other standard software testing techniques.

A second theme emerges. In all of these studies the modeling of the test problem

to form a covering array or similar object is a separate and difficult issue. In fact,

Dalal et al. point this out in [39]. Without correct modeling none of these methods

can be effective. The inputs or components that should be designated as factors and

the determination of their unique values is not always an easy decision. Sometimes

this may be obvious, but different models for the same problem may reveal different

test suites and different results. In this thesis we do not attempt to discuss or address

the modeling question. This is an interesting area of research and one that enhances

our work.

2.3 Summary

In this chapter we have presented the mathematical background and given a short

historical perspective to our research. The primary mathematical object that we

will examine from now on is the covering array. The orthogonal array is really a

special case of the covering array and is subsumed by this. We will discuss both fixed

and mixed level arrays since our aim is to move toward a real testing environment.

The rest of this thesis focuses on building small, flexible interaction test suites in an

efficient manner.
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Computational Techniques

In the previous chapter we defined mathematical models for combinatorial test suites

and presented a sample of known results. This gives a flavor for the scope and

depth of algebraic constructions. One striking feature is the variety of mathematical

methods and extensive background knowledge that is required to master these. A

construction that produces optimal results for one set of parameters, t, k and v,

may not work well for a different set. Just this problem alone, that of knowing

what method to use for a particular test suite, is enormous. This is magnified for

mixed level covering arrays, where very little has been published until recently. An

additional difficulty is that the results for known methods and bounds of covering

arrays are scattered throughout the literature. If a software tester wants to build

a covering array for a specific problem, without a tool, then they have a daunting

task in front of them.

This leads us to examine more general approaches for building interaction test

suites, ones that work well across fixed and mixed level arrays of all combinations of

parameters. The logical direction for this type of solution is to use a computational

search method. There are a variety of search techniques that can be used to build

covering arrays. These may not always find the smallest size array, and they may

require longer computational times than constructions, but they work across a broad

set of problems and may not fall prey to the complexities of the mathematical
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approach.

3.1 Overview

When we refer to “computational methods” in this thesis we mean computational

search. Computational methods are directed by specific properties of the output

object as it is being constructed, such as the number of t-sets still left uncovered.

Algebraic methods, on the other hand, are driven entirely by the input parameters

and are based on mathematical reasoning. Given a set of parameters the outcome is

known ahead of time. In this sense they are direct construction techniques. Algebraic

methods can be incorporated into computational tools as is described in Section 3.4.

Computational methods are more flexible than algebraic methods. They can

work across a broad range of values for t, k and v and they are suitable for both mixed

and fixed level arrays. In addition it is easier to add constraints to computational

methods such as including a set of fixed or seeded test configurations. Many algebraic

constructions would be forced to append seeded test configurations to an already

completed test suite, whereas computational methods can incorporate these as the

suite is being built.

Exhaustive search will always produce the smallest possible test suite. Unfortu-

nately this is not feasible except for trivially small arrays. Given a set of uncovered

pairs, and a specific integer n, answering the question of whether or not a test config-

uration exists that covers at least n pairs is NP -complete [31, 87, 109]. Furthermore,

Seroussi and Bshouty [87] suggest that the problem of finding the minimum size of a

covering array for an arbitrary set of pairs is at least as hard as this problem. This

implies that an efficient method for determining the smallest set of test configura-

tions for a particular set of parameters t, k and v is unlikely to exist [31]. Therefore

computational methods use heuristics (rules) to intelligently narrow a large solution

space. If good heuristics are used, then relatively quick convergence for a close-to-

optimal solution occurs.

38



CHAPTER 3. COMPUTATIONAL TECHNIQUES

There are two constraints imposed when writing an algorithm to find covering

arrays. The first and primary goal is to cover all t-sets of interactions. A solution is

not considered valid unless this is satisfied. The second goal is to find the smallest

N . The approach used to determine if all t-sets are covered is a generic one that

applies for all algorithms. Some methods for doing this are discussed at the end of

this chapter. The approach used to figure out the best N will vary depending on

the type of algorithm selected. We will see two main approaches for this. One is

to incrementally add test configurations until we have satisfied the first constraint.

The other is to select N first and then see if the values of the components can be

manipulated to cover all t-sets.

There will always be a trade-off in building covering arrays using computational

methods. The time taken to build a covering array must be weighed against the

need for small test suites. If the tests to be run require manual intervention, in

component configurations, or in test outcome assessment, then finding minimal test

suites may be of utmost importance. In the situation, however, where the test suites

are inexpensive to run, the computational time of finding a test suite may be more

important. We focus on situations where the testing is expensive.

Existing methods to build covering arrays include greedy algorithms [23, 31,

109, 110] and meta-heuristic search [27, 76, 91, 92] as well as integer programming

[106]. In addition several tools that implement algebraic constructions have been

developed [53, 102]. In this chapter, we begin by examining several greedy algorithms

that have been used successfully to find covering arrays. We also briefly discuss two

tools that implement algebraic methods. We then examine a search based approach.

We begin with a heuristic method and follow this with several meta-heuristic search

algorithms. We end the chapter by examining some data structures and algorithms

that reduce the technical difficulties in implementing many of the computational

methods.

Integer programming has only been shown to work on very small problems so

far [106]. Williams and Probert experimented with integer programming in [106].
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Building a Test Suite
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select best test configuration
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N

add configurations
until all t-sets covered

Figure 3.1: General framework for greedy algorithms

In their representation of the problem, the number of variables grows exponentially

with the number of components and values, making run times infeasible except for

very small problems. For instance, the representation of a CA(2, 5, 3) required 243

variables. The solver ran for more than 6.5 hours at which point it was terminated.

The solution found at that time was of size 13 which is greater than best reported

bound of 11 [17]. It is possible that an alternative representation of this problem

for integer programming may produce different results, but we do not explore that

here. Readers are referred to [106] for more information.
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3.2 A Framework for Greedy Algorithms

Greedy algorithms are often used when no known polynomial time algorithm exists

for a specific problem. A generic greedy algorithm goes through a series of steps

making the locally optimal decision at each point in time [34]. Because these do

not explore the entire search space, but instead select the next “best” solution, they

usually run in polynomial time, but do not guarantee a global optimum. Instead the

hope is that the use of good heuristics will give a relatively close to optimal solution.

Greedy algorithms have been used successfully to find covering arrays. They often

require less computational time than other computational techniques, but do not

always produce the smallest possible covering arrays [27].

We begin by defining a framework for one set of greedy algorithms. It is our

observation that three of the greedy algorithms presented in the literature, the Au-

tomatic Efficient Test Generator (AETG) [23], the Test Case Generator (TCG)

[110] and the Deterministic Density Algorithm (DDA) [31] are essentially the same

algorithm with variations at certain key decision points. We have abstracted the

common elements and present them as a generic framework. The AETG algorithm

was first described by D. Cohen et al. in [22, 23, 24]. The others were presented as

variations on AETG [31, 110]. One additional greedy method has been described in

the literature (In Parameter Order [109]), but as it uses a different approach it will

be described separately.

Figure 3.1 illustrates this framework. It uses an incremental approach to find

the best N . We begin with an empty test suite. As each test configuration is added,

N is incremented. We stop when all t-sets are covered. The test suite being built

is shown in the lower left corner of Figure 3.1. At this point one test configuration

has been selected and the algorithm is currently selecting the second. The top left

corner of this figure shows a single test configuration. We begin with an ordering of

the components and use this order to select a value for each component by choosing

the value that will give us the “best” solution. In this framework, a temporary pool,
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or collection of M test configuration candidates is created before adding the “best”

one to the final test suite, i.e. we build M test candidates in parallel, but use only

one. This step is shown in the right portion of Figure 3.1.

Algorithm 1 Greedy framework

N = 0
[SET M ]
while ( uncovered t-sets ) {
for i = 1 to M {

for j = 1 to k {
[SELECT NEXT COMPONENT TO FIX]
select [BEST] value
use [VALUE TIE BREAKING RULES]

}
add test configuration to pool of candidates

}
select test configuration that covers most new t-sets
use [TEST CONFIGURATION TIE BREAKING RULES]
fix Nth test configuration
update counts
N + +

}

We have defined 5 decision points in this framework. These account for the

majority of the differences between the three algorithms. Pseudo-code is given

in Algorithm 1. The decision points are contained in square brackets and are in

bold font. They are [SET M ], [SELECT NEXT COMPONENT TO FIX],

[BEST],[VALUE TIE BREAKING RULES] and [TEST CONFIGURA-

TION TIE BREAKING RULES].

The algorithm begins with an empty test suite, i.e. N = 0. Next the algorithm

determines the size of M [SET M ] and the main loop begins. For each iteration

of the loop one test configuration candidate is added to the test suite. Inside this

loop is the logic for creating each individual test configuration. For each of the

M candidates, a component ordering, [SELECT NEXT COMPONENT TO

FIX] is chosen. This may be the same for all M candidates or may be dynamically

determined. One value for the next component is selected. The value chosen is based
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on the [BEST] rule for the specific algorithm. When more than one value is best,

[VALUE TIE BREAKING RULES] are employed. Once M candidates are

built, the “best” test configuration is chosen. The [TEST CONFIGURATION

TIE BREAKING RULES] are used when more than one satisfies this condition.

The chosen test configuration is added to the test suite, all counts and data structures

are updated, and N is incremented.

The main differences between these three greedy algorithms are found in the five

decision points. Each of these is discussed in more detail next. This is followed

by a discussion of each individual algorithm. We restrict our discussion of the

framework to already implemented algorithms, but there are many more variations

and combinations of decision points for this framework. The effect that each one

has on computational time and the size of N is an interesting and open question.

3.2.1 Selecting the Number of Candidates (M)

The greedy framework creates one test candidate at a time. However, a pool of

candidate test configurations may be built in parallel to increase the chances of

finding the best next test candidate. If M is set to be too large, then this will have

a negative impact on the algorithm’s run time. If M is set to be too small, then

one may not get the best result for N . These factors must be balanced when we

determine how to use this decision point. Selecting a good value for M seems to be

the key to AETG’s and TCG’s effectiveness, although they use different methods

[23, 110]. DDA on the other hand creates only one test candidate each time (M = 1).

3.2.2 Selecting a Component Ordering

One of the most important steps in these greedy algorithms is selecting the next

value for a particular component. Since the components are selected one at a time

and a value is chosen, based on the other components that have previously been

selected, the component ordering plays a major role in how effective the algorithm
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is. Component orderings that provide one with the best chance of making good

decisions early in the algorithm are preferred. A good choice is to select early on

components that are free, i.e. they have combinations with other components left

to cover. If, instead, a component is selected first that has had all of its potential

combinations with other components covered, then this is a bad choice.

Some of the possible methods for ordering are deterministic, based on a heuristic,

based on a program parameter or random. A combination of these methods can also

be used. When the order is deterministic we mean that the ordering is based on

the position of the component in the array, such as first, last or lexicographical.

In this situation, since the ordering is not based on any parameter of the covering

array and does not change during run time, the exact order selected is arbitrary.

By changing the underlying representation of the components, one can change this

ordering. Although slight differences in performance may occur for different fixed

orderings, they are not algorithmic in nature, but due to the data representation

used. When a deterministic ordering is used we will just state it as lexicographical,

but mean this to be any fixed ordering.

AETG uses a combined heuristic-random method for this decision point. TCG

uses a static component ordering for all test configurations, but the ordering is based

on the parameters k and v. Therefore we say that it uses a heuristic to set this order

[23, 110]. DDA, like AETG uses a dynamic approach (i.e. each test configuration

has its own ordering), but uses a different heuristic to select the component ordering

[31].

3.2.3 Selecting the Best Value

Once a component is selected for the current test configuration, the value for that

component must be chosen. In this framework the algorithm systematically tries

each value for the component. The value that is best is chosen. AETG and TCG

define best to be the value that creates the most new t-sets with the already “fixed”

components [23, 110]. They do not consider any information about components yet
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to be selected. DDA on the other hand, uses a density calculation that acts like a

“lookahead” to the other “non-fixed” components.

3.2.4 Value Tie Breaking

When there is more than one value that satisfies best, a decision about how to break

it must be made. The simplest and fastest method is to use some deterministic

ordering, such as lexicographical ordering. This makes the algorithm deterministic

and repeatable. Random tie breaking can also be chosen, or as is done in TCG a

heuristic can be used [110]. The method chosen for this decision point is a trade-off

between the size of the final covering array, the run time and the repeatability of the

algorithm. If randomness is used, then the final test suite may be smaller, but the

same array will not be produced by each run of the algorithm. If lexicographic tie

breaking is used, then this is fast and repeatable, but may not provide the tightest

bound on N . The last option, using a heuristic, is an alternate approach that might

improve the goodness of the solution and maintain repeatability.

3.2.5 Test Configuration Tie Breaking

The last decision point shown occurs when there is more than one test configuration

in the pool of candidates that covers the most new t-sets. Once again it can be

random, heuristic or lexicographical. All of the algorithms we describe use either

random or lexicographical, but using a heuristic may also work. This is open for

exploration.

3.2.6 Algorithm Repetitions

In several of the decision points listed, one option is randomness. For instance,

tie breaking is often done randomly. In AETG the ordering of components has a

random element to it. When any randomness is involved the final size of N can

vary between different runs of the same algorithm. Therefore one last element to be
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considered is the number of times that the algorithm itself is run. This is not shown

as a decision point in the framework, since it is not an actual variation, but rather

an experimental aspect. It will, however, play an important role in performance.

The number of algorithm repetitions will affect both the run time and the final size

of N .

3.2.7 The Framework in Practice

In this section we present details of the three algorithms described in the literature.

We refer back to the framework to highlight specific decisions that are made and to

show differences. Although we describe the known algorithms here, there are many

more variations to this framework. A systematic exploration of this framework is

needed to determine which combinations of parameters provides the best perfor-

mance with respect to algorithmic efficiency and the size of the final covering array.

We do not attempt to explore this here, but see it as future work.

Automatic Efficient Test Generator(AETG)

The decision points for AETG are shown in Algorithm 2. Since AETG is a commer-

cial patented product some variations that are not detailed in the literature are most

likely to occur in practice [22, 23]. When we refer to the details of this algorithm,

we are referring to the one described in [23].

The algorithm is based on a proof that the greedy approach can provide a loga-

rithmic bound of N given k [23]. However, as is pointed out in [31], the algorithm as

is implemented does not guarantee this. It seems to achieve the bound in practice

due to decisions made in this framework. One place that has an impact on the

performance of AETG is in the selection of the size of M for the pool of test candi-

dates. The tuning of the parameter M is important in the AETG approach. In [23]

the value of 50 has been suggested for M as an experimentally derived best value.

Although we do not know what value is used in practice, we adopt this. There may

be other values of M which work better on certain parameter sizes, but that is open
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Algorithm 2 AETG algorithm details

SET M {
M = 50

}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SELECT NEXT COMPONENT TO FIX {

if ( j < t ) {
create set of (component,value) pairs with the greatest

number of new t-sets to cover
select a (component,value) pair randomly from this set

}
else

randomly select next component
}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
BEST {

value that creates most new t-sets with j − 1 fixed components
}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
VALUE TIE BREAKING RULES {

use random tie breaking
}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TEST CONFIGURATION TIE BREAKING RULES {

use random tie breaking
}

for exploration.

AETG uses a mixed heuristic and random ordering of components. It selects a

different ordering of components for each of the M test candidates, in each iteration

of the algorithm. For instance if M is 50, then for each of the 50 candidates, a new

ordering is created. The ordering of components is important and therefore intelli-

gent heuristics should be used. The AETG algorithm maintains a set of uncovered

t-sets, U . The first (component,value) pair is selected so that it is a value which

appears the greatest number of times in this set. This is an attempt to maximize the

potential for covering the most new t-sets later on. The rest of the components are

ordered randomly. The algorithm description in the literature does not say specif-

ically what happens for the case of t > 2, although in [22] it is suggested that the
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Selecting the Next Value in AETG
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MCA(N;2,413221)
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Figure 3.2: AETG algorithm illustrating one step in creating a test configuration
candidate

first t-1 components are selected from U . Therefore we can extend the heuristic so

that each of the first t-1 (component,value) pairs is selected to maximize the number

of times the value occurs in U .

AETG decides on the best value by selecting the one that covers the most new

t-sets with the components that are already fixed in that test configuration. It

randomly breaks ties for values and test configurations.

A single step in the algorithm for pairwise coverage is shown in Figure 3.2. In

this example, we are trying to build an MCA(N ; 2, 413221). The first two test

configurations have already been committed. We have created one of the M test

candidates and are in the process of creating a second one. First we must create

a component ordering. The first component in this order is 2, since the value “9”
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is among the values that occurs most often in U , the set of uncovered t-sets. The

next component to be fixed (based on the random permutation of the remaining

components) is component 1. Any of the values for this component will create a

new pair with the value 9 so one is randomly selected. In this case 5 was chosen.

The next component to be fixed is 3 (once again random). This component has two

possible values. If 10 is selected, then 2 new pairs will result, but if 11 is selected

then only one will be covered since the pair (5,11) has already been used in the

second test configuration. Therefore 10 is selected.

The commercial AETG program is general in t. This is the only one of these

three greedy algorithms that has a working implementation beyond t = 2. It extends

the base algorithm further by providing support for seeded test configurations, ag-

gregate test cases and avoid conditions. These are combinations that cannot occur

and therefore should not be tested. In addition, if the parameters, t, k and v match

certain constraints then algebraic constructions using projective planes may be em-

ployed. D. Cohen et al. suggest in [22, 25] that there may also be post processing,

test configuration merging steps.

Test Case Generator (TCG)

Tung et al. [110] suggest a deterministic algorithm that they claim creates smaller

test suites than AETG and uses less computational power. It is not apparently clear

however that the first claim is true, due to the limited set of experimental results

presented. This is explored further in Chapter 4. TCG was used to test software for

the Mission Data System in the Jet Propulsion Laboratory [110]. The decision point

details are given in Algorithm 3. The authors use a deterministic fixed ordering of

the components. They sort the components in non-increasing order by the vi’s, i.e.

the number of values for each component. Therefore components with more values

will always be used first.

Unlike AETG this ordering does not change dynamically during run time. Each

of the M test candidates uses the same ordering of components. In TCG the first
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component i is fixed as the one with the greatest number vi of values. M is set to

vi. Unlike AETG, M is dependent on the parameters of the test suite to be built.

Although the algorithm does not explicitly state this, we interpret the fixing of M

to mean that we rotate through each value of the first component for the M test

candidates.

Since this algorithm optimizes its component ordering based on the differences

in numbers of values for components, the question remains as to whether it works

as well as some of the other algorithms for fixed level covering arrays, i.e. when all

components have an equal number of values.

Algorithm 3 TCG algorithm details

SET M {
sort components in descending order

by number of values in component
M = number of values in first component

}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SELECT NEXT COMPONENT TO FIX {

use the next component in sorted order
}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
BEST {

value that creates most new t-sets with j − 1 fixed components
}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
VALUE TIE BREAKING RULES {

select value that is least used
if ( still tied )

select either random or lexicographical order
}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TEST CONFIGURATION TIE BREAKING RULES {

select either random or lexicographical order
}

A value is determined as best when it covers the most new t-sets with the already

fixed components. This is the same as in AETG. A heuristic is used in value tie

breaking, however. The number of times individual values are used is stored and
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maintained. When there is more than one value that is best, the value that has

been least-used is chosen. This count is slightly different from the heuristic chosen

in AETG for component ordering (the value that occurs most often in uncovered t-

sets), because not all values will be involved in the same number of t-sets in a mixed

level covering array. This is illustrated further in our data structures presented at

the end of this chapter. Although not directly stated in the algorithm as written

[110], we interpret the number of times a symbol is used, to be the number of times

it contributes to a new t-set. Therefore we count its usage based on how many t-sets

it covers. For instance if a symbol is used once, and there are 3 other components,

then it will be used three times for pairwise coverage, i.e. one for each new pair.

The next time it is used, it is possible that one of the pairs is already covered. If

this is the case, then we only count the “new” pairs.

When a second tie occurs, the TCG algorithm uses either a deterministic (i.e.

lexicographical) ordering or a random selection. The algorithm as described in [110]

used a deterministic ordering, but the authors suggest using a random ordering to

improve results. Therefore a choice is shown in our framework description.

Figure 3.3 shows one step in the TCG algorithm. This example builds a test suite

for an MCA(N ; 2, 413221). Five test configurations have already been committed

in this example. The component ordering is based on the number of values per

component. In this example the first component selected is number 1, followed by

the two components with 3 values, and finally the component with 2 values. These

are shown in sorted order in the diagram. M is set to equal the largest number of

values ( in this case 4). The first of the M test candidates has been added to the

pool.

We have added the next value from the first component, 1, to this test candidate.

The next component to be fixed is the second one. In this example either 4 or 5

can be selected. They both will create a new pair with the only fixed component so

far. Since we have more than one value that satisfies the criteria, TCG breaks the

tie by selecting the one that has been least used. In this example, 5 has been used

51



CHAPTER 3. COMPUTATIONAL TECHNIQUES

Selecting the Next Value in TCG
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Figure 3.3: TCG algorithm. Illustrating one step in creating a test configuration
candidate

in three pairs, while 4 has been used in 5, so we select the value 5.

The Deterministic Density Algorithm

The AETG authors, D.Cohen et al. [23], prove a worst case logarithmic bound on

the number of test configurations required to build a test suite as a function of k.

To do this they describe a method for constructing covering arrays. The following

is a summary of their proof paraphrased from [31]. Let P be the collection of pairs

still uncovered after a certain number of test configurations are selected. Let L be

the product of the number of values found in the two components containing the

greatest number of values. There are a total of
∏k

i=1 vi possible configurations that
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can be chosen. A test configuration that selects the largest number of pairs found

in P is chosen. This is repeated until the collection of uncovered pairs P is empty.

This does not guarantee a minimum size test suite, but it does guarantee that at

each stage at least |P|
L

pairs are covered [23, 31]. It provides us with a worst case

logarithmic function of k (the number of components).

As pointed out by Colbourn, Cohen and Turban in [31], however, the AETG

algorithm does not actually provide this guarantee since it does not “look ahead”.

In practice the algorithm may adhere to the bound, but it is not guaranteed.

They have developed the deterministic density algorithm (DDA) to overcome

this limitation. It is a greedy algorithm based on AETG that produces mixed and

fixed level arrays of strength 2. They define densities which are meant to reflect the

potential contribution a component and value pair will make to the number of t-sets

that are left to be covered. In this manner, they can provide a logarithmic worst

case bound on N in relation to k. The algorithm is completely deterministic. In all

decision points in the algorithm where randomness can be used, DDA uses a fixed

deterministic rule to make the selection. We represent this as lexicographical order.

In DDA M is set to one (i.e. only one test configuration candidate is created and

used at each step).

In order to understand DDA we begin with some definitions:

Definition 3.2.1 The local density is δi,j =
ri,j

vivj
, where ri,j is the number of uncov-

ered pairs involving a value for component i and a value for component j.

Definition 3.2.2 The global density is δ =
∑

1≤i<j≤k δi,j.

The densities represent the fraction of pairs of components that are yet to be

covered. This gives us a method to look ahead beyond the currently fixed compo-

nents. At each stage of the algorithm a test configuration that covers at least δ pairs

is chosen. The framework details are shown in Algorithm 4.

The actual algorithm implementation modifies these computations slightly to

optimize the densities, while still providing the logarithmic guarantee [31]. In the
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Algorithm 4 DDA algorithm

SET M {
M = 1

}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SELECT NEXT COMPONENT TO FIX {

select component with greatest component density
}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
BEST {

value that creates greatest local density
}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
VALUE TIE BREAKING RULES {

lexicographical order
}
− − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
TEST CONFIGURATION TIE BREAKING RULES {

lexicographical order
}

proof of the algorithm there is no need to order the components, as is done in

the framework, but this might improve the performance by producing a smaller N .

Therefore two additional densities are defined:

Definition 3.2.3 The component density is δi =
∑

1≤j≤k,j 6=i δi,j.

Definition 3.2.4 The value density is ρi,s,σ = the number of uncovered pairs in-

volving some level of component i and the σ value of component s.

The component densities are calculated and the component with the greatest

density is fixed next. For each component a value is selected by summing all of the

value densities for each value. Whenever a component is already fixed, only the

value densities between it and other components are calculated. This is because

only those pairs associated with the fixed value can change. The component value

that produces the greatest sum is selected. Lexicographical tie breaking is used for

both value and test configuration tie breaking.
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When calculating all of the densities, further “practical” considerations are made.

In a mixed level array the local density scales by the total number of uncovered pairs

for each component combination. When two components that have fewer values are

combined, the denominator is smaller. For instance in an MCA(N ; 2, 412131), the

first two components have 8 possible pairs, while the first and last components have

12 possible pairs between them. This means that pairs in the first two compo-

nents contribute 1
8

while pairs in the first and last components contribute 1
12

. In

practice, however it will probably be harder to cover all the pairs between the first

and last components. Therefore the same denominators are used across all of the

densities to fix this problem. We use three variables to represent these denomi-

nators. Let v max = the maximum number of values for any component. In the

MCA(N ; 2, 412131) v max = 4. We also use the square of this value, v max2. For

example, in the MCA(N ; 2, 412131) v max2 = 16. Lastly we maintain a constant

variable v fixed and set this equal to 1.

The following rules apply when each of the specific denominators are used:

1. When calculating the component densities, if neither of the components are

fixed, then v max2 is used. If one is already fixed, then v max is used.

2. When calculating the local densities to select a value, v max is used if neither

of the components is fixed yet. When one is already fixed, v fixed is used.

Figure 3.4 shows a step in the DDA algorithm. Tables 3.5 - 3.7 give the vari-

ous densities for this step. We are creating an MCA(N ; 2, 412131). The first test

configuration has already been chosen. Therefore the pairs {0, 4}, {0, 6} and {4, 6}

have been covered. Table 3.5 shows the component densities after this test config-

uration has been added. At this point no components are fixed so that all of the

denominators use v max2 = 16. The first component has the greatest density, so

this one is fixed first. Once a value has been chosen (value 1 has been selected),

the next component to be fixed is chosen. This brings us to the state of Figure 3.4.

Table 3.6 shows the density calculations for the two remaining components. Since
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Selecting the Next Value in DDA

?

 select value: 7 

M test configuration
 candidates

1

.

.

.

N

1

0 4 6

MCA(N;2,412131)

Component 1: {0,1,2,3}
Component 2: {4,5}
Component 3: {6,7,8}

Figure 3.4: DDA algorithm. Illustrating one step in creating a test configuration

the first component is fixed, the denominator for densities using this component is

v max = 4. In this case, the density of the last component (1.0625) is greater so we

fix that one next. Next we examine the value densities for each of the three values

of this component with the other two components. These are shown in Table 3.6.

In this example, since the first component is fixed, the denominator is v fixed = 1.

The denominator for the density with the second component remains v max = 4.

There is a tie between the second and third value of this component. They both

have a density equal to 1.5. Since our tie breaking is lexicographic we select the first

one, which gives us the symbol 7.

Preliminary results using DDA to generate tests compared to AETG and TCG

suggest it is competitive [108].
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Densities Calculation
δ1,2

7

16

δ1,3
11

16

δ2,3
5

16

Totals
δ1

7

16
+ 11

16
= 1.125

δ2
7

16
+ 5

16
= .75

δ3
11

16
+ 5

16
= 1

Figure 3.5: Selecting first component of
second test configuration in Figure 3.4

Densities Calculation
δ1,2

2

4

δ1,3
3

4

δ2,3
5

16

Totals
δ2

2

4
+ 5

16
= .8125

δ3
3

4
+ 5

16
= 1.0625

Figure 3.6: After first component se-
lected in Figure 3.4

Densities Calculation
ρ2,0,0

1

1

ρ2,0,1
1

1

ρ2,0,2
1

1

ρ2,1,0
1

4

ρ2,1,1
2

4

ρ2,1,2
2

4

Totals
∑

1

i=0
ρ2,i,0

1

1
+ 1

4
= 1.25

∑

1

i=0
ρ2,i,1

1

1
+ 2

4
= 1.5

∑

1

i=0
ρ2,i,2

1

1
+ 2

4
= 1.5

Figure 3.7: Selecting the value for component 2 in Figure 3.4

3.3 In Parameter Order (IPO)

We present a different greedy algorithm next for finding covering arrays. The In

Parameter Order (IPO) pairwise test generation strategy developed by Tai and Yu

uses a different greedy approach [98, 109]. The authors have built a tool (PairTest)

that implements the IPO framework [98, 109]. IPO works for mixed and fixed

level arrays of strength two. Assume that there are more than 2 components. The

framework begins by creating a test suite for the smallest number of components

(i.e. 2). This is an enumeration of all pairs that must be covered. The framework

then expands the test suite horizontally (i.e. by component) and then vertically (i.e.

by test configuration) until all pairs are covered. We have included the framework

from [109] as Algorithm 5.

Figure 3.8 illustrates this framework for an MCA(N ; 2, 22, 31) as described in

[109]. The first step of this algorithm is to enumerate the 4 pairs (0, 2), (0, 3), (1, 2), (1, 3)
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Algorithm 5 In parameter order greedy algorithm [109]

begin
{ for the first two components p1 and p2}
T := {(v1, v2)}|v1 and v2 are values of p1 and p2

respectively }
if n = 2 then stop;
for component pi, i = 3, 4, ...n do
begin

horizontal growth
for each test configuration (v1, v2, ..., vi−1) in T do

replace it with (v1, v2, ..., vi−1, vi);
where vi is a value of pi ;

vertical growth
while T does not cover all pairs between pi and each of p1, p2, ..., pi−1 do

add a new test configuration for p1, p2, ...pi to T ;
end

end

from the first two components. This is shown in part A. The next step is to expand

horizontally, by adding the third component. Suppose the first test configurations

are now (0, 2, 4), (0, 3, 4), (1, 2, 5) and (1, 3, 5) as shown in part B of this figure. We

are still missing the following six pairs : (0, 5), (0, 6), (1, 4), (1, 6), (2, 6), (3, 6). These

six pairs can be covered with the four test configurations shown in part C. This

completes the covering array.

The authors present an optimal algorithm for vertical expansion and one for

horizontal growth. The horizontal growth algorithm however has an exponential

running time. Therefore they also provide an algorithm that is polynomial, but that

may not produce an optimal result. This is the algorithm that is used in practice

[98, 109].

One advantage of IPO is that it is deterministic. This translates to faster run

times than the algorithms that employ randomness. The other advantage is that

when one adds additional components to an already tested system, the old test

configurations can be reused, since the algorithm simply expands the test suite

horizontally and then vertically if needed.
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0    2
0    3
1    2
1    3 

A
4  
4 
5
5

B

C
0    3      5
0    2      6
1    2      4
1    3      6 

IPO Framework

A= initial set of pairs
B= horizontal growth
C=vertical growth
D= test suite

D

MCA(N;2,2231)

Component 1: {0,1}
Component 2: {2,3}
Component 3: {4,5,6}

Figure 3.8: IPO framework illustrating horizontal and vertical expansion

3.4 Algebraic Tools

We briefly describe two computational tools that use algebraic and combinatorial

recursive constructions. These are deterministic algorithms that use mathematical

methods to build covering arrays. The first, TConfig, works only for fixed strength

arrays of strength two. The second, CTS, is general in t and builds both mixed and

fixed level covering arrays.

3.4.1 TConfig

TConfig was developed by Williams et al. [102]. It implements an algebraic con-

struction to provide pairwise coverage. Several smaller building blocks are required,

a reduced array and a basic array to implement this construction. We do not define

these here, but comment that they are orthogonal arrays with certain rows removed

and columns duplicated. This allows one to build a covering array as follows. Mul-
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tiple copies of an orthogonal array are concatenated horizontally together. Then

the reduced arrays and basic arrays are used to fill in the missing pairs. As in

IPO, there is an idea of expanding horizontally and vertically, but with a slightly

different result [102]. For a full description of this algorithm see ([102]). Results of

TConfig compared with In Parameter Order showed that in many cases it improves

upon those bounds [102]. We will include some results from TConfig in Chapter 4.

However there is no extension for mixed level arrays for this algorithm.

3.4.2 Combinatorial Test Services

Another computational approach is to implement many algebraic methods and com-

binatorial recursive constructions as a knowledge base and select the best one for

a particular set of parameters, t, k and v. This is the approach used by Hartman

and Raskin in [53]. They have developed a C++ library called Combinatorial Test

Services, CTS. The tool begins by analyzing the parameters and decides which is

the “best” construction method. It includes methods to build covering arrays for

any strength t as well as for both mixed and fixed level arrays. In addition, test

case seeding is handled. This tool also provides a method to “avoid” specific con-

figurations. All of the constructions are deterministic thereby making the time to

build covering arrays minimal. However, only a subset of construction methods are

included in this tool. This means that the results will sometimes be sub-optimal

[53]. In addition, there are times when constructions do not produce the smallest

arrays. This brings us to our next type of computational method, heuristic search.

3.5 Heuristic Search

Although greedy methods have been used successfully to find covering arrays, there

are standard combinatorial optimization techniques that cannot be ignored. These

are heuristic search techniques in which a “neighborhood” of solutions is explored

to find the best fit. Once again these are approximation algorithms, but they have

60



CHAPTER 3. COMPUTATIONAL TECHNIQUES

been used successfully for other similar types of problems [77, 79]. There is an

emerging field of software engineering called search based software engineering that

applies specialized search algorithms to a variety of software engineering problems

[49]. Successful applications of these search techniques include evolutionary testing,

program slicing, and structural testing.

Heuristic search algorithms are used commonly for problems that are NP -complete.

They use heuristics and exploit randomness to search and narrow a large solution

space. At each stage of the algorithm a move is made to the new local optimum.

We describe one heuristic search technique next.

3.5.1 Hill Climbing

Hill climbing is a variant of the state space search technique for solving combinatorial

optimization problems. With a general optimization problem the hope is that the

found solution is close to an optimal one. With many design problems we know

(from the cost) when we have reached an optimal solution. On the other hand,

approximations in these cases are of little value.

An optimization problem can be specified as a set Σ of feasible solutions (or

states) together with a cost c(S) associated with each S ∈ Σ. An optimal solution

corresponds to a feasible solution with overall (i.e. global) minimum cost. Sometimes

hill climbing uses the maximum cost for its optimal solution (hence “hill climbing”),

but here we stick to minimizing the cost. We define, for each S ∈ Σ, a set TS of

transformations (or transitions), each of which can be used to change S into another

feasible solution S ′. The set of solutions that can be reached from S by applying a

transformation from TS is called the neighborhood N(S) of S.

We start by randomly choosing an initial feasible solution and then generate a

randomly chosen transformation of the current feasible solution S. If the transfor-

mation results in a feasible solution S ′ of equal or lower cost, then S ′ is accepted as

the new current feasible solution. If S ′ is of higher cost, then we reject this solu-

tion and check another randomly chosen neighbor of the current feasible solution.
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This allows us to randomly walk around Σ, without reducing the goodness of our

current solution. Hill climbing has the potential to get stuck in a local minimum

(or to freeze), so stopping heuristics are required. To increase the chance of forming

a good solution we repeat the random walk (or trial) a number of times, each time

beginning with a random initial feasible solution.

In the hill climbing algorithm for constructing covering arrays the current fea-

sible solution is an approximation S to a covering array in which certain t-subsets

are not covered. The cost function is based on the number of t-subsets that are not

covered, so that a covering array itself will have a cost of zero. A potential trans-

formation is made by selecting one of the k-sets belonging to S and then replacing

a random component value in this k-set by a random component value not in the

k-set (i.e. we select a column and row from our N × k array and change the value

of the component). The number of blocks (N) remains constant throughout the hill

climbing trial.

Since N is fixed, but is unknown, we have used the method described by Stardom

and Stevens [91, 92] to determine our array size. We set loose upper and lower

bounds on the size of an optimal array and then use a binary search process to find

the smallest covering array in this interval. Our lower bound is set initially to the

mathematical lower bound for the parameters t and v. The upper bound is set to

be “sufficiently large”. We then run many iterations of our hill climb. For each

iteration we set N to be halfway between the current upper and lower bounds. The

hill climb either finds a valid covering array or freezes. If it finds a valid array, then

we want to search for a smaller one, so we set the upper bound equal to N . If the

hill climb freezes then we change the lower bound to N . The process ends when the

upper and lower bounds cross. An alternative method is to start with the size of a

known test suite and search for a solution. This of course uses less computational

resources, but the required test suite size must be known ahead of time. Ideally in

a real system this is the method which we would use.
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3.6 Meta-heuristic Search

One class of heuristic search algorithms employ higher level strategies to allow the

algorithm to escape local optima [46]. These algorithms are collectively known

as meta-heuristic search algorithms. The term meta-heuristic was introduced by

Glover [47] in 1986 when describing tabu search (see Section 3.6.3). A meta-heuristic

describes a strategy to guide and modify other heuristics [47]. These go beyond the

normal heuristics that often get stuck in local optima. We explore a few of these

algorithms next and discuss how they have been used to find covering arrays. One

meta-heuristic search algorithm, simulated annealing, has been used by Nurmela

and Österg̊ard [77] to construct covering designs which have a structure very similar

to covering arrays. We do not report their results because the objects they build are

sufficiently different from covering arrays. We examine this algorithm next.

3.6.1 Simulated Annealing

Simulated annealing uses the same approach as hill climbing but allows the algo-

rithm, with a controlled probability, to make choices that reduce the quality of the

current solution. The idea is to avoid getting stuck in a bad configuration while

continuing to make progress. If the transformation results in a feasible solution S ′

of higher cost, then S ′ is accepted with probability e−(c(S′)−c(S))/KBT , where T is

the controlling temperature of the simulation and KB is a constant (the Boltzmann

constant). The temperature is lowered in small steps with the system being allowed

to approach “equilibrium” at each temperature through a sequence of transitions (or

Markov chain) at this temperature. Usually this is done by setting T := αT , where

α (the control decrement) is a real number slightly less than 1. After an appropriate

stopping condition is met, the current feasible solution is taken as an approximation

to the solution of the problem at hand. Again, we improve our chances of obtaining

a good solution by running a number of trials.

Stardom [91] has recently compared simulated annealing with other types of
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local search, such as tabu search and genetic algorithms, for finding covering ar-

rays of strength 2. Stardom has reported several new upper bounds (including

CAN(2, 16, 8) ≤ 113 and CAN(2, 18, 11) ≤ 225) using a simulated annealing algo-

rithm. We compare some of our annealing results with those of Stardom in Chapter

4.

3.6.2 Great Deluge Algorithm

One further variant of hill climbing and simulated annealing is the great flood or

great deluge algorithm first introduced by G. Dueck [43]. It is also termed threshold

accepting. This follows a strategy similar to simulated annealing but often displays

more rapid convergence. Instead of using probability to decide on a move when the

cost is higher, a worse feasible solution is chosen if the cost is less than the current

threshold. This threshold value is sometimes referred to as the water level which, in

a profit maximizing problem, would be rising rather than falling (as is happening in

this case). As the algorithm progresses, the threshold is reduced, moving it closer

to the optimal cost. This algorithm has not been used for finding covering arrays

and so it may provide some interesting new results.

3.6.3 Tabu Search

Tabu search has been used successfully by K. Nurmela [76] for finding strength 2

covering arrays. This has produced some new bounds such as CAN(2, 20, 3) ≤ 15

and CAN(2, 10, 7) ≤ 63. Stardom [91] also explored tabu search and determined

that it works well when the neighborhood is small.

In tabu search, N is a set containing all neighbors of S that can be reached with

one transition from the current solution S. C is the set of solutions that satisfy

a particular selection criteria. For instance, C might be the set of solutions that

contain a specific interaction t-set. The union of these sets is the neighborhood

of interest. It is explored completely for the best solution. A tabu list, L, is also
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maintained. This is a list of all solutions that have been chosen within a given time

T (i.e. a portion of the algorithm’s history). The tabu list prevents the algorithm

from getting stuck in an infinite loop.

At each step of the algorithm the intersection of sets N and C are explored and

the best solution that is not found in L is chosen. In Nurmela’s implementation S

is an N × k array. The cost is the number of uncovered t-sets. A covering array has

a cost of zero. N contains all arrays that can be found by changing one entry in S.

At each step of the algorithm a random uncovered t-set is selected. C contains all

arrays that cover the randomly selected t set. N ∩C \L contains the solutions to be

explored. These are the arrays within one move of the current solution, that contain

this t-set and are not “tabu”. The move that will provide the largest decrease in the

cost is chosen.

Most of the results presented by Nurmela are for small fixed level covering arrays

of strength 2, but he does include two examples for mixed level arrays. We include

these in our comparisons in Chapter 4.

3.6.4 Genetic Algorithms

Genetic algorithms model the biological evolutionary process. A population is com-

posed of many individuals. In this case the population is a set of feasible solutions.

Pairs of solutions (parents) are selected. A crossover and recombination stage take

place and a set of children are formed. The fittest children from this population (i.e

the ones that cover the most t-sets) are chosen and the process is repeated. Genetic

algorithms have been very successful in search based software engineering [49]. Star-

dom [91] examined the effectiveness of simulated annealing, tabu search and genetic

algorithms to find strength 2 covering arrays. In this work the genetic algorithms

performed poorly against the other two. Given that this was a preliminary study,

there is still room for exploration of this method for finding covering arrays. The

use of genetic algorithms for finding covering arrays is open for future exploration.
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3.7 Data Structures for Computational Methods

The algorithms presented in this chapter may contain some complex data structures.

They all require efficiency in order to run in acceptable time frames. The heuristic

and meta-heuristic search algorithms must make thousands or millions of transitions

before they find a solution or are frozen. At the same time one would like to be

able to encode these algorithms so that they are general in t. AETG already has

this ability and as new methods for designing interaction test suites are developed it

would be desirable to retain this ability. Furthermore, Chapter 5 presents a model

for software testing where the need to vary t is imperative. The desire for this

generality sometimes costs us efficiency.

We can use existing methods to handle these problems since these are common in

combinatorial mathematics. We present the main ones we have used to increase our

generality while maintaining efficiency here; ones that are relevant to the algorithms

used in the following chapters. In addition, we present a data structure that helps

the AETG component ordering heuristic work efficiently.

3.7.1 Ranking

If the goal when implementing one of these algorithms is to create a general algo-

rithm that will work with any size t, then one can employ standard combinatorial

techniques to store t-sets as integer values. This will avoid the problem of forcing

structural looping constraints any time one wants to compute t-combinations. For

instance when a new component is fixed in one of the greedy methods, the new t-sets

it creates must be compared with all of the previously fixed components. This is

a dynamic situation. Each time, the combinations to be tested must be computed,

and all of them must be checked. Of course one can use fixed loops if we know we

have only pairwise or only three way coverage, but this restricts the ability of the

program to generalize. We also want to store our t-sets in some data structure that

allows efficient access. This is especially important in a meta-heuristic search where
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this structure is accessed many times for each potential transition.

The simplest data structure to use is a t-dimensional array, with each dimension

of size k × v. The indices represent values of each component. We can store our

component values as unique integers from 0 to V −1 where V =
∑k

i=1 vi. This means,

the task of determining if a specific t-set is covered can be done in constant time.

However, a t-way array requires certain structural constraints. This is harder to

implement in a dynamic environment unless limits are placed on the size of t. Instead

we can use a technique called ranking from combinatorial mathematics. Ranks are

integer values that correspond to the positions of t-sets in the lexicographic ordering

of all t-sets [64]. Although we do not actually use all possible t-sets in this ordering

for covering arrays, we can still use the ranks of the t-sets that are needed. We will

return to this idea.

Suppose we have a set V = {0, 1..., |V | − 1}, where |V | =
∑k

i=1 vi. There are
(

|V |
t

)

possible t-subsets of this group of symbols. Name this set W . We can represent

the members of W as a list. Represent each S = s1, ..., st ∈ W as an ordered list

[s1, s2, ..., st] where s1 < s2 < ... < st. The elements of W can now be written as a

list ordered in increasing lexicographical order.

Table 3.9 is an example of a set of symbols V = {0, 1, 2, 3, 4, 5} with t-sets of

size 3. The table contains all possible t-subsets of these symbols, in lexicographical

order.

Using this method we can represent each member of W as a unique integer value.

If we try to map this table to the covering array, CA(3, 3, 2), we can see that only

a portion of the
(

|V |
t

)

subsets are needed, since the covering array only examines

interactions between components. Any t-sets that consist of more than one value

from the same component will not be used. In this example there are
(

|V |
t

)

or 20

ranks, but only 8 of these are used in the covering array. These t-sets are starred in

Table 3.9.

Ranking, un-ranking (translation from an integer rank to a t-set) and successor

(the next t-set in lexicographical order) algorithms can be found in [64]. By using
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V = {0, 1, 2, 3, 4, 5},t = 3

S Rank(S)

{0, 1, 2} 0

{0, 1, 3} 1

{0, 1, 4} 2

{0, 1, 5} 3

{0, 2, 3} 4

{0, 2, 4}∗ 5

{0, 2, 5}∗ 6

{0, 3, 4}∗ 7

{0, 3, 5}∗ 8

{0, 4, 5} 9

{1, 2, 3} 10

{1, 2, 4}∗ 11

{1, 2, 5}∗ 12

{1, 3, 4}∗ 13

{1, 3, 5}∗ 14

{1, 4, 5} 15

{2, 3, 4} 16

{2, 3, 5} 17

{2, 4, 5} 18

{3, 4, 5} 19

Figure 3.9: Lexicographic ordering of t-sets

CA(N ; 3, 3, 2)
Component 1: {0, 1}
Component 2: {2, 3}
Component 3: {4, 5}

these we can generalize our search algorithms to work for any t. To store our ranks

we use a one dimensional integer array that is of size
(

|V |
t

)

. The array index is the

rank. In this array we store the number of times a t-set has been used. For instance,

if we use the example from Table 3.9 and if the t-set {0, 2, 4} occurs in exactly one

test configuration, then the array value for index 5 of our array would contain a

“1”. As this array is sparsely populated (see Figure 3.9), a more efficient storage

structure can be developed to improve the usage of space. This inefficiency of space

was chosen in our initial prototype implementations to favor the generality of the

solution. The ranking algorithm which must invoked each time we determine if a

t-set is covered requires O(t×v) time assuming that we can calculate
(

v
t

)

in constant

time (see Section 3.7.2 for details of this method). Since t is usually very small (e.g.

2-4) and this is a worst case bound, the increase in computational complexity does
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not seem to degrade the performance of our algorithms. This is a situation where

we have chosen to accept some loss of efficiency for the benefit of generality.

The use of ranking is not limited to storing our t-sets. We can use this anytime we

need to perform a function that would normally require different looping structures

depending on the size of t. For instance if we want to calculate all of the t-sets

covered in a single test configuration (an array of size k), we have
(

k
t

)

combinations

of locations (indices) in this array. If one is using a fixed t then this can be done

using nested loops. However, we want to keep our code general. The first t locations

of this array (i.e. {0, 1} when t = 2, or {0, 1, 2} when t = 3) are equivalent to a

rank of 0. We can loop through all
(

k
t

)

combinations by repeatedly applying the

successor algorithm. The successor algorithm returns a t-set representing the next

subset in our lexicographical order. The time complexity of the successor algorithm

is O(t). Since t is generally very small, we have chosen to use the successor method

for generality. We use the elements of this subset as indices of our test configuration.

All ranks between 0 and
(

k
t

)

−1 are used (unlike the ranks for interactions).

When we use the ranking algorithms to determine the change of cost (delta), as

happens whenever a new value for a component is added (in the greedy algorithms),

or when a component value is changed (in hill climbing or simulated annealing),

we can make use of the general nature of these algorithms to avoid unecessary

computations. To begin with, we always restrict our computation to that of delta

(instead of recalculating the entire cost each time). Since we are only changing an

individual component we do not need to calculate the delta in this test configuration

by computing all t-sets containing this element. This would require us to compute

the rank and perform other computations
(

(k−1)
t

)

times. Instead we can compute

all of the t-1 subsets that do not contain this component and then combine the

new component value with each of these to create the changed t-sets. This requires

only
(

k−1
(t−1)

)

computations. When k gets large this has potential to save a lot of

computational time.

69



CHAPTER 3. COMPUTATIONAL TECHNIQUES

3.7.2 Other Utility Structures

Further combinatorial methods can be used in order to increase efficiency. Nurmela

et al. [77] provides an algorithmic method to build a binomial lookup table which

can then be used any time we need to determine the value of
(

n
r

)

. We have used this

method to pre-compute the binomial values for
(

t
v

)

ahead of time. This is done once

each time the algorithm starts. It uses the input parameters t and v to determine

the size of the table. It gives us constant time access during the rest of the algorithm

for any
(

n
r

)

. In the simulated annealing implementation, one can also employ the

method used by Nurmela et al. [77] for storing an approximation of exponential

values as a table. We pre-compute the values of ex for a large range of integer values

(0, 1, ..., r − 1) at the start of our program. We store these in a 1 × r array. When

we need to find ex we cast x to an integer value and access the xth element of the

array. This operation takes constant time. Rounding to the nearest integer slightly

alters the probability of making an uphill move, but given the heuristic nature of

this algorithm, and the large effect that varying parameters of the cooling schedule

has, this change has an insignificant effect on performance.

3.7.3 Structures for Least Used t-sets

As part of the greedy framework described, AETG uses a heuristic to select a com-

ponent ordering. The first component and its value is selected as a component-value

combination that occurs in the most uncovered t-sets. It does this for every one

of the M test candidates for each new test configuration. Since this is done many

times in a run of the AETG algorithm, especially if we use multiple repetitions of

the entire algorithm, then a method for efficiently handling this is needed. Although

this structure is specific to the AETG algorithm at present, an expansion and ex-

ploration of the greedy framework might use this component ordering heuristic in

combination with other decision points, so it is worth exploring.

In AETG, the set of least used requires an efficient structure so that it is easy to
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Figure 3.10: Initial state of Used
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Figure 3.11: State after test configuration
(2 4 7) committed

keep track of the t-sets and to randomly select one from among this set each time.

Of course updating this structure must also be fast and efficient.

At the start of the algorithm we compute how many times a symbol will occur

in a t-set. In a mixed level array this is not the same for each value. For instance

if we have an MCA(2, 3222), the values in components with 2 values will occur in 8

pairs, while the ones in components with 3 values will occur in 7. We calculate the

maximum times each value will occur, max, and then create a (max +1)×V array

called Used where V =
∑k

i=1 vi. We fill in each row i of Used with the symbols

that have i t-sets left to cover. In the previous example row 8 would contain all the

values from the 2 components with 3 values and row 7 would contain the others.

We keep track of max, which changes as the algorithm progresses. At the end of the

algorithm max = 0. To make things easier, we also maintain information for each

value of a component so that we know its location in the array.

At each point when a new symbol is needed from least, we randomly select one

of the symbols from the max row. As long as we know how many values are in
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the max row, we can do this in constant time. In order to update a value (this is

done each time it is used in a previously uncovered t-set) we percolate the values up

to the correct rows. At the end of the algorithm, all of the symbols are in row 0.

Figures 3.10 and 3.11 shows this structure at two points in the algorithm. In Figure

3.10, representing the first stage, the algorithm is just starting and the values are

all unused. After the first test configuration is committed (Figure 3.11) the symbols

move to their new location. At the next point in this algorithm the component value

8 is chosen since this is currently the only value in the max row (row 7).

The percolate step can be completed in constant time for each update. To

percolate we move the symbol to the end of the previous row and update its new

position. This is shown in Figure 3.12. Assume that the symbol 7 has been used

in a new t-set and that we need to update it. It moves to the end of the previous

row. Next we replace the symbol that was moved with the last symbol in its original

row. In this case the 8 will move to the cell that contained 7. If 7 had been the last

symbol in this row, then they value for max would have been decremented and this

row would no longer be used. In order to implement this in constant time we use

data structures to keep track of each symbol’s column and row location in this array

as well as the length of each row and the current maximum row. We have chosen to

use more space as a trade-off for time efficiencies.
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In this implementation the components that have the least number of values (in

a mixed level array) are actually fixed first at the start of the algorithm, since they

are the ones that will be involved in the most t-sets. In TCG this would never

occur since the fixed component ordering always selects the component with highest

cardinality first. Further exploration of the framework may lead to more interesting

combinations of these two heuristics.

3.8 Summary

In this section we have presented computational techniques to find covering arrays.

We presented a general framework for several greedy algorithms. We presented

one other greedy algorithm from the literature and mention some tools that use

algebraic constructions. We then explored some heuristic and meta-heuristic search

algorithms. We ended with a discussion of some data structures and algorithms that

are useful when implementing these. The next chapter compares implementations

of some of these algorithms.
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Chapter 4

Comparison of algorithms

In the previous chapter we explored a variety of computational methods for building

covering arrays. It is natural to ask how the various methods compare with each

other and how they compare with algebraic constructions. As our ultimate aim is

a toolkit for testers then other important questions arise as well. Which methods

are best suited for particular types of arrays? Do certain methods work better for

fixed versus mixed level arrays or for large versus small numbers of components and

values? Do these answers change when we move to a higher strength array? What

are the computational costs for the various algorithms?

As a first step in exploring these questions we have implemented our own versions

of two of the greedy algorithms from the framework presented in Chapter 3, and

have implemented a hill climbing and simulated annealing algorithm. We compare

results from these with some of the bounds published in the literature across a range

of fixed and mixed level arrays of strength two and three. Results from this chapter

are published in [27].

4.1 Introduction

A variety of computational techniques exist to produce covering arrays. Often, the

results that are presented provide new bounds, but are restricted to experiments us-
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ing only a single technique. There are very few studies that compare results for both

mixed and fixed level arrays. Furthermore most of the results using computational

methods are limited to the case where t = 2. This chapter attempts to address these

issues by examining a variety of algorithms across a broad range of covering arrays.

We have selected one heuristic search algorithm, hill climbing, and one meta-

heuristic search algorithm, simulated annealing. We compare these with our own

implementations of two greedy algorithms, AETG and TCG. We call these imple-

mentations mAETG and mTCG in order to distinguish them as our own imple-

mentations. We chose simulated annealing because it has been shown to work well

for fixed level strength two arrays [91, 92]. Hill climbing was chosen for its sim-

plicity and similarities to simulated annealing. We selected AETG and TCG for

comparisons since they can be used with both mixed and fixed level arrays and are

variations on the same framework. We compare these with the real implementations

of AETG, TCG and IPO as reported in the literature and with results of algebraic

constructions. We have also included some results reported by Hartman et al. in

[53] for CTS and TConfig, for tabu search by Nurmela[76] and from the tool created

by James Bach called ALLPAIRS [3]. We examine both fixed and mixed level arrays

of strength two and three.

We begin with a description of each of our algorithms and then present the

experimental results.

4.2 Hill Climbing

We have implemented hill climbing for t-way coverage. We use methods described

in Chapter 3 to store t-sets as integer ranks. Our initial array consists of a random

set of values for each component. We use a binary search technique to find the best

N , but do not re-randomize our array between iterations of each hill climb. For each

trial of the hill climb we randomly select a column and a row in the covering array.

A random value is chosen for the component that corresponds to this column of the
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array. If changing this value will give us a cost that is equal or less than the current

cost we move to the new solution. In our initial version of a hill climb we set our

“frozen” counter quite high (100,000). This was done to prevent the program from

terminating before it found a good solution.

4.3 Simulated Annealing

The simulated annealing algorithm uses the same data structures as the hill climbing

algorithm. However, we set frozen to be much lower (500). In simulated annealing

we have found that using a starting temperature of 0.20 with a cooling factor of

0.9998 works very well. For harder problems a slower cooling (0.99999) with a

starting temperature of 0.030 is sometimes employed. We cool every two to three

thousand moves. There is a balance needed in the slowness of cooling and the

starting temperature. If we start at a temperature that is too high, then we move

to bad solutions much more often and take longer to find an equilibrium. If we cool

too quickly, we do not allow the algorithm to find its way out of local optimums.

The idea is to keep a small probability of making a bad move for as long as possible.

4.4 mTCG

mTCG only supports pairwise coverage, but works for both fixed and mixed level

covering arrays. We store the counts for our t-sets in this implementation as a v× v

array. This provides fast access, but cannot easily be generalized.

For our version of the mTCG algorithm, a few minor refinements were applied.

The algorithm in [110] does not fully describe how ties are handled. To handle this

problem there are two places in the framework description for TCG (see Algorithm

3) where it states to use either a random selection or lexicographical order. For our

implementation we have selected random for both cases. When choosing a value to

add to an individual test configuration, TCG uses a heuristic. It selects the value
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that has been used the least number of times so far. However, it is possible to have a

tie for values that satisfy this heuristic, i.e. a second level tie. Therefore we needed

to implement a tie breaking strategy for this scenario. We chose to do this randomly

in our version of the algorithm. The other place that a tie can occur is when more

than one of the M candidate test configurations produces the most new pairs. We

again chose a random tie-breaking scheme. Since we have added randomness to our

algorithm, we used a series of repeated runs, only keeping the smallest covering array

produced. We have also tightened the definition of least used to count a symbol as

being used only in the case when it contributes to a new uncovered interaction pair.

4.5 mAETG

The mAETG algorithm uses standard combinatorial techniques to store a t-set as a

rank. This means that the algorithm can handle arbitrary t-way coverage. Although

the implementation of the mAETG algorithm is as described in the literature [23],

we acknowledge that the actual commercial product is patented and may include

some simple construction techniques as well as post-processing stages. These are

not included in our implementation.

The real AETG always returns the same size covering array for a given set of

parameters. This might be due to post processing or it might be because a library

of known good random seeds is used. The exact method is not published. In our

implementation we use multiple repeats of the algorithm and select the smallest one.

One additional heuristic has been added in our version of the AETG algorithm, for

the case of t > 2. In the algorithm described in [23], it is unclear what happens when

choosing the ordering of components between 2 and t−1. The first component-value

pair is always chosen as one of the values found in the most uncovered t-sets. We

maintain this first step, then continue to choose a component-value pair from the

same set until we have the first t − 1 symbols fixed. We then continue to follow

the algorithm as stated and use a random order for the rest of the components.
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Our results for t = 3 seem to improve on those reported in the literature for the

commercial AETG program (see Table 4.4). This may be attributed partially to

this enhancement.

4.6 Experiments

We have implemented the mTCG algorithm for pairwise coverage and the mAETG

algorithm for t-way coverage. In addition we have implemented a hill climbing and

simulated annealing program for building t-way covering arrays. All of the programs

are written in C++ and run on Linux using an INTEL Pentium IV 1.8 GHZ processor

with 512 MB of memory. We are interested in the smallest value of N obtained by

each algorithm although other metrics could be explored.

All of our algorithms build both fixed and mixed level arrays, but we have em-

phasized the fixed level cases in our reporting in order to make comparisons with

results in the literature. We have selected the subset of covering arrays to use in our

experiments to match those that have been used in other experimental papers.

The mTCG algorithm uses 5,000 repeats keeping only the best array at the end.

All 5,000 iterations were included in the total time reported in Table 4.5. The results

for mAETG use 300 repeats. Again we report only the smallest array found at the

end. All of these iterations were counted as part of the total time reported in Table

4.5. We selected the number of repeats for each of these two algorithms so that they

consistently gave us the closest results to those reported in the literature for the real

algorithms.

4.7 Results

For all of the algorithms we ran a series of trials, but report only the best test suite

obtained (the one with the smallest number of rows). We use the abbreviations

HC for hill climbing, SA for simulated annealing, TS for tabu search and AP for

79



CHAPTER 4. COMPARISON OF ALGORITHMS

Minimum Number of Test Configurations in Test Suite

TCG1 AETG1 AP mTCG mAETG HC SA

MCA(2, 513822) 20 19 21 18 20 16 15

MCA(2, 716151453823) 45 45 53 42 44 42 42

MCA(2, 514431125) 30 30 33 25 28 23 21

MCA(2, 6151463823) 33 34 39 32 35 30 30

Table 4.1: Comparisons for 2-way coverage
1. Source = Yu-Wen et al.[110]

Minimum Number of Test Configurations in Test Suite
IPO1 AETG1 TConfig2 CTS2 AP TS3 mTCG mAETG HC SA

CA(2, 4, 3)
9 9 9 9 10 NA 9 9 9 9

CA(2, 313)
17 15 15 15 22 NA 17 17 16 16

MCA(2, 415317229)
34 41 40 39 41 29 34 37 30 30

MCA(2, 41339235)
26 28 30 29 30 21 26 27 21 21

CA(2, 100, 4)
53 NA 43 43 52 NA 56 56 47 45

CA(2, 20, 10)
212 180 231 210 230 NA 213 198 189 183

Table 4.2: Comparisons for 2-way coverage
1. Source = Tai et al.[98]
2. Source = Hartman et al. [53]
3. Source = Nurmela [76]

ALLPAIRS [3] in Tables 4.1-4.4. The best known bounds are shown in bold in these

tables and subsequent tables.

Table 4.1 compares our results with those reported by Yu et al. in [110]. mTCG

and mAETG produce similar results to those reported. In all of the four test

suites, however both hill climbing and simulated annealing algorithms improve on

the bounds given by these other algorithms. The hill climbing and simulated an-

nealing algorithms both produced similar lower bounds, but in our experimentation

we found that quite often the simulated annealing produced these in fewer trials.

More experimentation is needed here.

Table 4.2 compares our results with those reported by Tai et al. for IPO in [98]
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and for CTS and TConfig reported by Hartman et al. [53] as well as those obtained

from ALLPAIRS [3]. We also include a few results found by tabu search (labeled

TS) as reported by Nurmela [76]. It should be noted that the results for IPO vary

slightly between the two papers [98, 109]. We have chosen to use the results from the

journal version of this paper for consistency [98]. For these examples our algorithms

produce arrays at least as small as those produced by the IPO algorithm. In two

cases the reported commercial AETG results are smaller than ours. For the first of

these arrays, CA(2, 313), there is clearly a good algebraic construction since both

CTS and TConfig have the same bound as AETG of 15. It is possible that the

real AETG tool uses this construction also. We have results for only two of these

covering arrays using tabu search, but for one array, MCA(2, 415317229), tabu search

provides the smallest bound of any method and for the other it matches the smallest

bound found by both simulated annealing and hill climbing.

Simulated annealing consistently does as well or better than hill climbing, so we

report only those results for the next two tables. Table 4.3 compares results for

some fixed level arrays reported by Stardom in [91]. We have also included some

results from CTS for a comparisons with algebraic methods. The arrays we have

included in this table are ones for which Stardom reported a new bound. These

are arrays where there may not be an optimal algebraic construction. Therefore it

is not surprising that CTS does not perform as well for these arrays. In each case

our annealing program has improved upon his results. The results in [76] for tabu

search do not report arrays of this size. Since the results in [91] were obtained from

a similar algorithm, we attribute this to the need for better tuning of the annealing

program parameters. We have not yet fine tuned the cooling schedule which plays

a role in the quality of the final results. This is open for future work.

Table 4.4 compares our results against some known strength-three algebraic con-

structions reported by Chateauneuf et al. in [17]. For these arrays the expectation

was that it would be difficult to match the known results. One surprise was that

the mAETG algorithm found consistently smaller arrays than those reported using
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Minimum Number of Test Configurations
in Test Suite

Stardom1 mAETG SA CTS2 AP

CA(2, 16, 6) 65 70 62 88 80

CA(2, 16, 7) 88 94 87 91 110

CA(2, 16, 8) 113 120 112 120 128

CA(2, 17, 8) 116 123 114 120 128

Table 4.3: Comparisons for 2-way coverage
1. Source = Stardom[91]
2. Source = Hartman et al. [53]

the commercial AETG product. This may be due to the additional heuristic added

when choosing the first t − 1 symbols for each test suite.

As expected, our simulated annealing algorithm did not perform as well as most

of the algebraic constructions. In the case of a CA(N ; 3, 6, 6), however, we have

found a smaller array using simulated annealing. Further experimentation is needed

with a more refined algorithm. Of course, in many cases constructions are not

known (or may not exist) which is true in the last two entries of this table. For

these arrays, simulated annealing finds an optimal solution. There are very few

known constructions for mixed-level covering arrays. Therefore a fixed level array of

a larger size would need to be constructed and used in its place. This may require

more test configurations than a mixed level array found by computational search.

Additionally, a real test suite may include special seeded test configurations that are

required regardless of the interaction coverage. Once again current constructions do

not handle this issue. We address this in Chapter 6.

Sample performance results for the mTCG, mAETG and simulated annealing

algorithms are included to give a flavor for the time required to run each of these.

Table 4.5 presents run times of our three algorithms for a selection of arrays above.

Variation in the run times of these algorithms depends somewhat on program pa-

rameter settings such as cooling temperature and the value for frozen, as well as the

number of iterations performed. The performance results presented for simulated

annealing reflect the total time taken to find all arrays through a binary search pro-
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Minimum Number of Test Configurations in Test Suite

Construction1 AETG1 CTS2 mAETG SA

CA(N ; 3, 6, 3) 33 47 45 38 33

CA(N ; 3, 6, 4) 64 105 64 77 64

CA(N ; 3, 6, 5) 125 NA 125 194 152

CA(N ; 3, 6, 6) 305 343 342 330 300

CA(N ; 3, 6, 10) 1331 1508 1330 1473 1426

CA(N ; 3, 7, 5) 185 229 225 218 201

MCA(N ; 3, 324252) NA NA NA 114 100

MCA(N ; 3, 101624331) NA NA NA 377 360

Table 4.4: Comparisons for 3-way coverage
1. Source = Chateauneuf et al.[17]
2. Source = Hartman et al. [53]

CPU User Time in Seconds

mTCG mAETG SA

MCA(2, 513822) 6 58 214

MCA(2, 716151453823) 57 489 874

MCA(2, 514431125) 33 368 379

MCA(2, 6151463823) 42 376 579

CA(2, 20, 10) 1,333 6,001 10,833

CA(3, 6, 6) NA 359 13,495

Table 4.5: Comparisons of run times

cess. Therefore the numbers reported in Table 4.5 may be reduced if tighter bounds

are used as a starting point.

Clearly mTCG uses the least CPU time, while simulated annealing consumes the

most. The hardest problem presented (CA(3, 6, 6)) took simulated annealing a little

under 4 hours, but it produced a previously unknown bound. It highlights again

the need for a balance between the cost of building the test suite and the cost of

running the tests.
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4.8 Summary

We have presented a comparison of greedy algorithms, heuristic and meta-heuristic

search and algebraic constructions for covering arrays of strength two and three.

Preliminary results on hill climbing and simulated annealing for mixed level cover-

ing arrays are presented which suggest they provide tighter bounds than their greedy

counterparts. Their run times are however longer. In most cases algebraic meth-

ods were best, when they existed, but we did find one new bound using simulated

annealing. More experimentation and tuning of these algorithms is required. In ad-

dition, performance measures need to be applied to determine the overall usefulness

of each approach.
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Variable Strength Arrays

In many situations pairwise coverage is effective for testing [23]. However, we must

balance the need for stronger interaction testing with the cost of running tests. For

instance a CA(N ; 2, 5, 4) can be achieved with as little as 16 test configurations, while

a CA(N ; 3, 5, 4) requires at least 64 test configurations. In order to appropriately

use our resources we want to focus our testing where it has the most potential value.

This chapter presents variable strength interaction testing. We develop the concept,

describe a model to formalize our discussion, present some successful construction

methods and provide initial upper bounds for these objects. The results from this

chapter are published in [26, 27].

5.1 Introduction

The recognition that all software does not need to be tested equally is captured by

James Bach in the concept of risk-based testing [4]. Risk-based testing prioritizes

testing based on the probability of a failure occurring and the consequences should

the failure occur. High risk areas of the software are identified and targeted for more

comprehensive testing.

The following scenarios point to the need for a more flexible way of examining

interaction coverage.
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• We completely test a system, and find a number of components with pairwise

interaction faults. We believe this may be caused by a bad interaction at a

higher strength, i.e. some triples or quadruples of a group of components. We

may want to revise our testing to handle the “observed bad components” at a

higher strength.

• We thoroughly test another system but have now revised some parts of it. We

want to test the whole system with a focus on the components involved in

the changes. We use higher strength testing on certain components without

ignoring the rest.

• We have computed software complexity metrics on some code, and find that

certain components are more complex. These warrant more comprehensive

testing.

• We have certain components that come from automatic code generators and

have been more/less thoroughly tested than the human generated code.

• One part of a project has been outsourced and needs more complete testing.

• Some of our components are more expensive to test or to change between

configurations. We still want to test for interactions, but cannot afford to test

more than pairwise interactions for this group of components.

While the goal of testing is to cover as many component interactions as possible,

trade-offs must occur. In his chapter we present one method for handling variable

interaction strengths while still providing a base level of coverage for the entire

system. We define the variable strength covering array, provide some initial bounds

for these objects and outline a computational method for creating them.
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5.2 Example Variable Strength System

In a real test environment, one would like the flexibility to offer a guarantee that

subsets of components have higher interaction strengths than the whole system. As

defined, a covering array only guarantees a coverage of t-subsets. Instead we may

also want coverage of some subsets of size t′ for values of t′ > t.

Restricting testing to pairwise coverage does not guarantee that faults due to

three or four-way interactions will be found. A trade off has to occur between the

time and cost of testing and the required strength of guaranteed coverage. Williams

et al. [105] describe a method to quantify the coverage for a particular interaction

level. One can determine how many pairs, or n-way interactions are covered at each

stage when building a test suite. For instance if there are four components, any new

test configuration can contribute at most
(

4
2

)

, or 6 new covered pairs. Further, if

each component has three values, there are a total of
(

4
2

)

32 = 54 possible pairs that

must be covered. Therefore any one new test configuration increases coverage by at

most 11.1% [105]. A similar method is described by Dunietz et al. [44] who point

out that although we guarantee 100% two-way coverage by using a covering array

we are getting partial higher strength coverage as well.

As it is usually too expensive to test all components using three or four-way

coverage there is a benefit from doing this for part of the system. For instance,

a particular subset of components may have a higher interaction dependency or a

certain combination of components may have more serious effects in the event of

a failure. Consider a subset of components that control a safety-critical hardware

interface. We want to use stronger coverage in that area. However, the rest of our

components may be sufficiently tested using pairwise interaction. We can assign a

coverage strength requirement to each subset of components as well as to the whole

system.

For the safety critical system, we might require that the whole system has 100%

coverage for two-way interactions, while the safety-critical subset has 100% coverage
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for four-way interactions. The final test suite may, however, have 60% coverage for

four-way interactions over all components.

Component
RAID Operating Memory Disk

Level System Config. Interface

RAID 0 Linux 128 MB Ultra 160-SCSI
RAID 0 Novell 128 MB Ultra 160-SCSI
RAID 5 Linux 64 MB Ultra 160-SCSI
RAID 1 XP 128 MB Ultra 160-SCSI
RAID 0 Novell 256 MB Ultra 320
RAID 0 XP 128 MB Ultra 160-SCSI
RAID 1 Novell 256 MB Ultra 160-SCSI
RAID 0 Linux 64 MB Ultra 320
RAID 5 XP 256 MB Ultra 320
RAID 0 XP 64 MB Ultra 160-SATA
RAID 5 Novell 128 MB Ultra 320
RAID 5 XP 128 MB Ultra 160-SATA
RAID 1 Linux 256 MB Ultra 160-SCSI
RAID 5 XP 64 MB Ultra 160-SATA
RAID 0 XP 256 MB Ultra 160-SATA
RAID 1 Linux 128 MB Ultra 320
RAID 0 Novell 64 MB Ultra 320
RAID 1 Novell 64 MB Ultra 160-SATA
RAID 1 Linux 64 MB Ultra 160-SCSI
RAID 5 Novell 64 MB Ultra 160-SCSI
RAID 1 XP 256 MB Ultra 160-SATA
RAID 1 Novell 128 MB Ultra 160-SCSI
RAID 1 XP 64 MB Ultra 160-SATA
RAID 5 Linux 256 MB Ultra 320
RAID 5 Linux 128 MB Ultra 320
RAID 5 Novell 256 MB Ultra 160-SCSI
RAID 0 Linux 256 MB Ultra 160-SATA

Table 5.1: Variable strength array for Table 1.1

We return to the integrated RAID controller software described in Chapter 1.

The requirement is to test all pairwise interactions. Perhaps, however, it is known

that there are more likely to be interaction problems between the three components,

RAID level, operating system and memory configuration. One may want to test these

interactions more thoroughly than the rest. It may be too expensive to run tests

involving all three-way interactions among all components. In this instance we can
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B (OS) C (Memory config.)

D (Interface)

A (RAID level)

RAID 0
RAID 1
RAID 5

Windows XP 
Linux 
Novell 

128 MB 
256 MB

Ultra 160-SCSI
Ultra 320

Strength 2 array

Strength 3 array

Figure 5.1: Model of variable strength covering array

obtain three-way interaction testing of the first three components while maintaining

two-way coverage for the rest. We still have a minimal three-way coverage guarantee

across all the components but do not need to use 81 test configurations required for

testing all three-way interactions. The test suite shown in Table 5.1 shows a test suite

with this specification using only 27 test configurations. The first three components

(Raid level, OS and memory configuration) contain all three-way interactions, while

the entire system has three-way coverage.

5.2.1 A Theoretical Framework

In order to address this type of problem we present a new model for interaction

testing, illustrated in Figure 5.1. In this example (a modified version of the RAID

example) we have four components (A,B,C,D). Component A (RAID level) and B

(operating system) have three levels each while component C (memory configura-

tion) and D (disk interface) have two. The system has a total of 37 interaction pairs,
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Component
A B C D

RAID 0 Linux 256 MB Ultra 160-SCSI
RAID 1 XP 256 MB Ultra 320
RAID 2 XP 128 MB Ultra 160-SCSI
RAID 0 Novell 128 MB Ultra 320
RAID 1 Linux 128 MB Ultra 160-SCSI
RAID 2 Linux 256 MB Ultra 320
RAID 2 Novell 256 MB Ultra 320
RAID 1 Novell 256 MB Ultra 160-SCSI
RAID 0 XP 128 MB Ultra 320

RAID 0 XP 256 MB Ultra 160-SCSI
RAID 2 Linux 128 MB Ultra 320
RAID 1 Novell 128 MB Ultra 160-SCSI

Table 5.2: Variable strength array for Figure 5.1

and 60 interaction triples. We require that the subset {B, C, D} has three-way cov-

erage, while the entire system {A, B, C, D} is has two-way coverage. We require

100% two-way coverage and a minimal three-way coverage of 12
60

= 20%. As we

shall see, the actual three-way coverage of a test suite may be much higher. In this

example we show just one subsystem of higher coverage, but in general the model

may have multiple subsystems.

A mixed level covering array to handle 100% of two-way interactions in the

example from Figure 5.1 can be created using only nine tests. This is shown as

the first nine rows of Table 5.2. To handle all three-way interactions, as many as

18 tests are needed. To increase the strength of the strength two array to cover

all three-way interactions of {B, C, D}, we need to add only three more tests for a

total of 12. These are the last three rows shown in Table 5.2. This actually covers

42
60

= 70% of the three-way interactions for our system while covering all of the

three-way interactions for our subsystem.

Gargano, et al. [45] were the first to describe a variable strength array. They

limit their discussion to the special case in which the whole system has strength zero
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and the smaller subsets have strength two. In [23] D. Cohen et al. present the idea

of a hierarchical system for t-set coverage in AETG, but do not formalize a model

for this. They also do not elaborate on construction methods other than to suggest

an approach using the stronger subset as a seed. A software tool for incorporating

variable strength coverage was developed at IBM by Ram Biyani [52]. The tool

is called Test Optimizer for Functional Usage or TOFU. It allows one to select

the strength of coverage for different subsets of components. TOFU is currently

only available for internal use at IBM [52]. We devote the rest of this chapter to

developing these ideas further.

5.2.2 An Ad Hoc Method

Most software interaction test generators provide only a fixed level of interaction

strength. We might use this to build two separate test suites and run each indepen-

dently, but this is a more expensive operation and does not really satisfy the desired

criteria. We could instead just default to the higher strength coverage with more

tests which in some cases may be the best option, but this leads to larger test suites.

The ability to tune a test suite for specific levels of coverage is highly desirable,

especially as the number of components and levels increases. Therefore it is useful

to define and create test suites with flexible strengths of interaction coverage and to

examine some methods for building these.

The variable strength covering array model in Figure 5.1 can be viewed as a

collection of covering arrays contained inside a larger covering array. We can begin

by building each individual array separately and then combine these in order to

gain the additional coverage needed for the whole system. Or we can begin with

a covering array for the whole system and alter it to obtain the higher strength

coverage required for the designated component subsets.

We outline an ad hoc construction here for the example given in Table 5.2. In

order to construct the variable strength array we use the mAETG algorithm to

find a strength two covering array. Any of the computational methods described in
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Chapter 3 can be used for this step. We then try to remove duplicate pairs in a way

that leads to new, uncovered triples. For instance, in Table 5.2 we can see that had

the last row of the two-way coverage been (RAID 0, XP, 128 MB, Ultra 160-SCSI)

instead of (RAID 0, XP, 128 MB, Ultra 320), it could have been changed to (RAID

0, XP,128 MB, Ultra 320) with the resulting system still providing pairs (RAID 0,

Ultra 160-SCSI), (XP, Ultra 160-SCSI), (128 MB, Ultra 160-SCSI) (found in rows

0, 2 respectively). Thus we could replace the Ultra 160-SCSI with Ultra 320 without

reducing our pairwise coverage, while at the same time covering a new triple. This

step could be performed using a simulated annealing algorithm. Since all of the

interactions between component A and all other components have been covered in

the first part of the array, we can choose any valid values for that component in the

last three test configurations. In this example we used a random selection.

An alternate way to approach this is to begin by enumerating all of the inter-

actions for the higher strength subsets. For instance, we could build a mixed level

covering array of strength three for components B, C and D and then fill horizontally

by adding a column and the symbols needed so that all missing pairs are covered.

One further option is to simply extend the simulated annealing algorithm to

compute the cost as a function of both levels of interaction and build the suite

directly in that manner. Since annealing has worked well for fixed strength arrays

this is our choice of construction from now on.

Table 5.3 provides some preliminary test suite sizes for variable strength arrays

with two different strengths using simulated annealing. In this table we have re-

stricted ourselves to a single subset of higher interaction strength, but we require

a more flexible model. In the next section we address this. We present a notation

for variable strength arrays. It defines interaction test suites that have multiple dis-

joint subsets of higher interaction strength. The best method for building a variable

strength test suite is still open and the discovery of good algorithms and construc-

tions for these is an interesting problem. We discuss this problem further in the

following sections.
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Variable Strength Arrays
Base Array Subset of Higher Coverage Test Suite Size

CA(N ; 2, 11, 6) CA(N ; 3, 6, 6) 302
CA(N ; 2, 20, 4) CA(N ; 3, 9, 4) 125
CA(N ; 2, 10, 3) CA(N ; 3, 6, 3) 33
MCA(N ; 2, 514431125) MCA(N ; 3, 514235) 80
MCA(N, 2, 3541052) MCA(N ; 3, 324252) 100

Table 5.3: Test suite sizes for variable strength arrays using simulated annealing

5.3 A Model for Variable Strength Arrays

Definition 5.3.1 A variable strength covering array, denoted as a

V CA(N ; t, (v1, v2, .., vK), C), is an N × K mixed level covering array, of strength

t containing C, a vector of covering arrays each of strength > t and defined on a

subset of the K columns.

We add some restrictions to this model as an initial investigation step. We will

require that our subsets of columns are disjoint (see Figure 5.1). The more general

model (see Figure 5.2 on page 98) allows for overlapping subsets of columns, but we

leave the construction of examples of this type as future work. In order to simplify

the discussion for the specific covering arrays presented, we reorder the components

of the array so that the disjoint subsets are consecutive from left to right. This

ordering is restricted to the representation of the array. The actual column ordering

of the array is arbitrary.

An example of a V CA(27; 2, 3922, (CA(3, 33), CA(3, 33), CA(3, 33))) can be seen

in Table 5.4. The overall array is a mixed level array of strength two with nine

components containing three symbols and two components containing two. There

are three sub-arrays each with strength three. All three-way interactions among

components 0 − 2, 3 − 5, 6 − 8 are included. All two-way interactions for the whole

system are also covered. This has been achieved with 27 rows which is the optimal

size for a CA(3, 33). A covering array that would cover all three-way interactions

for all 11 components, on the other hand, might need as many as 52 rows.
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0 2 2 0 1 2 2 2 2 0 1
0 1 2 1 2 0 1 1 0 0 0
1 2 2 2 1 0 2 1 0 0 0
2 1 0 0 0 2 2 0 0 0 1
2 2 0 2 2 0 1 2 1 1 0
2 0 0 0 2 2 2 2 1 1 0
1 0 0 1 1 2 1 2 0 1 0
0 0 0 0 2 1 0 0 1 1 1
2 0 2 2 0 0 2 0 1 0 1
1 2 0 0 1 0 0 2 1 0 1
1 0 2 2 1 2 1 1 2 1 0
0 1 0 0 0 0 1 1 1 1 1
2 2 1 2 1 1 0 0 2 0 1
0 0 2 2 2 1 1 2 2 0 0
1 2 1 2 0 2 0 1 1 0 0
1 0 1 1 0 1 1 0 1 0 1
2 1 2 2 0 1 0 2 0 1 1
0 2 1 1 2 1 2 2 0 1 1
2 0 1 1 0 0 0 0 0 0 1
0 1 1 1 0 2 1 0 2 0 0
1 1 2 0 1 1 0 1 0 0 0
2 1 1 0 0 1 2 1 2 0 0
0 0 1 1 1 0 2 1 1 1 1
1 1 1 1 1 1 2 0 2 1 0
0 2 0 1 2 2 0 2 2 1 0
1 1 0 2 2 2 1 0 0 0 1
2 2 2 0 2 0 0 1 2 1 1

Table 5.4: V CA(27; 2, 3922, (CA(3, 33), CA(3, 33), CA(3, 33)))

5.4 Construction Methods

We chose to extend our simulated annealing algorithm to build variable strength

covering arrays. Good data structures are required to enable the relative cost of the

new feasible solution to be calculated efficiently, and the transition (if accepted) to

be made quickly. We build an exponentiation table prior to the start of the program.

This allows us to approximate the transition probability value using a table lookup.

We use ranking algorithms from [64] to hold the values of our t-sets. This makes

it possible to generalize our code easily for different strengths without changing the

base data structures. When working with variable strength covering arrays it is an

important feature. To calculate the change in cost for each transition, we do not
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need to recalculate all of the t-sets in a test configuration, but instead only calculate

the t-sets that occur with the changed value. To accomplish this, we gather all t-1

subsets that do not include the “changed” component and combine each of these

with our changed component. This method is described more thoroughly in Chapter

3. The delta in our cost function is counted as the change in t-sets from our current

solution. Since at any point we can make changes to both the base array and one

of the higher strength arrays, these changes are added together. In our model the

higher strength arrays are disjoint. Therefore, to create a variable strength array

with multiple subsets of higher strength, we do not need to do any more work than

for a single subset of higher strength. This is because only one subset of higher

strength can be affected by any single change of a symbol during annealing. The

cost of calculating a change always involves at most two cost calculations; one for

the base array and one for the higher strength array.

A constant is set to determine when our program is frozen. This is the number

of consecutive trials allowed where no change in the cost of the current solution has

occurred. For most of our trials this constant has been set to 1,000. The cooling

schedule is very important in simulated annealing. If we cool too quickly, then

we freeze too early because the probability of allowing a worse solution drops too

quickly. If we cool too slowly or start at too high a temperature, then we allow

too many poor moves and fail to make progress. If we start at a low temperature

and cool slowly, then we can maintain a small probability of a bad move for a long

time, thereby allowing us to avoid a frozen state, and at the same time continuing

to make progress. We have experimented using fixed strength arrays and compared

our results with known algebraic constructions (see [27]). We have found that a

starting temperature of approximately 0.20 and a slow cooling factor, α, of between

0.9998 and 0.99999, which applied every 2,500 iterations, works well. Using these

parameters, the annealing algorithm completes in a “reasonable” computational

time on a PIII 1.3GHz processor running Linux. For instance, the first few V CA’s

in Table 5.5, complete in seconds, while the larger problems, such as the last V CA
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in Table 5.5, complete within a few hours.

As there is randomness inherent in this algorithm, we run the algorithm multiple

times for any given problem.

5.5 Results

Table 5.5 gives the minimum, maximum and average sizes obtained after 10 runs of

the simulated annealing algorithm for each of the associated V CA’s. Each of the 10

runs uses a different random seed. A starting temperature of 0.20 and a decrement

parameter of 0.9998 is used in all cases. In two cases a smaller sized array was

found during the course of our overall investigation, but was not found during one

of these runs. These numbers are included in the table as well and labeled with an

asterisk, since these provide a previously unknown bound for their particular arrays.

In each case we show the number of tests required for the base array of the single

lower strength. We then provide some examples with variations on the contents

of C. Finally we show the arrays with all of the components involved in a higher

strength coverage. We have only shown examples using strength two and three,

but our methods should generalize for any strength t. A sample of these arrays are

included in the Appendix.

What is interesting in Table 5.5 is that the higher strength covering arrays often

drive the size of the final test suite. Such is the case in the first and second V CA

groups in this table. We can use this information to make decisions about how many

components can be tested at higher strengths. Since we must balance the strength

of testing with the final size of the test suite we can use this information in the

design process.

Of course there are cases where the higher strength covering arrays do not deter-

mine the final test suite size since the number of test cases required is a combination

of the number of levels and the strength. In the last V CA group in Table 5.5 the

two components each with 10 levels require a minimum of 100 test cases to cover
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VCA C Min Max Avg

Size Size Size

V CA(2, 315, C) ( ) 16 17 16.1
(CA(3, 33)) 27 27 27
(CA(3, 33),
CA(3, 33)) 27 27 27
(CA(3, 33),
CA(3, 33),
CA(3, 33)) 27 27 27
(CA(3, 34)) 27 27 27
(CA(3, 35)) 33 33 33
(CA(3, 34),
CA(3, 35),
CA(3, 36)) 33*

34 35 34.8
(CA(3, 36)) 33*

34 35 34.9
(CA(3, 37)) 41 42 41.4
(CA(3, 39)) 50 51 50.8
(CA(3, 315)) 67 69 67.6

V CA(2, 435362, C) ( ) 36 36 36
(CA(3, 43)) 64 64 64
(MCA(3, 4352)) 100 104 101
(CA(3, 53)) 125 125 125
(CA(3, 43),
CA(3, 53)) 125 125 125
(MCA(3, 435361)) 171 173 172.5
(MCA(3, 5162)) 180 180 180
(MCA(3, 435362)) 214 216 215

V CA(2, 320102, C) ( ) 100 100 100
(CA(3, 320)) 100 100 100
(MCA(3, 320102)) 304 318 308.5

Table 5.5: Table of sizes for variable strength arrays after 10 runs

* The minimum values for these VCA’s were found during a separate set of experiments

all pairs. In this case we can cover all of the triples from the 20 preceding compo-

nents with the same number of tests. In such cases, the quality of the tests can be

improved without increasing the number of test cases. We can set the strength of

the 20 preceding components to the highest level that is possible without increasing

the test count.

Both situations are similar in the fact that they allow us to predict a minimum

size test suite based on one of the covering arrays in the system. Since there are
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Strength 5 array

Strength 3 array

Strength 
4 array

Strength 
3 array

Strength 2 array

Figure 5.2: Alternative model for a variable strength covering array

better known bounds for fixed strength arrays we can use this information to drive

our decision making processes in creating test suites that are both manageable in

size while providing the highest possible interaction strengths.

5.6 Summary

We have presented a combinatorial object, the variable strength covering array,

which can be used to define software component interaction tests, and have discussed

one computational method to produce them. We have presented some initial results

with sizes for a group of these objects. These arrays allow one to guarantee a

minimum strength of overall coverage while varying the strength among disjoint

subsets of components. Although we present these objects for their usefulness in

testing component based software systems they may be of use in other disciplines

that currently employ fixed strength covering arrays.

The constraining factor in the final size of the test suite may be one of the higher

strength covering arrays. We can often get a second level of coverage for almost
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no extra cost. We see the potential to use these when there is a need for higher

strength, but we cannot afford to create an entire array of higher strength due to

cost limitations.

Where the constraining factor is the large number of values in a set of components

at lower strength, it may be possible to increase the strength of some subset of the

components without additional cost, improving the overall quality of the tests.

One method of constructing fixed strength covering arrays described by Chateauneuf

et al. [17] is to combine smaller arrays or related objects and to fill the uncovered

t-sets to complete the desired array. Since the size of a V CA may be dependent on

the higher strength arrays, we believe that building these in isolation followed by

annealing or other processes to fill in the missing lower strength t-sets will provide

fast and efficient methods to create optimal variable strength arrays. We explore

some of these methods in Chapter 6. “Seeding” our test suite with the most con-

strained object first often creates smaller test suite sizes. Further experimentation

is needed here.

We end this chapter by remarking that our model for variable strength covering

arrays is a starting point. The best model in a practical software test environment

is still unknown. One alternate way to view this model is shown in Figure 5.2. In

this case we have overlapping areas of coverage. The entire system has strength

two coverage. There are four sub-systems that have higher strength. Two of these

have overlapping instead of disjoint components. Examining which model is the best

match for real software testing problems is an open and interesting topic. We leave

this to future work.
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Chapter 6

Cut-and-Paste Techniques for

Strength Three Covering Arrays

This chapter moves away from the traditional algebraic and computational methods

presented so far. It brings us a step closer to a toolkit for software testers. It merges

the ideas and concepts from previous chapters to develop new methods for con-

structions of covering arrays. It uses algebraic methods to decompose the problems

thereby requiring only small building blocks. It does not enforce the mathematical

rigidity these often require. Instead it extends the role of search algorithms to gen-

eral tools for building components. When these do not exist mathematically, the

“closest” object can be built instead. It explores the use of meta-heuristic search to

build partial covering arrays, difference covering arrays, to include seeded test con-

figurations, and to find complete test suites with added constraints such as disjoint

rows. The results in this chapter have been published in [28, 29]. Examples of the

objects presented in this chapter are given in the Appendix.

6.1 Introduction

In Chapter 2 we cite empirical evidence that suggests arrays of higher strength are

desirable in many contexts. In Chapter 4 we showed that simulated annealing per-

101



CHAPTER 6. CUT-AND-PASTE TECHNIQUES

forms well when the search space is relatively small and there are abundant solutions.

In this case annealing often produces smaller test suites than other computational

methods and sometimes improves upon known combinatorial constructions. But as

the search space increases and the density of potential solutions becomes sparser

the algorithm may fail to find a good solution or may require extremely long run

times. It often cannot do as well as combinatorial constructions, especially when

t=3. Careful tuning of the parameters of temperature and cooling improves upon

the results, but at a potentially high computational cost. Recursive and direct com-

binatorial constructions often provide a better bound in less computational time

than meta-heuristic search [17, 53, 95]. However, they are not as general and must

be tailored to the problem at hand. An in-depth knowledge is often needed to decide

which construction best suits a particular problem.

In this chapter we develop a new strategy, augmented annealing, which takes

advantage of the strengths of both algebraic constructions and computational search.

The idea of using small building blocks to construct a larger array is used often in

combinatorial constructions. We refer to these techniques in general as cut-and-paste

methods. But techniques to obtain a general solution often result in objects that

are larger than need be. As our aim is to construct an individual object (and not

prove the general existence of a class of objects), we can relax the construction and

build an object that fits our criteria.

In the rest of this chapter we use combinatorial constructions and augment them

with meta-heuristic search to construct strength three arrays. We have used this

method successfully to construct objects with bounds lower than those of simulated

annealing alone and in many cases have improved upon results for known combi-

natorial constructions [29]. Note that our method does not hinge on the use of

simulated annealing as the computational search technique. Any search technique

may be substituted without changing the basic paradigm.
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6.2 Augmented Annealing

We outline the primary ideas in augmented annealing next. Details of this process

are given in Section 6.4. Consider a typical recursive construction. The problem is

decomposed by using a “master” structure that is used to determine the placement

of certain “ingredients”. In this prototype scheme, a number of fatal problems

can arise. A decomposition imposed by the master may not cleanly separate the

ingredients, so that ingredients overlap or interact. The character and extent of the

interaction results in either a specialized definition of allowed ingredients, or (as in

our covering problem) additional coverage not required in the problem statement.

Combinatorial constructions focus on proving general results, and hence often permit

an overlap that is asymptotically small. However, for instances that are themselves

small, the overlap can mean the difference between a good solution and a poor one.

Even more severe problems arise. It may happen that in a combinatorial con-

struction, we have no general technique for producing the needed ingredients. When

this occurs, the construction simply fails, despite its “success” at constructing a large

portion of the object sought. Current techniques often abandon the combinatorial

construction at this point and employ computational search.

Augmented annealing suggests a middle road. We use a combinatorial construc-

tion to decompose the problem, but then use simulated annealing (or any other

search technique) to:

1. produce ingredients for which no combinatorial construction is known;

2. minimize overlap between and among ingredients; and

3. complete partial structures (seeded tests) when no combinatorial technique for

completion is available.

This enables us to use combinatorial decompositions to reduce a problem to a number

of smaller subproblems, on which simulated annealing can be expected to be both

faster and more accurate than on the problem as a whole. By having simulated
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annealing use knowledge about which t-tuples really need to be covered, we avoid

much duplicate coverage in general constructions.

Kuhfeld [65] describes a use of simulated annealing to select parameters for gen-

eral constructions, and to iteratively improve upon solutions found. This is in-

corporated into a macro written for the SAS statistical software application called

“%MktEx”. This macro builds a variety of experimental designs for market research

problems. It iterates through a series of steps, starting with algebraic constructions.

It continues until the best design is found for a set of parameters and restrictions.

Some of the iterations may include simulated annealing [65].

In the remainder of this chapter we illustrate this idea using three combinatorial

constructions; the first class of constructions is discussed in [29], while the second

and third are discussed in [28].

6.3 Constructions

We present several combinatorial constructions in this section that involve decom-

posing the covering array into smaller objects. We extend the “traditional” approach

used in recursive constructions by allowing small pieces to be built using computa-

tional search.

6.3.1 Ordered Design Construction

Definition 6.3.1 An ordered design ODλ(t, k, v) is a λ ·
(

v
t

)

· t! × k array with v

entries such that

1. each column has v distinct entries, and

2. every t columns contain each row tuple of t distinct entries precisely λ times.

When λ = 1 we write OD(t, k, v).

An OD(3, q+1, q+1) exists when q is a prime power [32]. We use an ordered design

as an ingredient for building a CA(3, q + 1, q + 1) since it already covers all triples
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with distinct entries, having the minimal number of blocks. This handles many

but not all of the triples required. The covering array is completed by covering the

remaining triples. We describe a general construction next.

Construction 1 CAN(3, q + 1, q + 1) ≤ q3 − q +
(

q+1
2

)

× CAN(3, q + 1, 2) when q

is a prime power.

To create a CA(3, q + 1, q + 1), begin with a OD(3, q + 1, q + 1) of size N3 =

(q + 1) × q × (q − 1) = q3 − q. This covers all triples of the form (a, b, c) where

a 6= b 6= c 6= a. To complete the covering array we need to cover all of the triples of

the form (a, a, b), (a, b, b), (a, b, a) and (a, a, a). These are exactly the triples covered

by a CA(N2; 3, q + 1, 2) on symbol set {a, b}. Since a and b can be any of
(

q+1
2

)

combinations we append
(

q+1
2

)

CA(N2; 3, q + 1, 2)s to the N3 rows of the ordered

design. This gives us a CA(3, q + 1, q + 1).

Unnecessary coverage of triples occurs. In fact, any triple of the form (a, a, a)

is covered at least q times rather than once. We therefore relabel entries in the

CA(N2; 3, q + 1, 2)s to form one constant row, i.e. (a, a, .., a) in each. We can do

this so that each of these constant rows will contain triples already covered in at

least one other of the CA(N2; 3, q+1, 2). Deleting them reduces the number of rows

required by
(

q+1
2

)

. We can save even more:

Construction 2 CAN(3, q +1, q +1) ≤ q3− q +
(

q+1
2

)

×CAN(3, q +1, 2)− (q2−1)

when q is a prime power and there are two disjoint rows in the CA(3, q + 1, 2).

In Construction 1 we exploit overlap in coverage of triples that occurs if each of

the CA(N2; 3, q+1, 2)s has two disjoint rows. In this case we re-map the two disjoint

rows, without loss of generality, to the form (a, a, ..., a) and (b, b, ..., b). We remove

the 2 ×
(

q+1
2

)

= q2 + q rows and add back in q + 1 rows of the form (a, a, ..., a).

We give an example using CA(3, 6, 6). The ordered design has 120 rows. There

are 15 combinations of two symbols. In Construction 1, we create a CA(3, 6, 2) with

12 rows. We therefore add back in 180 rows. This gives us a CA(3, 6, 6) of size 300.
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This is smaller than the bound reported by a construction in [17], and matches that

found by annealing in [27]. Removing 15 constant rows lowers this bound to 285.

For Construction 2, we find a CA(12; 3, 6, 2) having two disjoint rows (see Table

6.4). Therefore we remove 30 rows of the type (a, a, ..., a) for a total of 270 rows.

We add back in six rows, one for each symbol, to achieve a covering array of size

276. This improves on both reported bounds above.

We generalize further.

Definition 6.3.2 A (2,1)-covering array, denoted by TOCA(N ; 3, k, v; σ) is an N×

k array containing σ or more disjoint constant rows, in which every N ×3 sub-array

contains every 3-tuple of the form (a, a, b), (a, b, a), and (b, a, a) with a 6= b, and

every 3-tuple of the form (a, a, a).

Definition 6.3.3 TOCAN(3, k, v; σ) denotes the minimum number N of rows in

such an array.

Definition 6.3.4 A set B of subsets of {1, . . . , k} is a linear space of order k if

every 2-subset {i, j} ⊆ {1, . . . , k} appears in exactly one B ∈ B.

Construction 3 Let q be a prime power. Let B = {B1, . . . , Bb} be a linear space

on K = {1, . . . , k}. Let L ⊆ K, where L can possibly be the empty set, ∅. Suppose

that for each Bi ∈ B there exists a TOCA(Ni; 3, q + 1, |Bi|; |Bi ∩ L|). Then there

exists a CA(q3 − q + |L| +
∑b

i=1(Ni − |Bi ∩ L|); 3, q + 1, q + 1).

We start with an OD(q3−q; 3, q+1, q+1) and for each Bi ∈ B, we construct the

TOCA on the symbols of Bi with the constant rows (to be removed) on the symbols

of Bi ∩ L. Then |L| constant rows complete the covering array.

6.3.2 Constructing an OD

There are two problems with the previous construction. The first is that we must

construct the ordered design (i.e. the existence is not enough) if we want to use this
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+ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 5 3 7 8 6
2 2 0 1 5 3 4 8 6 7
3 3 4 5 6 7 8 0 1 2
4 4 5 3 7 8 6 1 2 0
5 5 3 4 8 6 7 2 0 1
6 6 7 8 0 1 2 3 4 5
7 7 8 6 1 2 0 4 5 3
8 8 6 7 2 0 1 5 3 4

Table 6.1: GF(9) addition table

in a practical environment. Here we outline a method which has been adapted from

[12]. Let q be a prime or power of a prime, and set Q = {0, 1, . . . , q − 1}. We add

a (q + 1)st symbol ∞ to this set. Now we generate certain permutations defined on

Q∪{∞} as follows. Choose all possible 4-tuples of values (a, b, c, d) where b, c, d ∈ Q

and a ∈ {0, 1} subject to the conditions:

1. when a = 1, include all permutations where d 6= b × c; and

2. when a = 0, include all permutations with c = 1 and b 6= 0.

For each 4-tuple generated we make a test configuration in the following way.

Q ∪ {∞} indexes the components of the test configuration. For component x, we

set the value ,m, using these rules:

1. m = a/b if x = ∞, and b 6= 0;

2. m = ∞ if x = ∞ and b = 0;

3. m = ∞ if bx + d = 0; and

4. m = (ax + c)/(bx + d) for all other cases.

In order to do the arithmetic for both of these steps, the set Q needs some

structure. The easiest case is when q is a prime. Then Q is the set of integers

modulo q. Multiplying and adding are the same as usual but the result is reduced

107



CHAPTER 6. CUT-AND-PASTE TECHNIQUES

× 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 1 6 8 7 3 5 4
3 0 3 6 7 1 4 5 8 2
4 0 4 8 1 5 6 2 3 7
5 0 5 7 4 6 2 8 1 3
6 0 6 3 5 2 8 7 4 1
7 0 7 5 8 3 1 4 2 6
8 0 8 4 2 7 3 1 6 5

Table 6.2: GF(9) multiplication table

0 1 2 3 4 5 6 7 8
NA 1 2 4 3 7 8 5 6

Table 6.3: GF(9) inverses

modulo q. To divide we just multiply by the inverse, i.e. a/b = a× b−1. We can use

the Extended Euclidean Algorithm to find inverses modulo q when q is prime [64].

When q is a prime power, we must use a finite field to multiply, add and find

inverses. We do not attempt to describe the construction of a finite field here, but

provide the addition, multiplication and inverse tables used for q = 9 in Tables 6.1-

6.3. In these tables GF(9) stands for Galois Field of order 9. We can use any of a

number of algebraic computer packages to produce a finite field, or alternatively, we

can create one by hand (see [64]).

The second problem is that we must be able to determine the existence of two

covering arrays with disjoint rows and then construct these. There is no general

proof of the existence of these arrays. We have instead used simulated annealing to

construct these and present them in Tables 6.4-6.5 on page 119.

6.4 Augmented Annealing Process

In the previous section we described a construction using an ordered design, which

can produce covering arrays smaller than those obtained from the best known al-

gebraic constructions. There are two problems that have been mentioned. Each

108



CHAPTER 6. CUT-AND-PASTE TECHNIQUES

Define Decomposition

For each object required:

Map objects to 
correct symbol set

Join objects together

1) define initialization t-sets
2) define seeded test cases
3) run simulated annealing

covering array

Figure 6.1: Augmented annealing process

may be handled differently by a software tester and a mathematician. The software

tester must actually construct these arrays, not just prove they exist. In this case,

the construction of an ordered design requires a separate algorithm (see Section

6.3.2) and may require the use of finite field arithmetic. The second problem, which

is imperative for proof of existence is probably less worrisome for the software tester

but imperative for the mathematician.

To solve both of these problems one can use simulated annealing, “augmented”

with pre-processing and post-processing phases. This provides the facility to decom-

pose the problem and then build each object required by the constructions using only

one algorithm. Furthermore it does not require proofs of existence. We can use this

process to build partial covering arrays or seeded covering arrays.

The augmented annealing process (shown in Figure 6.1) begins by defining the

decomposition for the object to be constructed. Each required object is then built

using simulated annealing. As part of the process we can build objects where some
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Simulated Annealing for Covering Arrays

Seeded Test
Cases

Initialization
t-sets

Mapper

Joiner

Pre-process

Post-process

Figure 6.2: Augmented annealing modules

portion is fixed (seeding), or define t-sets that are not required to be covered by the

annealing process (initialization t-sets). After each object is created the pieces are

combined together in a mapping and joining phase. To achieve augmented annealing

we have added several modules to the simulated annealing program (see Figures 6.2

and 6.3).

We present a method below to avoid the ordered construction using augmented

annealing. For some of the smaller cases such as CA(3, 6, 6) this method works very

well. On larger problems using the actual construction certainly is preferred if the

test suite size is of importance, but if the only toolkit the tester has is simulated

annealing then this method is one which can be employed.

In the second case proving that we have a CA(3, 6, 2) with two disjoint rows can

be done using heuristic search. If the search produces an array of slightly larger size,

then we can nonetheless get a nearly optimal test suite that appears to be smaller

than the one built from straight annealing. We address the specifics of each module

and how to augment the simulated annealing program to handle these two problems

next. In addition we provide some constructions using the augmented annealing
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INITIALIZATION  t−sets SEEDED Test Cases

MAPPER JOINER

AUGMENTED ANNEALING IN PRACTICE

Create OD by adding all triples

NOT of type (a,b,c)

Create CA(N;3,q+1,2) with 

Combine: OD, CA’s and 

2 disjoint rows

Remap CA(N;3,q+1,2) to

create all CA’s with 2 symbols q+1 rows of type (a,a,...,a)

Figure 6.3: Applying augmented annealing to construction 3

algorithm to improve further upon the bounds given above.

6.4.1 Modules

The initialization method reads in a subset of t-sets and counts these as covered. The

annealing proceeds to build a potentially incomplete covering array since it believes

these initialization t-sets are not needed. Therefore a move to a feasible solution

that adds one of these t-sets will not improve our solution and is rarely chosen.

We do not explicitly exclude these from being covered, but see this as a potential

further enhancement. We can use this to build an ordered design of a small size,

by initializing it with all triples which have repeated symbols, i.e. (a, a, b) and to

build partial arrays that cover all triples excluding those of type (a, b, c) found in

the ordered design. In our experimentation we have found that the second problem

is easier for annealing than the first where fewer solutions exist in the search space.

We believe this can be used in other cut-and-paste constructions allowing us to build

individual partial arrays of other types.
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The AETG system includes the ability to add seeded test configurations to a

test suite [23]. These are test configurations that the tester wants to run each time,

regardless of coverage. In any real test situation, one should have the ability to

choose a set of tests that must be run. We have included the ability to add seeded

test configurations to our program. It counts these as part of the covering array to

be built, but it does not alter them. The seeds are fixed, i.e. no changes can be made

to their values during annealing. We can use seeded test configurations that span

entire rows of the array or partial rows of the array. In this case the non-fixed part

of the test configurations can be changed. The covered t-sets are counted, but the

program must do all of its annealing excluding these positions. We use this module,

for example, to seed the arrays with disjoint rows.

The symbol mapping for a covering array is arbitrary and can be re-mapped as

long as we use v unique symbols for each column of the covering array. We see

this in Figure 2.4 on page 23. When we build the smaller covering arrays with

disjoint rows, we may want to use the same array repeatedly, with different symbol

mappings. Therefore, a mapper is used to translate arrays from one symbol set to

another.

Lastly, when building test suites using cut and paste techniques, such as those

presented here, we end up with pieces that must be merged together. A joiner

module that appends test suites together both horizontally and vertically has been

added for this purpose.

6.4.2 Roux-type Constructions

In [89], a theorem is presented from Gilbert Roux’s Ph.D. dissertation. Figure 6.4

is an illustration of this construction.

Theorem 6.4.1 CAN(3, 2k, 2) ≤ CAN(3, k, 2) + CAN(2, k, 2).

Proof. To construct a CA(3, 2k, 2), we begin by placing two CA(N3, 3, k, 2)s side

by side. We now have a N3 × 2k array. If one chooses any three columns whose
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0   0    0     0    0   0

0   0    1     0    0   1

0   1    0     0    1   0

0   1    1     0    1   1

1   0    0     1    0   0

1   0    1     1    0   1

1   1    0     1    1   0

1   1    1     1    1   1

0   1    0     1    0   1

1   1    1     0    0   0

1   0    0     0    1   1

0   0    1     1    1   0

A A

B B

A=CA(3,3,2)

B=CA(2,3,2)

Figure 6.4: Original Roux construction

indices are distinct modulo k, then all triples are covered. The other type of se-

lection contains a column x from among the first k, its copy, x′, from among the

second k, and a further column y. The triples that need to be covered are of the

form (a, a, a), (b, b, b), (a, a, b), (b, b, a), (a, b, a), (b, a, b), (a, b, b), (b, a, a). We can as-

sume without loss of generality that the column index of x is less than the column

index of y and that y is selected from the second array. All pairs of symbols will

occur between x and y. The first four triples occur because the first two columns

are identical. To handle the rest, we append two CA(N2, 2, k, 2)s side by side, the

second being the bit complement of the first. All pairs of symbols between x and y

occur. The first two columns are bit complements of each other, which covers that

last four triples. This is a covering array of size N2 + N3. �

Chateauneuf et al. [17] prove a generalization, which we repeat here.

Theorem 6.4.2 CAN(3, 2k, v) ≤ CAN(3, k, v) + (v − 1)CAN(2, k, v).

Proof. Begin as in Theorem 6.4.1 by placing two CA(N3; 3, k, v)s side by side. Let

113



CHAPTER 6. CUT-AND-PASTE TECHNIQUES

C be a CA(N2; 2, k, v). Let π be a cyclic permutation of the v symbols. Then for

1 ≤ i ≤ v − 1, we append N2 rows consisting of C and πi(C) placed side-by-side.

The verification is as for Theorem 6.4.1. �

Martirosyan and Trung [69] generalize this for cases when t > 3. We now develop

a substantial generalization to permit the number of components to be multiplied

by ℓ ≥ 2 rather than two; this is the multi-Roux construction 1. To carry this out,

we require another combinatorial object. Let Γ be a group of order v, with ⊙ as its

binary operation.

Definition 6.4.1 A difference covering array D = (dij) over Γ, denoted by

DCA(N, Γ; 2, k, v), is an N × k array with entries from Γ having the property that

for any two distinct columns j and ℓ, {dij ⊙ d−1
iℓ : 1 ≤ i ≤ N} contains every

non-identity element of Γ at least once.

When Γ is abelian, additive notation is used, explaining the “difference” terminology.

We shall only employ the case when Γ = Zv, and omit it from the notation. We

denote by DCAN(2, k, v) the minimum N for which a DCA(N, Zv; 2, k, v) exists.

Theorem 6.4.3 CAN(3, kℓ, v) ≤ CAN(3, k, v) + CAN(3, ℓ, v) + CAN(2, ℓ, v) ×

DCAN(2, k, v).

Proof. We suppose that the following all exist:

1. a CA(N ; 3, ℓ, v) A;

2. a CA(M ; 3, k, v) B;

3. a CA(R; 2, ℓ, v) F ; and

4. a DCA(Q; 2, k, v) D.

1This is called k-ary Roux in [28].
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C1

C2

C3

N Rows

M Rows

RQ Rows

1                .  .  .             kl

k  copies of A

l copies of B

Figure 6.5: multi-Roux construction

We produce a CA(N + M + QR; 3, kℓ, v) C (see Figure 6.5). For convenience, we

index the kℓ columns of C by ordered pairs from {1, . . . , k}×{1, . . . , ℓ}. C is formed

by vertically juxtaposing three arrays, C1 of size N × kℓ, C2 of size M × kℓ, and C3

of size QR × kℓ. We describe the construction for each in turn.

C1 is produced as follows. In row r and column (i, j) of C1 we place the entry

in cell (r, j) of A. Thus C1 consists of k copies of A placed side by side. This is

illustrated in Figure 6.6.

C2 is produced as follows. In row r and column (i, j) of C2 we place the entry in

cell (r, i) of B. Thus C2 consists of ℓ copies of the first column of B, then ℓ copies

of the second column, and so on (see Figure 6.7).

To construct C3 (see Figure 6.8), let D = (dij : i = 1, . . . , Q; j = 1 . . . , k) and F =

(frs : r = 1, . . . , R; s = 1, . . . , ℓ). Let π be the cyclic permutation (0, 1, 2, . . . , v − 1)

on the v symbols of F. Then in row (i − 1)R + r and column (j, s) of C3 place the

entry πdij (frs), where πdij (frs) = frs + di,j mod v.

We verify that C is indeed a CA(N + M + QR; 3, kℓ, v). The only issue is to
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. . .

1            .   .  .                     l

A

CA(N;3,l,v)

1
.
.
.
N

A A A

k copies

Figure 6.6: Construction of C1

. . .

1            .   .  .                     k

B

CA(N;3,k,v)

1
.
.
.
M

l copies

b11 b11             . . .                b11  
b21 b21             . . .                b21  

bM1 bM1            . . .             bM1  bM2 bM2            . . .              bM2  

b12 b12             . . .               b12  
b22 b22             . . .               b22  b2k b2k             . . .               b2k  

b1k b1k             . . .               b1k  

bMk bMk            . . .             bMk  

Figure 6.7: Construction of C2

ensure that every 3 columns of C cover each of the v3 3-tuples. Select three columns

(i1, j1), (i2, j2), and (i3, j3) of C. If j1, j2 and j3 are all distinct, then these three

columns restricted to C1 arise from three different columns of A, and hence all 3-

tuples are covered. Similarly, if i1, i2, and i3 are all distinct, then restricting the

three columns to C2, they arise from three distinct columns of B and hence again

all 3-tuples are covered.

So we suppose without loss of generality that i1 = i2 6= i3 and j1 6= j2 = j3. The

structure of C3 consists of a Q × k block matrix in which each copy is a permuted

version of F (under a permutation that is a power of π). That i1 = i2 indicates
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. . .

1            .   .  .                     k

D

1
.
.
.
Q

f11+d11            . . .           f1l+d11  

. . .

.

.

.

.

.

.

.

.

.

F

1
.
.
.
R

1           .   .  .                     l

f21+d11            . . .           f2l+d11  

fR1+d11            . . .           fRl+d11  

(1,1) (1,l) (2,1)

f11+d12           . . .           f1l+d12  

f21+d12           . . .           f2l+d12  

fR1+d12           . . .           fRl+d12  

f11+dQ1            . . .           f1l+dQ1  

f21+dQ1            . . .           f2l+dQ1  

fR1+dQ1            . . .           fRl+dQ1  

(k,1)(2,l)

f11+d1k           . . .           f1l+d1k  

f21+d1k           . . .           f2l+d1k  

fR1+d1k           . . .           fRl+d1k  

(k,l)

1

.

.

.

RQ

f11+d  
Qk           . . .           f1l+dQk  

f21+dQk           . . .           f2l+dQk  

fR1+dQk          . . .           fRl+dQk  

f11+dQ2           . . .           f1l+dQ2  

f21+dQ2           . . .           f2l+dQ2  

fR1+dQ2           . . .           fRl+dQ2  

{ di,j+fr,s mod v }

  

Figure 6.8: Construction of C3

that two columns are selected from one column of this block matrix, and that i3 is

different means that the third column is selected from a different column of the block

matrix. Now consider a selection (σ1, σ2, σ3) of symbols in the three chosen columns

of C (actually, of C3). Each selection of (σ1, σ2) appears in each block of the Q

permuted versions of F appearing in the indicated column of the block matrix. Now

suppose that σ3 = πi(σ2); since π is a v-cycle, some power of π satisfies this equality.

Considering the permuted versions of F appearing in the columns corresponding to

i3, we observe that since D is an array covering all differences modulo v, in at least

one row of the block matrix, we find that the block X in column i3 and the block Y

in column i2 satisfy Y = πi(X). Hence every choice for σ3 appears with the specified

pair (σ1, σ2). �
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This can be improved upon: we do not need to cover 3-tuples when σ3 = σ2

since these are covered in C1. Nor do we need to cover 3-tuples when σ1 = σ2, since

these are covered in C2. So we can eliminate some rows from F as we do not need

to cover pairs whose symbols are equal in F . This modification further improves on

the bounds.

6.4.3 Construction Using Generalized Hadamard Matrices

Augmented annealing affords the opportunity to develop “constructions” when some

of the “ingredients” are not known at all. We illustrate this next. The basic plan

is to construct a large portion of a covering array to use as a seed. Consider an

OAλ(2, k, v). Each 2-tuple is covered exactly λ times. Some 3-tuples are also covered.

Indeed, among the v 3-tuples containing a specified 2-tuple, at least one and at most

min(v, λ) are covered. If λ of the v are covered for every 2-tuple, then the orthogonal

array is supersimple. Little is known about supersimple orthogonal arrays except

when k is small. However our concern is only that “relatively many” triples are

covered using “relatively few” rows. This is intentionally vague, since our intent is

only to use the rows of the orthogonal array as a seed for a strength three covering

array. A natural family of orthogonal arrays to consider arise from generalized

Hadamard matrices (see [32]). We have no assurance that the resulting orthogonal

arrays are supersimple, but instead choose generalized Hadamard matrices since

they provide a means to cover many of the triples to be covered by the covering

array. Although orthogonal arrays in general may be useful in constructions here,

those from generalized Hadamard matrices appear frequently to cover either only

one, or all v, of the triples containing a specified pair; this regularity appears to be

beneficial. In the next section, we report computational results using these as seeds

in annealing. The most important remark here is that, given such a generalized

Hadamard matrix, it is not at all clear what “ingredients” are needed to complete

it to a covering array in general, despite the fact that in any specific case we can

easily enumerate the triples left uncovered.
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0 0 0 0 0 0

1 1 1 1 1 1

0 1 1 0 1 0

0 0 1 1 0 1

0 0 0 0 1 1

0 1 0 1 1 1

1 1 0 1 0 0

1 1 0 0 0 1

1 0 0 1 1 0

1 0 1 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

Table 6.4: TOCA(12; 3, 6, 2; 2)

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

1 1 1 0 1 0 0 0 0 1

1 0 1 1 0 1 0 1 0 0

1 0 0 0 1 1 1 0 0 0

0 1 1 0 0 1 0 0 1 0

0 0 1 0 1 0 1 1 1 0

1 1 0 1 0 0 1 0 1 0

0 0 0 1 1 1 0 0 1 1

0 0 1 1 0 0 1 0 0 1

0 1 0 1 1 0 0 1 0 0

1 0 0 0 0 0 0 1 1 1

0 1 0 0 0 1 1 1 0 1

Table 6.5: TOCA(13; 3, 10, 2; 2)

6.5 Computational Results

6.5.1 Constructions Using Ordered Designs

We presented constructions for CA(3, 6, 6)s earlier. Construction 1 gave an array

of size 300, while Construction 2, requiring covering arrays with two disjoint rows,

gave a size of 276. Table 6.4 gives a CA(3, 6, 2) with two disjoint rows.

We can create variations on this construction using augmented annealing. We

can construct a TOCA(30; 3, 6, 3; 0). The bound for a CA(3, 6, 3) is 33 so we have

saved three rows by using augmented annealing. We can use this to cover
(

3
2

)

= 3 of

the 15 pairs of symbols. There are still 12 remaining. We can cover these using 12

TOCA(12; 3, 6, 2; 2)s. Each of these are of size 10 once constant rows are removed.

Lastly we add back in three rows of type (a, a, a, a, a, a) (we can exclude the three

symbols covered by the TOCA(30; 3, 6, 3; 0)) and join these together. This gives us

a covering array of size 120+30+(12×10)+3 = 273. This is smaller than the con-

structions given. Using instead two TOCA(30; 3, 6, 3; 0)s reduces the bound further

to 270. There are 6 combinations of pairs handled by the two TOCA(30; 3, 6, 3; 0)s.

With careful mapping we can use all six symbols. Therefore all triples of the type

(a, a, a, a, a, a) have been accounted for in these 60 rows. There are still 9 uncovered

pairs. This requires 9 TOCA(12; 3, 6, 2, 2)s. We can remove all of the constant rows.

This gives us 120 + (2× 30)+ (9× 10) = 270. Other linear spaces in Construction 3

can be employed. In the case of CA(3, 6, 6) we found the best bound using only two

building blocks. We used annealing to create an ordered design of size 120 and an-

nealing to create a TOCA(140; 3, 6, 6; 0). This gives us a CA(260; 3, 6, 6), improving
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considerably on the constructions given above.

These applications of Construction 3 can be used in all of the cases outlined

below. Tables 6.8-6.11 show the smallest sizes of (2,1)-covering arrays found by

simulated annealing. The first column of each gives the size with v constant disjoint

rows, and the second with no rows specified.

Table 6.6 shows the smallest covering arrays found using two augmented methods

and provides the smallest numbers we have obtained using straight annealing as well

as known bounds published in [17, 27]. The first method, labeled A, uses an ordered

design combined with a TOCA(3, k, k; 0) found by annealing. The second method

uses an ordered design and combines it with
(

k
2

)

TOCA(3, k, 2; 2)s. The best values

we have found for these arrays are also given in Table 6.6. The ordered design

for CA(3, 6, 6) was created using annealing. All of the other ordered designs were

created using the definition of PSL(2, q) (see [12]). Values in bold font are new

upper bounds for these arrays.

In the cases of CA(3, 8, 8) and CA(3, 9, 9), the collection of all triples can be

covered exactly, i.e. every triple is covered precisely once (this is an orthogonal

array of strength three). We therefore cannot improve on the best known result

since it is optimal. Nevertheless, these cases illustrate improvement from augmented

annealing over straight annealing. The smallest array we have found using simulated

annealing in a reasonable amount of computational time for the CA(3, 8, 8) has 918

rows. This result required almost three hours to run, illustrating the severity of the

difficulty with naive computational search. We can instead create an OD(3, 8, 8) of

size 336 in significantly less time and anneal a (2,1)-covering array of size 280 in

approximately five minutes. This provides us with a CA(3, 8, 8) of size 616 which is

smaller and computationally less expensive than using just annealing.

For CA(3, 9, 9) similar results are found. In this case, however, using either

TOCA(3, 9, 2; 2)s or a TOCA(3, 9, 9; 0) does not fare as well as using Construction 3

with a linear space consisting of twelve blocks of size three; then CAN(3, 9, 9) ≤ 900

is obtained. Perhaps this serves well to illustrate a general conclusion. An optimal
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Augmented Simulated Smallest Reported
CA(t, k, v) Annealing Annealing Array Size

A B TOCA [17, 27, 53]

CA(3, 6, 6) 260 276 12 300 300
CA(3, 8, 8) 616 624 12 918 512
CA(3, 9, 9) 906 909 13 1,490 729
CA(3, 10, 10) 1,219 1,225 13 2,163 1,330
CA(3, 12, 12) 2,339 2,190 15 4,422 2,196
CA(3, 14, 14) 4,134 3,654 18 8,092 4,094

Table 6.6: Sizes for covering arrays using augmented annealing
Method A = TOCA(3, k, k; 0)
Method B = TOCA(3, k, 2; 2)s
The column headed “TOCA” gives the size of the TOCA(3, k, 2; 2)s used.

solution has 729 rows, while annealing alone takes substantial time to obtain a

bound of 1490. Augmented annealing yields a bound of 900 quickly, and applies

more generally than the existence of an orthogonal array.

For the CA(3, 10, 10) we can use the ordered design construction to generate the

first part of this array, giving us 720 rows. We can build 45 TOCA(13; 3, 10, 2; 2)s

and add back in 10 rows of type (a, a, .., a). If we do this then we have an array

of size 720 + (45 × 11) + 10 = 1225 which improves upon the published bound

of 1331 [17]. We can also build a TOCA(499; 3, 10, 10; 0) using annealing. When

combined with the ordered design, the size of the covering array is 1219. The

smallest array we have built with straight annealing for a CA(3, 10, 10) is of size

2163. Again using Construction 3 with a suitably chosen linear space yields the best

known result. A linear space with three lines of size four and nine of size three gives

CAN(3, 10, 10) ≤ 1215. The 3 TOCA(66; 3, 10, 4; 0)s account for 18 of the pairs of

10 symbols. The 9 TOCA(33; 3, 10, 3; 0)s account for the other 27 pairs. Therefore

we have 720 + (9 × 33) + (3 × 66) = 1215. It appears that the TOCA(3, 10, 10; 0)

is not yielding as strong a result in part because it has, in some sense, become a

“large” ingredient and annealing is not as effective.
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TOCA(3, q + 1, q + 1; 0)
t, k, v Size Ordered Design

3, 6, 6 140 120

3, 8, 8 280 336

3, 9, 9 402 504

3, 10, 10 499 720

3, 12, 12 1,019 1,320

3, 14, 14 1,950 2,184

Table 6.7: Sizes for TOCA(3, q + 1, q + 1; 0)s and ordered designs

t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 6, 2 12 12

3, 6, 3 33 30

3, 6, 4 60 56

3, 6, 5 99 94

3, 6, 6 145 140

Table 6.8: Sizes for TOCAs with k = 6

t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 8, 2 12 12

3, 8, 3 33 30

3, 8, 4 64 60

3, 8, 5 105 100

3, 8, 6 156 150

3, 8, 7 217 210

3, 8, 8 288 280

Table 6.9: Sizes for TOCAs with k = 8

t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 9, 2 13 12

3, 9, 3 36 33

3, 9, 4 70 67

3, 9, 5 116 110

3, 9, 6 171 166

3, 9, 7 239 233

3, 9, 8 316 308

3, 9, 9 416 402

Table 6.10: Sizes for TOCAs with k = 9
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t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 10, 2 13 12

3, 10, 3 36 33

3, 10, 4 70 66

3, 10, 5 115 111

3, 10, 6 172 165

3, 10, 7 239 232

3, 10, 8 322 310

3, 10, 9 409 401

3, 10, 10 506 499

Table 6.11: Sizes for TOCAs with k = 10

CA Size Previous Bound OA,Size Percent triples
[17] covered by OA

CA(3, 9, 3) 50 51 OA3(2, 9, 3),27 90.5

CA(3, 25, 5) 371 465 OA5(2, 25, 5),125 89.6

CA(3, 27, 3) 118 99 OA9(2, 27, 3),81 97.3

CA(3, 16, 4) 174 159 OA4(2, 16, 4),64 78.6

CA(3, 17, 4) 180 184 OA4(2, 17, 4),64 77.9

CA(3, 10, 5) 266 185 OA2(2, 10, 5),50 40.0

Table 6.12: Sizes for CAs built with OAs of higher index

CA(t, kℓ, v) Size Previous CA(3, k, v),Size CA(3, ℓ, v),Size Size Size
Bound [17] of D of F

CA(3, 25, 4) 188 229 CA(3, 5, 4),64 CA(3, 5, 4),64 4 15

CA(3, 30, 4) 203 238 CA(3, 5, 4),64 CA(3, 6, 4) ,64 5 15

CA(3, 24, 6) 692 795 CA(3, 6, 6), 260 CA(3, 4, 6),216 6 36

CA(3, 36, 3) 109 ? CA(3, 4, 3) ,27 CA(3, 9, 3),50 4 8

Table 6.13: multi-Roux
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6.5.2 Constructions from Generalized Hadamard Matrices

Table 6.12 gives some results for building covering arrays from strength two orthog-

onal arrays of index higher than one, obtained from generalized Hadamard matrices.

In each of these cases we seed the annealing program with the OA of higher index

and then anneal the rest of the array. We include in the table the percentage of

triples covered by and the size of the OA prior to annealing. In our experience if too

many triples are covered before annealing occurs, then the best bound is not found.

There seems to be a trade-off in the tightness of the structure used for seeding and

the final covering array. We have listed the size of the strength two orthogonal array

and the percentage of triples that are covered in this subset.

6.5.3 Constructions Using multi-Roux

We applied the multi-Roux construction to some covering arrays for sizes of ℓ > 2.

Table 6.13 gives some of these results. This construction appears to do well when

the two smaller building blocks are themselves optimal. In the first two entries we

have used orthogonal arrays as ingredients. In each of these entries we do not have

to handle triples when σ1 = σ2. We have used the augmented annealing program

to build D and F by initializing them with these triples. The sizes we found for

these are listed in the table. For instance, we can build a difference covering array

DCA(N ; 2, 5, 4) of size 4 instead of 5 if we do not care about covering the zero

differences. And we can create a CA(2, 6, 4) of size 15 if we do not care about pairs

with equal entries. This saves us 15 rows in the final covering array.

Table 6.14 gives results of computations using simulated annealing for the exis-

tence of difference covering arrays. Two entries are given. The first is for a DCA

that (in addition) covers the zero difference, while the second does not require the

zero difference to be covered.
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Sizes for DCA’s
with,without Zero Differences

k/q 3 4 5 6 7 8 9 10

3 3,2 5,4 5,4 7,6 7,6 9,8 9,8 11,10
4 4,3 5,4 5,4 7,6 7,6 9,8 10,9 11,10
5 5,4 5,4 5,4 8,7 7,6 9,8 10,9 12,11
6 5,4 6,5 7,6 8,7 7,6 10,9 11,10 12,11
7 5,4 6,5 7,6 8,7 7,6 10,9 11,11 13,12
8 5,4 6,5 8,7 8,7 9,8 11,9 12,11 13,12
9 5,4 7,6 8,7 9,8 9,8 11,11 12,12 14,13
10 5,4 7,6 8,7 9,8 10,9 12,11 13,12 15,14

Table 6.14: Table of difference covering arrays with and without zero differences

6.5.4 Extending Augmented Annealing

We close with some examples that are not handled by the constructions from this

chapter because one or more of the required objects cannot be constructed. The

intent is to see if we can still use the given methods to build covering arrays for

these cases. The first example selected is a CA(3, 7, 7). An orthogonal array of size

343 can be constructed for this example [51, 53]. We would like to use our ordered

design construction to try and build this array, however there is no ordered design

for this problem since 6 is not a prime power. We have instead used annealing to

create (2,1)-covering arrays (Table 6.15) and analogs of ordered designs. We do not

approach the size of the orthogonal array and improve only slightly on the best bound

found for this array obtained from straight annealing, but this approach improves

the time that is required to solve this problem over that of straight annealing.

The second example is an MCA(3, 664222). This array contains a CA(3, 6, 6)

but has four additional columns. We have tried several techniques to build this

array. When we use straight annealing we found an array of size 317, which is much

larger than the best bound we have found for the sub-array CA(3, 6, 6). Based

on the experience reported in [26] we believe that the hardest problem, that of

the CA(3, 6, 6), dictates the size of this array. When we used two partial covering

arrays as in Method B, the best bound we found was 313. We have therefore tried
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t, k, v TOCAN(t, k, v; v) ≤ TOCAN(t, k, v; 0) ≤

3, 7, 2 12 12

3, 7, 3 33 30

3, 7, 4 64 60

3, 7, 5 105 100

3, 7, 6 156 150

3, 7, 7 217 210

Table 6.15: Sizes for TOCA(3, k, v)s with k = 7

Covering Array Method Size Published Bound[53]

CA(3, 7, 7) Straight Annealing 552 343

CA(3, 7, 7) Partial Arrays 545

MCA(3, 664222) Straight Annealing 317 NA

MCA(3, 664222) Partial Arrays 313

MCA(3, 664222) Seeded with OD(3, 6, 6) 283

MCA(3, 664222) Seeded with CA(3, 6, 6) 272

Table 6.16: Extending augmented annealing

seeding this array with solutions for subproblems already found. We seed either the

OD(3, 6, 6) of size 120 or the CA(3, 6, 6) of size 263 and then anneal to complete the

structure. Both of these improve markedly upon the first two methods as shown in

Table 6.16. The smallest test suite we found used the CA(3, 6, 6) as a seed. This

added fewer than 10 rows to complete the missing coverage. This highlights the need

for the software tester to have knowledge (or a tool) to determine which method is

best for which problem.

6.6 Summary

The construction of strength three covering arrays is a challenging combinatorial

and computational problem. The real and potential applications in the design of

software test suites necessitate reasonably fast and accurate techniques. Computa-

tional search techniques, while general, degrade in speed and accuracy as problem

size increases. Combinatorial techniques suffer lack of generality despite offering the

126



CHAPTER 6. CUT-AND-PASTE TECHNIQUES

promise of fast and accurate solutions in specific instances.

We have therefore proposed a framework for combining combinatorial construc-

tions with meta-heuristic search, and examined a specific instantiation of this, aug-

mented annealing. The covering arrays produced illustrate the potential of this

approach, demonstrating that a combinatorial construction can be used as a mas-

ter to decompose a search problem so that much smaller ingredient designs can be

found.

Perhaps what distinguishes this from the majority of existing recursive construc-

tions is that we are not concerned primarily with finding a master for which the in-

gredients needed are themselves well understood combinatorial objects. Augmented

annealing can be viewed as a first step in designing a tool to exploit combinatorial

constructions along with heuristic search to produce covering arrays for the variety

of parameters arising in practice.
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Chapter 7

Conclusions

In this thesis we have examined the problem of building test suites for software

interaction testing. We have made contributions in the fields of software engineer-

ing, heuristic search and combinatorial design theory. The results presented in this

thesis provide foundations for our ultimate goal, an interaction testing toolkit. We

summarize our findings next and follow this with a presentation of future directions.

7.1 Summary

In heuristic search we have developed a guided meta-heuristic search technique,

augmented annealing. This technique uses a general purpose simulated annealing

program as the engine to build other objects and support cut-and-paste construc-

tions. It includes two pre-processing stages, initialization and seeding and two post-

processing steps, mapping and joining. By using this process we can build other

objects such as partial covering arrays, difference covering arrays and covering ar-

rays with constraints (i.e. those with x disjoint rows). We can leverage the power

of computational search and relax some of our mathematical constructions to build

small covering arrays for software testing. In addition it moves us closer to a real

test environment, by allowing us to seed test configurations, and has the potential

to add avoids, aggregates and other constraints.
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We have also examined several computational methods for finding fixed and

mixed level covering arrays of strength 2 and 3. These are the first results using

meta-heuristic search for mixed level arrays and the first using meta-heuristic search

to find covering arrays with t > 2. We have shown that simulated annealing builds

covering arrays closer to the optimal size for N than greedy methods, and often does

as well as algebraic constructions.

In software engineering we have developed a model for the variable strength

covering array and have provided some initial bounds and methods for constructing

these. We have shown that we can often use this type of model to gain a stronger

interaction test suite without increasing the number of test configurations.

In combinatorial mathematics we have developed some new cut-and-paste con-

structions for covering arrays and have provided some new bounds for strength three

covering arrays. The multi-Roux construction is a generalization of [17]. We have

also explored using higher index orthogonal arrays as seeds.

Although our work has been directed toward traditional software interaction test-

ing, there are many emerging applications for these types of combinatorial designs.

As we have seen, the use of these for fault characterization in a large software config-

uration space is emerging [108]. Covering arrays have been used in logic testing [61]

and for database testing [19]. And they are emerging as important designs outside

computer science. Recent studies use them to describe inputs for biological systems

[86] and for chemical interaction testing [15]. The techniques developed, therefore,

extend beyond the application of software testing.

7.2 Future Work

This research on constructing test suites for interaction testing has highlighted many

future avenues to pursue. There are four main directions that we outline here. We

discuss the first three next. The last section of this thesis is devoted to the fourth,

our long term goal : an integrated approach.
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In software engineering, more studies on the variable strength array and its

usefulness in real test environments are needed. Empirical studies are required

to quantify the additional code coverage and benefits (if any) of this approach.

Modeling test environments is useful to understand how the variable strength array

can best be applied. The empirical results to date suggest that higher strength arrays

are needed for good code coverage and better fault characterization [44, 66, 108].

Therefore it is natural to explore ways to increase the strength of sub-arrays when

possible and to test this hypothesis further.

In the area of computational search there are still many unanswered questions

as to the effectiveness and performance of a variety of search techniques. We have

presented a general framework for a set of greedy algorithms, but have only explored

these in the context of the known/published algorithms. An examination of the

generality of this framework and experimentation with different combinations of

options can tell us more about what the important decisions are when it comes to

time, precision and repeatability.

We have not yet explored the use of genetic algorithms or extended Nurmela’s

work on tabu search, and have only made an initial attempt at examining other

meta-heuristic techniques such as the great deluge algorithm. In addition, we have

not explored the landscape of covering arrays. A visualization of the landscape

may provide us with more information about which search techniques are best for

particular values of t, k and v.

In the area of combinatorial design theory, what has evolved is an appreciation

for the complexity and difficulty of the problem of constructing strength three arrays.

There is still much room for exploration and development of new constructions. For

instance, Matirosyan et al. [69] have generalized the Roux construction recently in

t. The combination of techniques to extend Roux in both t and k is an interesting

problem.

Only recently have constructions appeared for mixed level arrays [73]. This is

another avenue to explore. There are currently no known constructions for vari-
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able strength arrays. And one cannot ignore arrays of even higher strength. The

literature contains very little on covering arrays beyond strength 3.

Up until this point we have examined our contributions and research in terms of

three separate disciplines. But the ultimate goal of our work is to develop a toolkit

for software testers that combines the best from all of these areas. This leads us to

the ideas presented in the next section.

7.2.1 An Integrated Approach

One of the main themes of this thesis is the multitude of approaches for constructing

covering arrays for software interaction testing. We have examined a few computa-

tional methods as well as some algebraic ones. We have explored issues related to a

practical test environment. We are left with the difficulty of merging these areas of

research to approach our ultimate goal, useful test generation tools for the design of

interaction test suites.

Given the computational efficiency of an algebraic construction, this is the best

method to find a covering array when one is known to exist for the given parameters

t, k and v. Indeed this idea has been suggested by Stevens et al. [94], who point out

that this may not be a simple task. In order to use an algebraic construction we

often use smaller objects which must also be constructed. This was illustrated in

Chapter 6. But the recursive nature of this makes the existence question alone here

quite difficult (see [30]). If we can determine that the smaller objects exist, then

we first need to build these, and the information on how to do so must be stored

somewhere. In addition, we may also need to store many small starter objects, for

which space constraints may become a problem. A further issue is that there are

many different types of constructions and sometimes multiple ways to arrive at the

same object. This perhaps explains why commercial test generators do not always

utilize the best known constructions, but instead search each time from scratch.

By combining several of these techniques we expect to be able to find a large

range of arrays that can be expanded or reduced as necessary. We could, for in-
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Mapped toSoftware Test
Problem Definition Covering Array

Objects and Methods
Known Constructions

Search Algorithms

List options for the software tester:
Tester can decide to build "optimal arrays"
Based on time and budget constraints

AN INTEGRATED APPROACH

Figure 7.1: Using an integrated approach

stance, begin with a less costly algorithm, such as one from our greedy framework,

and define a critical point in our test suite where we make a switch to a more com-

putationally expensive algorithm. Another possibility is to simply build a starter

test suite deterministically, and then use simulated annealing to reduce its size. An

example of this technique is described in [22]. In Chapter 6 we have had some suc-

cess in seeding with test configurations that have tight structures and building upon

these. To this end we suggest a middle road.

Figure 7.1 shows our view of an integrated approach for our software interaction

testing. This model suggests a knowledge base of the best known covering arrays,

as well as starter objects and computational as well as algebraic methods which can

be used to build bigger arrays. This tool may not always provide the best known

covering array, but must offer options to balance the task at hand. For instance if

a software tester wanted to build a CA(N ; 3, 6, 6) they might be presented with an

option of building it very quickly using a deterministic method (i.e. a construction
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that gives us an array with N = 300), or for slightly more computational power they

could arrive at 260 which is the best known bound at this time. If on the other hand

they were interested in building an MCA(2, 320210), then the tool might suggest that

they instead build a V CA(2, 320210, (CA(3, 320))) since this can be created without

adding any extra test configurations.

With this model, testers ideally would input a set of parameters and require-

ments. They would be presented with options which include time trade-offs for

building the test suites as well as the level of strength required for testing and the

need for an optimal test suite. In some cases the best method for a tester is a greedy

approach that is fast and “good-enough”. At other times when the testing and cost

of checking results is expensive, the need for optimal test suites may indicate that

long run times to find a test suite is needed.

Using this model as our goal for the future, the next steps are (a) finding more

effective computational methods and constructions, (b) developing a comprehensive

compilation of data containing the best known covering array bounds and associ-

ated construction methods, and (c) more comprehensive theoretical explorations of

variable strength arrays.
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[81] Poljak, S., Pultr, A., and Rödl, V. On qualitatively independent par-

titions and related problems. Discrete Applied Math 6, 2 (1983), 193–205.

[82] Poljak, S., and Tuza, Z. On the maximum number of qualitatively inde-

pendent partitions. Journal of Combinatorial Theory Series A 51, 1 (1989),

111–116.
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Appendix

This appendix contains a sample of covering arrays, (2, 1)-covering arrays and differ-

ence covering arrays from Chapters 4, 5 and 6. All of the covering arrays and (2, 1)

covering arrays represent new bounds. The set of difference covering arrays without

zero differences provide the first bounds for objects of this type. We have included

“small” examples only. A more comprehensive repository is being constructed as

future work. It will be available for download via the Internet.

All of the objects are represented as N × k arrays. For all objects (except the

difference covering arrays) each column of the array uses a unique set of integers to

represent its values. The difference covering arrays use the same set of integers in

each of its columns. All covering arrays are represented in the same order as in the

notation. Suppose we have an MCA(3, 2343). This will contain six columns. The

first column will use the values 0 and 1, the second column will use 2 and 3 and

the third will use 4 and 5. The last three columns of this array will each contain

four possible values. In the variable strength covering arrays the vector of higher

strength covering arrays are disjoint and presented in the order from left to right

that matches the notation.

The objects are presented in the order they appear in this thesis. References are

made to the tables that contain each one.

147



Mixed level covering arrays from Table 4.1 (page 80)

MCA(2, 513822), N = 15
0 7 9 13 14 17 20 23 26 30 32
1 7 8 12 14 19 20 25 28 30 32
4 6 10 12 14 17 21 25 26 29 31
4 5 9 13 15 18 20 24 28 29 31
3 5 8 11 14 17 22 24 26 29 32
1 5 10 13 15 17 22 23 27 29 31
3 6 9 13 16 19 20 25 27 30 31
4 7 8 11 16 19 22 23 27 30 32
1 6 9 11 16 18 21 24 26 30 32
0 5 10 12 16 19 21 24 27 29 31
2 6 9 12 15 19 22 23 26 30 32
0 6 8 11 15 18 22 25 28 30 31
2 7 10 11 14 18 20 24 27 29 31
3 7 10 12 15 18 21 23 28 30 32
2 5 8 13 16 17 21 25 28 30 32

MCA(2, 514431125), N = 21
4 7 12 15 17 23 26 28 30 35 36 40 42 47 49 51 55 57 59 61 62
0 5 9 14 17 23 25 29 31 33 37 40 42 46 48 51 54 57 58 61 63
3 8 11 15 18 21 25 29 31 35 37 40 42 45 48 51 54 56 58 60 62
1 6 9 15 20 21 24 27 30 35 38 41 42 45 49 53 55 56 58 60 62
4 8 9 16 18 22 24 27 32 35 37 39 43 46 50 52 55 56 58 60 63
0 5 10 15 20 22 25 28 32 35 38 40 44 46 50 51 54 56 58 60 63
2 5 10 15 18 21 24 29 32 33 38 39 42 47 50 52 55 57 58 61 62
1 8 10 13 17 23 26 28 32 33 37 39 44 45 48 52 54 56 59 60 63
1 5 12 16 19 22 25 29 31 34 37 40 42 47 50 53 54 57 59 61 62
2 7 9 13 19 22 25 27 31 35 37 40 43 45 49 51 55 57 59 60 62
3 5 10 14 19 22 26 27 30 33 36 39 43 46 49 53 55 57 59 60 63
4 5 11 13 20 23 25 29 31 33 37 41 43 45 48 53 55 56 59 60 63
0 6 12 13 18 23 25 29 30 34 36 39 42 46 48 52 55 56 59 61 62
3 7 9 16 20 23 26 28 31 34 36 39 44 47 48 52 54 57 58 61 63
2 8 12 14 20 23 26 28 30 34 36 41 44 45 50 53 54 57 58 60 63
0 8 11 15 19 23 24 27 32 34 38 41 43 47 49 52 54 57 58 61 62
0 7 10 16 18 21 26 29 30 33 38 41 44 45 49 53 55 56 58 61 63
2 6 11 16 17 22 26 27 30 34 37 41 44 46 48 51 55 56 58 61 62
4 6 10 14 19 21 24 28 31 34 38 40 44 47 48 52 54 56 59 60 63
3 6 12 13 17 21 24 27 32 33 38 41 43 47 50 53 55 57 58 61 63
1 7 11 14 18 21 24 28 32 35 36 39 43 46 50 51 54 57 59 61 62

148



Mixed level covering array from Table 4.1 (page 80)

MCA(2, 6151463823), N = 30
0 6 14 17 20 26 28 31 36 40 42 46 48 51 55 58 60 62 64
5 7 13 17 22 23 30 32 36 40 43 44 47 52 55 57 59 62 63
0 7 12 18 19 24 28 33 36 40 41 45 49 50 53 57 60 61 64
1 9 13 17 21 24 30 34 35 40 43 46 48 51 53 56 60 61 64
2 9 11 18 22 24 27 33 36 39 43 46 49 51 54 57 60 62 64
5 6 12 15 21 25 30 34 35 39 41 46 49 51 53 58 59 62 63
3 7 11 15 22 26 27 34 37 39 42 46 48 50 55 57 60 61 64
2 8 13 15 19 26 28 34 36 39 41 45 47 51 54 58 59 61 63
4 10 11 18 19 24 29 31 37 40 43 45 48 50 55 58 59 61 63
0 10 11 16 19 23 30 34 35 40 43 44 47 52 55 58 59 61 63
0 8 14 15 22 24 29 32 37 38 41 44 48 50 54 56 59 61 63
2 10 14 17 21 25 30 31 37 38 41 45 48 52 54 57 60 62 63
4 8 11 17 20 25 30 33 35 39 41 45 47 51 53 57 60 62 63
3 6 13 18 20 24 30 33 37 38 43 46 47 52 54 56 60 61 64
1 6 11 16 19 25 27 32 37 39 42 45 49 52 54 58 60 61 64
4 6 13 16 22 24 29 31 36 38 42 44 49 52 55 58 60 62 64
5 9 14 16 20 26 28 33 37 39 42 45 48 50 53 57 60 61 64
5 8 11 18 21 26 29 34 35 38 42 45 47 51 54 57 59 62 64
5 10 12 17 19 24 27 31 36 38 42 46 47 51 53 56 60 62 63
1 10 13 15 20 26 30 33 36 40 42 44 49 50 55 57 59 62 64
1 8 12 16 22 23 29 32 37 39 41 46 47 51 54 57 59 62 63
4 9 12 15 21 26 28 32 37 40 43 46 48 52 53 56 60 62 63
1 7 14 18 21 23 28 31 35 38 42 44 47 51 53 58 60 61 63
2 7 12 16 21 25 29 33 36 40 43 44 49 52 55 56 60 61 64
4 7 14 15 20 23 27 34 37 40 41 45 48 51 54 56 59 61 64
2 6 12 18 20 23 29 32 35 39 42 44 47 50 53 57 59 61 64
3 10 11 18 22 25 28 32 35 39 41 45 47 51 53 56 59 61 63
0 9 13 15 21 25 27 31 35 39 41 45 47 50 55 56 59 62 63
3 9 14 17 19 23 29 33 36 38 43 44 49 50 54 58 59 61 63
3 8 12 16 21 23 27 31 35 40 43 44 49 52 55 58 59 62 64
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Variable strength covering arrays from Table 5.5 (page 97)

V CA(2, 315, (CA(3, 33))), N = 27
0 5 7 11 12 15 19 23 25 27 31 33 38 40 43
2 5 6 10 13 17 18 21 26 28 31 35 37 39 42
2 3 8 10 12 15 19 23 24 27 30 34 36 39 44
0 4 8 9 14 15 19 22 25 28 31 35 37 40 43
1 3 7 9 12 16 18 23 24 29 30 35 38 40 42
1 4 6 10 14 16 18 21 26 28 30 33 36 41 43
1 5 6 9 14 16 19 21 26 29 32 34 38 40 43
1 3 6 10 12 15 19 21 24 29 30 33 37 40 43
2 4 8 9 13 17 18 22 24 29 32 34 38 41 42
0 3 6 9 12 15 19 22 24 29 32 35 36 40 44
1 4 7 9 12 15 19 22 24 29 32 33 36 39 44
2 4 7 11 14 16 20 22 25 27 32 34 37 40 42
1 3 8 9 13 17 19 23 26 27 31 33 37 39 42
0 5 6 10 14 15 19 23 25 28 32 33 36 40 44
2 5 8 10 14 15 20 23 24 27 30 33 37 41 44
2 5 7 11 13 16 20 22 26 29 31 34 37 39 44
0 4 7 11 12 15 19 23 26 28 31 34 37 39 43
1 5 7 10 14 17 20 21 25 28 30 34 37 40 44
0 3 7 10 14 15 18 22 26 27 30 35 38 41 42
2 3 6 11 12 17 20 23 24 28 32 35 36 40 43
0 3 8 9 13 15 20 21 25 27 32 34 36 40 42
2 3 7 11 12 15 20 21 24 27 31 33 36 41 44
0 4 6 10 12 16 19 23 25 27 30 35 38 41 43
2 4 6 11 14 15 20 21 25 29 32 33 37 39 42
0 5 8 11 14 17 20 21 24 28 31 34 38 39 44
1 5 8 11 13 16 20 23 25 29 30 34 38 41 43
1 4 8 11 13 16 18 21 25 29 32 34 38 39 44

V CA(2, 315, (CA(3, 33), CA(3, 33))), N = 27
2 3 8 9 13 15 20 21 26 29 31 35 37 41 42
0 3 8 11 13 16 19 21 24 29 30 33 36 41 43
1 4 8 9 14 15 18 21 24 28 30 35 38 40 44
2 5 7 10 12 17 20 21 25 29 32 35 38 41 43
0 4 7 9 12 15 19 23 24 27 31 33 38 39 44
2 3 6 10 12 16 18 22 24 28 30 34 36 39 44
0 5 6 10 13 15 18 22 25 27 31 34 38 40 43
0 5 8 10 14 16 20 23 26 27 31 35 36 41 44
2 5 6 10 13 17 18 22 24 28 31 33 36 41 42
1 4 6 11 12 17 20 21 26 28 31 34 36 40 44
0 4 6 9 12 17 18 23 25 29 32 34 36 41 43
2 4 7 9 13 17 19 21 24 29 32 33 36 39 44
0 4 8 9 12 16 19 21 25 28 32 34 38 39 42
1 4 7 10 14 15 20 21 26 28 30 33 36 39 43
0 3 6 10 12 15 19 23 26 28 32 34 37 41 44
1 3 6 11 13 15 18 23 25 27 32 35 37 39 43
1 5 7 11 14 15 19 22 26 29 32 33 36 39 43
1 5 6 10 14 17 18 23 25 29 31 35 37 39 42
0 5 7 10 13 16 19 23 25 27 30 33 37 40 43
2 5 8 11 14 16 20 22 25 27 31 33 38 41 44
1 5 8 9 14 17 20 23 25 27 31 34 36 39 42
2 3 7 9 13 16 18 22 26 29 32 34 38 40 43
2 4 8 11 13 17 20 23 24 29 30 35 37 40 43
0 3 7 11 14 17 18 21 24 27 30 35 36 39 42
1 3 8 11 12 15 19 22 26 29 31 35 37 41 42
1 3 7 9 14 16 18 23 24 29 32 33 37 39 42
2 4 6 11 12 16 18 22 24 29 32 34 38 40 42
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Variable strength covering arrays from Table 5.5 (page 97)

V CA(2, 315, (CA(3, 33), CA(3, 33), CA(3, 33))), N = 27
2 5 8 9 13 17 19 23 26 27 32 35 38 41 42
1 3 6 10 13 17 18 21 24 27 30 35 37 40 42
0 4 7 11 13 16 20 21 26 28 32 33 37 39 44
0 4 6 9 14 17 19 22 25 29 31 35 36 40 43
0 5 8 10 13 16 20 22 25 29 32 33 36 40 43
0 5 7 10 14 15 19 21 24 28 30 34 36 39 42
1 4 7 10 12 15 20 22 24 28 32 34 38 40 43
2 4 6 10 13 15 20 23 25 27 30 35 36 39 42
1 5 6 10 12 17 19 23 24 29 30 33 36 39 42
0 5 6 9 12 16 19 22 24 27 32 34 38 41 44
2 5 6 11 14 17 18 22 26 27 30 35 38 39 42
0 4 8 11 13 17 20 23 24 27 31 35 38 40 44
1 3 8 11 14 15 19 23 25 28 30 35 36 41 43
2 3 6 9 12 15 19 22 26 29 30 35 37 40 44
2 3 7 9 12 17 19 21 26 27 31 35 37 39 43
2 4 7 10 14 17 18 22 24 29 30 34 37 41 42
2 5 7 11 12 16 18 23 25 29 30 33 37 40 42
1 4 6 10 14 16 20 22 26 27 30 34 37 39 44
0 3 7 11 12 17 18 22 25 28 32 34 38 39 42
1 4 8 9 14 16 18 23 24 29 30 35 38 40 42
1 3 7 9 13 16 18 21 25 29 31 34 36 39 43
2 3 8 11 12 15 20 23 26 27 30 34 36 41 43
0 3 8 9 13 15 18 21 26 29 31 33 38 41 44
1 5 8 11 13 15 20 21 24 27 31 33 37 39 43
2 4 8 11 14 16 19 21 25 28 32 33 37 40 43
0 3 6 9 14 15 20 21 25 28 32 33 36 41 44
1 5 7 10 12 16 18 23 26 28 31 34 38 39 42

V CA(2, 315, (CA(3, 34))), N = 27
2 5 6 10 14 16 18 23 24 29 31 33 38 39 43
1 3 7 11 14 17 19 23 24 27 32 34 38 39 42
0 5 7 10 12 17 19 22 24 29 32 35 36 39 43
2 3 8 11 12 16 18 23 26 27 31 33 38 41 44
0 3 6 11 13 15 18 22 25 29 32 34 37 40 44
1 4 7 10 14 15 20 22 25 27 30 35 36 41 44
1 5 8 10 12 16 20 21 25 28 30 35 36 40 43
2 4 6 11 12 15 19 23 25 27 31 33 36 39 44
0 3 8 10 14 16 19 21 25 28 32 34 37 41 44
1 4 8 11 12 16 18 21 26 27 31 33 37 41 44
0 4 7 11 13 17 20 23 24 28 32 35 37 40 44
0 5 8 11 12 16 19 22 24 29 31 35 38 39 42
0 3 7 9 14 15 19 23 25 28 30 34 36 41 44
2 3 7 10 14 17 18 22 26 28 30 33 37 39 42
1 5 7 9 13 16 20 22 26 27 31 33 38 41 44
0 5 6 9 14 15 18 22 24 27 30 33 36 40 42
2 3 6 9 12 15 20 21 25 27 32 33 38 41 43
0 4 8 9 13 15 19 21 26 29 32 35 36 41 43
1 4 6 9 14 17 18 22 24 27 31 34 38 40 43
2 4 8 10 12 17 19 21 25 27 32 34 38 40 42
0 4 6 10 13 15 20 22 26 28 31 34 38 39 44
2 4 7 9 12 15 19 21 25 29 30 35 37 41 43
1 3 6 10 14 16 20 22 24 28 30 35 38 40 44
2 5 8 9 14 15 19 23 25 29 30 34 37 39 44
2 5 7 11 13 17 18 23 24 29 31 35 36 41 42
1 5 6 11 13 17 19 21 24 27 30 33 38 39 43
1 3 8 9 12 17 20 22 26 29 31 35 38 40 42
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Variable strength covering array from Table 5.5 (page 97)

V CA(2, 315, (CA(3, 35))), N = 33
2 3 6 9 12 16 19 22 24 28 30 35 37 39 44
0 4 7 10 13 17 19 22 26 29 31 34 38 41 44
2 3 8 10 12 16 18 23 26 29 30 33 36 40 42
1 3 7 9 14 17 20 23 25 27 32 34 38 39 42
1 3 6 10 13 15 20 21 25 27 32 34 38 41 43
1 5 7 10 12 17 18 21 24 28 31 34 38 40 43
2 4 8 10 13 15 18 22 25 27 30 34 37 40 43
1 5 6 9 14 16 20 21 26 29 32 34 38 40 44
2 4 6 11 14 16 18 22 26 27 31 35 38 39 43
0 4 8 11 12 15 18 21 25 28 31 33 37 41 43
1 3 6 11 12 15 20 23 24 27 30 35 38 40 42
2 3 7 10 14 15 20 21 24 29 30 35 37 39 44
2 5 8 11 12 16 18 23 26 29 30 34 37 41 44
0 5 6 11 13 17 20 23 25 27 30 34 36 41 44
0 5 8 10 14 17 19 21 25 27 32 33 36 41 43
1 3 8 11 14 15 18 22 24 29 32 35 37 39 44
0 3 8 9 13 16 18 23 25 28 32 34 37 39 43
0 5 7 11 14 16 19 22 25 29 32 34 36 40 44
2 4 7 9 12 15 18 21 26 29 32 33 36 40 43
0 5 6 9 12 15 19 23 25 28 31 35 36 41 42
1 5 8 11 13 15 20 23 25 28 32 33 37 41 42
0 4 7 9 14 17 18 23 25 27 30 33 36 39 43
0 3 6 10 14 16 19 22 24 27 31 34 38 41 44
2 5 7 9 13 16 18 23 26 29 30 35 38 41 44
1 4 8 9 12 17 20 21 25 27 31 34 38 41 44
1 4 7 11 13 17 19 21 26 28 31 35 38 40 42
1 4 6 9 13 17 20 21 24 28 31 33 38 39 44
0 4 6 10 12 16 19 22 24 28 30 33 38 40 42
0 3 7 11 12 16 19 23 26 28 30 35 37 41 43
2 5 8 9 14 17 20 21 24 29 31 34 37 40 42
2 3 7 11 13 17 20 22 24 28 32 33 38 40 44
1 4 8 10 14 15 20 23 24 28 32 33 36 41 43
2 5 6 10 13 15 20 22 24 29 32 34 38 39 44
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Variable strength covering array from Table 5.5 (page 97)

V CA(2, 315, (CA(3, 34), CA(3, 35), CA(3, 36))), N = 33
2 5 8 10 14 15 18 23 26 27 32 34 38 40 42
1 4 7 11 14 16 18 21 24 28 30 35 38 41 42
1 5 8 9 13 15 20 23 25 27 32 33 37 39 43
2 4 8 11 13 15 18 22 24 29 31 35 38 40 44
2 3 7 10 12 16 18 23 24 28 30 35 37 39 44
0 3 8 10 12 15 18 23 25 29 30 34 38 39 43
2 5 6 9 13 17 19 21 24 28 32 33 38 39 44
1 4 6 9 14 15 19 23 24 27 31 34 36 40 43
2 3 8 9 13 15 18 21 26 27 30 33 38 40 44
0 3 6 9 12 15 20 21 24 29 32 34 37 40 44
1 4 8 9 14 16 20 21 26 28 32 34 37 41 43
0 4 7 10 12 16 20 22 25 28 30 34 36 40 44
0 4 7 10 14 16 19 22 24 27 32 35 36 41 44
1 3 8 11 12 16 19 21 25 29 32 33 38 41 42
0 4 8 9 13 16 19 23 26 29 31 35 37 41 43
2 4 7 9 13 17 20 22 26 27 30 34 37 41 42
1 5 7 10 13 17 20 21 25 29 31 33 36 39 44
0 5 8 11 13 17 18 23 24 27 30 33 36 39 42
0 5 7 9 12 15 19 22 26 29 31 34 36 41 42
0 3 7 11 13 15 19 22 25 27 31 34 37 39 44
2 3 6 11 14 16 20 23 25 29 30 35 36 40 42
2 4 7 9 14 15 20 22 26 28 30 33 36 41 43
0 5 6 10 13 16 20 22 24 29 30 33 37 41 44
2 3 6 10 12 17 19 22 24 27 31 35 38 39 42
1 4 8 10 14 17 18 22 25 28 31 33 37 40 42
2 4 6 10 12 16 18 22 26 28 32 35 38 40 43
1 3 7 9 14 17 19 21 26 27 30 35 37 40 43
1 5 6 11 12 17 20 23 26 28 31 35 36 39 43
0 4 6 11 12 17 18 21 26 29 32 35 37 39 42
2 5 7 11 14 17 20 23 24 27 31 33 38 41 43
1 3 6 10 12 17 19 23 25 29 32 33 36 40 43
0 5 8 9 13 16 18 21 25 28 31 34 38 41 44
0 5 7 9 14 15 19 21 25 28 32 34 36 39 42
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Variable strength covering array from Table 5.5 (page 97)

V CA(2, 315, (CA(3, 36))), N = 33
1 5 8 10 14 17 19 22 26 29 30 35 37 39 44
2 3 8 11 14 15 20 21 26 27 32 33 36 41 42
0 5 6 11 14 16 20 22 25 28 31 34 36 39 42
0 4 7 11 13 15 18 23 26 27 30 33 38 41 44
1 5 7 9 13 16 18 22 26 29 30 33 38 41 43
0 3 7 9 14 17 19 23 24 27 32 34 38 41 43
0 3 6 9 13 15 19 21 26 29 31 34 37 40 43
2 4 7 10 14 16 20 21 26 27 30 34 38 40 43
2 5 8 10 12 16 19 22 24 27 31 34 38 40 42
2 5 7 11 12 17 19 21 26 29 32 33 38 39 44
2 5 6 10 13 15 20 21 25 29 32 35 36 40 43
2 3 7 11 13 16 19 21 25 29 30 35 37 41 43
1 3 7 10 12 15 19 21 26 29 30 34 38 39 44
1 3 8 9 14 16 19 23 24 27 31 33 37 39 42
0 4 7 9 12 16 19 23 26 29 30 34 38 39 42
0 3 8 10 13 16 18 22 25 28 30 34 36 40 42
1 4 7 11 14 17 18 21 24 28 32 35 38 40 44
0 3 8 11 12 17 18 21 24 28 31 35 37 41 43
1 5 8 11 13 15 20 23 24 29 31 34 36 41 42
2 5 7 9 14 15 18 21 25 28 30 35 36 39 42
1 4 6 10 13 16 19 23 24 28 32 34 38 39 42
0 5 8 9 12 15 19 23 25 27 32 33 36 41 44
2 4 8 9 13 17 18 21 26 29 31 34 38 40 44
0 5 7 10 13 17 20 23 25 27 31 34 38 40 44
2 3 6 9 12 16 20 23 26 28 31 34 36 40 43
2 4 6 11 12 15 18 22 26 28 32 34 37 39 42
0 4 8 10 14 15 19 22 25 27 31 35 36 40 42
1 4 8 11 12 16 18 23 24 29 30 35 38 40 44
0 4 6 10 12 17 18 21 25 29 31 33 36 40 44
2 3 6 10 14 17 19 23 26 29 31 35 38 41 42
1 4 6 9 14 15 20 22 24 28 32 33 36 39 44
1 3 6 11 13 17 19 21 25 28 30 34 37 39 43
1 5 6 9 12 17 20 21 24 27 31 34 37 40 44
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Variable strength covering array from Table 5.5 (page 97)

V CA(2, 315, (CA(3, 37))), N = 41
1 4 8 11 13 16 20 21 26 29 31 33 37 40 42
1 3 6 10 12 16 19 22 25 29 31 35 36 40 43
0 5 6 9 14 17 18 23 24 29 32 33 37 41 43
0 3 8 9 12 16 20 23 24 28 30 35 37 41 43
0 4 6 9 14 16 19 21 24 28 32 33 37 40 42
0 5 6 10 12 15 20 23 24 29 31 34 36 39 42
2 3 6 10 14 17 18 21 26 27 31 34 38 39 43
0 4 7 11 14 16 18 21 25 29 30 35 38 41 42
2 3 7 9 14 15 20 22 26 28 32 33 38 41 43
1 4 7 9 12 16 18 23 24 29 30 34 38 39 42
2 4 7 10 13 16 19 21 26 27 31 34 37 41 44
0 3 7 10 14 15 19 21 24 27 30 35 36 40 44
2 3 8 11 14 16 19 22 25 29 30 35 37 41 42
2 4 8 9 13 17 18 21 25 27 31 33 38 39 44
2 5 7 9 12 17 19 23 26 28 30 33 36 41 42
1 3 7 10 13 17 20 21 25 28 30 35 38 41 44
0 4 8 11 12 15 19 22 26 28 31 34 36 39 44
1 3 8 11 12 17 18 23 26 27 31 34 38 39 42
2 3 6 9 12 15 18 21 26 27 30 33 38 39 44
1 5 8 10 13 17 19 21 26 28 32 34 37 40 42
1 5 6 11 12 16 18 22 26 27 31 35 37 41 42
1 5 7 10 14 16 20 21 24 28 32 33 37 41 43
2 3 7 9 13 16 18 21 24 29 32 35 38 39 42
0 5 8 11 14 17 20 23 26 29 31 33 38 41 42
1 3 7 11 12 15 20 23 26 27 32 33 36 39 43
2 5 8 10 12 16 18 23 26 29 30 35 36 39 44
1 4 7 11 14 17 19 21 26 29 30 33 38 41 42
0 3 8 10 13 15 18 23 25 29 32 35 37 40 43
2 4 6 11 12 17 20 23 26 28 30 35 36 40 44
2 5 6 11 14 15 19 23 24 28 31 35 38 39 43
1 4 6 10 13 15 18 21 24 27 32 34 37 41 44
2 4 8 10 14 15 20 23 24 28 32 35 38 41 42
2 5 6 9 13 16 20 21 25 27 31 35 36 39 44
0 4 7 9 13 15 20 21 26 28 31 34 37 39 43
1 5 8 9 14 15 18 21 24 28 32 34 36 41 44
1 3 6 9 14 17 20 23 24 29 32 34 38 40 42
0 5 7 10 13 16 19 22 25 28 32 34 36 41 43
1 3 8 9 13 15 19 22 24 27 30 35 36 39 44
0 3 6 11 13 17 19 22 26 28 32 35 38 41 42
2 5 7 11 13 15 18 23 26 29 32 33 36 39 44
0 4 7 10 12 17 18 21 26 29 32 33 38 39 43
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Variable strength covering array from Table 5.5 (page 97)

V CA(2, 315, (CA(3, 39))), N = 50
2 5 7 9 14 17 20 23 25 29 32 33 37 39 44
2 3 7 11 12 15 20 22 26 27 31 34 37 40 44
2 4 7 9 13 15 18 22 25 27 32 35 36 40 44
2 5 8 9 13 16 19 22 26 27 31 34 36 39 42
1 3 8 9 13 17 19 23 24 29 31 33 38 41 44
0 5 6 11 12 16 20 21 24 28 32 35 38 41 42
1 4 8 9 14 15 20 23 24 28 32 33 36 41 42
2 4 7 10 13 16 20 21 24 29 30 34 37 41 43
1 5 6 9 13 15 20 21 26 28 32 34 37 40 43
0 5 7 10 13 15 18 23 24 28 31 35 36 40 42
0 4 6 9 13 17 19 21 25 27 32 35 38 39 42
1 3 7 10 12 17 18 21 25 27 30 34 36 40 42
2 5 7 11 14 15 19 21 24 29 32 35 36 39 44
0 5 6 10 14 15 20 22 25 27 30 35 37 40 43
0 3 7 9 13 16 20 23 25 28 30 33 36 39 42
2 4 6 10 14 17 19 22 24 27 30 35 38 41 44
1 3 8 11 13 16 18 21 26 29 30 34 37 39 43
0 4 6 11 13 15 20 23 26 29 31 34 38 41 43
1 4 7 10 12 15 19 21 26 27 30 34 36 40 44
2 5 6 10 12 17 18 21 25 29 31 33 38 40 42
1 5 7 10 14 16 18 23 26 27 32 33 37 41 44
0 3 8 10 14 16 20 22 26 28 31 35 38 41 43
0 3 6 11 13 15 18 22 24 28 30 34 36 41 43
1 3 7 9 14 15 19 22 25 28 30 33 36 40 42
1 5 7 9 12 16 20 22 24 29 30 34 37 40 44
1 4 6 9 12 16 18 22 26 27 30 34 36 41 43
2 3 6 11 12 15 19 23 25 28 30 35 38 41 43
2 3 8 10 14 15 20 21 25 27 31 33 36 40 42
2 3 8 9 12 16 19 23 26 28 32 33 37 40 44
0 5 7 11 12 17 19 23 26 28 31 35 37 40 44
2 3 6 9 14 16 18 23 24 29 31 34 38 39 43
1 5 6 10 13 16 19 23 25 27 31 33 36 40 43
2 3 7 9 13 16 19 21 26 27 32 34 37 40 44
1 4 7 11 13 17 19 23 25 27 32 33 36 40 43
1 5 8 10 13 17 18 22 24 27 32 33 38 41 42
0 3 8 9 12 15 18 21 24 27 31 35 38 40 43
0 4 8 9 12 17 20 22 25 27 31 35 38 41 42
0 4 8 10 13 15 19 21 25 27 30 34 38 39 43
1 3 6 11 14 17 20 21 24 27 31 33 38 39 44
0 4 8 11 14 16 19 23 24 29 32 35 37 39 42
2 3 6 10 13 17 20 23 26 27 30 33 36 39 44
2 4 8 10 14 15 18 22 26 27 31 35 37 40 42
1 5 8 11 12 15 18 23 25 27 31 34 37 39 43
2 4 8 11 12 17 18 23 24 27 31 33 38 40 44
0 4 7 11 14 16 18 21 25 28 32 35 38 39 43
1 4 8 10 12 16 20 23 25 27 30 33 38 39 42
0 5 8 9 14 17 18 21 26 29 31 33 38 39 44
1 4 6 11 14 17 19 22 26 28 31 35 38 39 43
2 5 8 11 13 16 20 22 25 27 32 35 38 40 42
0 3 7 10 12 17 19 22 24 27 32 35 36 40 44
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Variable strength covering array from Table 5.5 (page 97)
V CA(2, 435362, (CA(3, 43))), N = 64

3 6 11 13 19 22 27 38
1 6 9 14 21 24 29 36
0 5 8 16 18 23 29 33
2 5 9 16 19 24 27 38
3 4 9 16 20 23 29 33
1 6 10 16 17 23 30 35
3 6 8 14 17 23 27 33
2 5 8 14 21 24 30 34
2 6 8 12 19 23 32 38
2 7 9 14 21 22 29 33
1 4 11 12 21 22 30 33
3 4 8 12 21 24 27 36
3 7 9 15 19 24 32 33
3 4 10 15 19 22 31 35
3 4 11 15 21 26 32 35
1 4 8 13 20 23 28 33
1 6 11 14 18 25 28 34
1 5 8 14 21 22 32 36
1 5 11 15 18 22 31 35
2 7 8 16 20 26 30 38
0 5 11 13 17 26 32 37
0 6 9 15 21 22 27 34
2 6 11 15 18 22 28 35
0 7 10 16 18 23 30 36
1 6 8 15 17 25 27 38
0 4 9 16 21 23 31 38
0 4 8 16 17 26 32 36
3 6 10 16 20 25 30 34
0 6 8 16 19 25 31 34
3 7 10 12 17 25 29 34
1 4 10 14 20 26 27 38
1 5 9 13 20 26 29 34
1 5 10 16 20 24 32 38
2 7 10 13 21 23 31 34
2 7 11 15 17 23 28 36
2 4 9 13 17 25 31 37
0 5 9 15 19 26 30 34
2 4 11 16 17 22 31 34
0 6 10 12 19 24 28 34
0 4 10 13 18 26 29 33
0 7 8 14 17 24 27 37
0 4 11 13 20 25 30 33
2 4 8 12 20 22 27 34
1 7 11 13 20 26 31 36
3 5 9 12 21 25 27 36
1 4 9 14 17 25 31 35
2 5 11 12 20 26 29 38
1 7 10 12 18 25 32 34
2 5 10 14 18 22 31 33
3 5 10 12 21 24 30 37
2 6 10 13 21 22 28 38
3 7 8 12 17 23 30 37
2 4 10 14 20 24 28 34
3 6 9 14 19 25 29 36
2 6 9 12 18 26 31 33
0 7 11 12 20 26 28 37
3 7 11 16 18 24 27 38
0 7 9 15 20 24 27 37
0 6 11 15 18 26 29 37
1 7 9 16 19 22 28 37
3 5 8 14 20 22 28 37
3 5 11 13 21 24 31 35
0 5 10 12 20 25 27 35
1 7 8 16 19 23 29 35
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Variable strength covering array from Table 5.5 (page 97)

V CA(2, 435362, (CA(3, 4352))), N = 100
3 4 8 14 20 24 31 34
2 4 8 15 21 25 32 33
3 4 11 15 17 26 28 37
1 6 8 14 17 25 31 36
0 6 11 16 20 22 30 36
0 7 9 16 17 26 27 37
3 5 9 16 20 22 32 35
3 5 8 15 18 22 31 35
3 4 9 13 17 23 32 33
0 6 10 13 17 25 32 35
0 4 9 13 19 22 31 36
0 6 8 14 21 26 27 36
3 5 10 14 21 23 30 38
3 7 9 14 19 26 31 38
0 7 8 15 19 25 28 37
2 7 8 16 20 24 27 37
3 6 10 16 17 25 27 38
1 7 11 13 19 23 29 35
1 7 11 16 19 23 28 34
1 4 10 13 18 24 29 37
0 6 9 12 19 22 32 38
3 7 8 12 17 23 29 38
2 5 8 14 19 25 30 37
0 7 10 13 21 25 28 38
0 5 9 14 18 24 28 33
0 7 9 16 21 23 32 37
1 5 10 12 18 26 27 37
1 7 8 13 20 22 27 37
3 5 11 13 21 26 28 38
2 7 8 13 17 26 27 34
1 4 9 14 21 26 27 38
0 4 9 14 17 22 30 37
0 6 11 12 17 22 32 36
2 5 9 13 20 22 30 35
0 4 11 14 19 22 28 38
1 6 9 13 21 23 32 37
2 7 11 14 21 25 31 38
2 7 11 14 17 22 32 34
1 4 8 12 19 26 31 38
1 5 9 15 19 24 30 36
2 5 11 16 17 25 29 38
0 5 8 15 17 25 32 38
3 6 9 15 21 25 29 34
2 4 11 12 20 22 28 36
3 6 8 13 19 25 28 38
0 6 10 15 18 24 30 35
2 4 9 16 19 22 28 36
1 4 10 16 20 24 29 34
2 6 9 15 17 24 27 34
3 7 9 13 18 23 28 35

2 4 10 12 17 26 28 33
1 4 11 15 18 25 32 36
1 6 9 16 18 26 30 34
2 6 10 16 21 23 29 35
0 7 11 12 18 23 27 37
1 7 9 12 20 26 32 35
1 6 8 15 20 24 28 36
3 7 8 12 21 25 32 36
1 4 8 16 17 25 27 33
1 5 8 16 21 25 32 38
3 4 11 16 21 24 28 34
3 5 10 14 17 24 28 34
3 6 10 12 20 23 32 34
0 5 11 15 21 26 27 33
0 5 8 13 18 23 31 38
1 5 11 13 17 22 31 33
1 7 8 14 18 23 29 36
3 7 10 16 18 22 30 35
3 6 8 16 19 26 27 35
3 6 10 13 20 22 28 38
2 6 11 13 18 22 28 37
2 4 10 14 18 26 28 35
3 6 11 14 18 23 30 38
0 4 9 15 20 25 30 37
1 6 10 14 19 26 29 33
3 4 10 15 19 22 29 38
1 5 11 14 20 25 29 37
0 4 11 13 20 25 29 34
1 7 10 15 21 22 28 36
0 5 8 12 20 26 31 38
2 5 11 16 18 26 31 38
3 5 11 12 19 23 31 38
2 7 10 12 19 23 28 37
2 7 9 15 18 24 32 33
2 4 8 13 21 25 32 35
0 4 10 12 21 22 31 33
0 4 8 16 18 23 31 38
3 7 11 15 20 23 28 37
2 6 11 15 19 22 30 38
2 5 10 13 19 26 30 35
0 7 10 14 20 26 32 38
2 5 10 15 20 23 30 33
2 6 8 12 18 22 27 36
1 7 10 15 17 26 27 33
1 6 11 12 21 23 28 38
1 5 9 12 17 24 29 38
3 4 9 12 18 23 28 37
0 5 10 16 19 24 31 37
2 6 9 14 20 26 27 38
2 5 9 12 21 22 30 33
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Variable strength covering array from Table 5.5 (page 97)

V CA(2, 435362, (CA(3, 53))), N = 125
1 7 12 18 21 26 29 34
2 5 10 15 20 25 30 38
1 6 14 17 19 26 27 35
0 5 12 17 22 24 31 33
0 7 10 18 19 24 28 35
1 9 14 15 21 23 31 38
1 7 10 17 22 24 31 34
3 6 13 16 21 24 29 33
3 5 13 18 19 25 31 36
0 5 13 17 20 24 31 37
3 8 11 17 22 25 29 35
1 6 13 16 20 24 28 33
4 8 13 17 20 26 28 36
1 6 10 17 21 23 29 35
3 6 10 18 20 24 28 35
0 5 11 17 21 24 32 38
4 9 11 17 22 26 27 33
3 9 12 15 20 26 31 37
0 6 12 16 19 26 29 38
3 5 11 15 19 26 32 37
3 9 10 16 22 25 30 35
2 7 12 17 19 23 32 38
3 8 12 16 19 24 30 33
4 8 10 15 21 25 27 38
2 8 11 18 19 24 27 38
0 8 12 16 22 26 31 36
4 8 12 15 20 24 29 37
4 6 11 18 20 25 28 33
4 8 14 15 21 23 27 36
3 8 14 17 19 25 28 36
4 5 10 17 20 24 29 34
4 5 12 17 19 26 32 36
1 6 12 17 21 25 31 35
4 7 14 17 21 24 27 38
0 9 13 16 21 23 29 37
2 6 13 15 21 24 29 36
1 5 11 16 20 26 32 34
3 7 10 15 22 24 29 33
4 9 14 17 22 25 30 37
2 8 14 15 22 26 32 34
1 5 10 16 21 25 30 36
0 7 13 15 21 23 30 38
0 8 14 15 21 23 28 34
2 7 13 17 19 25 27 34
0 9 12 15 22 26 28 35
3 5 14 15 22 23 27 38
0 8 11 18 19 25 29 35
1 8 11 16 19 23 29 36
2 7 11 16 19 25 27 37
2 9 12 17 20 26 31 34
3 7 13 15 22 24 32 33
4 6 13 15 22 26 29 37
4 5 13 16 21 26 30 33
1 6 11 16 20 26 32 34
0 8 13 15 20 26 29 34
4 7 11 17 22 24 31 34
0 6 11 18 21 25 29 38
2 6 10 15 22 25 32 36
0 5 14 16 20 23 28 33
0 9 11 17 22 24 28 36
3 6 12 18 22 24 27 35
2 9 13 17 22 24 27 35

2 9 11 16 19 23 29 35
2 5 12 17 21 23 30 34
4 6 12 16 19 25 31 37
4 5 14 17 22 24 30 36
3 7 11 16 22 25 32 35
1 8 14 15 19 26 28 36
3 8 10 18 20 26 31 36
4 6 10 17 20 24 29 33
2 5 13 17 20 26 30 35
1 7 11 15 21 23 31 37
3 6 14 18 21 24 29 35
2 9 14 17 21 24 28 33
1 5 13 17 22 25 30 36
0 9 14 15 21 25 32 38
3 8 13 18 19 26 29 37
3 5 10 17 21 25 30 36
4 8 11 18 21 25 27 38
2 6 11 18 20 24 31 34
0 5 10 18 19 26 27 34
0 7 11 18 22 24 27 35
3 7 14 18 22 23 27 33
1 9 13 15 22 23 32 34
3 9 11 17 19 26 30 35
3 7 12 15 22 26 27 34
1 8 13 18 20 23 30 35
4 5 11 15 19 25 27 35
4 9 12 17 22 24 27 35
2 6 12 18 20 26 28 33
2 8 10 15 22 26 31 34
0 7 12 17 21 23 28 33
0 8 10 16 21 25 31 38
4 9 13 18 22 23 31 38
2 8 13 15 20 23 29 34
0 7 14 17 19 23 27 36
3 9 14 16 19 24 28 36
1 8 12 16 19 25 29 37
1 9 12 18 22 23 27 36
3 5 12 18 20 23 31 35
4 9 10 18 22 23 29 37
2 7 10 17 19 24 28 34
3 9 13 18 19 25 30 35
0 6 13 18 21 26 28 38
2 5 14 16 20 23 27 34
2 5 11 18 20 25 31 36
1 9 11 17 22 23 32 35
2 7 14 15 22 23 31 35
1 8 10 18 20 24 31 38
3 6 11 18 19 26 29 33
2 8 12 15 20 23 28 35
0 6 10 18 19 26 32 33
1 9 10 17 20 23 27 33
0 9 10 18 19 24 30 33
4 6 14 15 19 24 30 34
0 6 14 18 21 23 31 34
2 6 14 17 19 26 30 37
1 7 14 17 21 25 28 35
1 7 13 18 22 23 32 35
4 7 10 17 20 24 31 35
2 9 10 16 19 25 27 38
4 7 13 17 20 26 27 38
1 5 12 17 22 25 31 33
4 7 12 15 20 26 32 36
1 5 14 15 20 26 28 37
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Variable strength covering array from Table 5.5 (page 97)

V CA(2, 435362, (CA(3, 43), CA(3, 53)))
N = 125

0 6 11 16 21 24 29 37
1 6 10 15 19 23 27 34
1 6 11 12 21 22 30 34
0 5 10 16 18 23 32 33
2 4 11 15 19 25 27 37
2 6 9 12 17 25 29 38
3 7 8 15 19 26 28 37
0 4 11 16 17 23 30 35
0 6 10 15 20 24 31 33
3 6 10 14 18 22 32 37
2 5 8 15 18 26 30 33
1 7 9 16 19 22 32 38
3 7 9 15 17 22 29 34
0 6 10 14 17 26 30 38
1 7 11 12 21 24 31 37
1 5 10 15 19 22 27 35
2 7 9 13 21 25 28 37
0 4 8 14 21 23 30 37
3 7 8 13 17 22 28 36
1 7 10 15 21 23 30 33
0 5 11 15 18 23 28 37
2 7 10 13 20 25 32 35
0 5 11 16 17 26 30 33
3 4 9 13 19 24 29 33
3 5 8 12 17 22 27 37
1 7 8 14 21 24 32 36
3 7 11 15 20 23 27 36
1 4 8 12 20 23 32 37
2 6 8 15 17 23 30 37
2 6 11 14 17 22 31 33
0 5 9 15 17 25 32 36
2 4 10 15 17 24 28 38
1 4 11 16 21 22 32 34
2 7 8 13 19 25 31 34
2 5 8 13 21 23 29 34
1 5 9 13 19 26 29 38
3 4 10 15 18 22 28 33
1 6 9 13 19 23 30 37
3 5 10 13 18 25 28 34
0 4 11 16 17 25 31 36
1 7 10 14 21 25 31 36
3 7 10 16 18 22 29 35
1 7 11 16 18 25 30 38
1 5 8 15 21 26 32 38
1 7 11 16 20 26 29 36
3 5 8 12 17 26 31 38
2 6 10 15 18 25 32 38
2 6 8 12 20 24 32 38
1 6 11 13 20 23 31 38
0 4 8 15 20 26 27 34
3 7 9 14 20 25 32 37
2 5 9 13 21 22 32 34
3 4 11 12 20 22 28 36
3 7 10 13 17 26 31 33
0 6 9 14 20 22 28 38
0 6 11 16 19 25 31 34
3 4 9 12 20 25 30 37
0 6 8 13 17 23 32 36
2 5 11 14 19 23 28 34
2 5 10 13 19 22 30 33
0 6 10 12 17 24 28 37
2 5 9 14 21 22 32 38

3 4 10 15 21 25 31 34
0 6 11 15 19 24 30 34
0 4 9 14 20 26 32 37
3 7 11 14 18 26 29 33
2 6 10 12 18 25 32 36
1 7 8 13 18 23 32 38
2 5 10 16 19 23 28 33
3 6 11 12 18 23 30 37
0 7 9 13 21 24 31 35
0 7 11 13 18 22 32 35
0 5 8 16 20 22 29 33
3 5 11 12 21 23 27 33
0 5 9 12 19 23 28 36
0 4 11 14 18 24 27 38
0 5 11 14 21 26 27 38
1 4 11 12 17 23 27 34
1 5 8 14 19 22 27 33
1 5 11 14 19 26 30 36
1 4 9 12 18 22 29 36
2 4 8 15 21 22 29 37
1 7 11 13 21 26 30 36
0 5 11 16 20 24 28 38
3 6 11 16 18 24 27 33
3 5 9 12 20 26 27 33
1 5 10 13 18 24 32 38
1 5 8 14 19 25 28 35
2 4 10 13 20 24 30 38
2 5 11 13 20 22 31 33
3 4 8 16 20 25 31 35
3 4 11 12 21 26 29 36
0 6 9 14 19 24 28 36
1 6 11 14 17 25 29 34
0 7 8 16 20 23 32 37
1 5 11 15 21 24 31 38
2 7 11 14 17 24 30 37
0 5 11 16 21 26 28 35
3 6 9 13 17 25 32 33
1 5 8 12 21 25 28 34
3 5 9 15 20 22 28 35
2 7 11 16 19 26 31 33
1 5 10 16 21 23 29 36
1 4 10 13 20 26 28 37
3 6 11 12 18 26 30 36
0 6 10 12 19 24 32 36
2 7 8 16 17 24 28 38
1 5 9 16 18 26 29 33
2 7 11 13 18 26 29 37
1 7 10 14 17 23 28 35
0 5 11 16 17 22 31 33
2 4 9 15 17 26 29 35
1 6 9 14 18 23 31 35
3 6 8 12 19 22 29 36
0 6 11 12 19 25 32 35
3 7 10 14 20 24 29 36
0 4 10 12 19 26 30 35
1 6 9 16 21 25 31 35
3 7 8 16 19 24 32 38
1 6 8 15 20 25 29 36
1 7 11 14 18 25 31 36
2 6 10 12 18 24 28 37
3 7 8 13 17 24 27 36
0 7 10 15 18 24 29 36
1 5 10 14 20 23 32 35
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Ordered design from Table 6.7 (page 122)

OD(3, 6, 6), N = 120
4 11 12 20 27 31
5 7 12 22 26 33
4 11 14 21 25 30
3 10 12 23 26 31
4 9 13 20 29 30
5 9 16 18 26 31
4 7 15 23 26 30
0 8 16 23 27 31
2 6 16 19 27 35
2 10 17 18 27 31
0 7 17 22 27 32
1 8 12 22 27 35
3 11 13 20 24 34
5 7 16 20 27 30
1 8 16 21 29 30
2 10 15 19 29 30
4 9 17 18 25 32
3 7 16 23 24 32
3 6 16 20 29 31
1 10 12 20 29 33
1 9 17 22 26 30
3 7 14 22 29 30
4 6 13 23 27 32
4 8 15 18 29 31
2 11 12 19 28 33
4 6 15 20 25 35
3 8 17 22 24 31
2 9 13 18 28 35
3 6 14 23 25 34
1 9 14 18 29 34
0 10 13 20 27 35
5 9 13 22 24 32
1 9 16 20 24 35
0 11 16 20 25 33
0 7 16 21 26 35
4 7 12 21 29 32
5 10 13 21 26 30
0 10 14 21 29 31
3 6 17 19 28 32
1 8 17 18 28 33
2 11 13 22 27 30
5 8 13 18 27 34
3 6 13 22 26 35
5 8 12 21 28 31
2 9 12 22 29 31
3 10 13 18 29 32
0 7 15 20 29 34
4 11 15 19 24 32
1 10 17 21 24 32
0 11 14 19 27 34
5 7 14 21 24 34
5 8 16 19 24 33
2 7 16 18 29 33
2 11 15 18 25 34
1 11 12 21 26 34
3 7 17 18 26 34
0 11 15 22 26 31
4 9 12 19 26 35
0 7 14 23 28 33

3 8 12 19 29 34
2 10 13 23 24 33
4 11 13 18 26 33
1 6 15 22 29 32
1 10 14 23 27 30
5 6 16 21 25 32
1 10 15 18 26 35
3 11 12 22 25 32
0 11 13 21 28 32
0 10 17 19 26 33
3 10 14 19 24 35
4 7 17 20 24 33
3 8 13 23 28 30
3 11 16 19 26 30
0 8 15 19 28 35
1 11 16 18 27 32
5 7 15 18 28 32
4 7 14 18 27 35
0 9 14 22 25 35
4 9 14 23 24 31
2 7 15 22 24 35
5 8 15 22 25 30
2 7 12 23 27 34
5 10 12 19 27 32
5 6 13 20 28 33
3 11 14 18 28 31
2 6 17 22 25 33
0 9 13 23 26 34
4 6 17 21 26 31
2 6 15 23 28 31
5 10 15 20 24 31
0 9 17 20 28 31
5 6 15 19 26 34
5 9 12 20 25 34
4 8 13 21 24 35
0 8 17 21 25 34
4 8 12 23 25 33
4 8 17 19 27 30
5 9 14 19 28 30
0 8 13 22 29 33
2 9 16 23 25 30
1 11 15 20 28 30
1 11 14 22 24 33
5 10 14 18 25 33
3 8 16 18 25 35
2 7 17 21 28 30
1 9 12 23 28 32
2 9 17 19 24 34
2 11 16 21 24 31
4 6 14 19 29 33
1 6 17 20 27 34
2 10 12 21 25 35
1 6 14 21 28 35
3 10 17 20 25 30
2 6 13 21 29 34
5 6 14 22 27 31
0 9 16 19 29 32
1 6 16 23 26 33
1 8 15 23 24 34
3 7 12 20 28 35
0 10 15 23 25 32
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(2, 1)-covering array from Table 6.7 (page 122)

TOCA(N ; 3, 6, 6; 0), N = 140
5 11 12 22 24 33
4 7 16 19 25 34
3 9 15 18 27 30
1 8 14 20 25 32
0 6 14 20 26 30
2 10 16 20 28 32
4 10 15 19 27 32
3 10 14 21 28 31
2 7 14 20 25 31
0 6 16 18 28 34
3 7 13 21 25 33
2 9 15 20 26 32
4 10 13 22 25 31
2 11 17 23 26 35
4 8 16 22 26 32
3 10 15 22 28 33
5 9 16 18 24 35
5 6 12 23 29 35
0 8 14 18 24 30
2 9 14 21 27 32
2 8 14 22 28 34
4 8 13 21 27 34
2 11 14 19 25 30
2 9 16 22 25 33
4 10 16 21 27 33
3 9 15 19 25 31
3 6 12 21 27 33
3 11 12 18 28 35
5 10 16 22 29 34
3 6 15 18 24 33
5 8 17 20 26 35
0 6 14 19 26 33
5 7 13 19 24 31
4 9 15 22 27 34
5 7 13 23 29 35
5 9 17 23 27 33
1 9 15 21 26 33
3 9 13 22 28 32
0 6 15 21 27 30
0 10 16 22 24 34
4 6 16 22 24 30
1 7 17 23 29 31
3 6 17 23 28 30
0 7 13 18 25 30
0 6 12 20 24 32
1 7 14 18 26 35

5 10 17 22 28 35
4 6 12 22 28 34
2 8 12 20 24 30
4 10 14 20 26 34
0 7 12 18 24 31
1 8 14 19 26 31
5 11 13 23 25 31
0 9 16 23 29 30
5 8 14 20 24 32
5 6 17 18 29 30
2 6 13 20 25 35
3 9 14 20 26 33
5 11 14 20 29 35
1 6 12 18 25 30
5 9 15 21 29 33
4 10 12 18 24 34
5 11 14 23 26 32
4 11 16 22 29 35
2 7 13 19 26 31
1 9 13 19 27 33
3 8 14 20 27 32
2 8 14 21 26 33
2 10 14 22 26 32
5 10 15 23 24 30
2 8 15 20 27 33
0 11 17 23 24 30
5 11 16 23 28 34
2 6 14 18 24 32
4 10 16 23 28 35
3 11 17 21 27 33
5 11 17 19 29 31
4 11 12 23 27 30
5 7 17 19 25 35
1 10 13 19 28 34
1 11 17 23 25 35
2 6 12 18 26 30
0 6 12 23 24 35
0 7 14 19 29 32
1 11 13 19 29 35
0 6 17 22 29 33
2 8 13 19 25 32
3 10 16 22 27 34
1 6 17 19 26 32
4 6 17 18 27 35
1 7 15 21 27 31
2 8 14 23 29 35
0 6 13 19 24 30

0 10 12 22 28 30
0 11 12 21 29 34
2 10 15 21 25 34
5 8 17 23 29 32
0 11 17 18 27 35
3 9 15 23 27 35
4 7 13 19 28 31
4 11 17 22 28 34
2 7 12 23 25 32
4 8 14 20 28 32
2 11 17 20 29 32
1 7 13 20 26 32
1 7 13 22 25 34
1 7 16 22 28 31
4 10 16 18 28 30
5 6 17 21 24 34
1 10 16 22 26 34
0 9 12 18 27 33
4 9 15 21 28 33
0 11 17 18 24 35
2 8 17 18 25 31
3 11 15 23 29 33
3 7 15 20 28 34
1 8 13 23 26 30
3 9 16 21 28 34
5 11 15 21 27 35
2 8 16 20 26 34
3 8 16 19 28 33
1 7 12 19 24 30
3 7 13 19 27 31
1 11 12 20 26 31
0 8 13 20 29 31
1 10 16 19 25 31
3 9 12 21 24 30
0 8 12 18 26 32
0 9 15 21 24 33
0 10 15 18 29 35
0 6 12 19 25 31
3 8 15 21 26 32
4 10 17 23 29 34
3 9 17 21 29 35
1 7 15 19 25 33
5 11 12 18 29 30
1 9 13 21 25 31
4 7 14 22 27 33
4 9 16 20 27 31
1 6 13 18 24 31
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(2, 1)-covering arrays from Table 6.8 (page 122)

TOCA(N ; 3, 6, 2; 2), N = 12
0 2 4 6 8 10
1 3 5 7 9 11
0 3 4 6 9 10
0 3 5 7 8 10
1 3 4 6 8 11
0 2 5 6 9 11
0 3 4 7 8 11
0 2 5 7 9 10
1 2 4 7 9 10
1 2 5 7 8 11
1 3 5 6 8 10
1 2 4 6 9 11

TOCA(N ; 3, 6, 3; 3), N = 33
0 3 6 9 12 15
1 4 7 10 13 16
2 5 8 11 14 17
0 3 8 11 12 17
2 4 8 10 13 16
1 4 8 10 14 17
0 4 7 10 12 15
1 3 7 9 13 15
2 3 6 11 14 17
2 3 8 9 14 15
2 5 6 9 14 15
2 3 8 11 12 15
1 3 6 10 13 15
0 3 7 10 12 16
2 4 7 11 13 17
2 5 7 10 13 17
1 4 6 9 13 16
0 5 6 11 12 17
0 5 6 11 14 15
0 4 7 9 13 15
2 5 6 9 12 17
1 5 7 11 13 16
1 4 6 10 12 15
1 5 8 11 13 17
0 3 8 9 14 17
1 5 8 10 14 16
0 4 6 9 12 16
0 5 8 9 12 15
2 5 7 10 14 16
1 4 7 11 14 17
2 4 8 11 14 16
0 3 6 10 13 16
1 3 7 9 12 16

TOCA(N ; 3, 6, 2; 0), N = 12
1 2 4 7 8 11
0 3 4 6 9 11
1 3 5 6 8 10
1 2 5 6 9 11
1 2 5 7 8 10
0 3 4 7 8 10
0 2 5 7 9 10
0 3 5 6 8 11
1 3 5 7 9 11
0 2 4 6 8 10
1 3 4 6 9 10
0 2 4 7 9 11

TOCA(N ; 3, 6, 3; 0), N = 30
0 5 6 11 14 17
1 3 7 10 12 15
1 3 6 9 12 16
1 5 8 10 13 17
2 3 6 9 14 17
0 4 7 9 12 15
1 4 8 11 14 17
2 5 6 9 14 15
0 4 6 10 12 16
1 4 7 9 12 16
1 4 7 10 14 17
0 3 6 10 13 15
2 5 7 10 13 17
1 5 8 10 14 16
0 5 8 11 12 15
2 5 7 11 14 16
2 5 8 9 12 17
0 4 6 9 13 16
2 4 8 10 14 16
0 3 8 11 12 17
1 5 7 11 13 16
2 4 8 11 13 16
1 4 6 10 13 15
2 3 8 11 14 15
2 4 7 11 13 17
1 3 7 9 13 15
2 3 6 11 12 15
0 3 7 10 13 16
0 3 8 9 14 15
0 5 6 9 12 17
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(2, 1)-covering arrays from Table 6.9 (page 122)

TOCA(N ; 3, 8, 2; 2), N = 12
0 2 4 6 8 10 12 14
1 3 5 7 9 11 13 15
0 3 5 7 8 10 12 15
0 2 4 7 9 11 12 15
1 2 4 6 9 11 13 14
1 2 5 6 8 11 12 15
1 3 4 6 8 10 13 15
0 2 5 6 9 10 13 15
0 3 4 7 8 11 13 14
0 3 5 6 9 11 12 14
1 2 5 7 8 10 13 14
1 3 4 7 9 10 12 14

TOCA(N ; 3, 8, 3; 3), N = 33
0 3 6 9 12 15 18 21
1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
0 4 6 10 12 16 18 22
1 4 8 10 14 17 19 23
0 3 6 10 13 16 19 21
0 3 8 11 14 17 18 21
2 5 8 10 13 16 19 23
2 4 7 11 14 17 19 22
1 3 6 9 13 15 19 22
1 4 7 9 12 15 18 22
1 5 7 10 14 16 20 23
1 4 6 9 13 16 18 21
2 3 8 11 12 15 20 21
0 3 7 9 12 16 19 22
2 5 6 11 14 15 18 21
0 3 7 10 13 15 18 22
0 5 6 11 12 17 18 23
0 5 8 9 12 15 20 23
1 4 8 11 13 17 20 22
2 4 7 11 13 16 20 23
0 3 6 11 14 15 20 23
1 5 7 11 13 17 19 23
1 5 8 11 14 16 19 22
0 5 6 9 14 17 20 21
2 3 8 9 14 15 18 23
2 4 8 10 14 16 20 22
2 5 7 10 13 17 20 22
1 3 7 10 12 16 18 21
2 5 8 9 12 17 18 21
0 4 7 9 13 15 19 21
2 3 6 9 12 17 20 23
1 4 6 10 12 15 19 21

TOCA(N ; 3, 8, 2; 0), N = 12
1 2 4 6 9 10 13 14
0 3 4 6 9 11 13 15
0 3 4 7 8 10 13 14
0 2 5 6 8 11 13 14
1 3 5 7 8 11 13 15
0 2 5 7 9 10 13 15
1 3 4 7 9 10 12 15
1 3 5 6 8 10 12 14
1 2 5 6 9 11 12 15
0 2 4 6 8 10 12 15
1 2 4 7 8 11 12 14
0 3 5 7 9 11 12 14

TOCA(N ; 3, 8, 3; 0), N = 30
0 3 6 9 14 17 20 23
0 5 8 9 12 17 18 23
2 5 7 10 13 17 20 22
1 4 8 11 14 17 19 22
1 4 6 9 12 16 19 21
0 4 7 9 13 15 19 21
0 3 8 11 14 15 18 23
2 5 7 10 14 16 19 23
1 5 7 11 13 17 19 23
1 3 7 9 12 15 19 22
2 4 8 10 13 17 19 23
1 5 8 10 14 16 20 22
2 3 8 9 14 15 20 21
0 3 8 11 12 17 20 21
2 3 6 11 12 17 18 23
1 3 7 10 12 16 18 21
2 5 6 9 14 17 18 21
2 4 7 11 14 16 20 22
1 4 6 9 13 15 18 22
2 5 6 9 12 15 20 23
0 3 6 10 12 16 19 22
1 3 6 10 13 15 19 21
0 4 6 10 13 16 18 21
0 4 7 10 12 15 18 22
0 5 6 11 14 15 20 21
0 3 7 9 13 16 18 22
2 5 8 11 13 16 19 22
1 4 8 11 13 16 20 23
2 5 8 11 12 15 18 21
1 4 7 10 14 17 20 23
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(2, 1)-covering arrays from Table 6.10 (page 122)

TOCA(N ; 3, 9, 2; 2), N = 13
0 2 4 6 8 10 12 14 16
1 3 5 7 9 11 13 15 17
0 3 4 6 8 10 13 15 16
0 2 4 7 9 11 12 15 16
0 2 4 6 9 11 13 14 17
0 3 5 6 9 10 12 14 17
0 3 5 7 8 11 12 14 16
1 2 4 7 8 10 12 14 17
1 3 4 7 9 10 13 14 16
1 3 4 6 8 11 12 15 17
0 2 5 7 8 10 13 15 17
1 2 5 6 9 10 12 15 16
1 2 5 6 8 11 13 14 16

TOCA(N ; 3, 9, 3; 3), N = 36
0 3 6 9 12 15 18 21 24
1 4 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 26
0 3 7 10 12 16 19 21 25
2 5 6 11 14 15 18 21 24
1 4 7 10 12 16 18 21 24
0 4 6 9 13 16 18 21 25
0 4 7 9 12 15 19 22 25
1 3 6 10 13 15 19 21 25
1 4 6 10 12 15 18 22 25
2 3 8 9 14 15 20 23 24
1 5 8 10 14 16 20 22 26
0 5 8 9 12 15 20 21 26
1 5 8 11 13 16 19 23 25
1 3 7 9 13 16 18 22 25
0 3 6 9 14 17 18 23 26
1 4 7 10 14 16 20 23 25
1 4 7 11 14 17 19 22 26
0 3 7 10 13 15 18 22 24
2 5 6 9 12 17 20 23 24
2 5 7 10 14 17 19 23 25
0 3 8 11 14 17 20 21 24
0 5 6 11 14 15 20 23 26
0 4 6 10 13 16 19 22 24
2 5 8 9 14 17 18 21 26
2 4 7 11 13 16 20 23 26
1 3 6 9 12 16 19 22 24
2 4 8 11 14 16 19 22 25
2 3 6 11 12 17 20 21 26
0 5 8 11 12 17 18 23 24
2 3 8 11 12 15 18 23 26
2 4 8 10 13 17 20 22 25
1 4 8 10 13 17 19 23 26
1 5 7 11 13 17 20 22 25
2 5 7 10 13 16 19 22 26
1 4 7 9 13 15 19 21 24

TOCA(N ; 3, 9, 2; 0), N = 12
1 2 5 7 9 10 12 14 16
1 3 4 7 8 10 13 14 16
1 2 5 6 8 11 12 14 17
1 2 4 7 9 11 13 15 17
0 2 5 7 8 10 13 15 17
0 2 4 6 8 11 13 14 16
0 3 5 7 8 11 12 15 16
1 3 4 6 8 10 12 15 17
0 3 5 6 9 10 13 14 17
1 3 5 6 9 11 13 15 16
0 3 4 7 9 11 12 14 17
0 2 4 6 9 10 12 15 16

TOCA(N ; 3, 9, 3; 0), N = 33
1 4 6 9 12 16 18 22 25
2 4 7 10 14 17 19 23 26
2 5 7 11 13 16 19 23 25
2 5 8 11 14 15 18 21 24
1 5 8 10 13 17 20 23 25
1 3 7 9 12 15 19 21 25
0 4 6 10 13 15 19 21 25
0 3 8 9 14 17 18 21 26
1 3 6 10 13 16 18 21 24
1 4 7 9 13 16 19 21 24
2 3 8 9 12 17 18 23 24
1 3 7 10 13 15 18 22 25
1 4 7 11 14 17 20 23 25
1 4 6 10 12 15 19 22 24
0 5 6 9 14 15 18 23 26
2 4 8 10 14 16 20 22 25
0 5 8 9 12 15 20 21 24
0 3 8 11 12 15 20 23 26
0 3 7 10 12 16 19 22 24
2 5 7 10 13 17 20 22 26
1 5 7 11 14 16 20 22 26
2 3 6 9 14 15 20 23 24
0 3 6 9 13 16 19 22 25
2 4 8 11 13 16 20 23 26
0 4 7 9 13 15 18 22 24
1 4 8 11 13 17 19 22 26
1 5 8 10 14 16 19 23 26
0 4 7 10 12 16 18 21 25
2 5 6 9 12 17 20 21 26
2 5 8 11 14 17 19 22 25
0 3 6 11 14 17 20 21 24
0 5 6 11 12 17 18 23 24
2 3 6 11 12 15 18 21 26
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(2, 1)-covering arrays from Table 6.11 (page 123)

TOCA(N ; 3, 10, 2; 2), N = 13
0 2 4 6 8 10 12 14 16 18
1 3 5 7 9 11 13 15 17 19
0 3 5 7 8 11 12 15 17 18
0 3 4 7 9 11 13 14 16 19
1 2 5 6 9 11 13 15 16 18
1 3 4 6 8 11 13 14 17 18
0 2 5 6 9 11 12 14 17 19
1 2 5 7 8 10 13 14 17 19
1 2 4 7 8 11 12 15 16 19
1 3 4 6 9 10 12 15 17 19
0 2 4 7 9 10 13 15 17 18
1 3 5 7 9 10 12 14 16 18
0 3 5 6 8 10 13 15 16 19

TOCA(N ; 3, 10, 3; 3), N = 36
0 3 6 9 12 15 18 21 24 27
1 4 7 10 13 16 19 22 25 28
2 5 8 11 14 17 20 23 26 29
0 3 8 11 12 17 18 23 26 29
1 3 6 9 13 15 19 22 25 28
2 4 8 10 13 16 20 22 26 29
1 4 8 11 14 17 19 22 25 29
0 4 6 10 12 15 19 22 24 28
2 3 6 9 14 17 18 23 26 27
1 5 7 11 14 16 20 22 26 28
0 3 7 10 12 16 19 21 25 28
0 5 8 9 14 15 18 23 24 29
2 5 6 9 12 15 20 23 26 29
1 4 6 10 13 16 19 21 24 27
2 5 8 11 13 17 20 22 25 28
1 4 7 10 12 15 18 22 25 27
0 3 6 11 14 15 20 21 26 29
1 4 7 11 13 17 20 23 26 29
0 4 7 9 13 15 19 21 25 27
2 5 7 11 13 16 19 23 25 29
2 5 7 10 14 17 19 22 26 29
2 3 8 11 12 15 20 23 24 27
0 3 6 10 13 16 18 22 25 27
1 4 6 9 12 16 18 21 25 28
2 4 7 10 14 17 20 23 25 28
0 5 6 11 14 17 20 23 24 27
2 5 6 11 12 17 18 21 24 29
0 4 7 9 13 16 18 22 24 28
0 5 8 9 12 17 20 21 26 27
2 5 8 11 14 15 18 21 26 27
2 4 8 11 14 16 19 23 26 28
1 3 7 10 13 15 18 21 24 28
1 3 7 9 12 16 19 22 24 27
2 3 8 9 14 17 20 21 24 29
1 5 8 10 13 17 19 23 26 28
1 5 8 10 14 16 20 23 25 29

TOCA(N ; 3, 10, 2; 0), N = 12
1 3 5 7 8 10 13 15 16 18
0 2 5 7 8 11 12 14 16 18
1 3 4 7 8 11 12 15 17 19
1 2 5 6 9 11 13 15 17 18
0 3 4 6 8 10 13 14 17 18
0 3 4 6 9 11 12 15 16 18
1 3 5 6 9 10 12 14 16 19
0 2 5 6 8 10 12 15 17 19
1 2 4 6 8 11 13 14 16 19
0 3 5 7 9 11 13 14 17 19
0 2 4 7 9 10 13 15 16 19
1 2 4 7 9 10 12 14 17 18

TOCA(N ; 3, 10, 3; 0), N = 33
2 3 8 9 14 15 20 21 26 27
1 4 7 11 13 17 19 23 25 29
1 5 8 11 14 16 19 22 25 28
2 5 6 11 14 17 18 21 24 27
2 3 8 11 14 15 18 23 24 29
1 3 7 9 13 16 19 21 24 27
2 3 6 11 12 17 20 23 26 27
1 4 7 11 14 16 20 23 26 28
1 4 6 9 12 16 18 22 24 28
0 3 6 10 12 16 19 22 25 27
1 3 6 10 13 15 18 21 25 28
0 3 6 9 14 17 20 23 24 29
0 4 6 9 13 16 18 21 25 27
0 5 6 11 14 15 20 21 26 29
0 5 8 9 14 17 18 23 26 27
0 3 6 9 13 15 19 22 24 28
2 5 7 10 13 16 19 23 26 28
1 4 8 10 13 16 20 22 26 29
2 4 8 11 13 17 19 22 26 28
0 5 8 11 12 15 20 23 24 27
1 3 7 9 12 15 18 22 25 27
0 4 7 10 13 15 18 22 24 27
2 4 7 10 14 17 20 22 25 28
2 4 8 10 14 16 19 23 25 29
0 3 7 10 12 16 18 21 24 28
2 5 6 9 12 15 18 23 26 29
0 3 8 11 12 17 18 21 26 29
2 5 8 9 12 17 20 21 24 29
1 5 8 10 13 17 20 23 25 28
1 4 6 10 12 15 19 21 24 27
1 5 7 10 14 17 19 22 26 29
0 4 7 9 12 15 19 21 25 28
2 5 7 11 13 16 20 22 25 29
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(2, 1)-covering array from Table 6.11 (page 123)

TOCA(N ; 3, 10, 4; 0), N = 66
2 6 11 15 19 22 26 31 35 39
2 4 8 14 16 22 26 30 34 36
1 6 9 14 17 21 26 30 33 38
0 4 8 12 17 21 24 29 33 37
2 6 10 14 17 22 26 29 33 37
3 4 8 15 16 20 27 28 35 39
2 5 10 14 17 21 25 30 34 38
1 5 11 15 17 21 27 29 35 37
1 5 9 15 19 23 25 29 33 39
3 7 11 15 18 23 26 31 34 38
3 7 11 12 16 20 24 28 32 39
2 7 11 15 19 22 27 30 34 38
1 5 10 13 17 22 26 30 34 37
3 7 9 15 19 21 25 29 35 37
2 6 9 13 17 22 25 29 34 38
0 4 10 12 16 22 26 30 32 38
0 7 8 15 16 23 24 31 32 39
0 4 9 13 16 21 25 29 32 36
2 7 10 14 19 23 27 31 35 38
3 7 11 13 17 23 25 29 33 37
2 4 10 12 18 20 24 30 34 38
2 6 11 14 18 23 27 31 34 39
3 5 11 15 17 21 25 31 33 39
2 6 9 13 18 21 26 30 34 37
3 7 10 14 19 22 26 31 34 39
1 4 9 12 16 21 24 28 33 36
0 6 8 12 18 22 24 30 34 36
3 6 10 15 18 22 27 31 35 38
0 4 11 12 19 23 24 28 35 39
2 5 9 14 18 22 25 30 33 37
2 5 10 13 18 21 26 29 33 38
2 7 10 15 18 23 26 30 35 39
0 4 8 12 19 20 27 31 32 39

0 4 10 14 18 20 26 28 34 36
0 7 11 15 19 20 27 28 32 36
1 5 8 13 16 20 24 29 33 36
1 7 11 13 19 21 27 29 33 39
1 5 11 13 19 23 25 31 35 37
1 5 9 14 18 22 26 29 34 38
2 6 8 12 16 20 26 28 34 38
0 5 9 12 16 20 24 29 32 37
0 4 8 13 16 20 25 28 33 37
1 7 9 15 17 23 27 31 33 37
3 5 9 13 17 23 27 29 35 39
0 7 8 12 16 23 27 28 35 36
2 6 10 12 18 22 26 28 32 36
1 6 10 13 18 22 25 30 33 38
2 4 8 14 18 22 24 28 32 38
3 7 11 14 18 22 27 30 35 39
2 6 10 14 16 20 24 30 32 36
1 6 10 14 18 21 25 29 34 37
3 6 11 14 19 23 26 30 35 38
3 7 8 12 19 20 24 31 35 36
1 4 9 13 17 20 24 28 32 37
3 5 9 13 19 21 27 31 33 37
3 4 8 15 19 23 24 28 32 36
0 5 9 12 17 20 25 28 33 36
3 4 11 12 16 23 27 31 32 36
1 5 8 12 16 21 25 28 32 37
0 6 8 14 18 20 26 30 32 38
1 7 9 13 17 21 25 31 35 39
1 4 8 12 17 20 25 29 32 36
3 6 10 15 19 23 27 30 34 39
0 4 11 15 16 20 24 31 35 36
0 5 8 13 17 21 24 28 32 36
0 6 10 14 16 22 24 28 34 38
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Covering array built using an OA3(2, 9, 3) as a seed: from Table 6.12 (page 123)
CA(3, 9, 3), N = 50

0 3 6 9 12 15 18 21 24
1 4 7 10 13 16 19 22 25
2 5 8 11 14 17 20 23 26
0 4 8 9 13 17 18 22 26
1 5 6 10 14 15 19 23 24
2 3 7 11 12 16 20 21 25
0 5 7 9 14 16 18 23 25
1 3 8 10 12 17 19 21 26
2 4 6 11 13 15 20 22 24
0 3 6 11 14 17 19 22 25
1 4 7 9 12 15 20 23 26
2 5 8 10 13 16 18 21 24
0 4 8 11 12 16 19 23 24
1 5 6 9 13 17 20 21 25
2 3 7 10 14 15 18 22 26
0 5 7 11 13 15 19 21 26
1 3 8 9 14 16 20 22 24
2 4 6 10 12 17 18 23 25
0 3 6 10 13 16 20 23 26
1 4 7 11 14 17 18 21 24
2 5 8 9 12 15 19 22 25
0 4 8 10 14 15 20 21 25
1 5 6 11 12 16 18 22 26
2 3 7 9 13 17 19 23 24
0 5 7 10 12 17 20 22 24
1 3 8 11 13 15 18 23 25
2 4 6 9 14 16 19 21 26
2 5 7 9 12 16 20 23 24
1 4 6 9 13 16 18 23 24
2 5 6 9 13 17 19 22 26
2 3 8 10 13 15 20 23 24
1 5 7 10 13 17 18 23 26
0 3 7 9 14 15 19 23 26
0 5 6 10 12 16 19 21 25
2 3 6 11 14 16 19 21 24
1 3 7 9 12 17 18 22 25
2 4 8 11 12 17 18 21 26
1 4 7 10 14 16 20 21 26
2 4 7 9 13 15 18 21 25
0 5 8 10 12 15 20 22 26
1 5 8 11 14 15 18 21 24
0 4 7 11 13 17 20 23 25
1 3 6 11 12 15 20 23 26
0 3 8 11 13 16 18 22 26
0 4 6 10 14 17 18 22 24
1 4 7 11 12 15 19 22 24
1 4 8 9 14 17 19 23 25
0 3 8 9 13 17 20 21 24
2 3 8 10 13 16 19 22 25
2 5 6 11 14 15 20 22 25
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Difference covering arrays with and without zero differences
(from Table 6.14)

used to build covering arrays in Table 6.13 (page 123)

DCA(N ; 2, 5, 5)
N = 5

2 2 2 2 4
0 1 3 4 4
1 3 2 4 2
3 2 0 4 3
2 0 1 4 0

DCA(N ; 2, 5, 6)
N = 8

1 2 0 1 2
4 0 2 3 2
3 1 0 2 5
3 3 4 1 2
1 5 5 5 0
3 3 3 0 0
3 0 1 5 3
4 3 0 5 1

DCA(N ; 2, 5, 6)
N = 7,without

all zero differences
5 0 2 4 1
2 5 0 4 3
1 5 3 2 4
3 5 4 1 2
4 3 3 4 5
3 3 0 0 1
0 2 4 1 5

DCA(N ; 2, 9, 4)
N = 7

1 3 1 3 1 2 1 3 2
2 2 1 2 3 2 1 0 3
3 2 1 2 2 2 3 2 0
3 2 2 2 1 3 1 0 1
1 0 3 2 3 2 0 1 0
3 3 0 0 2 0 0 1 3
0 1 0 0 1 2 0 0 0

DCA(N ; 2, 9, 4)
N = 6, without

all zero differences
1 1 2 0 3 2 2 0 3
0 2 2 3 3 1 3 2 1
3 2 1 0 1 2 3 0 2
0 3 3 3 1 1 2 0 0
1 2 0 3 3 0 0 1 2
1 1 0 0 2 3 2 1 0

DCA(N ; 2, 4, 9)
N = 10

1 4 1 7
8 7 4 4
8 7 0 3
4 2 6 2
2 4 5 3
5 0 0 8
2 3 8 1
8 5 4 6
0 0 7 2
5 1 4 5

DCA(N ; 2, 4, 9)
N = 9, without

all zero differences
8 3 6 2
3 8 5 7
1 2 7 8
4 3 7 6
6 8 7 3
6 0 2 5
8 5 3 7
5 3 4 1
0 0 3 1

DCA(N ; 2, 4, 6)
N = 7

2 1 2 0
3 1 5 1
1 2 4 3
0 0 5 0
0 1 4 3
3 0 4 4
3 5 5 2

DCA(N ; 2, 4, 6)
N = 6, without

all zero differences
5 2 4 3
2 3 0 4
1 3 4 0
5 4 3 0
2 1 3 5
0 4 2 3

DCA(N ; 2, 5, 5)
N = 4, without

all zero differences
3 1 2 0 4
1 0 3 2 4
2 3 0 1 4
3 0 4 1 2

DCA(N ; 2, 6, 4)
N = 6

1 0 0 2 1 1
3 3 0 3 3 0
2 0 0 0 0 0
1 2 0 0 0 2
2 3 2 0 2 1
1 2 0 1 2 1

DCA(N ; 2, 6, 4)
N = 5, without

all zero differences
0 2 2 0 1 0
1 2 3 2 3 0
2 1 0 2 1 3
0 3 1 2 2 0
0 3 3 3 1 2

DCA(N ; 2, 6, 5)
N = 7

3 1 3 3 2 3
4 3 3 4 2 3
4 4 2 1 3 3
2 4 4 4 4 2
1 3 2 4 0 4
3 0 1 4 3 0
0 1 1 4 1 1

DCA(N ; 2, 6, 5)
N = 6, without

all zero differences
1 4 2 1 0 3
0 4 0 3 4 3
2 1 2 4 4 3
0 4 3 4 2 0
3 0 2 1 4 1
3 4 0 4 1 2
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Index of Terms

(2,1)-covering array, 106

definition-use, 7

AETG, 46

black box testing, 5

block coverage, 7

c-use, 7

CA, 21

CAN, 25

code coverage, 6

component density, 54

covering array, 21

covering array number, 25

DDA, 52

decision coverage, 7

difference covering array, 114

DOE, 9

genetic algorithm, 65

global density, 53

great deluge algorithm, 64

greedy algorithm, 41

heuristic search, 60

hill climbing, 61

index of array, 19

integer ranking, 66

integration testing, 5

interaction strength, 16

interaction testing, 7

IPO, 57

latin square, 16

linear space, 106

local density, 53

MCA, 23

meta-heuristic search, 63

mixed level covering array, 23

MOLS, 16

mutually orthogonal latin squares, 16

OA, 19

OD, 104

ordered design, 104

orthogonal array, 19

p-use, 7

simulated annealing, 63

strength, 16

system testing, 5

tabu search, 64

TCG, 49
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test configuration, 15

test suite, 15

TOCA, 106

TOCAN, 106

unit testing, 5

value density, 54

variable strength covering array, 93

VCA, 93

white box testing, 5

171


