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ABSTRACT 

This study shows that top-down decomposition is problematic in the early 

stages of design. Instead, an opportunistic decomposition is better suited to 

handle the ill-structuredness of design problems. Designers are observed 

interleaving decisions at various levels of abstraction in the solution decom- 

position. The verbal protocols of three professionals designing a software 

system of realistic complexity are analyzed to determine the frequency and 

causes of opportunistic decompositions. The sudden discovery of new re- 

quirements and partial solutions triggered by data-driven rules and associa- 

tions, the immediate development of solutions for newly discovered require- 

ments, and drifting through partial solutions are shown to be important 

causes of opportunistic design. A top-down decomposition appears to be a 

special case for well-structured problems when the designer already knows the 

correct decomposition. Two cognitive models are briefly discussed in relation 

to opportunistic design. Finally, implications for training, methods, and 

computational environments to support the early stages of design are 

outlined. 
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The proptr st@ of mankind is the science of design. 

Simon, 1969/1981, p. 159 

1. A STUDY OF SOFTWARE SYSTEM DESIGN 

In the early stages of software system design, a designer must transform an 

informal, incomplete, and ambiguous specification of the requirements into a 

high-level design expressed in a formal or semiformal notation. The require- 

ment specifications define the external, functional, and performance require- 

ments, as well as exception handling and acceptance criteria. A high-level 

design, sometimes called external design, refines those requirements (i.e., 

what the system should do) and describes the main software subsystems, the 

information flow and control, the conceptual data structures, and the 

interfaces between subsystems (i.e., how the system will satisfy these require- 

ments; Fairley, 1985). The most expensive errors to correct in a software 

development project are those made during high-level design (Dunn, 1984). 
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Yet, high-level design has seldom been empirically studied and is poorly 

supported by software tools and environments available today. 

This study is a descriptive one that examines the applicability of top-down 

approaches to the early stages of software design. This section presents an 

analysis of high-level design tasks based on Simon's (1973) notion of 

ill-structured problems. It then reviews previous cognitive studies of design 

and informal observations of practitioners and shows that they disagree with 

respect to the applicability of the prescribed top-down design and the waterfall 

model. Sections 2.1 to 2.4 present the method and the categories of design 

behaviors coded in the protocols. Section 3 presents results from the protocol 

analysis. Section 3.1 presents data on the dynamics of the design process and 

on the frequency of deviations from a top-down process. Indeed, the design 

process greatly deviates from the top-down approach. Section 3.2 determines 

the types of design activities that deviate from a top-down process and their 

frequency. Section 3.3 illustrates many examples of these deviations and 

analyzes their causes and underlying mechanisms. Because design tasks 

belong to the domain of bounded rationality, these deviations are explained in 

terms of the interplay between basic psychological mechanisms and the 

designer's intendedly rational endeavors (Newell & Card, 1985). The analyses 

show that these deviations are not special cases due to bad design habits or 

performance breakdowns but are, rather, a natural consequence of the 

ill-structuredness of problems in the early stages of design. Section 4.1 

discusses these findings in relation to previous studies and reconciles differ- 

ences in results. Section 4.2 presents a definition of opportunistic design and 

discusses two cognitive models to account for the results in this study. Section 

4.3 presents implications for training, methods, and environments to support 

the early stages of design. This article focuses on how designers apply their 

knowledge and is based on two earlier preliminary articles (Guindon & 

Curtis, 1988; Guindon, Krasner, & Curtis, 1987). Another related article 

(Guindon, in press) describes the sources of knowledge exploited by experts 

during design. 

1.1. Design as an Ill-Structured Problem 

Simon (1969/1981) described the relation between natural sciences and a 

science of design. Natural sciences are concerned with how things are in the 

world. A design process, however, is not a natural phenomenon, even though 
it is strongly influenced by natural phenomena such as cognitive, social, 

organizational, and physical laws. Humans design the design process. A 
science of design should be concerned with how the design process ought to be 

to best accommodate the environment's constraints, including the designer's 

own cognitive and social constraints. Two topics of a science of design are 



GUINDON 

particularly relevant to this study. The first is the structure of complex 

artifacts and their impact on the design process; the second is the set of 
principles that should be followed to control the selection and ordering of 

actions during design. 

Simon (1973) characterized design problems as 21 structured. Three 

important sufficient features of ill-structured problems are: (a) incomplete 

and ambiguous specification of goals, (b) no predetermined solution path, 

and (c) the need for integration of multiple knowledge domains. These 
features make design problems particularly difficult. 

As practitioners acknowledge, an intrinsic aspect of system design is the 

incompleteness and ambiguity of the requirements or goals (e.g., see Meyer, 

1985; Parnas & Clements, 1986; Swartout & Balzer, 1982). In other words, 

software design problems have poorly defined goals and no well-defined 
criteria to evaluate the solution (Simon, 1973). Therefore, design involves 

problem structuring. Problem structuring is the process of discovering 

missing information, such as problem goals and evaluation criteria, and using 

it to define a problem space (Simon, 1973). 

System design often involves novelty. Even though the designer may be 

thoroughly familiar with the design process itself, there may not be any 

precedent in the literature for the system to be designed-It may be a new 
technology. More frequently, the system may simply involve some novelty in 

an otherwise well-understood problem. The novelty may range from a novel 

combination of requirements for a familiar type of system in a familiar 

problem domain to an unfamiliar type of system in an unfamiliar problem 

domain. As a consequence, there is often no predetermined solution path 
from the requirements to the finished artifact (Newell, 1969; Nii, 1986; 

Reitman, 1965; Rittel, 1972; Simon, 1973). Thus, system design frequently 
requires the creation of new solutions interleaved with the application of 

known solutions. 

The design of a software system typically involves the integration of 

multiple sources of knowledge - the problem domain, software system archi- 
tecture, and computer science. For example, the design of a control system for 

the elevators in a building includes integrating knowledge about how users 
might make vastly different requests for service in real situations, about 

servicing asynchronous requests, about interactions between software and 
hardware, about control and communication schemes for multiple processors 

operating concurrently, and about scheduling. 
Structuredness is not a dichotomy but rather a continuum (Simon, 1973). 

Problems fall everywhere in the continuum. System design is less structured 
than such problems as checkers or Tower of Hanoi. In particular, software 

system design is generally less structured than program and algorithm 
designs. The goals of programs and algorithms tend to be better specified and 
often require knowledge from fewer sources. Moreover, structuredness is not 
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only a problem feature, but also a psychological feature: The knowledge a 

designer has about similar or related problems can readily impose a great deal 

of structure to a problem. Reitman (1965) pointed out that design problems 

are problems with a large number of open constraints-parameters whose 

values are left unspecified in the problem statement. Solving an ill-structured 

problem is partly a process of resolving these constraints. Simon (1973) 

emphasized that one of the main roles of the problem solver is to increase the 

structuredness of the problem by resolving these constraints: Simon wrote, 

"There is much merit to the claim that much problem solving effort is directed 

at structuring problems, and only a fraction of it at solving problems once 

they are structured" (p. 187). Thus, problem structuredness is also a function 

of how many structuring activities the problem solver has already performed. 

Therefore, one expects design behaviors to vary according to the incomplete- 

ness and ambiguity of the problem specification, the amount of knowledge 

from different domains that need to be integrated, how familiar the designer 

is with a particular problem, how many structuring activities have already 

been performed, and the interactions between these variables. 

1.2. Empirical Evidence for Prescriptive Design Models 

An example of a prescriptive model of the software design process is the 

top-down model. In top-down design, aspects of the overall system are 

designed first; then the system is progressively decomposed into subsystems at 

increasingly greater levels of detail. Stepwise refinement is a specialization of 

top-down approaches in which the designer must demonstrate that each 

successive addition to the design postpones detailed design decisions as long as 

possible (see Dahl, Dijkstra, & Hoare, 1972; Wirth, 1971). Top-down design 

is related to a popular paradigm in planning research. Sacerdoti's (1975) 

NOAH program implements a successive refinement approach to planning. 

In NOAH, problems are specified in terms of high-level goals that determine 

general actions and are successively expanded into lower level goals that 

determine more elementary actions. 

Jeffries, Turner, Polson, and Atwood (1981) studied two novices and four 

experts designing a book-indexing program-Given a set of words and the 

source text of a book, generate an index for the book. Jeffries et al. argued 

that the usual order in which a designer should attempt subproblem solution 
is top down, breadth first, ensuring that all information about the current 

state of the design is available to the next lower level of abstraction. Jeffries 

et al. observed that both experts and novices tend to apply a top-down, 

breadth-first decomposition. Jeffries et al. acknowledged that this similarity 

in solution decomposition was probably due to the straightforwardness of the 

problem, which required only upper undergraduate level computer science 
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knowledge. Indeed, the book-indexing problem is relatively well structured in 
terms of Simon's analysis: It has well-defined goals; it presents little novelty 
to the designers; and it requires the integration of few knowledge sources. 

Nevertheless, Jeffries et al. observed some deviations from a top-down, 

breadth-first decomposition when a subproblem appeared critical, very 

difficult, or had an immediately known solution. They also reported that the 

protocol of one of their designers, a professional systems analyst with more 
than 10 years of experience, was interspersed with digressions that related to 

subproblems at other levels and at other positions in the problem. 

Adelson and Soloway (1984, 1985) studied three experts and two novices 

designing systems with which they had differing familiarity - an electronic 
mail system with seven well-defined mail operations, a library record-keeping 

system, and an interrupt handler. They observed that the expert designers' 
development of the solution was systematic and balanced-The designers 

developed each component of the design solution so that none of them was 

defined in significantly more detail than the others at the same level of 

abstraction. Adelson and Soloway explained that this is achieved by a process 

that compares the current solution with the goal and selects a subproblem to 

solve only at such a level of detail and granularity that balanced development 

is enforced. Adelson and Soloway speculated that without balanced develop- 
ment, it would be impossible to mentally simulate a solution because its parts 

would have been defined at different levels of detail. The expert designer of 

the interrupt handler, however, violated a balanced development strategy by 
exploring in detail the only unfamiliar part of the artifact, a brand of chip. 

Adelson and Soloway suggested that designers undertake unbalanced devel- 
opment and detailed explorations only when they already have a mental 

model of the system they are building. In terms of Simon's (1973) analysis, the 
electronic mail and the library record-keeping systems had well-defined goals 

and presented little novelty to the designers. On the other hand, the 

unfamiliar part of the interrupt handler presented novelty to the expert. 

Kant and Newell (1984) studied two PhD-level computer scientists de- 
signing an algorithm to an unfamiliar problem-the convex hull inclusion 
problem. Given a set of points in a plane, the algorithm had to generate the 
smallest subset of these points that, when connected in a convex polygon, 

contained all the other points. The designers were very skilled in algorithm 
design, but they had never solved this particular problem. The subjects 

quickly adopted a problem-solving schema, such as divide and conquer or 
generate and test, to elaborate the algorithm in the algorithm-design space. 
The rest of the time was mostly spent successively refining the initial 
problem-solving schema. Interestingly, the subjects also worked, though 

much less frequently, in a geometry space. This process sometimes led to the 
discovery of new solutions. Kant and Newell suggested that the interplay 
between problem solving in the two problem spaces permits the process of 
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discovery. In terms of Simon's (1973) analysis, the convex hull problem had 

well-defined goals, required the integration of knowledge from the algorithm 

and geometry domains, and was novel for these subjects. 

Another important point is that these studies seem to consider the 

specification of the design problem as a fully completed process preceding 

design. This agrees with the waterfall models of the software life cycle where 

requirement specification should be completed before design (e.g., Royce, 

1970). Problem specification is defined as the part of problem structuring 

where incompletely specified design goals and evaluation criteria are speci- 

fied. Problem specification relies on knowledge from the domain of applica- 

tion (e.g., for the convex hull problem, the domain is geometry). Kant and 

Newell (1984) reported that their subjects sometimes used a geometry 

problem space for two purposes: (a) When solution retrieval fails, the 

designer tries test case execution, and (b) when comparing the current 

algorithm solution to the goal. However, Kant and Newell did not report 

inferences of requirements - design goals or evaluation criteria for the quality 

of the solution - as a result of using the geometry problem space. Jeffries et 

al. (1981) described a strategy called problem solving by understanding: 

When subjects were unable to develop a solution for a subproblem, they used 

knowledge from the problem area and computer science to refine their 

understanding. However, Jeffries et al. did not report inferences of problem 

goals or evaluation criteria as a consequence of problem solving by under- 

standing. 

Carroll, Thomas, and Malhotra (1979) and Malhotra, Thomas, Carroll, 

and Miller (1980), however, found that customer-designer dialogues con- 

sisted of a sequence of cycles, each consisting of requirement elaboration, 

solution generation, and solution evaluation. Carroll and Rosson (1985) 

described design as a nonhierarchical process involving the development of 

tentative interim or partial solutions and involving the discovery of new goals. 

The deviations from top-down models in their study, however, could be 

attributed to the inclusion of a customer in the process or to the fact that these 

were dialogs. Therefore, these data do not provide definitive evidence for the 

design process at the individual level. 

Practitioners such as Parnas and Clements (1986) argued that the design 

process cannot follow a top-down approach. They described the following 

obstacles to a top-down process: (a) requirements are usually incomplete and 

vague, (b) realistic projects are of such complexity that designers cannot 
comprehend and keep track of all the details, and (c) designers are often 

biased by preconceived design ideas of varying relevance. Parnas and 
Clements pointed out, however, that the products of design, the design 

documents and software, should be expressed and represented as if the 
software design process had been a balanced and systematic process. The 

following quote by Mills (1986), a proponent of top-down approaches, is 
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particularly informative in this regard: "The top-down Iprocess] . . . does not 

claim that the thinking should be top-down. Its benefit is in the later phases 

of program design, after the bottom-up thinking and perhaps some trial 
coding has been accomplished" (p. 61). 

To summarize, the design process of experts emerging from these studies 

is one of successive refinements in a top-down, breadth-first manner, where 

problem specification precedes solution development. However, these studies 
largely used problems that could be considered well structured in terms of 

design problems. Nevertheless, deviations from a top-down process have been 

sporadically observed in the experts in these studies (a) when the artifact 

presented novelty to the designer; (b) when the problem required the 

integration of multiple knowledge sources; and (c) when a subproblem 

appeared critical, very difficult, or had an immediately known solution. 
Moreover, soilware design practitioners, who deal with realistic design taaks, 

have expressed many reservations about the top-down approach. This 
concern is ironical because the top-down approach is meant to manage the 

very complexity that is naturally found in realistic systems. 

The top-down approach is a prescriptive method whose goals are to manage 

complexity and produce artifacts that are easy to understand, test, verify, and 

modify. Nevertheless, one can expect deviations from the top-down approach 
even in experts (and such were reported in the reviewed studies). But are such 

deviations simply inadequate applications of the top-down approach due to 

idiosyncratic design practices or uninteresting performance breakdowns? 
After all, Dijkstra (1976) called structured programming a discipline, sug- 

gesting that this is not the most natural way of programming. Or, are these 
deviations due to an unavoidable inability to apply the top-down approach 
when the problem is unstructured, as in the early stages of design? How 

applicable are top-down approaches for problems in need of structuring? This 

study shows that the design process frequently deviates from a top-down 

approach. But, more important, it shows that these deviations are not noise or 

special cases resulting from bad design habits or performance breakdowns. 
Rather, they are a natural consequence of the ill-structuredness of problems 

in the early stages of design. 

2. METHOD 

2.1. Participants 

Design protocols were initially collected from eight designers by Herb 
Krasner, a software engineer interested in empirical issues. He selected three 

protocols to be analyzed in depth on the basis of the foffowing criteria: (a) the 
designers had advanced degrees and many years of professional experience, 
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(b) the designers were tonsidered by their peers and managers to be very 

experienced and competent, and (c) each designer exhibited one of three styles 

of design where each style had been observed in two or three designers in the 

initial eight designers. The three styles were described by Herb Krasner as (a) 

being guided by a software design method, (b) being guided by past 

experience with related systems in different problem domains, and (c) being 

guided by a programming paradigm based on a high-level language. These 

three styles correspond, respectively, to Designers 1, 2, and 3. The designers 

were selected prior to any in-depth analysis from the first researcher. No 

further analyses of the protocols were made until the analysis of these three 

protocols was reassigned to the author. 

Designer 1 had a master's degree in software engineering, was the top 

student of his class, and had 5 years of professional experience in designing 

real-time systems. Designer 2 had a doctoral degree in electrical engineering 

and had 10 years of professional experience with concurrent systems and 

communication systems. Designer 3 had temporarily suspended his doctoral 

training in computer science to work in an industrial setting for 3 years. He 

had experience with logic programming and rapid prototyping. All designers 

had learned structured programming and top-down design as part of their 

formal education or their job training. The protocols of Designers 1 and 2 

were fully analyzed, the protocol of Designer 3 was analyzed to a lesser 

extent, and the remaining five protocols were only cursorily assessed. 

Although the protocols from all designers exhibited the same general features, 

we report detailed analyses only from Designers 1 and 2. 
One issue in typical protocol studies is generalizability of the results when 

the number of participants is small. How representative is our sample of 

participants of the larger population of software designers? There is simply no 

reliable way to answer this question given the current maturity of the field. 

That is, no population data are available against which to compare our 

sample. There is no standard type of individual who becomes a software 

designer. Educational background, work experience, job setting, and skills 

radically differ. To deal with these issues, two active, professional, and 

experienced designers well respected by their colleagues were selected. These 

designers are representative of at least some segment of the population of 

actual designers. 

2.2. Design Problem 

The Lift Control Problem is a standard problem in software specification 

and software requirements research. None of the designers had solved this 

problem before the study. The problem statement is given in Figure 1. The 

goal is to design the software to control the movement of N lifts between M 
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Figure 1. The N-Lift problem statement. 

An N-lift system is to be installed in a building with M floors. The lifts and the 
control mechanism are supplied by a manufacturer. The internal mechanisms of 
these are assumed (given) in the following problem- 
Design the logic to move lifts between floors in the building according to the fol- 
lowing rules: 
1. Each lift has a set of buttons, one button for each floor. These illuminate when 

pressed and cause the lift to visit the corresponding floor. The illumination is 
canceled when the corresponding floor is visited (i.e., stopped at) by the lift. 

2. Each floor has two buttons (except ground and top), one to request an up lift 
and one to request a down lift. These buttons 2fuminate when pressed. The but- 
tons are canceled when a lift visits the floor and is either traveling in the desired 
direction or visiting the floor with no requests outstanding. In the latter case, if 
both floor request buttons are illuminated, only one should be canceled. The 
algorithm used to decide which to service first should minimize the waiting time 
for both reauests. 

3. When a lift has no requests to service, it should remain at its final destination 
with its doors closed and await further requests (or model a "holding" floor). 

4. All requests for lifts from floors must be serviced eventually, with all floors 
given equal priority (Can this be proved or demonstrated?). 

5. All requests for floors within lifts must be serviced eventually, with floors being 
serviced sequentially in the direction of travel (Can this be proved or demon- 
strated?). 

6. Each lift has an emergency button that, when pressed, causes a warning signal 
to be sent to the site manager. The lift is then deemed "out of service." Each lift 
has a mechanism to cancel its out-of-service status. 

floors, given the constraints expressed in the problem statement. The problem 

imposes realistic constraints, such as minimizing waiting time for requests, 

giving all floors equal priority, and the like. 

Again, there is an issue of generalizability and validity. How representative 

is the Lift problem of problems typically given to designers? The Lift problem 

certainly has the ecologically valid features typically associated with realistic 

design problems (Simon, 1973). The Lift problem specification is informal 

and therefore incomplete and ambiguous. It is also a knowledge-rich problem 

because it requires the integration of many sources of knowledge. In a 

taxonomy of software design problems, the control of a lift system for N lifts 

can be categorized under three types of systems: a reactive system, an 

embedded system, and a concurrent system. Therefore, the design of a lift 

system requires the integration of knowledge of scenarios of usages from end 

users, of servicing asynchronous input under real-time constraints, of the 

interaction between hardware and software, and of concurrent processes. 

There is also novelty because none of our designers had designed an identical 

system in the past, although they had worked on related real-time, concur- 

rent, or embedded systems. 
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Many representative applications share design issues with the Lift problem. 

For example, user interfaces are reactive systems, having to respond to 

asynchronous user input under real-time constraints. Software used to control 

advanced graphics packages, CAD systems, and three-dimensional mechan- 

ical design systems, are embedded systems interacting with multiple input and 

output devices. The growing interest in electronically supported group work 

has led to the development of groupware, software systems that are not only 

reactive and embedded but also must handle concurrent events. Lewis (1990) 
also pointed out the ubiquity of problems that involve concurrent activities 

and the necessity of studying the design of concurrent systems. Hence, the 

Lift problem is an instance of an important and frequent type of software 

system. 

2.3. Procedure 

Thinking-aloud reports were collected by an experimenter from the 

designers as they designed the logic for the Lift problem. The designers 

exhibited no difficulty in verbalizing their thoughts, and they produced dense 

verbalizations with few moments of silence. The designers' natural ease of 

verbalization may be attributed to the fact that design often occurs in teams, 

and designers are comfortable expressing their thoughts aloud. When the 

designers fell silent, they were gently prompted by the experimenter to 

continue talking. 

The designers were given up to 2 hr to produce a high-level design solution 

that was in a form and level of detail that could be handed off to a competent 

system programmer to implement. The participants were videotaped and 

supplied with paper and pencils to work their solution. The designers were 

free to write anything they wished on the paper provided-notes to them- 

selves, tentative solutions, requirements, and so on. The notes and diagrams 

produced by the participants were regularly time stamped by the experi- 

menter. The transcript of each participant was also time stamped, and the 

written notes and diagrams were included in the transcript. Because this 

procedure is comparable to the verbal protocol procedure used in other design 

studies, it permits comparison between the results of this study to those of 

these other studies. 

In debriefing sessions following the protocol collection, the designers were 
asked to comment on the naturalness of the experimental situation. The 

designers reported that the problem was not unlike the type of design 

problems they had been given in the past - sketchy, incomplete, and ambig- 

uous. They also commented that, in the early stages of design, they only used 

paper and pencil to jot down ideas, notes, sketches of design, and so on. 

Designers mentioned that they were used to designing under severe time 



316 GUINDON 

constraints. They commented that in the field, however, they were freer to 

interrupt design to seek additional information from colleagues, customers, 

and reference material. For example, Designer 2 frequently wanted to discuss 

the requirements with the experimenter, as this represented his normal mode 

of designer-client interactions. They also commented, on the other hand, that 

they felt more constrained to go by the book and follow accepted design 

methods and practices in the experimental session than they would in the 

field. 

2.4. Analysis of the Verbal Protocols 

Analysis Procedure 

The process of protocol analysis was divided into the following major steps. 

First, the videotape was reviewed and the transcript of each designer was read 

by four researchers with different perspectives and backgrounds - a prelirn- 

inary brainstorming analysis. One of the researchers was a cognitive psychol- 

ogist, two were researchers with a background in artificial intelligence and an 

interest in software tools to support designers, and the last one had a 

background in software engineering and in the development of large systems. 

The researchers were free to note whatever they felt was significant about the 

design process of an individual designer. The notes were then shared and 

discussed at length among the researchers. This brainstorming analysis helped 

ensure that findings from the study were shared very rapidly with those 

involved in building tools. The analysis also helped ensure that design 

activities that might have been considered as noise or uninteresting under one 

theoretical framework could reveal their significance from another perspec- 

tive. 

Second, following this preliminary analysis, about 1 month after protocol 

collection, the videotape was viewed with the participant designer in a 

prompted review session. The participant designer was free to stop the 

videotape and note whatever was significant from his perspective. The 

researchers could also stop the videotape at any point and question the 
designer. These questions were particularly useful in probing for the special- 

ized knowledge that designers had brought in during design but that was only 

alluded to in the verbalizations. They were also useful in uncovering the 

rationale underlying certain design decisions that had not been verbalized 

during the session. 
Then, an analysis scheme was developed iteratively as additional and more 

detailed analyses of the protocols were performed. For each episode, a 

template of attribute-value pairs was filled out. The template specified the 

type of design activity and its knowledge domain: Lift domain scenarios, 

requirement understanding and elaboration, and design solution develop- 



DESIGNING THE DESIGN PROCESS 

Figure 2. Encoded design activities with their attributes and values. 

External Levels of InferencdAdding 
Design Activities Representation Simulation Abstraction New Requirement 

Lift domain scenarios Yes/No YesINo NIA N/A 
Requirement YesINo N/ A NIA Yes/No 

understanding 
and elaboration 

Solution development Yes/No YesINo High NIA 
Medium 
Low 

ment. If the design activity was development of a solution, the template 

specified its level of abstraction as high, medium, or low. If the design activity 

was about requirements, the template specified whether the designer had 

added or inferred a requirement or simply was understanding or reviewing 

the requirements. The template also specified whether the designer relied on 

external representations (e.g., diagrams, notes). 

Finally, each designer's protocol was analyzed in depth by two people. The 

analyses were then compared and conflicts resolved. This comparison also led 

to the discovery of new categories or features of episodes. 

Protocol Coding Categories 

This section describes in greater detail the types of design activities and 

their associated knowledge domains that were encoded as episodes in the 

protocol. Figure 2 gives an overview of the design activities and their 

attribute-value pairs. 

One of the designers' activities is the retrieval or simulation of scenarios in 

the problem domain (called the Lift domain). By problem domain we mean 

a subset of the real world with which a computer system is concerned, but not 

the design solution describing the computer system itself.' A lift system is 

concerned with lifts, floors, passengers, waiting time of passengers on the 

floors, safety of passengers, and so on. A Lift scenario could describe, for 

example, an interesting situation where there is a request to go from Floor 2 
to Floor 4 and two lifts that could service it - a lift going up from Floor 1 and 

a lift going down from Floor 4 to Floor 1. The Lift scenarios can be 

accompanied by diagrams and notes to help the simulations. 

Another of the designers' activities is the understanding and elaboration of 

' The term application knowluige is sometimes used to mean problem domain knowledge. 
However, the term is also used to refer to areas such as graphics, databases, networks, that is, 
applications of computer science. The term problem domain is preferred because it does not present 
this ambiguity. 
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the requirements in the informal specification. By elaboration of the require- 

ments, we mean any activity whose purpose is to decrease the incompleteness 

and ambiguity of the informal specification of the requirements. In particu- 
lar, this includes the inference of constraints that followed from the informal 

specification and the addition of new requirements. An inferred constraint is 
not explicitly given in the requirements but it can be deduced as necessary or 

plausible from the informal specification and one's knowledge of the problem 

domain. Inferred constraints include, at least, inferred relationships between 
objects, inferred properties of an object, inferred actions of an object, 

inferred objects, and inferred test cases. For example, as a result of the Lift 

scenario just described, a designer inferred a test case missing from the 

specification: A passenger makes a request to go in a particular direction, up 

or down, but, once inside a lift, the passenger requests the lift to go in the 

opposite direction. Added requirements are plausible or desirable require- 

ments missing from the specification that cannot be deduced logically from 
the informal specification. For example, a designer decided that a lift system 

should be very safe and added to the requirements that the design should 

satisfy a high level of reliability. 

Another design activity is the development of the design solution. This 

includes the representation, the addition of new partial solutions, the mental 
or external simulation, the evaluation, and the debugging of the design 

solution. During solution evaluation, a designer weighs the pros and cons of 

alternative solutions. For example, a designer contrasted a centralized and a 

distributed control solution in terms of reliability and ease of implementation. 

During solution simulation, the designer evaluates the internal consistency, 

the correctness, and the completeness of the solution with respect to the 

requirements, whether they be given, inferred, or added. It is important to 
point out that the uses of test cases from the Lift domain knowledge are 

considered an integral part of solution simulations and are not considered 
shifts to the Lift domain in the results presented in the next section. The level 

of abstraction of a partial solution was categorized as high, medium, or low. 
By level of abstraction, we mean the hierarchical partitioning of the functions 

accomplished and information processed by the software system found in the 
design solution at the end of the session. Indeed, even if a design solution is 

not decomposed following a top-down approach, one can establish a hierar- 

chical partitioning in the final solution on the basis of system-subsystem 
relationships. The high level of abstraction concerns the control and commu- 
nication schemes adopted (e.g., central vs. distributed) and how the indi- 
vidual lift functions are handled. The medium level of abstraction concerns 
how these functions are divided into subfunctions. The low level of abstrac- 

tion concerns how these subfunctions are further subdivided and also includes 

detailed design- how functions are realized in the hardware, details about the 
data structures, and detailed algorithms. 
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Figure 3. Shifts in design activities and levels of abstraction of Designer 1. Plus 
signs indicate newly inferred or added requirements. Light bulbs indicate sudden 
discovery of partial solutions or requirements. The region marked by R indicates 
the period of solution review. 

Lift Scenario 

2 
s 

Requirement 

i? 

Solution High 
t. 

Y 
t Solution Medium 

e 
S 

Solution Low 

I I I I I 

15 30 45 60 75 

Time (minutes) 

3. RESULTS AND OBSERVATIONS 

Section 3.1 describes the general dynamics of the design decomposition 

over the complete session. It shows that the decomposition greatly deviates 

from a top-down process. Section 3.2 categorizes the design activities in terms 

of those which follow a top-down process and those which do not. Section 3.3 

explores the causes of the deviations. It shows that these deviations are not 

uninteresting special cases but are an intrinsic consequence of the ill- 

structuredness of design problems. 

3.1. The Dynamics of the Design Decomposition 

Figures 3 and 4 are constructed from the protocol analysis in the following 

fashion. For each design activity or episode in the protocol, a node is drawn 

on the figure. On they axis are given the three types of design activities: Lift 

domain scenarios; understanding and elaboration of the requirements; and 

development of the design solution at a high, medium, or low level of 

abstraction. Plus signs at the requirement level indicate an inference or the 

addition of a requirement. Light bulbs indicate sudden insights. Time since 

the beginning of the session is represented on the x axis. For readability, some 

of the episodes that were contiguous and very short were slightly spread out 
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and displayed within * 2 min of their occurrence in the session. The shifts 

between design activities in these three knowledge domains and levels of 

abstraction are displayed for the complete sessions of Designers 1 and 2. 
The gray shadings in Figures 3 and 4 trace, for illustrative purposes, what 

the shifts might be like if the designer followed a top-down process preceded 

by a complete problem specification: First, the designer understands and 

elaborates the design goals with the help of Lift domain scenarios, and then 

develops the design solution at a high level, then at a medium level, and then 

at a low level of abstraction. The gray shadings are roughly drawn to visually 

maximize the fit between the actual, observed process and the prescribed 

process (e.g., the bar tends to follow the high frequencies of nodes at a given 

level and change levels when they decrease). 

Figures 3 and 4 show that Designers 1 and 2 frequently departed from a 
top-down, breadth-first decomposition of their solutions. The designers 

expanded their solutions by rapidly shifting between levels of abstraction and 

by developing low-level partial solutions prior to a high-level decomposition. 
Moreover, the designers interleaved problem specification, that is, the 

inference of new requirements, with solution development throughout the 

session. In other words, designers interleaved problem structuring with 

solution development. 

Figures 3 and 4, however, do not reveal the complete extent of deviations 

from a top-down approach. It is also necessary to present the order of 
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Figun 6. Design solution deeomporition of Designer 2 and shifts between 
partial solutions and levels of abstraction for a 10-min segment. 

3.2. Frequencies of Deviations From Top-Down Decomposition 

For purpose of reporting the data, the design activities are broken down 

into three classes: (a) development of solution, (b) evaluation and debugging 

of solution, and (c) understanding and elaboration of the requirements 

(problem specification). The categorization of activities as balanced or 

unbalanced is summarized in Figure 7. The categorization rules are further 

described in the following paragraphs. Note that the notion of balanced and 

systematic has been expanded beyond the definition given by Adelson and 

Soloway (1984, 1985) to include a greater percentage of design activities. The 

justification for this expansion is clarified as the rules are described. 

Because this is an analysis of the recurrent causes for deviations from a 

balanced process for both designers, and not an analysis of individual 

differences, the percentages are reported over the total number of design 

activities for the two designers. In fact, both designers exhibited large 

percentages of deviations from a balanced development -Designer 1 had 
57 % , and Designer 2 had 42 % of unbalanced activities. Both designers had 

similar frequency breakdowns of these activities. A later section briefly 

describes interesting differences between designers. The figures report 

percentages over the total number of activities described in each figure. 

Figure 8 displays overall percentages of balanced and unbalanced activities 

collapsed over the two designers for a total of 256 design episodes. It shows 

that 52% of the design activities were balanced, whereas 47 % were unbal- 

anced. The high percentages of unbalanced design activities warrant a closer 

analysis of these deviations in Figures 9 and 10. 

As can be seen in Figure 9, 53 % of the solution development activities were 
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Figure 7. Summary of categorization rules for unbalanced and balanced epi- 
sodes. 

-- 

Design Activities Unbalanced Balanced 

Solution Development Drifting Design schema 
Immediate recognition of Design method or 

solution in another part notation 
of the problem 

By simulating Lift Problem solving schema 
scenarios 

Immediate solution Design heuristics 
development for an 
inferred requirement 

Solution Evaluation If solution is unbalanced Test cases 
Systematic requirement 

review 
If solution is balanced 

Requirements Inferences and additions Systematic strategy 
By simulating Lift 

scenarios 

Figure 8. Percentages of balanced and unbalanced design activities. 

Design Activities Balanced Unbalanced 

Understand and elaborate 
the requirements 9 10 

Develop solution 23 2 7 

Simulate and debug solution 20 10 

Total 52 47 

unbalanced. The development of the design solution was considered unbal- 

anced according to the following rules: 

1. if the designer drifted, that is, elaborated a sequence of partial 

solutions, each leading to the next one, at much greater level of detail 

than the rest of the solution; 

2. if the designer immediately recognized a solution for another part of the 

problem and shifted to work on this other part of the problem; 

3. if the designer simulated Lift scenarios to develop a partial solution (in 

the waterfall model, the requirement analysis and associated use of 

problem domain knowledge should be completed before design starts); 
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Fipure 9. Percentages of balanced amd unbalanced design activities for solution 
development. 

Design Activities Balanced Unbalanced 

Develop solution by 
Top-down approach with specialized design schema 
Other methods (e.g., JSD), design notations, 

general problem-solving schema, problem- 
solving or design heuristics 

Driftine " 
Solution recognition in other part of problem 
Lift domain scenarios 
Immediately handling added requirements 
Strategically developing at lower level 
Meeting listed requirements 
Returning to an interrupted partial solution 

~ o ~ - d & w n  approach with specialized design schema 
Immediately handling added requirements 
At a higher level of abstraction than current 

solution (recovering from drift or other) 

Total 

4. if the designer immediately developed a partial solution for a new 

requirement he had just discovered, as opposed to take note of it and 

handle it later; and 

5. if the designer strategically decided to violate balanced development and 

performed detailed explorations to get new ideas on the design solution. 

Examples of each of these deviations are given in the next section with an 

analysis of some of their underlying cognitive mechanisms. 

Solution development was considered balanced if it could be accounted for 

by the designer following: 

1. a specialized design schema abstracted from designing related systems, 

2. a design method or a design notation, 

3. a general problem-solving schema, and 

4. a problem-solving or design heuristic. 

A design schema is a knowledge structure representing abstractions from 

the designs of related systems. For example, it may represent the similarities 

in overall design decomposition between a Lift system and a taxi cab 

dispatcher. A design method, by definition, dictates or suggests a sequence of 

activities to be performed. For example, Designer 1 partly followed a data 
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structure-oriented design method called Jackson System Development (Jack- 

son, 1983). Design activities were also considered balanced when motivated 

by the use of design notations, such as state-transition diagrams, data-flow 

diagrams, or structure charts. Design activities that could be attributed to 

following a general problem-solving schema, such as divide and conquer, 

were considered balanced. For example, Designer 1 decided to divide the 

problem into servicing the requests made at the floor and servicing the 

requests made inside the lifts. Activities were also considered balanced if they 

could be attributed to following general problem-solving and design heuristics 

such as, "Consider a simpler problemn (e.g., solve the problem for one lift, 

then expand the solution to N lifts); "Keep the design solution as simple as 

possiblen; "Keep the design solution parts as consistent as possible" (imple- 

ment similar functions using the same algorithm throughout the design 

solution). A more comprehensive discussion of design schemas, methods, 

notations, and heuristics is given in Guindon (in press). 

The next category in Figure 9, a balanced development by meeting listed 

requirements, refers to strategy Designer 2 exhibited: He systematically 

examined all parts of his solution to verify that they satisfied the require- 

ments. In the process he developed additional parts of his solution. The 

unbalanced solution development refers to cases where the designers did not 

know how to proceed, consulted the requirements for ideas, and immediately 

developed a partial solution for the examined requirement. 

Frequently the design development was interrupted by, for example, the 

inference of new requirements or the immediate recognition of a solution in 

another part of the problem. At other times, the development of a solution 

was postponed because of lack of necessary information. As a consequence, 

designers frequently had to return to interrupted or postponed solution 

development activities. Such interruptions and returns contributed to devia- 

tions from a systematic and balanced solution development and therefore are 

reported separately. The returns to interrupted or postponed solutions were 

categorized as balanced or unbalanced as a function of the status of the 

solutions to which they returned. For example, if a designer returned to a 

solution so that he could continue to follow a design method, then the return 

was considered balanced. On the other hand, returning to complete a solution 

that immediately handled a new requirement was considered unbalanced. 

Designers also exhibited a variety of returns to interrupted partial solutions at 

a higher level of abstraction. These returns were typically recoveries from a 

drift that had led the designer to develop partial solutions at a very low level 

of detail. 

Figure 10 shows the solution evaluation and debugging activities catego- 

rized as balanced and unbalanced. Solution evaluations using test cases were 

performed systematically to ensure correctness and completeness of the 
solution. Therefore, such episodes were considered balanced. Moreover, 
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Figure 10. Percentages of balanced and unbalanced design activities for solution 
evaluation and debugging. 

Design Activities Balanced Unbalanced 

Evaluate solution by 
Simulations with test cases 30 
Comparing to requirements in final review 14 
Comparing against givenlinferred requirements 4 6 
Lift domain scenarios 1 6 

Idmta> or solve bugs 18 2 1 

Total 67 33 

Designer 2 exhibited a systematic review strategy at the end of the session- 

He reviewed each of the requirements on the problem sheet to ensure that his 

solution satisfied them. The other episodes were considered balanced or 

unbalanced as a function of the status of the solution that was evaluated or 

debugged. 

Turning to the requirements, 55% of these activities were related to their 

elaborations, and 45 % were related to their understanding. Additions or 

inferences of new requirements were considered unbalanced because these 

occurred throughout the session while the design solution was developed, and 

thus they violated the waterfall model (see Figures 3 and 4). Therefore, the 

design problem goals could be modified while the design solution was 

developed. Of all requirements elaborations, 33% were triggered by Lift 

scenarios and 67% by solution developments and simulations. The under- 

standing of the requirements was always considered balanced. 

To summarize, the results presented in Figures 3 to 10 show that the 

designers frequently deviate from a top-down approach. These results cannot 

not be accounted for by a model of the design process where problem 

specification and understanding precedes solution development and where the 

design solution is elaborated at successively greater levels of detail in a 

top-down manner. 

In fact, the design behaviors observed in this study bear great resemblance 

to the way in which goals were satisfied in an errand-planning task described 

by Hayes-Roth and Hayes-Roth (1979). They observed that their subjects 

mixed decisions at various levels of abstraction. For example, the subjects 

planned low-level (detailed) sequences of errands in the absence of or in 

violation of a higher level plan. In the current study, the designers could 

elaborate partial solutions at arbitrary levels of abstraction in the solution 

decomposition prior to higher level decomposition. Behaviorally, the observed 
design process seems best characterized as opportunistic, to borrow Hayes-Roth 

and Hayes-Roth's term. The term opportunistic is restricted here to describe the 
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observed behaviors and does not, at this point, entail a particular cognitive 

model. 

The next section presents examples of opportunistic design behaviors and 

discusses the cognitive mechanisms underlying them. This results in a 

definition of opportunistic design presented in Section 4.2. 

3.3. Causes of Opportunistic Design Decomposition 

Design tasks are considered to be the domain of bounded rationality. 

Newel1 and Card (1985) argued that the explanation of bounded rationality 

phenomena should be found in the interplay of basic psychological mecha- 

nisms and the human's intendedly rational endeavors. Basic psychological 

mechanisms that seem to play a role in opportunistic design include the role 

of data-driven processing by experts, the associative nature of human 

memory and spreading activation, working memory limitations. An impor- 

tant intendedly rational behavior is the designer's deliberate management of 

time or other resources to be most effective (see Simon, 1969/198l, for a 

discussion of design as a resource-allocation problem). 

The main causes for opportunistic solution development include immediate 

recognition of a partial solution in another part of the problem, immediate 

handling of inferred or added requirements, drifting through partial solu- 

tions, and interleaving of problem specification with solution development. 

Each of these is examined in detail for its genesis. 

Sudden Discovery of Unbalanced Partial Solutions 

Episodes classified as knowledge discovery were characterized by the 

sudden emergence of new knowledge, without apparent planning, which 

subsequently plays an important role in the solution attempt (as in Kant & 

Newell, 1984). The episodes in Figures 3 and 4 annotated with a light bulb are 

particularly striking examples. Knowledge discovery often led to the 

unplanned addition of new requirements or new partial solutions. In turn, 

knowledge discovery was frequently followed by unplanned but drastic 

changes in the design activities. 

Figure 11 shows the main design activity transitions that led to knowledge 

discovery of partial solutions, with their percentages over all solution- 

development episodes. The left column indicates the design activity that 

triggered the discovery of the partial solution. 

A first example illustrates the immediate recognition of a partial solution, 

reused from another part of the solution. It was triggered by a solution 

simulation. A designer had used an interrupt structure to track floor requests 

earlier in the session for a different subproblem. His current goal was to 

elaborate the control and status operations for each lift handler (corre- 
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Figure 11. Main types of design activity transitions leading to discovery of 
partial solutions, 

Preceding Episode 

Simulation of 
partid solution 

Given or 
inferred 
requirement 

Lift domain scenario 

Percentage of All - Episode With Discovered Solution Development 
Knowledge Activities 

-Immediate recognition of 
solution from another part of 
the problem 

-Recognition of low-level partial 
solution prior to solution 
decomposition 

-Recognition of partial solution 
in another part of the problem 

sponding to Events 5 and 6 in Figure 5). He was then immediately reminded 

of the interrupt structure he had used earlier in the session to track floor 

requests. He then shifted to a subproblem that could be solved by an interrupt 

structure in a different part of the problem (corresponding to Event 7 in 

Figure 5). The immediate recognition of the partial solution was caused by a 

semantic association based on an analogy between the control and status 

operations of each lift handler - tracking the states of each lift - and tracking 

floor requests. Having recognized a partial solution with very little effort, the 

designer elected to change his current goal and shifted to the subproblem 

resolved by this partial solution. Presumably, the designer found this to be a 

more effective course of action than making a note of the partial solution and 

handling it later. After all, by immediately developing the partial solution, the 

designer put additional constraints on the design solution with little effort and 

reduced the daunting size of design possibilities. Already developed partial 

solutions seem to be resources that can be easily retrieved and reused, enter 

the focus of attention through association, and modify the designer's plans. 

We also observed cases where a designer was examining the external 

representation of the solution while performing a simulation and unexpect- 

edly saw a bug in another part of the solution. The designer changed his goal 

and immediately fuced the newly discovered bug. Presumably, the designer 

decided that it was more effective to correct the bug immediately than to note 

it and handle it later. Thus, unplanned information from external represen- 

tations can also enter the focus of attention and modify the designer's plans. 

Other instances of opportunistic development occur when a designer 

immediately recognizes a low-level partial solution for a requirement prior to 

design decomposition. For instance, as soon as a designer realized that button 

pressing was asynchronous, the thought of an interrupt structure as a solution 

was immediately triggered. Moreover, in this case, the designer drifted 
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through a short chain of partial solutions-from the interrupt structure to a 

mechanism for detecting order of interrupts. That is, each partial solution 

triggered the next solution. This immediate recognition of a solution seemed 

stimulated by the activation of a knowledge rule derived from past experi- 

ence. Presumably the designer felt that it was more effective to pursue this 

lead immediately than to note it and return to it later. Prior to discovering the 

solution decomposition, it is advantageous to pursue promising partial 

solutions in the hope that they will provide early insights on the solution 

decomposition, especially when the discovery of this promising partial 

solution requires little effort from the designer. 

Kant and Newell (1984) reported cases where problem solving in the 

problem domain triggered the discovery of solution knowledge. The current 

study also observed such a phenomenon. For instance, a designer simulated 

a Lift scenario where the lift doors stayed open a fured amount of time before 

closing. This immediately triggered the idea of a timer. The partial solution 

seemed triggered by the activation of a knowledge rule linking a particular 

device behavior (e.g., the fmed length of the opening of the doors) with a 

solution (e.g., a timer). 

Newell (1969) and Nii (1986) discussed the possibility that human abilities 

to solve ill-structured problems, such as design, arise from the data-driven 

application of knowledge in the forms of empirical associations or rules 

derived from past experience. Moreover, expertise in many problem domains 

has been attributed to the development of such data-driven rules (Anderson, 

1982; Larkin, 1981). The application of these data-driven rules is considered 

to be automatic and to impose little cognitive cost, in contrast to goal-directed 

behaviors (Anderson, 1983). 

These are very critical observations and findings. Ill-structured problems, 

because of their ill-specified goals, prevent the determination of a single and 

stable high-level goal and of a corresponding initial hierarchical plan of 

actions to be executed throughout the design process. Ill-structured problems 

make a goal-directed, top-down process difficult. On the other hand, human 

expertise is associated with the application of data-driven rules. The interac- 

tion of the ill structuredness of a problem with data-driven processing by 

experts is likely to induce the recognition of partial solutions at various levels 

of abstraction prior to an overall solution decomposition. To summarize, the 

results presented in this section support the hypotheses of Newell and Nii 

linking data-driven processing and ill-structured problems. Information that 

becomes the focus of attention -partial solutions, problem domain scenarios, 

requirements, and external representations - can trigger knowledge rules. As 

these data-driven rules are applied, the problems become better structured. In 

fact, the data-driven recognition of partial solutions is advantageous. The 

designer increases the number of constraints on the solution and decreases the 

daunting size of the solution problem space at very little cognitive cost. 
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Figure 12. Example of an inferted teat case whom solution is immedietdy 
developed. BoldfPcGd c4tpitJi.cd mat& indicates the type of design activity; 
arrows indicate that one activity triggered the next one. 

(LIFT SCENARIO) I am going to imagine one elevator and a few scenarios. 
Say there is a request from Floor 2 to 4 . . - 
(INFERRED TEST CASE] What if you press up at the floor but, once in the lift, 
you press a down button? . . . - 
(NEW PARTIAL SOLUTION) So there is definitively the need for a queue of lift 
requests for each lift, separate from the floor requests. . . . Maybe the floor re- 
quests could be handled by a completely separate system from the lift requests. 

The behaviors of novices may resemble, on the surface, those of experts 

when solving ill-structured problems. But it is only a surface resemblance. 

The high frequency of data-driven application of knowledge rules distin- 

guishes the design process of experts from those of novices. Experts have 

sufficiently rich knowledge so that the application of data-driven rules 

imposes enough structure on the problem that it can be solved. The varied 

and rich sources of knowledge used by designers in this study are described in 

Guindon (in press). Novices are expected to deviate frequently from a 

top-down process. Their deviations are not caused, however, by the applica- 

tion of data-driven knowledge rules but by an inability to structure the 

problem and develop the solution due to lack of relevant knowledge. 

Immediate Solution Develop-nt for New Requirements 

As mentioned earlier, the main triggers for requirement elaborations are 

the development of the solution itself and the simulation of scenarios in the 

problem domain. In fact, 60% of all new requirements inferred during 

solution development have their corresponding solution immediately devel- 

oped by the designer. This induced sudden shifts to other parts of the solution 

decomposition. 

Figure 12 shows how a Lift scenario triggered the inference of a new 

requirement, which is handled immediately. Note that it was not the goal of 

the designer to infer a new requirement or a test case when performing the 

Lift scenario. The designer decided to change his goal and immediately 

handle this new requirement by shifting to another part of the solution 

decomposition. Immediately handling this new requirement benefited the 

designer. He obtained a critical insight on the overall solution decomposi- 

tion -The floor requests could be handled by an independent system from the 

lift requests. This is an advantageous strategy: Because the design goal 
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Figure 13. Lift scenario triggering an inferred requirement triggering an 
unbalanced partial solution by fulfilling a previously postponed goal. 

(LIFT SCENARIO] Let us say this is the fourth floor and this is the third floor. 
The lift on the fourth floor is requesting Floor 1. The lift on the third floor is re- 
questing Floor 2.  Well it says in the requirements, "You must service these requests 
eventually with floors being serviced sequentially in the direction of travel." - 
(INFERRED REQUIREMENT] So that means the floor from which the request 
is originating . . . not the destination. 
4 

(FULFILL PREVIOUS GOAL TO DEVELOP MODEL OF SYSTEM) That 
insight gives me an idea that the lift requests and floor requests might have more 
than one piece of information. A lift request is of the form originating floor and 
destination floor. What about floor requests? . . . A lift request is (lift#, orig. 
floor#, dest. floor#). . . . 

changes as a result of inferring new requirements, the plan to reach this goal 

should be modified as soon as possible to allocate resources most effectively. 

Figure 13 shows an example of an inferred requirement that satisfies a 

solution development previously postponed. Early in the session, the designer 

wanted to develop a model of the state of the system. He postponed this goal 

due to insufficient information and moved on to satisfy another goal. As 

illustrated in Figure 13, much later in the design session, a Lift scenario 

triggered the inference of the missing information and the postponed goal was 

reinstated, leading to a shift to another part of the solution decomposition. 

The following two examples are interesting because they show how a 

similar inference of a requirement was reached by two designers following 

quite different reasoning paths. The examples also illustrate the types of 

psychological mechanisms underlying these inferences. 

Figure 14 illustrates that while the designer simulated his solution- 

low-cost links to its two nearest neighbors (lifts) - the concept of geographical 

separation between lifts was activated. Whether the lifts were geographically 

near or far from each other was not stated in the problem statement. The 

genesis of this requirement - the lift cages might be far from each other - can 

be explained by the associative nature of human memory. The concept near 

activates the concept far, bringing it in working memory (e.g., see Anderson, 

1983). Unplanned information can enter the designer's focus of attention 

through spreading activation. The designer decided to assume that the lift 

cages were side by side. In other words, he inferred that there were no special 

interactions between lifts and floors. Thus, the unplanned acquisition of new 

requirements, triggered associatively in the designer's world knowledge, may 

modify the course of the solution decomposition. 

Figure 15 illustrates that the adoption of a problem-solving heuristic (i.e., 
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Figure 14. Inferred constraint triggered by a solution simulation through 
semantic association. 

(SOLUTION SIMULATION] . . . we have a communication system where any 
processor was connected to its two nearest neighbors. 

(INFERBED GONSTRAINT] Unless these elevators are geographically separated, 
then that is another complete independent problem, where you have some interac- 
tion on some floors but not on other floors. . . . I will add to the requirements that 
the elevators are side by side and that they do not service the different floors differ- 
ently. 

Figure 15. Inferred constraint triggered by a solution development guided by a 
general problem-solving heuristic. 

(PROBLEM-SOLVING HEURISTIC] The fact that I have N lifts makes it com- 
plicated. I will start by considering the case of one lift. - 
(INFERUD CONSTRAINT] But first, I have to make sure that there is no spe- 
cial interaction between lifts and floors. Yes, it is okay. I just have a bank of lifts 
and a bank of floor requests. 

"Consider a simpler problem") can lead to the same inferred requirement as 

described in Figure 14. The designer wanted to make sure that by considering 

the problem of only one lift he did not miss a critical property of the problem 

that would compromise his overall design decomposition. In  this case, the 

property was a special interaction between lifts and floors. Therefore, the 

unplanned acquisition of new requirements, inferred as part of ensuring a 

prerequisite condition for a problem-solving or design heuristic, may modify 

the course of the solution decomposition. 

To  summarize, inferences and additions of new requirements occur 

throughout the design solution development and are triggered from many 

sources. Sources observed in this study include associations between related 

concepts, external diagrammatic representations, and prerequisites for the 

application of a design process strategy. But, more important, designers tend 

to develop immediately the partial solution corresponding to the inferred 

constraint, leading to a change in goal and to a shift to another part of the 

solution decomposition. Until a designer has discovered the design solution 

decomposition, it is advantageous to evaluate immediately the impact of a 

new inferred constraint on the solution rather than take note of it and handle 

it later. The inferred requirement and its corresponding partial solution were 

often critical in discovering the proper design solution decomposition and in 

reducing the space of design possibilities. 
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Drifting 

Designers frequently developed a sequence of associated partial solutions in 

violation of balanced development. Whereas the partial solutions were 

semantically related, they each could resolve subproblems in different parts of 

the solution decomposition. The associations could be based on components 

that interacted or interfaced with each other, on components that accom- 

plished similar or opposite functions, on components that shared data, and so 

on. For example, defining the data structure to store the floor requests 

triggered defining the data structure for the emergency button, which itself 

triggered defining the outputs for input interrupts. Other drifts followed a 

chain of data-driven solutions derived from prior designs. Designers find it 

advantageous to follow a train of thought temporarily, thus arriving at partial 

solutions at little cognitive cost. In particular, before designers have estab- 

lished the overall design decomposition, these partial solutions may provide 

them critical insights on the proper way to decompose the problem and reduce 

the daunting size of design possibilites. 

Solution Development by Problem Domain Scenarios 

The uses of Lift scenarios during solution development are interesting 

because they often triggered the recognition of unbalanced partial solutions or 

of new requirements. The first case is similar to what Jeffries et al. (1981) 

called problem solving by understanding: The designer is temporarily unable 

to develop the solution and simulate scenarios in the problem domain to get 

new ideas. Participants in this study seldom produced Lift scenarios for this 

purpose. On the other hand, novices would be expected to do the opposite. 

The second case is to confirm the correctness of a discovered partial solution, 

in terms of a plausible Lift scenario, when the problem specification does not 

describe the corresponding lift behavior. This is related to the observation by 

Kant and Newel1 (1984) that designers use knowledge from the problem 

domain to compare the results of their solution with the (sometimes implicit) 

goals the solution should fulfill. The third case is to confirm the relevance of 

an inferred requirement and to get ideas about how to handle it, because this 

information is not included in the problem specification. 

3.4. Differences Between Designers 

Early in the session, Designer 2 retrieved highly integrated knowledge 

corresponding to a very high-level solution decomposition for the Lift system. 

As evidenced in the prompted review, this knowledge was abstracted from his 

previous designs of taxi cab dispatcher and film controller systems. This 

integrated knowledge, called a specialized design s c h n a ,  provided the designer 

with a solution decomposition in terms of three subsystems: one for control 
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between lift processors, one for communication between processors, and one 

for scheduling. Following a specialized design schema does not necessarily 

imply a single order in which to develop these subsystems because each of 

these subsystems will tend to be relatively independent due to modularity. But 

because the schema provides a plan that each of these subsystems be 

developed, design activities that could be accounted for by the application of 

a specialized design schema were considered balanced. 

In fact, the retrieval of the specialized design schema seems to underlie the 

greatest difference between Designer 1 and 2. Designer 1 had a greater 

percentage of solution development activities that resembled a top-down 

decomposition (40%) than did Designer 2 (14%). This difference is consistent 

with the visual impression of a better fit to a top-down, breadth-first 

development by Designer 2 than by Designer 1, when comparing Figures 3 

and 4. Because Designer 2 had already designed systems with high-level 

decompositions similar to those of the Lift system, he could, early in the 

session, retrieve a high-level solution decomposition, which he could then 

follow in a top-down manner. In terms of Simon's (1973) analysis, the 

knowledge the designer had about similar or related problems readily imposed 

structure to the problem, facilitating the application of a top-down approach. 

Nevertheless, frequent and varied deviations from a systematic and balanced 

process were observed in both designers. 

4. DISCUSSION 

Other studies have observed sporadic deviations from a top-down process 

but described the design process of their experts as balanced and systematic or 

as following a top-down approach preceded by problem specification (Adelson 

& Soloway, 1984, 1985; Jeffries et ai., 1981). This study shows that the early 

stages of the design process are best characterized as opportunistic, inter- 

spersed with top-down decomposition. Resolutions for these differences are 

presented. 

4.1. The Impact of Structuredness 

A topic of a science of design proposed by Simon (1973) is the structure of 

complex artifacts and their impact on the design process. Design problems 

vary in level of structuredness (Simon, 1973). The problems used by Jeffries 

et al. (1981) and Adelson and Soloway (1985) were probably more structured 

than the Lift problem in the sense of presenting less novelty to the designers. 

For instance, Jeffries et al. (1981) described their design problem as 

straightforward because it only required upper undergraduate level computer 

science knowledge. Adelson and Soloway (1985) gave the design of a relatively 
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simple electronic mail system to thoroughly trained communication system 

specialists. However, one of their expert designers, who worked on a familiar 

interrupt handler but with an unfamiliar chip, exhibited frequent deviations 

from a balanced development when dealing with the chip. The Lift problem 

required advanced computer science knowledge and, although our designers 

had developed related systems, the Lift problem presented novelty. Sup- 

porting our argument, Designer 2, who had developed systems more similar 

to the Lift system than had Designer 1, exhibited a design process that 

matched more closely a top-down approach than did Designer 1. Thus, a first 

conclusion is that design problems that are simple or that present little novelty 

can be solved by and large in a top-down manner. The designer can rapidly 

retrieve or discover the proper design decomposition on the basis of a 

specialized design schema; the designer already knows the answer. This 

design decomposition into major systems and subsystems can then be used to 

support the rest of the solution decomposition. The designer is now in a 

position to apply a top-down approach in filling out solution details and in 

expanding the remaining parts of the solution. But prior to the discovery of 

the overall system decomposition, the designer does not have this knowledge 

and its associated memory representation to support the top-down approach. 

Thus, prior to discovering the overall system decomposition, the designer 

tends to follow promising partial solutions and immediately evaluate the 

impact of newly discovered requirements in the hope of discovering it. 

Another feature affecting the level of structuredness of design problems is 

the degree of completeness of the problem specification. The problems given 

by Jeffries et al. (1981) and Kant and Newel1 (1984) were more completely 

specified than are most high-level design tasks, including the Lift problem. As 

a consequence, the designers in our study needed to interleave problem 

specification with solution development more frequently than did the de- 

signers of the other studies. Therefore, the design goals of this study changed 

during solution development. The designers frequently elected to handle 

immediately the newly inferred requirements. The designers considered this 

design-process strategy to be effective: The new requirements might provide 

critical insights on the solution decomposition and require modifications to 

the planned solution. Hence, planning the solution decomposition needed to 

be on line: As new requirements were discovered, the designer needed to 

reevaluate his current plan and modify it accordingly. Finally, due to the 

associative nature of human memory and to data-driven processing by 

experts, scenarios in the Lift domain and inferred requirements often 

triggered the recognition of partial solutions in arbitrary points in the solution 

decomposition. Simon (1973) argued that much of the effort in solving a 

problem is actually in structuring the problem. This study shows that the 

process of structuring a design problem involves inherent deviations from a 

top-down approach. 



GUINDON 

The Lift problem also appears to require the integration of more sources of 

knowledge than did the problems used in other studies. The Lift problem 

required the integration of knowledge from reactive, embedded, and concur- 

rent systems. The Lift problem also required scenarios of uses from users, but 

so did the electronic mail system problem given by Adelson and Soloway 

(1985). Nevertheless, one can expect the Lift problem to involve more scenarios 

from the problem domain than would, for example, the book indexing or the 

interrupt handler problems. These scenarios often triggered the recognition of 

partial solutions in arbitrary points in the solution decomposition. 

The Lift problem, however, is not an unusual problem. In the debriefing 

session, the designers mentioned that it is similar in the incompleteness of its 

requirements to problems they had to solve in the field. Moreover, it shares 

many design issues with user interfaces and other frequent applications. The 

Lift problem involves concurrency -an unusual feature in design problems 

studied so far-and both designers knew solutions to handle concurrency. 

Therefore, the frequent deviations from a balanced design process are not 

special cases due to idiosyncracies of the Lift problem, noise, uninteresting 

performance breakdowns, or manifestations of bad design practices. Instead 

they are an inherent and important aspect of the design process. They are a 

natural consequence of solving design problems - ill-structured problems with 

incomplete specification, often presenting novelty to the designer, and 

requiring the integration of multiple sources of knowledge. 

4.2. Behaviorally, Design Decomposition Is Opportunistic 

Another topic in a science of design proposed by Simon (1973) is the control 

of the selection and ordering of actions during design. This study shows that 

the early stages of the design process are best characterized as opportunistic, 

interspersed with top-down decomposition. In terms of its behavioral mani- 

festations, opportunistic design is design in which interim decisions can lead 

to subsequent decisions at various levels of abstraction in the solution 

decomposition. A decision at a given level of abstraction may influence 
subsequent decisions at higher or lower levels of abstraction, specifying 

actions to be taken at different times during the process. 

Opportunistic design is frequently caused by the application of data-driven 

rules, leading to the automatic recognition of partial solutions in various parts 

of the decomposition. The data for these rules originate from solution 

development activities, problem-domain scenarios, given or inferred require- 
ments, and external representations. Data-driven processing, characteristic of 

expert behaviors, is not goal directed. However, the application of these 

data-driven rules helps structure the problem so that it can be solved. As a 

consequence, designers immediately take advantage of the discovery of 
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partial solutions by elaborating them sufficiently to put constraints on the 

space of design possibilities. Novices, lacking specialized knowledge, may be 

unable to structure the problem enough to solve it. 

Opportunistic design is also caused by the inferences and additions of new 

goals that reduce the incompleteness and ambiguity of the problem specifi- 

cation. These inferences and additions are triggered by many sources of 

knowledge: other requirements, partial solutions, and problem-domain sce- 

narios. Their genesis is also varied: through semantic associations, through 

external representations changing the focus of attention, as prerequisites for 

the application of design strategies, and so on. But, more important, 

designers tend immediately to develop the partial solutions for inferred or 

added requirements. Opportunistic design is characterized by on-line changes 

in high-level goals and plans as a result of inferences and additions of new 

requirements. In particular, designers try to make the most effective use of 

newly inferred requirements, or the sudden discovery of partial solutions, and 

modify their goals and plans accordingly. 

Opportunistic planning has been modeled in computer systems with a 

blackboard architecture. In typical blackboard systems, the knowledge 

sources or specialists are at different levels of abstraction. For example, one 

level of specialists could deal with problems at the level of the design process - 
how much time to allocate to each activity or when to shift to another activity. 

Another level of specialists could deal with software system issues-system 

decomposition, control, and communication between processors. Another 

level could deal with scheduling issues, another level with hardware interac- 

tions, and so on. Each knowledge specialist is self-activating and can be 

modeled as an "if-then" rule: If there is information on the blackboard that is 

relevant to the specialist, by matching the "if" part of the rule, the specialist 

activates itself. At any point in time, one or more knowledge specialists may 

be contextually relevant and invoke themselves. A control process makes 

cyclical decisions about which of the relevant knowledge specialists is most 

opportune to execute, that is, which activity to perform next. The locus of 

control can be in a separate executive process, distributed in the knowledge 

sources, on the blackboard, or in a combination of the three. Opportunistic 

planning combines backward reasoning (inference steps are applied from the 

desired goal to the current state) and forward reasoning (inference steps are 

applied from the current state toward the goal) in what appears to be the most 

advantageous way. 

Opportunistic planning is in fact a more general type of planning than 

hierarchical planning. A blackboard-based model of opportunistic planning 

could account, parsimoniously, for both opportunistic and systematic design 

behaviors observed in this study. The on-line planning capability could 

account for the designers' changes in high-level goals and plans as they 

inferred new requirements or discovered new partial solutions. The applica- 
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tion of forward, data-driven rules, with knowledge sources organized at 

various levels of abstraction, could account for the immediate recognition of 

solutions in arbitrary points in the design decomposition. High-level knowl- 

edge sources, such as design schema and design methods, could account for 

the partially systematic aspect of the design process. Additions to blackboard 

systems may be needed to account for other observations in this study. For 

instance, we have observed inferences triggered by such a mechanism as 

spreading activation based on semantic associations. 

Opportunistic design behaviors, however, do not necessarily imply an 

opportunistic model of planning. In his book on the architecture of human 

cognition, Anderson (1983) argued that behaviors that appear to violate 

hierarchical planning may actually be due to simple failures of working 

memory. Anderson commented, "Subjects may pursue details of a current 

plan that is inconsistent with their higher goals, simply because they have 

misremembered the higher goals" (p. 130). Anderson mentioned that oppor- 

tunistic behaviors may also occur through data-driven productions, which 

may trigger radical shifts in the current goal. Finally, he introduced the 

concept of intentions. Whenever a behavioral sequence under the control of 

a goal structure encounters insufficient information to achieve the next goal, 

the action is postponed and an intention is set to deal with the goal later. 

These intentions are components of the condition part of new productions, 

which act as data-driven "demons" to be executed when the missing informa- 

tion becomes available. Anderson acknowledged that such productions with 

intentions are triggered only if they are remembered by the subject. So, 

according to Anderson (1983), opportunistic behaviors can also be accounted 

for in ACTa7s with its hierarchical goal structure; flat, data-driven structure; 

the forgetting of higher level goals; and the execution of data-driven 

productions with intentions. 

Anderson's points are important. Indeed, we have observed the applications 

of data-driven knowledge rules when designers recognized partial solutions 

triggered by requirements or by Lift scenarios. We also observed how 

inferred requirements that satisfied a postponed goal tended immediately to 

reinstate that goal. But these could also be accounted for by an opportunistic 
model of planning. Moreover, designers could pursue details of a current plan 

that is inconsistent with a higher level goal simply because this goal is no 

longer relevant due to the inference or addition of new requirements. Because 

design problems have ill-defined goals and evaluation criteria, one must allow 

for changes in goals and plans during design. Consequently, planning needs 

to be on line as higher level goals change. 

We also observed performance breakdowns that could be attributed to 

working-memory  limitation^.^ One performance breakdown was the failure 

The idea of breakdowns presented here is more restricted than the one presented in Guindon, 
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to integrate known and understood constraints in the design solution. Another 

breakdown was the difficulty in performing mental simulations of solutions or 

of problem-domain scenarios. For instance, designers sometimes confused or 

forgot the function associated with different solution parts, or, more pre- 

cisely, associated with the label given to the solution part. Moreover, 

designers found it difficult to simulate the interactions between components 

of the system, the behavior of a component if it extended over many steps, or 

the behavior of a subsystem calling centrally embedded subsystems. To help 

mental simulations, designers often resorted to diagrams. However, because 

diagrams were a poor medium to represent changes in location and time, they 

were not suffkient to prevent all simulation breakdowns. However, the 

performance breakdowns had relatively little impact on a balanced design 

process. Designer 1 experienced a total of four performance breakdowns; 

Designer 2 experienced a total of three breakdowns. In all cases, the designers 

rapidly recovered from the breakdowns, within two to four episodes, to 

resume their design process as they wished. Hence, one cannot attribute to 

performance breakdowns the majority of the observed deviations from a 

balanced solution development. 

It would be tempting to dismiss the selection of a psychological model as an 

irrelevant issue: The two models can make behaviorally equivalent predic- 

tions, and considerations such as parsimony and elegance are not clear cut. 

Unfortunately, both models can be interpreted as making different sets of 

claims about the features of a computational environment to support software 

designers. I speculate that Anderson would insist on an environment that 

supports a top-down design process with a hierarchical goal structure. 

Hayes-Roth and Hayes-Roth would insist on an environment that supports 

flexible and easily reorganizable goal structures and on-line planning, as 

unplanned relevant information may enter the focus of attention and modify 

the problem structure throughout the design process. 

Ultimately, it might be very difficult to demonstrate empirically the 

validity of one psychological model against another for tasks as complex as 

design. Design behaviors are probably influenced by many interacting 

complex factors- structuredness and types of problems, degree of expertise of 

the designer, the amount and type of relevant specialized knowledge and 

heuristics the designer bring to bear, basic psychological mechanisms, the 

designer's goals and preferences, and so on. Finally, alternative models that 

are complex enough to account for design may have enough degrees of 

freedom to produce behaviorally equivalent predictions. Nevertheless, further 

descriptive and experimental studies of the design process should be per- 

formed to assess the impact of the structuredness of the design problem. They 

Krasner, and Curtis (1987). It is restricted to difficulties in the execution of intended design 
activities. 



340 GUINDON 

should also investigate how designers plan and control the allocation of their 

time and other resources and how this interacts with basic psychological 

mechanisms. Such studies should also include computer models of aspects of 

the design process to establish the sufficiency of the proposed model. 

A complementary strategy is to develop alternative design methods and 

computational environments that embady the competing implications from 

these different models. One can then evaluate which of these methods and 

environments actually better supports the design process. For example, one 
might provide a group of experts an environment that enforces a top-down 

approach and another group an environment that enforces an opportunistic 

approach. One could then compare the effectiveness of each environment and 

associated method in supporting the early stages of design by examining the 

number and types of errors, the time to produce an initial design, the quality 

of the design, and so on. If one method or environment were to support the 

design process better than the others, this finding would constitute indirect 
evidence for its corresponding model. However, one must realize that by 

doing so one is as much studying the design process as one is shaping what the 

process is-The design process is not a natural phenomenon but a human 

artifact (Simon, 19691 198 1). 

Problem-solving behaviors, which have been labeled opportunistic, have 

been observed in various areas of human activities. This observation suggests 

their ubiquity for a large class of problems beyond software design. Oppor- 

tunistic activities have been observed in a 13-week field study of a team of 

programmers and designers by Visser (1987). She identified a number of 

causes for deviation from hierarchical plans, including economic use of 
available means, postponing a decision due to insufficient information, 

handling a solution component that is similar to the current one, and 

changing the decision criteria used. Unfortunately, she did not include a 

description of her data in the report. UHman, Stauffer, and Dietterich (1987) 

in a 10-hr verbal protocol study of design in mechanical engineering, 

observed that expert designers progress from systematic to opportunistic 

behaviors as the design evolves. Schoenfeld (1985) provided some evidence 
for opportunistic problem solving in mathematical reasoning, whereas Flower 

and Hayes (1980) did so for document composition. 

4.3. Irnplicatione for Training, Methods, and Environments 

The results suggest that until the proper design decomposition is discov- 
ered, the design process should be opportunistic. One should immediately 
take advantage of any inferred information and the additional constraints it 

poses on the solution. Only after the proper decomposition is discovered can 

one apply the top-down approach. This interpretation agrees with Mills 
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(1986) and Fairley (1985), who argued that the benefit of the top-down 

approach can be obtained only after some bottom-up thinking, trial design 

and coding, and backtracking have been accomplished. This is a position 

compatible with Parnas and Clements's (1986) view of the design process that 

designers are expected to document the design process and artifacts as if they 

had been produced in a systematic fashion. Parnas and Clements argued, 

however, that this idealized systematic process can be achieved only in rare 

circumstances. 

The results of this study also remind one of the techniques used by Polya 

(1957, 1962) in teaching mathematics. Of course, once one has discovered the 

solution to the mathematical riddle, one has to express proof using accepted 

mathematical methods and notations. But as Polya recognized, the process of 

discovering the solution is rife with trial and error, garden paths, partial 

solutions, and insights. Polya's methods encouraged the deliberate use of an 

opportunistic approach to mathematical problem solving. 

This study concerns individuals' cognitive activities during high-level 

design. Although these implications are intended for supporting the early 

stages of software design, the observed opportunistic character of other tasks 

(e. g., mathematical problem solving, document composition, and mechanical 

design) suggests that these recommendations could apply for methods and 

environments for other tasks as well. 

The observations of opportunistic design behaviors, the need to integrate 

multiple sources of knowledge, and the frequent absence of a predetermined 

solution path suggest the following implications for a computer environment: 

1. The environment should not embody a method that locks designers into 

a strict order of activities. A strict order of activities may hinder the 

opportunistic insights critical in discovering the proper design decom- 

position. 

2. The environment should support rapid access and shifts between tools to 

represent and manipulate different kinds of objects and the represen- 

tations of these objects. Some of these objects are informal require- 

ments, information about the problem domain, issues and criteria about 

the system and the design process, design decisions expressed in a 

formal or semiformal notation, and design process goal management. 

3. It should support easy navigation between these objects, not imposing a 
predetermined order of activities, and still have the ability to support an 

agenda of activities by the designer. 

The incompleteness and ambiguity of the problem specification and the 

observation of discovery of knowledge during design suggest the following 

implications: 
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1. The representation languages in the environment should support a 

smooth progression from requirements expressed informally, to design 

decisions expressed formally or semiformally, to code. 

2. The environment should support easy editing and reorganization of the 

requirements, design issues, and design decisions as the incompleteness 

and ambiguity of the problem specification are reduced through the 

design process. 

3. It should support the identification of the origin of the requirements- 

as explicitly given, as inferred constraints, and as added requirements. 

4. It should support the representation of interim or partial design objects 

in varied parts of the design decomposition. 

In summary, experienced system designers deviate from a strictly top-down 

approach in the early stages of design. This study provides evidence that 

opportunistic design is advantageous and manifests itself through many types 

of behaviors: (a) inferences of new requirements that changed the design 

goals, (b) the immediate development of partial solutions to these new 

requirements, (c) the immediate recognition of partial solutions in various 

parts of the solution decomposition, (d) drifting, and (e) solution insights 

triggered by scenarios in the Lift domain. These deviations from top-down 

design appear to be consequences of intrinsic features of design problems- 

incomplete specification of the problem, lack of a predetermined solution 

path, and integration of multiple sources of knowledge. Competing cognitive 

models based on hierarchical planning and opportunistic planning may be 

equally able to account for these observations, but these competing models 

have different implications for methods and environments that support the 

early stages of design. In any event, efforts to support design should reconcile 

themselves with the opportunistic behaviors witnessed here. 
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