
HUMAN-COMPUTER INTERACTION, 1990, Volume 5, pp. 305-344

Copyright @ 1990, Lawrence Erlbaum Associates, Inc.

Designing the Design Process:

Exploiting Opportunistic Thoughts

Raymonde Guindon
Microelectronics and Computer Technology Corporation

ABSTRACT

This study shows that top-down decomposition is problematic in the early

stages of design. Instead, an opportunistic decomposition is better suited to

handle the ill-structuredness of design problems. Designers are observed

interleaving decisions at various levels of abstraction in the solution decom-

position. The verbal protocols of three professionals designing a software

system of realistic complexity are analyzed to determine the frequency and

causes of opportunistic decompositions. The sudden discovery of new re-

quirements and partial solutions triggered by data-driven rules and associa-

tions, the immediate development of solutions for newly discovered require-

ments, and drifting through partial solutions are shown to be important

causes of opportunistic design. A top-down decomposition appears to be a

special case for well-structured problems when the designer already knows the

correct decomposition. Two cognitive models are briefly discussed in relation

to opportunistic design. Finally, implications for training, methods, and

computational environments to support the early stages of design are

outlined.

Author's present address: Raymonde Guindon, Computer Science Department,
Stanford University, Stanford, CA 94305.

306 GUINDON

CONTENTS

1. A STUDY OF SOFTWARE SYSTEM DESIGN
1.1. Desigp ae an Ill-Structured Problem
1.2. Empirical Evidence for Prescriptive Ddgn M&ls

2. METHOD
2. I. Participants
2.2. Design Problem
2.3. Procedure
2.4. Analysis of the Verbal Protocols

Andysie Ptocedure

Protocol Codkg Categories

3. RESULTS AND OB$SBVATfONS
3.1. The Dynamics of the Design Decomposition
3.2. Frequencies of Deviations From Top-Down Recomposition
3.3. C a w s of Opportunirtic Design Dec~plposition

Sudden DiKovery of Unb*l.nccd PzwW So1utions

Immediate Solution Development for New Requirements

Drifting

Solution Development by Problem Domain Scenarios

3.4. Differences Between De8igners
4. DISCUSSION

4.1. The Impact of Structuredness
4.2. Behavi&dly, Design Decomposition Is Opportunistic
4.3. Implications for Training, Methods, and Bnvironments

The proptr st@ of mankind is the science of design.

Simon, 1969/1981, p. 159

1. A STUDY OF SOFTWARE SYSTEM DESIGN

In the early stages of software system design, a designer must transform an

informal, incomplete, and ambiguous specification of the requirements into a

high-level design expressed in a formal or semiformal notation. The require-

ment specifications define the external, functional, and performance require-

ments, as well as exception handling and acceptance criteria. A high-level

design, sometimes called external design, refines those requirements (i.e.,

what the system should do) and describes the main software subsystems, the

information flow and control, the conceptual data structures, and the

interfaces between subsystems (i.e., how the system will satisfy these require-

ments; Fairley, 1985). The most expensive errors to correct in a software

development project are those made during high-level design (Dunn, 1984).

DESIGNING THE DESIGN PROCESS 307

Yet, high-level design has seldom been empirically studied and is poorly

supported by software tools and environments available today.

This study is a descriptive one that examines the applicability of top-down

approaches to the early stages of software design. This section presents an

analysis of high-level design tasks based on Simon's (1973) notion of

ill-structured problems. It then reviews previous cognitive studies of design

and informal observations of practitioners and shows that they disagree with

respect to the applicability of the prescribed top-down design and the waterfall

model. Sections 2.1 to 2.4 present the method and the categories of design

behaviors coded in the protocols. Section 3 presents results from the protocol

analysis. Section 3.1 presents data on the dynamics of the design process and

on the frequency of deviations from a top-down process. Indeed, the design

process greatly deviates from the top-down approach. Section 3.2 determines

the types of design activities that deviate from a top-down process and their

frequency. Section 3.3 illustrates many examples of these deviations and

analyzes their causes and underlying mechanisms. Because design tasks

belong to the domain of bounded rationality, these deviations are explained in

terms of the interplay between basic psychological mechanisms and the

designer's intendedly rational endeavors (Newell & Card, 1985). The analyses

show that these deviations are not special cases due to bad design habits or

performance breakdowns but are, rather, a natural consequence of the

ill-structuredness of problems in the early stages of design. Section 4.1

discusses these findings in relation to previous studies and reconciles differ-

ences in results. Section 4.2 presents a definition of opportunistic design and

discusses two cognitive models to account for the results in this study. Section

4.3 presents implications for training, methods, and environments to support

the early stages of design. This article focuses on how designers apply their

knowledge and is based on two earlier preliminary articles (Guindon &

Curtis, 1988; Guindon, Krasner, & Curtis, 1987). Another related article

(Guindon, in press) describes the sources of knowledge exploited by experts

during design.

1.1. Design as an Ill-Structured Problem

Simon (1969/1981) described the relation between natural sciences and a

science of design. Natural sciences are concerned with how things are in the

world. A design process, however, is not a natural phenomenon, even though
it is strongly influenced by natural phenomena such as cognitive, social,

organizational, and physical laws. Humans design the design process. A
science of design should be concerned with how the design process ought to be

to best accommodate the environment's constraints, including the designer's

own cognitive and social constraints. Two topics of a science of design are

GUINDON

particularly relevant to this study. The first is the structure of complex

artifacts and their impact on the design process; the second is the set of
principles that should be followed to control the selection and ordering of

actions during design.

Simon (1973) characterized design problems as 21 structured. Three

important sufficient features of ill-structured problems are: (a) incomplete

and ambiguous specification of goals, (b) no predetermined solution path,

and (c) the need for integration of multiple knowledge domains. These
features make design problems particularly difficult.

As practitioners acknowledge, an intrinsic aspect of system design is the

incompleteness and ambiguity of the requirements or goals (e.g., see Meyer,

1985; Parnas & Clements, 1986; Swartout & Balzer, 1982). In other words,

software design problems have poorly defined goals and no well-defined
criteria to evaluate the solution (Simon, 1973). Therefore, design involves

problem structuring. Problem structuring is the process of discovering

missing information, such as problem goals and evaluation criteria, and using

it to define a problem space (Simon, 1973).

System design often involves novelty. Even though the designer may be

thoroughly familiar with the design process itself, there may not be any

precedent in the literature for the system to be designed-It may be a new
technology. More frequently, the system may simply involve some novelty in

an otherwise well-understood problem. The novelty may range from a novel

combination of requirements for a familiar type of system in a familiar

problem domain to an unfamiliar type of system in an unfamiliar problem

domain. As a consequence, there is often no predetermined solution path
from the requirements to the finished artifact (Newell, 1969; Nii, 1986;

Reitman, 1965; Rittel, 1972; Simon, 1973). Thus, system design frequently
requires the creation of new solutions interleaved with the application of

known solutions.

The design of a software system typically involves the integration of

multiple sources of knowledge - the problem domain, software system archi-
tecture, and computer science. For example, the design of a control system for

the elevators in a building includes integrating knowledge about how users
might make vastly different requests for service in real situations, about

servicing asynchronous requests, about interactions between software and
hardware, about control and communication schemes for multiple processors

operating concurrently, and about scheduling.
Structuredness is not a dichotomy but rather a continuum (Simon, 1973).

Problems fall everywhere in the continuum. System design is less structured
than such problems as checkers or Tower of Hanoi. In particular, software

system design is generally less structured than program and algorithm
designs. The goals of programs and algorithms tend to be better specified and
often require knowledge from fewer sources. Moreover, structuredness is not

DESIGNING THE DESIGN PROCESS 309

only a problem feature, but also a psychological feature: The knowledge a

designer has about similar or related problems can readily impose a great deal

of structure to a problem. Reitman (1965) pointed out that design problems

are problems with a large number of open constraints-parameters whose

values are left unspecified in the problem statement. Solving an ill-structured

problem is partly a process of resolving these constraints. Simon (1973)

emphasized that one of the main roles of the problem solver is to increase the

structuredness of the problem by resolving these constraints: Simon wrote,

"There is much merit to the claim that much problem solving effort is directed

at structuring problems, and only a fraction of it at solving problems once

they are structured" (p. 187). Thus, problem structuredness is also a function

of how many structuring activities the problem solver has already performed.

Therefore, one expects design behaviors to vary according to the incomplete-

ness and ambiguity of the problem specification, the amount of knowledge

from different domains that need to be integrated, how familiar the designer

is with a particular problem, how many structuring activities have already

been performed, and the interactions between these variables.

1.2. Empirical Evidence for Prescriptive Design Models

An example of a prescriptive model of the software design process is the

top-down model. In top-down design, aspects of the overall system are

designed first; then the system is progressively decomposed into subsystems at

increasingly greater levels of detail. Stepwise refinement is a specialization of

top-down approaches in which the designer must demonstrate that each

successive addition to the design postpones detailed design decisions as long as

possible (see Dahl, Dijkstra, & Hoare, 1972; Wirth, 1971). Top-down design

is related to a popular paradigm in planning research. Sacerdoti's (1975)

NOAH program implements a successive refinement approach to planning.

In NOAH, problems are specified in terms of high-level goals that determine

general actions and are successively expanded into lower level goals that

determine more elementary actions.

Jeffries, Turner, Polson, and Atwood (1981) studied two novices and four

experts designing a book-indexing program-Given a set of words and the

source text of a book, generate an index for the book. Jeffries et al. argued

that the usual order in which a designer should attempt subproblem solution
is top down, breadth first, ensuring that all information about the current

state of the design is available to the next lower level of abstraction. Jeffries

et al. observed that both experts and novices tend to apply a top-down,

breadth-first decomposition. Jeffries et al. acknowledged that this similarity

in solution decomposition was probably due to the straightforwardness of the

problem, which required only upper undergraduate level computer science

GUINDON

knowledge. Indeed, the book-indexing problem is relatively well structured in
terms of Simon's analysis: It has well-defined goals; it presents little novelty
to the designers; and it requires the integration of few knowledge sources.

Nevertheless, Jeffries et al. observed some deviations from a top-down,

breadth-first decomposition when a subproblem appeared critical, very

difficult, or had an immediately known solution. They also reported that the

protocol of one of their designers, a professional systems analyst with more
than 10 years of experience, was interspersed with digressions that related to

subproblems at other levels and at other positions in the problem.

Adelson and Soloway (1984, 1985) studied three experts and two novices

designing systems with which they had differing familiarity - an electronic
mail system with seven well-defined mail operations, a library record-keeping

system, and an interrupt handler. They observed that the expert designers'
development of the solution was systematic and balanced-The designers

developed each component of the design solution so that none of them was

defined in significantly more detail than the others at the same level of

abstraction. Adelson and Soloway explained that this is achieved by a process

that compares the current solution with the goal and selects a subproblem to

solve only at such a level of detail and granularity that balanced development

is enforced. Adelson and Soloway speculated that without balanced develop-
ment, it would be impossible to mentally simulate a solution because its parts

would have been defined at different levels of detail. The expert designer of

the interrupt handler, however, violated a balanced development strategy by
exploring in detail the only unfamiliar part of the artifact, a brand of chip.

Adelson and Soloway suggested that designers undertake unbalanced devel-
opment and detailed explorations only when they already have a mental

model of the system they are building. In terms of Simon's (1973) analysis, the
electronic mail and the library record-keeping systems had well-defined goals

and presented little novelty to the designers. On the other hand, the

unfamiliar part of the interrupt handler presented novelty to the expert.

Kant and Newell (1984) studied two PhD-level computer scientists de-
signing an algorithm to an unfamiliar problem-the convex hull inclusion
problem. Given a set of points in a plane, the algorithm had to generate the
smallest subset of these points that, when connected in a convex polygon,

contained all the other points. The designers were very skilled in algorithm
design, but they had never solved this particular problem. The subjects

quickly adopted a problem-solving schema, such as divide and conquer or
generate and test, to elaborate the algorithm in the algorithm-design space.
The rest of the time was mostly spent successively refining the initial
problem-solving schema. Interestingly, the subjects also worked, though

much less frequently, in a geometry space. This process sometimes led to the
discovery of new solutions. Kant and Newell suggested that the interplay
between problem solving in the two problem spaces permits the process of

DESIGNING THE DESIGN PROCESS

discovery. In terms of Simon's (1973) analysis, the convex hull problem had

well-defined goals, required the integration of knowledge from the algorithm

and geometry domains, and was novel for these subjects.

Another important point is that these studies seem to consider the

specification of the design problem as a fully completed process preceding

design. This agrees with the waterfall models of the software life cycle where

requirement specification should be completed before design (e.g., Royce,

1970). Problem specification is defined as the part of problem structuring

where incompletely specified design goals and evaluation criteria are speci-

fied. Problem specification relies on knowledge from the domain of applica-

tion (e.g., for the convex hull problem, the domain is geometry). Kant and

Newell (1984) reported that their subjects sometimes used a geometry

problem space for two purposes: (a) When solution retrieval fails, the

designer tries test case execution, and (b) when comparing the current

algorithm solution to the goal. However, Kant and Newell did not report

inferences of requirements - design goals or evaluation criteria for the quality

of the solution - as a result of using the geometry problem space. Jeffries et

al. (1981) described a strategy called problem solving by understanding:

When subjects were unable to develop a solution for a subproblem, they used

knowledge from the problem area and computer science to refine their

understanding. However, Jeffries et al. did not report inferences of problem

goals or evaluation criteria as a consequence of problem solving by under-

standing.

Carroll, Thomas, and Malhotra (1979) and Malhotra, Thomas, Carroll,

and Miller (1980), however, found that customer-designer dialogues con-

sisted of a sequence of cycles, each consisting of requirement elaboration,

solution generation, and solution evaluation. Carroll and Rosson (1985)

described design as a nonhierarchical process involving the development of

tentative interim or partial solutions and involving the discovery of new goals.

The deviations from top-down models in their study, however, could be

attributed to the inclusion of a customer in the process or to the fact that these

were dialogs. Therefore, these data do not provide definitive evidence for the

design process at the individual level.

Practitioners such as Parnas and Clements (1986) argued that the design

process cannot follow a top-down approach. They described the following

obstacles to a top-down process: (a) requirements are usually incomplete and

vague, (b) realistic projects are of such complexity that designers cannot
comprehend and keep track of all the details, and (c) designers are often

biased by preconceived design ideas of varying relevance. Parnas and
Clements pointed out, however, that the products of design, the design

documents and software, should be expressed and represented as if the
software design process had been a balanced and systematic process. The

following quote by Mills (1986), a proponent of top-down approaches, is

312 GUINDON

particularly informative in this regard: "The top-down Iprocess] . . . does not

claim that the thinking should be top-down. Its benefit is in the later phases

of program design, after the bottom-up thinking and perhaps some trial
coding has been accomplished" (p. 61).

To summarize, the design process of experts emerging from these studies

is one of successive refinements in a top-down, breadth-first manner, where

problem specification precedes solution development. However, these studies
largely used problems that could be considered well structured in terms of

design problems. Nevertheless, deviations from a top-down process have been

sporadically observed in the experts in these studies (a) when the artifact

presented novelty to the designer; (b) when the problem required the

integration of multiple knowledge sources; and (c) when a subproblem

appeared critical, very difficult, or had an immediately known solution.
Moreover, soilware design practitioners, who deal with realistic design taaks,

have expressed many reservations about the top-down approach. This
concern is ironical because the top-down approach is meant to manage the

very complexity that is naturally found in realistic systems.

The top-down approach is a prescriptive method whose goals are to manage

complexity and produce artifacts that are easy to understand, test, verify, and

modify. Nevertheless, one can expect deviations from the top-down approach
even in experts (and such were reported in the reviewed studies). But are such

deviations simply inadequate applications of the top-down approach due to

idiosyncratic design practices or uninteresting performance breakdowns?
After all, Dijkstra (1976) called structured programming a discipline, sug-

gesting that this is not the most natural way of programming. Or, are these
deviations due to an unavoidable inability to apply the top-down approach
when the problem is unstructured, as in the early stages of design? How

applicable are top-down approaches for problems in need of structuring? This

study shows that the design process frequently deviates from a top-down

approach. But, more important, it shows that these deviations are not noise or

special cases resulting from bad design habits or performance breakdowns.
Rather, they are a natural consequence of the ill-structuredness of problems

in the early stages of design.

2. METHOD

2.1. Participants

Design protocols were initially collected from eight designers by Herb
Krasner, a software engineer interested in empirical issues. He selected three

protocols to be analyzed in depth on the basis of the foffowing criteria: (a) the
designers had advanced degrees and many years of professional experience,

DESIGNING THE DESIGN PROCESS

(b) the designers were tonsidered by their peers and managers to be very

experienced and competent, and (c) each designer exhibited one of three styles

of design where each style had been observed in two or three designers in the

initial eight designers. The three styles were described by Herb Krasner as (a)

being guided by a software design method, (b) being guided by past

experience with related systems in different problem domains, and (c) being

guided by a programming paradigm based on a high-level language. These

three styles correspond, respectively, to Designers 1, 2, and 3. The designers

were selected prior to any in-depth analysis from the first researcher. No

further analyses of the protocols were made until the analysis of these three

protocols was reassigned to the author.

Designer 1 had a master's degree in software engineering, was the top

student of his class, and had 5 years of professional experience in designing

real-time systems. Designer 2 had a doctoral degree in electrical engineering

and had 10 years of professional experience with concurrent systems and

communication systems. Designer 3 had temporarily suspended his doctoral

training in computer science to work in an industrial setting for 3 years. He

had experience with logic programming and rapid prototyping. All designers

had learned structured programming and top-down design as part of their

formal education or their job training. The protocols of Designers 1 and 2

were fully analyzed, the protocol of Designer 3 was analyzed to a lesser

extent, and the remaining five protocols were only cursorily assessed.

Although the protocols from all designers exhibited the same general features,

we report detailed analyses only from Designers 1 and 2.
One issue in typical protocol studies is generalizability of the results when

the number of participants is small. How representative is our sample of

participants of the larger population of software designers? There is simply no

reliable way to answer this question given the current maturity of the field.

That is, no population data are available against which to compare our

sample. There is no standard type of individual who becomes a software

designer. Educational background, work experience, job setting, and skills

radically differ. To deal with these issues, two active, professional, and

experienced designers well respected by their colleagues were selected. These

designers are representative of at least some segment of the population of

actual designers.

2.2. Design Problem

The Lift Control Problem is a standard problem in software specification

and software requirements research. None of the designers had solved this

problem before the study. The problem statement is given in Figure 1. The

goal is to design the software to control the movement of N lifts between M

314 GUINDON

Figure 1. The N-Lift problem statement.

An N-lift system is to be installed in a building with M floors. The lifts and the
control mechanism are supplied by a manufacturer. The internal mechanisms of
these are assumed (given) in the following problem-
Design the logic to move lifts between floors in the building according to the fol-
lowing rules:
1. Each lift has a set of buttons, one button for each floor. These illuminate when

pressed and cause the lift to visit the corresponding floor. The illumination is
canceled when the corresponding floor is visited (i.e., stopped at) by the lift.

2. Each floor has two buttons (except ground and top), one to request an up lift
and one to request a down lift. These buttons 2fuminate when pressed. The but-
tons are canceled when a lift visits the floor and is either traveling in the desired
direction or visiting the floor with no requests outstanding. In the latter case, if
both floor request buttons are illuminated, only one should be canceled. The
algorithm used to decide which to service first should minimize the waiting time
for both reauests.

3. When a lift has no requests to service, it should remain at its final destination
with its doors closed and await further requests (or model a "holding" floor).

4. All requests for lifts from floors must be serviced eventually, with all floors
given equal priority (Can this be proved or demonstrated?).

5. All requests for floors within lifts must be serviced eventually, with floors being
serviced sequentially in the direction of travel (Can this be proved or demon-
strated?).

6. Each lift has an emergency button that, when pressed, causes a warning signal
to be sent to the site manager. The lift is then deemed "out of service." Each lift
has a mechanism to cancel its out-of-service status.

floors, given the constraints expressed in the problem statement. The problem

imposes realistic constraints, such as minimizing waiting time for requests,

giving all floors equal priority, and the like.

Again, there is an issue of generalizability and validity. How representative

is the Lift problem of problems typically given to designers? The Lift problem

certainly has the ecologically valid features typically associated with realistic

design problems (Simon, 1973). The Lift problem specification is informal

and therefore incomplete and ambiguous. It is also a knowledge-rich problem

because it requires the integration of many sources of knowledge. In a

taxonomy of software design problems, the control of a lift system for N lifts

can be categorized under three types of systems: a reactive system, an

embedded system, and a concurrent system. Therefore, the design of a lift

system requires the integration of knowledge of scenarios of usages from end

users, of servicing asynchronous input under real-time constraints, of the

interaction between hardware and software, and of concurrent processes.

There is also novelty because none of our designers had designed an identical

system in the past, although they had worked on related real-time, concur-

rent, or embedded systems.

DESIGNING THE DESIGN PROCESS

Many representative applications share design issues with the Lift problem.

For example, user interfaces are reactive systems, having to respond to

asynchronous user input under real-time constraints. Software used to control

advanced graphics packages, CAD systems, and three-dimensional mechan-

ical design systems, are embedded systems interacting with multiple input and

output devices. The growing interest in electronically supported group work

has led to the development of groupware, software systems that are not only

reactive and embedded but also must handle concurrent events. Lewis (1990)
also pointed out the ubiquity of problems that involve concurrent activities

and the necessity of studying the design of concurrent systems. Hence, the

Lift problem is an instance of an important and frequent type of software

system.

2.3. Procedure

Thinking-aloud reports were collected by an experimenter from the

designers as they designed the logic for the Lift problem. The designers

exhibited no difficulty in verbalizing their thoughts, and they produced dense

verbalizations with few moments of silence. The designers' natural ease of

verbalization may be attributed to the fact that design often occurs in teams,

and designers are comfortable expressing their thoughts aloud. When the

designers fell silent, they were gently prompted by the experimenter to

continue talking.

The designers were given up to 2 hr to produce a high-level design solution

that was in a form and level of detail that could be handed off to a competent

system programmer to implement. The participants were videotaped and

supplied with paper and pencils to work their solution. The designers were

free to write anything they wished on the paper provided-notes to them-

selves, tentative solutions, requirements, and so on. The notes and diagrams

produced by the participants were regularly time stamped by the experi-

menter. The transcript of each participant was also time stamped, and the

written notes and diagrams were included in the transcript. Because this

procedure is comparable to the verbal protocol procedure used in other design

studies, it permits comparison between the results of this study to those of

these other studies.

In debriefing sessions following the protocol collection, the designers were
asked to comment on the naturalness of the experimental situation. The

designers reported that the problem was not unlike the type of design

problems they had been given in the past - sketchy, incomplete, and ambig-

uous. They also commented that, in the early stages of design, they only used

paper and pencil to jot down ideas, notes, sketches of design, and so on.

Designers mentioned that they were used to designing under severe time

316 GUINDON

constraints. They commented that in the field, however, they were freer to

interrupt design to seek additional information from colleagues, customers,

and reference material. For example, Designer 2 frequently wanted to discuss

the requirements with the experimenter, as this represented his normal mode

of designer-client interactions. They also commented, on the other hand, that

they felt more constrained to go by the book and follow accepted design

methods and practices in the experimental session than they would in the

field.

2.4. Analysis of the Verbal Protocols

Analysis Procedure

The process of protocol analysis was divided into the following major steps.

First, the videotape was reviewed and the transcript of each designer was read

by four researchers with different perspectives and backgrounds - a prelirn-

inary brainstorming analysis. One of the researchers was a cognitive psychol-

ogist, two were researchers with a background in artificial intelligence and an

interest in software tools to support designers, and the last one had a

background in software engineering and in the development of large systems.

The researchers were free to note whatever they felt was significant about the

design process of an individual designer. The notes were then shared and

discussed at length among the researchers. This brainstorming analysis helped

ensure that findings from the study were shared very rapidly with those

involved in building tools. The analysis also helped ensure that design

activities that might have been considered as noise or uninteresting under one

theoretical framework could reveal their significance from another perspec-

tive.

Second, following this preliminary analysis, about 1 month after protocol

collection, the videotape was viewed with the participant designer in a

prompted review session. The participant designer was free to stop the

videotape and note whatever was significant from his perspective. The

researchers could also stop the videotape at any point and question the
designer. These questions were particularly useful in probing for the special-

ized knowledge that designers had brought in during design but that was only

alluded to in the verbalizations. They were also useful in uncovering the

rationale underlying certain design decisions that had not been verbalized

during the session.
Then, an analysis scheme was developed iteratively as additional and more

detailed analyses of the protocols were performed. For each episode, a

template of attribute-value pairs was filled out. The template specified the

type of design activity and its knowledge domain: Lift domain scenarios,

requirement understanding and elaboration, and design solution develop-

DESIGNING THE DESIGN PROCESS

Figure 2. Encoded design activities with their attributes and values.

External Levels of InferencdAdding
Design Activities Representation Simulation Abstraction New Requirement

Lift domain scenarios Yes/No YesINo NIA N/A
Requirement YesINo N/ A NIA Yes/No

understanding
and elaboration

Solution development Yes/No YesINo High NIA
Medium
Low

ment. If the design activity was development of a solution, the template

specified its level of abstraction as high, medium, or low. If the design activity

was about requirements, the template specified whether the designer had

added or inferred a requirement or simply was understanding or reviewing

the requirements. The template also specified whether the designer relied on

external representations (e.g., diagrams, notes).

Finally, each designer's protocol was analyzed in depth by two people. The

analyses were then compared and conflicts resolved. This comparison also led

to the discovery of new categories or features of episodes.

Protocol Coding Categories

This section describes in greater detail the types of design activities and

their associated knowledge domains that were encoded as episodes in the

protocol. Figure 2 gives an overview of the design activities and their

attribute-value pairs.

One of the designers' activities is the retrieval or simulation of scenarios in

the problem domain (called the Lift domain). By problem domain we mean

a subset of the real world with which a computer system is concerned, but not

the design solution describing the computer system itself.' A lift system is

concerned with lifts, floors, passengers, waiting time of passengers on the

floors, safety of passengers, and so on. A Lift scenario could describe, for

example, an interesting situation where there is a request to go from Floor 2
to Floor 4 and two lifts that could service it - a lift going up from Floor 1 and

a lift going down from Floor 4 to Floor 1. The Lift scenarios can be

accompanied by diagrams and notes to help the simulations.

Another of the designers' activities is the understanding and elaboration of

' The term application knowluige is sometimes used to mean problem domain knowledge.
However, the term is also used to refer to areas such as graphics, databases, networks, that is,
applications of computer science. The term problem domain is preferred because it does not present
this ambiguity.

GUINDON

the requirements in the informal specification. By elaboration of the require-

ments, we mean any activity whose purpose is to decrease the incompleteness

and ambiguity of the informal specification of the requirements. In particu-
lar, this includes the inference of constraints that followed from the informal

specification and the addition of new requirements. An inferred constraint is
not explicitly given in the requirements but it can be deduced as necessary or

plausible from the informal specification and one's knowledge of the problem

domain. Inferred constraints include, at least, inferred relationships between
objects, inferred properties of an object, inferred actions of an object,

inferred objects, and inferred test cases. For example, as a result of the Lift

scenario just described, a designer inferred a test case missing from the

specification: A passenger makes a request to go in a particular direction, up

or down, but, once inside a lift, the passenger requests the lift to go in the

opposite direction. Added requirements are plausible or desirable require-

ments missing from the specification that cannot be deduced logically from
the informal specification. For example, a designer decided that a lift system

should be very safe and added to the requirements that the design should

satisfy a high level of reliability.

Another design activity is the development of the design solution. This

includes the representation, the addition of new partial solutions, the mental
or external simulation, the evaluation, and the debugging of the design

solution. During solution evaluation, a designer weighs the pros and cons of

alternative solutions. For example, a designer contrasted a centralized and a

distributed control solution in terms of reliability and ease of implementation.

During solution simulation, the designer evaluates the internal consistency,

the correctness, and the completeness of the solution with respect to the

requirements, whether they be given, inferred, or added. It is important to
point out that the uses of test cases from the Lift domain knowledge are

considered an integral part of solution simulations and are not considered
shifts to the Lift domain in the results presented in the next section. The level

of abstraction of a partial solution was categorized as high, medium, or low.
By level of abstraction, we mean the hierarchical partitioning of the functions

accomplished and information processed by the software system found in the
design solution at the end of the session. Indeed, even if a design solution is

not decomposed following a top-down approach, one can establish a hierar-

chical partitioning in the final solution on the basis of system-subsystem
relationships. The high level of abstraction concerns the control and commu-
nication schemes adopted (e.g., central vs. distributed) and how the indi-
vidual lift functions are handled. The medium level of abstraction concerns
how these functions are divided into subfunctions. The low level of abstrac-

tion concerns how these subfunctions are further subdivided and also includes

detailed design- how functions are realized in the hardware, details about the
data structures, and detailed algorithms.

DESIGNING THE DESIGN PROCESS 319

Figure 3. Shifts in design activities and levels of abstraction of Designer 1. Plus
signs indicate newly inferred or added requirements. Light bulbs indicate sudden
discovery of partial solutions or requirements. The region marked by R indicates
the period of solution review.

Lift Scenario

2
s

Requirement

i?

Solution High
t.

Y
t Solution Medium

e
S

Solution Low

I I I I I

15 30 45 60 75

Time (minutes)

3. RESULTS AND OBSERVATIONS

Section 3.1 describes the general dynamics of the design decomposition

over the complete session. It shows that the decomposition greatly deviates

from a top-down process. Section 3.2 categorizes the design activities in terms

of those which follow a top-down process and those which do not. Section 3.3

explores the causes of the deviations. It shows that these deviations are not

uninteresting special cases but are an intrinsic consequence of the ill-

structuredness of design problems.

3.1. The Dynamics of the Design Decomposition

Figures 3 and 4 are constructed from the protocol analysis in the following

fashion. For each design activity or episode in the protocol, a node is drawn

on the figure. On they axis are given the three types of design activities: Lift

domain scenarios; understanding and elaboration of the requirements; and

development of the design solution at a high, medium, or low level of

abstraction. Plus signs at the requirement level indicate an inference or the

addition of a requirement. Light bulbs indicate sudden insights. Time since

the beginning of the session is represented on the x axis. For readability, some

of the episodes that were contiguous and very short were slightly spread out

320 GUINDON

Fifurc 4. Shifts in dcoigp activities and lev& of abstraction of & + e r 2. Plus
signs indicate newly i d e n d or added nquhxmntr. Light WSw indiute sudden
discovery of @la mlutions or reqniremmts. The re+ marked by R indicates
the period of solution review.

Llft Scenario -

Requirement -

Solutlon High -

Solution Medlum -

Solution Low -
Q

and displayed within * 2 min of their occurrence in the session. The shifts

between design activities in these three knowledge domains and levels of

abstraction are displayed for the complete sessions of Designers 1 and 2.
The gray shadings in Figures 3 and 4 trace, for illustrative purposes, what

the shifts might be like if the designer followed a top-down process preceded

by a complete problem specification: First, the designer understands and

elaborates the design goals with the help of Lift domain scenarios, and then

develops the design solution at a high level, then at a medium level, and then

at a low level of abstraction. The gray shadings are roughly drawn to visually

maximize the fit between the actual, observed process and the prescribed

process (e.g., the bar tends to follow the high frequencies of nodes at a given

level and change levels when they decrease).

Figures 3 and 4 show that Designers 1 and 2 frequently departed from a
top-down, breadth-first decomposition of their solutions. The designers

expanded their solutions by rapidly shifting between levels of abstraction and

by developing low-level partial solutions prior to a high-level decomposition.
Moreover, the designers interleaved problem specification, that is, the

inference of new requirements, with solution development throughout the

session. In other words, designers interleaved problem structuring with

solution development.

Figures 3 and 4, however, do not reveal the complete extent of deviations

from a top-down approach. It is also necessary to present the order of

xsa3oxd e yms mono3 ley3 asoy, pue ssa~oxd umop-do:, e woxj alevap ley,

asoyl jo suua) u! s a p p y x &!sap aql &umb put? azuoSa~e~ ley2 uop3as 1xau

aql u! paluasaxd axe sasdpw paplap axow 'amanbasuo:, e s y .6 put? 8 szuaq

u! swa3sdsqns laaapmypaw om1 03 pauxnlax uayl ! L luahg u! uo!,nlos p l n d

IaAal-moI palelamn ue padola~ap p w paqhap uayl f~auueur lug-yipeaxq

'umop-do3 e u! g pue 5 s1ua~g u! swaxsdsqns la~a1-uxnypaw om3 pado~anap

uayl fp put? g sluaa3 u! swa~sdsqns la~al-y2ly OM$ padopap 1 xa&!saa

'(; a.rr&!j u! 'as!maqq .luawdola~ap uopnlos laaal-MOI jo xaasnp e d p u g

pue '3uaurdola~ap uo!lnlos lahal-wmpaw jo xa3snp e uaq3 '~uawdolahap

UOF~IOS la~ap$3yy jo .1a3snp e dq pamonoj 'sap~yl3e uo!~e~~pads-wa~qoxd

jo ~ a ~ s n p e pey 2 xa&ysaa woyssas aq3 jo pua ayl 3e 1uawdo1ahap uoynIos

laaal-mo~ jo ~ a ~ s n p e pue uoyssas ayl jo Syuu@aq ayl 3e sa!l!~!lz~e uo!lexpads

-walqoxd jo xalsnp e pey 1 ~auS!saa 'aldurexa xoj .ssa3oxd umop-do,

e pamonoj Aped sxa&ysap 1eql axrap!~a amos moqs osp dayl 'ssa2oxd

umop-do2 e moxj sammdap luanbaxj moqs p pue saxnSg y S n o q 3 ~
'IaAal ~ayS!q e 3e uopysodwo3ap lopd ~ n o q ~ ! ~ uop~ex3sqe jo sIaaaI snopleh ~e

suopnlos pyped padolahap pue uopysodwo~ap uoynlos ayl jo s w d $uaxajj!p

u! suo!lnlos p y e d uaamlaq dpydex pay!ys d a q ~ :uo!p,odwo~ap lsq-qlpeaxq

'umop-do1 e w o ~ j palepiap z pue 1 saa&!saa ley3 moys g pue 5 sa~nS!j
.suxa3sdsqns JuaJajj!p

u! suopnlos p !~~ed uaamlaq sy!qs aq3 p l a p g pue I; s a ~ n S ! ~ ' d p q p a d s

. m a d a s u!w-01 a~!1eluasaxdax e xoj padolahap axam suoynIos p ! ~ d q~!ym

u! xapJo ayl alexpu! g pue 5 sa~nS!j u! sxaqwnu papxp a u -sa12lue!xl ~ p w s

dq palexpuy axe sIaqaI S u o ~ q~!m suopnlos pywd ayl 'sarnSg ayl uy amds

jo y3el 03 ~ U ~ M O '2 pue sxau%!saa xoj suo!xnIos pug ayl jo uo!i!soduro~ap

puop~un j aqj 'peq2 axn3m.x~s e jo wxoj ayl u! 'a@ g pm? 5 saxnS!j ~~o!$!s

-0dwo3ap uo!lnlos aq3 jo s w d Iuaxajj!p u! suopnlos pytred jo luaurdo~aaap

322 GUINDON

Figun 6. Design solution deeomporition of Designer 2 and shifts between
partial solutions and levels of abstraction for a 10-min segment.

3.2. Frequencies of Deviations From Top-Down Decomposition

For purpose of reporting the data, the design activities are broken down

into three classes: (a) development of solution, (b) evaluation and debugging

of solution, and (c) understanding and elaboration of the requirements

(problem specification). The categorization of activities as balanced or

unbalanced is summarized in Figure 7. The categorization rules are further

described in the following paragraphs. Note that the notion of balanced and

systematic has been expanded beyond the definition given by Adelson and

Soloway (1984, 1985) to include a greater percentage of design activities. The

justification for this expansion is clarified as the rules are described.

Because this is an analysis of the recurrent causes for deviations from a

balanced process for both designers, and not an analysis of individual

differences, the percentages are reported over the total number of design

activities for the two designers. In fact, both designers exhibited large

percentages of deviations from a balanced development -Designer 1 had
57 % , and Designer 2 had 42 % of unbalanced activities. Both designers had

similar frequency breakdowns of these activities. A later section briefly

describes interesting differences between designers. The figures report

percentages over the total number of activities described in each figure.

Figure 8 displays overall percentages of balanced and unbalanced activities

collapsed over the two designers for a total of 256 design episodes. It shows

that 52% of the design activities were balanced, whereas 47 % were unbal-

anced. The high percentages of unbalanced design activities warrant a closer

analysis of these deviations in Figures 9 and 10.

As can be seen in Figure 9, 53 % of the solution development activities were

DESIGNING THE DESIGN PROCESS 323

Figure 7. Summary of categorization rules for unbalanced and balanced epi-
sodes.

--

Design Activities Unbalanced Balanced

Solution Development Drifting Design schema
Immediate recognition of Design method or

solution in another part notation
of the problem

By simulating Lift Problem solving schema
scenarios

Immediate solution Design heuristics
development for an
inferred requirement

Solution Evaluation If solution is unbalanced Test cases
Systematic requirement

review
If solution is balanced

Requirements Inferences and additions Systematic strategy
By simulating Lift

scenarios

Figure 8. Percentages of balanced and unbalanced design activities.

Design Activities Balanced Unbalanced

Understand and elaborate
the requirements 9 10

Develop solution 23 2 7

Simulate and debug solution 20 10

Total 52 47

unbalanced. The development of the design solution was considered unbal-

anced according to the following rules:

1. if the designer drifted, that is, elaborated a sequence of partial

solutions, each leading to the next one, at much greater level of detail

than the rest of the solution;

2. if the designer immediately recognized a solution for another part of the

problem and shifted to work on this other part of the problem;

3. if the designer simulated Lift scenarios to develop a partial solution (in

the waterfall model, the requirement analysis and associated use of

problem domain knowledge should be completed before design starts);

324 GULNDON

Fipure 9. Percentages of balanced amd unbalanced design activities for solution
development.

Design Activities Balanced Unbalanced

Develop solution by
Top-down approach with specialized design schema
Other methods (e.g., JSD), design notations,

general problem-solving schema, problem-
solving or design heuristics

Driftine "
Solution recognition in other part of problem
Lift domain scenarios
Immediately handling added requirements
Strategically developing at lower level
Meeting listed requirements
Returning to an interrupted partial solution

~ o ~ - d & w n approach with specialized design schema
Immediately handling added requirements
At a higher level of abstraction than current

solution (recovering from drift or other)

Total

4. if the designer immediately developed a partial solution for a new

requirement he had just discovered, as opposed to take note of it and

handle it later; and

5. if the designer strategically decided to violate balanced development and

performed detailed explorations to get new ideas on the design solution.

Examples of each of these deviations are given in the next section with an

analysis of some of their underlying cognitive mechanisms.

Solution development was considered balanced if it could be accounted for

by the designer following:

1. a specialized design schema abstracted from designing related systems,

2. a design method or a design notation,

3. a general problem-solving schema, and

4. a problem-solving or design heuristic.

A design schema is a knowledge structure representing abstractions from

the designs of related systems. For example, it may represent the similarities

in overall design decomposition between a Lift system and a taxi cab

dispatcher. A design method, by definition, dictates or suggests a sequence of

activities to be performed. For example, Designer 1 partly followed a data

DESIGNING THE DESIGN PROCESS

structure-oriented design method called Jackson System Development (Jack-

son, 1983). Design activities were also considered balanced when motivated

by the use of design notations, such as state-transition diagrams, data-flow

diagrams, or structure charts. Design activities that could be attributed to

following a general problem-solving schema, such as divide and conquer,

were considered balanced. For example, Designer 1 decided to divide the

problem into servicing the requests made at the floor and servicing the

requests made inside the lifts. Activities were also considered balanced if they

could be attributed to following general problem-solving and design heuristics

such as, "Consider a simpler problemn (e.g., solve the problem for one lift,

then expand the solution to N lifts); "Keep the design solution as simple as

possiblen; "Keep the design solution parts as consistent as possible" (imple-

ment similar functions using the same algorithm throughout the design

solution). A more comprehensive discussion of design schemas, methods,

notations, and heuristics is given in Guindon (in press).

The next category in Figure 9, a balanced development by meeting listed

requirements, refers to strategy Designer 2 exhibited: He systematically

examined all parts of his solution to verify that they satisfied the require-

ments. In the process he developed additional parts of his solution. The

unbalanced solution development refers to cases where the designers did not

know how to proceed, consulted the requirements for ideas, and immediately

developed a partial solution for the examined requirement.

Frequently the design development was interrupted by, for example, the

inference of new requirements or the immediate recognition of a solution in

another part of the problem. At other times, the development of a solution

was postponed because of lack of necessary information. As a consequence,

designers frequently had to return to interrupted or postponed solution

development activities. Such interruptions and returns contributed to devia-

tions from a systematic and balanced solution development and therefore are

reported separately. The returns to interrupted or postponed solutions were

categorized as balanced or unbalanced as a function of the status of the

solutions to which they returned. For example, if a designer returned to a

solution so that he could continue to follow a design method, then the return

was considered balanced. On the other hand, returning to complete a solution

that immediately handled a new requirement was considered unbalanced.

Designers also exhibited a variety of returns to interrupted partial solutions at

a higher level of abstraction. These returns were typically recoveries from a

drift that had led the designer to develop partial solutions at a very low level

of detail.

Figure 10 shows the solution evaluation and debugging activities catego-

rized as balanced and unbalanced. Solution evaluations using test cases were

performed systematically to ensure correctness and completeness of the
solution. Therefore, such episodes were considered balanced. Moreover,

326 GUINDON

Figure 10. Percentages of balanced and unbalanced design activities for solution
evaluation and debugging.

Design Activities Balanced Unbalanced

Evaluate solution by
Simulations with test cases 30
Comparing to requirements in final review 14
Comparing against givenlinferred requirements 4 6
Lift domain scenarios 1 6

Idmta> or solve bugs 18 2 1

Total 67 33

Designer 2 exhibited a systematic review strategy at the end of the session-

He reviewed each of the requirements on the problem sheet to ensure that his

solution satisfied them. The other episodes were considered balanced or

unbalanced as a function of the status of the solution that was evaluated or

debugged.

Turning to the requirements, 55% of these activities were related to their

elaborations, and 45 % were related to their understanding. Additions or

inferences of new requirements were considered unbalanced because these

occurred throughout the session while the design solution was developed, and

thus they violated the waterfall model (see Figures 3 and 4). Therefore, the

design problem goals could be modified while the design solution was

developed. Of all requirements elaborations, 33% were triggered by Lift

scenarios and 67% by solution developments and simulations. The under-

standing of the requirements was always considered balanced.

To summarize, the results presented in Figures 3 to 10 show that the

designers frequently deviate from a top-down approach. These results cannot

not be accounted for by a model of the design process where problem

specification and understanding precedes solution development and where the

design solution is elaborated at successively greater levels of detail in a

top-down manner.

In fact, the design behaviors observed in this study bear great resemblance

to the way in which goals were satisfied in an errand-planning task described

by Hayes-Roth and Hayes-Roth (1979). They observed that their subjects

mixed decisions at various levels of abstraction. For example, the subjects

planned low-level (detailed) sequences of errands in the absence of or in

violation of a higher level plan. In the current study, the designers could

elaborate partial solutions at arbitrary levels of abstraction in the solution

decomposition prior to higher level decomposition. Behaviorally, the observed
design process seems best characterized as opportunistic, to borrow Hayes-Roth

and Hayes-Roth's term. The term opportunistic is restricted here to describe the

DESIGNING THE DESIGN PROCESS 327

observed behaviors and does not, at this point, entail a particular cognitive

model.

The next section presents examples of opportunistic design behaviors and

discusses the cognitive mechanisms underlying them. This results in a

definition of opportunistic design presented in Section 4.2.

3.3. Causes of Opportunistic Design Decomposition

Design tasks are considered to be the domain of bounded rationality.

Newel1 and Card (1985) argued that the explanation of bounded rationality

phenomena should be found in the interplay of basic psychological mecha-

nisms and the human's intendedly rational endeavors. Basic psychological

mechanisms that seem to play a role in opportunistic design include the role

of data-driven processing by experts, the associative nature of human

memory and spreading activation, working memory limitations. An impor-

tant intendedly rational behavior is the designer's deliberate management of

time or other resources to be most effective (see Simon, 1969/198l, for a

discussion of design as a resource-allocation problem).

The main causes for opportunistic solution development include immediate

recognition of a partial solution in another part of the problem, immediate

handling of inferred or added requirements, drifting through partial solu-

tions, and interleaving of problem specification with solution development.

Each of these is examined in detail for its genesis.

Sudden Discovery of Unbalanced Partial Solutions

Episodes classified as knowledge discovery were characterized by the

sudden emergence of new knowledge, without apparent planning, which

subsequently plays an important role in the solution attempt (as in Kant &

Newell, 1984). The episodes in Figures 3 and 4 annotated with a light bulb are

particularly striking examples. Knowledge discovery often led to the

unplanned addition of new requirements or new partial solutions. In turn,

knowledge discovery was frequently followed by unplanned but drastic

changes in the design activities.

Figure 11 shows the main design activity transitions that led to knowledge

discovery of partial solutions, with their percentages over all solution-

development episodes. The left column indicates the design activity that

triggered the discovery of the partial solution.

A first example illustrates the immediate recognition of a partial solution,

reused from another part of the solution. It was triggered by a solution

simulation. A designer had used an interrupt structure to track floor requests

earlier in the session for a different subproblem. His current goal was to

elaborate the control and status operations for each lift handler (corre-

328 GUINDON

Figure 11. Main types of design activity transitions leading to discovery of
partial solutions,

Preceding Episode

Simulation of
partid solution

Given or
inferred
requirement

Lift domain scenario

Percentage of All - Episode With Discovered Solution Development
Knowledge Activities

-Immediate recognition of
solution from another part of
the problem

-Recognition of low-level partial
solution prior to solution
decomposition

-Recognition of partial solution
in another part of the problem

sponding to Events 5 and 6 in Figure 5). He was then immediately reminded

of the interrupt structure he had used earlier in the session to track floor

requests. He then shifted to a subproblem that could be solved by an interrupt

structure in a different part of the problem (corresponding to Event 7 in

Figure 5). The immediate recognition of the partial solution was caused by a

semantic association based on an analogy between the control and status

operations of each lift handler - tracking the states of each lift - and tracking

floor requests. Having recognized a partial solution with very little effort, the

designer elected to change his current goal and shifted to the subproblem

resolved by this partial solution. Presumably, the designer found this to be a

more effective course of action than making a note of the partial solution and

handling it later. After all, by immediately developing the partial solution, the

designer put additional constraints on the design solution with little effort and

reduced the daunting size of design possibilities. Already developed partial

solutions seem to be resources that can be easily retrieved and reused, enter

the focus of attention through association, and modify the designer's plans.

We also observed cases where a designer was examining the external

representation of the solution while performing a simulation and unexpect-

edly saw a bug in another part of the solution. The designer changed his goal

and immediately fuced the newly discovered bug. Presumably, the designer

decided that it was more effective to correct the bug immediately than to note

it and handle it later. Thus, unplanned information from external represen-

tations can also enter the focus of attention and modify the designer's plans.

Other instances of opportunistic development occur when a designer

immediately recognizes a low-level partial solution for a requirement prior to

design decomposition. For instance, as soon as a designer realized that button

pressing was asynchronous, the thought of an interrupt structure as a solution

was immediately triggered. Moreover, in this case, the designer drifted

DESIGNING THE DESIGN PROCESS

through a short chain of partial solutions-from the interrupt structure to a

mechanism for detecting order of interrupts. That is, each partial solution

triggered the next solution. This immediate recognition of a solution seemed

stimulated by the activation of a knowledge rule derived from past experi-

ence. Presumably the designer felt that it was more effective to pursue this

lead immediately than to note it and return to it later. Prior to discovering the

solution decomposition, it is advantageous to pursue promising partial

solutions in the hope that they will provide early insights on the solution

decomposition, especially when the discovery of this promising partial

solution requires little effort from the designer.

Kant and Newell (1984) reported cases where problem solving in the

problem domain triggered the discovery of solution knowledge. The current

study also observed such a phenomenon. For instance, a designer simulated

a Lift scenario where the lift doors stayed open a fured amount of time before

closing. This immediately triggered the idea of a timer. The partial solution

seemed triggered by the activation of a knowledge rule linking a particular

device behavior (e.g., the fmed length of the opening of the doors) with a

solution (e.g., a timer).

Newell (1969) and Nii (1986) discussed the possibility that human abilities

to solve ill-structured problems, such as design, arise from the data-driven

application of knowledge in the forms of empirical associations or rules

derived from past experience. Moreover, expertise in many problem domains

has been attributed to the development of such data-driven rules (Anderson,

1982; Larkin, 1981). The application of these data-driven rules is considered

to be automatic and to impose little cognitive cost, in contrast to goal-directed

behaviors (Anderson, 1983).

These are very critical observations and findings. Ill-structured problems,

because of their ill-specified goals, prevent the determination of a single and

stable high-level goal and of a corresponding initial hierarchical plan of

actions to be executed throughout the design process. Ill-structured problems

make a goal-directed, top-down process difficult. On the other hand, human

expertise is associated with the application of data-driven rules. The interac-

tion of the ill structuredness of a problem with data-driven processing by

experts is likely to induce the recognition of partial solutions at various levels

of abstraction prior to an overall solution decomposition. To summarize, the

results presented in this section support the hypotheses of Newell and Nii

linking data-driven processing and ill-structured problems. Information that

becomes the focus of attention -partial solutions, problem domain scenarios,

requirements, and external representations - can trigger knowledge rules. As

these data-driven rules are applied, the problems become better structured. In

fact, the data-driven recognition of partial solutions is advantageous. The

designer increases the number of constraints on the solution and decreases the

daunting size of the solution problem space at very little cognitive cost.

330 GUINDON

Figure 12. Example of an inferted teat case whom solution is immedietdy
developed. BoldfPcGd c4tpitJi.cd mat& indicates the type of design activity;
arrows indicate that one activity triggered the next one.

(LIFT SCENARIO) I am going to imagine one elevator and a few scenarios.
Say there is a request from Floor 2 to 4 . . -
(INFERRED TEST CASE] What if you press up at the floor but, once in the lift,
you press a down button? . . . -
(NEW PARTIAL SOLUTION) So there is definitively the need for a queue of lift
requests for each lift, separate from the floor requests. . . . Maybe the floor re-
quests could be handled by a completely separate system from the lift requests.

The behaviors of novices may resemble, on the surface, those of experts

when solving ill-structured problems. But it is only a surface resemblance.

The high frequency of data-driven application of knowledge rules distin-

guishes the design process of experts from those of novices. Experts have

sufficiently rich knowledge so that the application of data-driven rules

imposes enough structure on the problem that it can be solved. The varied

and rich sources of knowledge used by designers in this study are described in

Guindon (in press). Novices are expected to deviate frequently from a

top-down process. Their deviations are not caused, however, by the applica-

tion of data-driven knowledge rules but by an inability to structure the

problem and develop the solution due to lack of relevant knowledge.

Immediate Solution Develop-nt for New Requirements

As mentioned earlier, the main triggers for requirement elaborations are

the development of the solution itself and the simulation of scenarios in the

problem domain. In fact, 60% of all new requirements inferred during

solution development have their corresponding solution immediately devel-

oped by the designer. This induced sudden shifts to other parts of the solution

decomposition.

Figure 12 shows how a Lift scenario triggered the inference of a new

requirement, which is handled immediately. Note that it was not the goal of

the designer to infer a new requirement or a test case when performing the

Lift scenario. The designer decided to change his goal and immediately

handle this new requirement by shifting to another part of the solution

decomposition. Immediately handling this new requirement benefited the

designer. He obtained a critical insight on the overall solution decomposi-

tion -The floor requests could be handled by an independent system from the

lift requests. This is an advantageous strategy: Because the design goal

DESIGNING THE DESIGN PROCESS

Figure 13. Lift scenario triggering an inferred requirement triggering an
unbalanced partial solution by fulfilling a previously postponed goal.

(LIFT SCENARIO] Let us say this is the fourth floor and this is the third floor.
The lift on the fourth floor is requesting Floor 1. The lift on the third floor is re-
questing Floor 2. Well it says in the requirements, "You must service these requests
eventually with floors being serviced sequentially in the direction of travel." -
(INFERRED REQUIREMENT] So that means the floor from which the request
is originating . . . not the destination.
4

(FULFILL PREVIOUS GOAL TO DEVELOP MODEL OF SYSTEM) That
insight gives me an idea that the lift requests and floor requests might have more
than one piece of information. A lift request is of the form originating floor and
destination floor. What about floor requests? . . . A lift request is (lift#, orig.
floor#, dest. floor#). . . .

changes as a result of inferring new requirements, the plan to reach this goal

should be modified as soon as possible to allocate resources most effectively.

Figure 13 shows an example of an inferred requirement that satisfies a

solution development previously postponed. Early in the session, the designer

wanted to develop a model of the state of the system. He postponed this goal

due to insufficient information and moved on to satisfy another goal. As

illustrated in Figure 13, much later in the design session, a Lift scenario

triggered the inference of the missing information and the postponed goal was

reinstated, leading to a shift to another part of the solution decomposition.

The following two examples are interesting because they show how a

similar inference of a requirement was reached by two designers following

quite different reasoning paths. The examples also illustrate the types of

psychological mechanisms underlying these inferences.

Figure 14 illustrates that while the designer simulated his solution-

low-cost links to its two nearest neighbors (lifts) - the concept of geographical

separation between lifts was activated. Whether the lifts were geographically

near or far from each other was not stated in the problem statement. The

genesis of this requirement - the lift cages might be far from each other - can

be explained by the associative nature of human memory. The concept near

activates the concept far, bringing it in working memory (e.g., see Anderson,

1983). Unplanned information can enter the designer's focus of attention

through spreading activation. The designer decided to assume that the lift

cages were side by side. In other words, he inferred that there were no special

interactions between lifts and floors. Thus, the unplanned acquisition of new

requirements, triggered associatively in the designer's world knowledge, may

modify the course of the solution decomposition.

Figure 15 illustrates that the adoption of a problem-solving heuristic (i.e.,

332 GUINDON

Figure 14. Inferred constraint triggered by a solution simulation through
semantic association.

(SOLUTION SIMULATION] . . . we have a communication system where any
processor was connected to its two nearest neighbors.

(INFERBED GONSTRAINT] Unless these elevators are geographically separated,
then that is another complete independent problem, where you have some interac-
tion on some floors but not on other floors. . . . I will add to the requirements that
the elevators are side by side and that they do not service the different floors differ-
ently.

Figure 15. Inferred constraint triggered by a solution development guided by a
general problem-solving heuristic.

(PROBLEM-SOLVING HEURISTIC] The fact that I have N lifts makes it com-
plicated. I will start by considering the case of one lift. -
(INFERUD CONSTRAINT] But first, I have to make sure that there is no spe-
cial interaction between lifts and floors. Yes, it is okay. I just have a bank of lifts
and a bank of floor requests.

"Consider a simpler problem") can lead to the same inferred requirement as

described in Figure 14. The designer wanted to make sure that by considering

the problem of only one lift he did not miss a critical property of the problem

that would compromise his overall design decomposition. In this case, the

property was a special interaction between lifts and floors. Therefore, the

unplanned acquisition of new requirements, inferred as part of ensuring a

prerequisite condition for a problem-solving or design heuristic, may modify

the course of the solution decomposition.

To summarize, inferences and additions of new requirements occur

throughout the design solution development and are triggered from many

sources. Sources observed in this study include associations between related

concepts, external diagrammatic representations, and prerequisites for the

application of a design process strategy. But, more important, designers tend

to develop immediately the partial solution corresponding to the inferred

constraint, leading to a change in goal and to a shift to another part of the

solution decomposition. Until a designer has discovered the design solution

decomposition, it is advantageous to evaluate immediately the impact of a

new inferred constraint on the solution rather than take note of it and handle

it later. The inferred requirement and its corresponding partial solution were

often critical in discovering the proper design solution decomposition and in

reducing the space of design possibilities.

DESIGNING THE DESIGN PROCESS 333

Drifting

Designers frequently developed a sequence of associated partial solutions in

violation of balanced development. Whereas the partial solutions were

semantically related, they each could resolve subproblems in different parts of

the solution decomposition. The associations could be based on components

that interacted or interfaced with each other, on components that accom-

plished similar or opposite functions, on components that shared data, and so

on. For example, defining the data structure to store the floor requests

triggered defining the data structure for the emergency button, which itself

triggered defining the outputs for input interrupts. Other drifts followed a

chain of data-driven solutions derived from prior designs. Designers find it

advantageous to follow a train of thought temporarily, thus arriving at partial

solutions at little cognitive cost. In particular, before designers have estab-

lished the overall design decomposition, these partial solutions may provide

them critical insights on the proper way to decompose the problem and reduce

the daunting size of design possibilites.

Solution Development by Problem Domain Scenarios

The uses of Lift scenarios during solution development are interesting

because they often triggered the recognition of unbalanced partial solutions or

of new requirements. The first case is similar to what Jeffries et al. (1981)

called problem solving by understanding: The designer is temporarily unable

to develop the solution and simulate scenarios in the problem domain to get

new ideas. Participants in this study seldom produced Lift scenarios for this

purpose. On the other hand, novices would be expected to do the opposite.

The second case is to confirm the correctness of a discovered partial solution,

in terms of a plausible Lift scenario, when the problem specification does not

describe the corresponding lift behavior. This is related to the observation by

Kant and Newel1 (1984) that designers use knowledge from the problem

domain to compare the results of their solution with the (sometimes implicit)

goals the solution should fulfill. The third case is to confirm the relevance of

an inferred requirement and to get ideas about how to handle it, because this

information is not included in the problem specification.

3.4. Differences Between Designers

Early in the session, Designer 2 retrieved highly integrated knowledge

corresponding to a very high-level solution decomposition for the Lift system.

As evidenced in the prompted review, this knowledge was abstracted from his

previous designs of taxi cab dispatcher and film controller systems. This

integrated knowledge, called a specialized design s c h n a , provided the designer

with a solution decomposition in terms of three subsystems: one for control

GUINDON

between lift processors, one for communication between processors, and one

for scheduling. Following a specialized design schema does not necessarily

imply a single order in which to develop these subsystems because each of

these subsystems will tend to be relatively independent due to modularity. But

because the schema provides a plan that each of these subsystems be

developed, design activities that could be accounted for by the application of

a specialized design schema were considered balanced.

In fact, the retrieval of the specialized design schema seems to underlie the

greatest difference between Designer 1 and 2. Designer 1 had a greater

percentage of solution development activities that resembled a top-down

decomposition (40%) than did Designer 2 (14%). This difference is consistent

with the visual impression of a better fit to a top-down, breadth-first

development by Designer 2 than by Designer 1, when comparing Figures 3

and 4. Because Designer 2 had already designed systems with high-level

decompositions similar to those of the Lift system, he could, early in the

session, retrieve a high-level solution decomposition, which he could then

follow in a top-down manner. In terms of Simon's (1973) analysis, the

knowledge the designer had about similar or related problems readily imposed

structure to the problem, facilitating the application of a top-down approach.

Nevertheless, frequent and varied deviations from a systematic and balanced

process were observed in both designers.

4. DISCUSSION

Other studies have observed sporadic deviations from a top-down process

but described the design process of their experts as balanced and systematic or

as following a top-down approach preceded by problem specification (Adelson

& Soloway, 1984, 1985; Jeffries et ai., 1981). This study shows that the early

stages of the design process are best characterized as opportunistic, inter-

spersed with top-down decomposition. Resolutions for these differences are

presented.

4.1. The Impact of Structuredness

A topic of a science of design proposed by Simon (1973) is the structure of

complex artifacts and their impact on the design process. Design problems

vary in level of structuredness (Simon, 1973). The problems used by Jeffries

et al. (1981) and Adelson and Soloway (1985) were probably more structured

than the Lift problem in the sense of presenting less novelty to the designers.

For instance, Jeffries et al. (1981) described their design problem as

straightforward because it only required upper undergraduate level computer

science knowledge. Adelson and Soloway (1985) gave the design of a relatively

DESIGNING THE DESIGN PROCESS

simple electronic mail system to thoroughly trained communication system

specialists. However, one of their expert designers, who worked on a familiar

interrupt handler but with an unfamiliar chip, exhibited frequent deviations

from a balanced development when dealing with the chip. The Lift problem

required advanced computer science knowledge and, although our designers

had developed related systems, the Lift problem presented novelty. Sup-

porting our argument, Designer 2, who had developed systems more similar

to the Lift system than had Designer 1, exhibited a design process that

matched more closely a top-down approach than did Designer 1. Thus, a first

conclusion is that design problems that are simple or that present little novelty

can be solved by and large in a top-down manner. The designer can rapidly

retrieve or discover the proper design decomposition on the basis of a

specialized design schema; the designer already knows the answer. This

design decomposition into major systems and subsystems can then be used to

support the rest of the solution decomposition. The designer is now in a

position to apply a top-down approach in filling out solution details and in

expanding the remaining parts of the solution. But prior to the discovery of

the overall system decomposition, the designer does not have this knowledge

and its associated memory representation to support the top-down approach.

Thus, prior to discovering the overall system decomposition, the designer

tends to follow promising partial solutions and immediately evaluate the

impact of newly discovered requirements in the hope of discovering it.

Another feature affecting the level of structuredness of design problems is

the degree of completeness of the problem specification. The problems given

by Jeffries et al. (1981) and Kant and Newel1 (1984) were more completely

specified than are most high-level design tasks, including the Lift problem. As

a consequence, the designers in our study needed to interleave problem

specification with solution development more frequently than did the de-

signers of the other studies. Therefore, the design goals of this study changed

during solution development. The designers frequently elected to handle

immediately the newly inferred requirements. The designers considered this

design-process strategy to be effective: The new requirements might provide

critical insights on the solution decomposition and require modifications to

the planned solution. Hence, planning the solution decomposition needed to

be on line: As new requirements were discovered, the designer needed to

reevaluate his current plan and modify it accordingly. Finally, due to the

associative nature of human memory and to data-driven processing by

experts, scenarios in the Lift domain and inferred requirements often

triggered the recognition of partial solutions in arbitrary points in the solution

decomposition. Simon (1973) argued that much of the effort in solving a

problem is actually in structuring the problem. This study shows that the

process of structuring a design problem involves inherent deviations from a

top-down approach.

GUINDON

The Lift problem also appears to require the integration of more sources of

knowledge than did the problems used in other studies. The Lift problem

required the integration of knowledge from reactive, embedded, and concur-

rent systems. The Lift problem also required scenarios of uses from users, but

so did the electronic mail system problem given by Adelson and Soloway

(1985). Nevertheless, one can expect the Lift problem to involve more scenarios

from the problem domain than would, for example, the book indexing or the

interrupt handler problems. These scenarios often triggered the recognition of

partial solutions in arbitrary points in the solution decomposition.

The Lift problem, however, is not an unusual problem. In the debriefing

session, the designers mentioned that it is similar in the incompleteness of its

requirements to problems they had to solve in the field. Moreover, it shares

many design issues with user interfaces and other frequent applications. The

Lift problem involves concurrency -an unusual feature in design problems

studied so far-and both designers knew solutions to handle concurrency.

Therefore, the frequent deviations from a balanced design process are not

special cases due to idiosyncracies of the Lift problem, noise, uninteresting

performance breakdowns, or manifestations of bad design practices. Instead

they are an inherent and important aspect of the design process. They are a

natural consequence of solving design problems - ill-structured problems with

incomplete specification, often presenting novelty to the designer, and

requiring the integration of multiple sources of knowledge.

4.2. Behaviorally, Design Decomposition Is Opportunistic

Another topic in a science of design proposed by Simon (1973) is the control

of the selection and ordering of actions during design. This study shows that

the early stages of the design process are best characterized as opportunistic,

interspersed with top-down decomposition. In terms of its behavioral mani-

festations, opportunistic design is design in which interim decisions can lead

to subsequent decisions at various levels of abstraction in the solution

decomposition. A decision at a given level of abstraction may influence
subsequent decisions at higher or lower levels of abstraction, specifying

actions to be taken at different times during the process.

Opportunistic design is frequently caused by the application of data-driven

rules, leading to the automatic recognition of partial solutions in various parts

of the decomposition. The data for these rules originate from solution

development activities, problem-domain scenarios, given or inferred require-
ments, and external representations. Data-driven processing, characteristic of

expert behaviors, is not goal directed. However, the application of these

data-driven rules helps structure the problem so that it can be solved. As a

consequence, designers immediately take advantage of the discovery of

DESIGNING THE DESIGN PROCESS 337

partial solutions by elaborating them sufficiently to put constraints on the

space of design possibilities. Novices, lacking specialized knowledge, may be

unable to structure the problem enough to solve it.

Opportunistic design is also caused by the inferences and additions of new

goals that reduce the incompleteness and ambiguity of the problem specifi-

cation. These inferences and additions are triggered by many sources of

knowledge: other requirements, partial solutions, and problem-domain sce-

narios. Their genesis is also varied: through semantic associations, through

external representations changing the focus of attention, as prerequisites for

the application of design strategies, and so on. But, more important,

designers tend immediately to develop the partial solutions for inferred or

added requirements. Opportunistic design is characterized by on-line changes

in high-level goals and plans as a result of inferences and additions of new

requirements. In particular, designers try to make the most effective use of

newly inferred requirements, or the sudden discovery of partial solutions, and

modify their goals and plans accordingly.

Opportunistic planning has been modeled in computer systems with a

blackboard architecture. In typical blackboard systems, the knowledge

sources or specialists are at different levels of abstraction. For example, one

level of specialists could deal with problems at the level of the design process -
how much time to allocate to each activity or when to shift to another activity.

Another level of specialists could deal with software system issues-system

decomposition, control, and communication between processors. Another

level could deal with scheduling issues, another level with hardware interac-

tions, and so on. Each knowledge specialist is self-activating and can be

modeled as an "if-then" rule: If there is information on the blackboard that is

relevant to the specialist, by matching the "if" part of the rule, the specialist

activates itself. At any point in time, one or more knowledge specialists may

be contextually relevant and invoke themselves. A control process makes

cyclical decisions about which of the relevant knowledge specialists is most

opportune to execute, that is, which activity to perform next. The locus of

control can be in a separate executive process, distributed in the knowledge

sources, on the blackboard, or in a combination of the three. Opportunistic

planning combines backward reasoning (inference steps are applied from the

desired goal to the current state) and forward reasoning (inference steps are

applied from the current state toward the goal) in what appears to be the most

advantageous way.

Opportunistic planning is in fact a more general type of planning than

hierarchical planning. A blackboard-based model of opportunistic planning

could account, parsimoniously, for both opportunistic and systematic design

behaviors observed in this study. The on-line planning capability could

account for the designers' changes in high-level goals and plans as they

inferred new requirements or discovered new partial solutions. The applica-

GUINDON

tion of forward, data-driven rules, with knowledge sources organized at

various levels of abstraction, could account for the immediate recognition of

solutions in arbitrary points in the design decomposition. High-level knowl-

edge sources, such as design schema and design methods, could account for

the partially systematic aspect of the design process. Additions to blackboard

systems may be needed to account for other observations in this study. For

instance, we have observed inferences triggered by such a mechanism as

spreading activation based on semantic associations.

Opportunistic design behaviors, however, do not necessarily imply an

opportunistic model of planning. In his book on the architecture of human

cognition, Anderson (1983) argued that behaviors that appear to violate

hierarchical planning may actually be due to simple failures of working

memory. Anderson commented, "Subjects may pursue details of a current

plan that is inconsistent with their higher goals, simply because they have

misremembered the higher goals" (p. 130). Anderson mentioned that oppor-

tunistic behaviors may also occur through data-driven productions, which

may trigger radical shifts in the current goal. Finally, he introduced the

concept of intentions. Whenever a behavioral sequence under the control of

a goal structure encounters insufficient information to achieve the next goal,

the action is postponed and an intention is set to deal with the goal later.

These intentions are components of the condition part of new productions,

which act as data-driven "demons" to be executed when the missing informa-

tion becomes available. Anderson acknowledged that such productions with

intentions are triggered only if they are remembered by the subject. So,

according to Anderson (1983), opportunistic behaviors can also be accounted

for in ACTa7s with its hierarchical goal structure; flat, data-driven structure;

the forgetting of higher level goals; and the execution of data-driven

productions with intentions.

Anderson's points are important. Indeed, we have observed the applications

of data-driven knowledge rules when designers recognized partial solutions

triggered by requirements or by Lift scenarios. We also observed how

inferred requirements that satisfied a postponed goal tended immediately to

reinstate that goal. But these could also be accounted for by an opportunistic
model of planning. Moreover, designers could pursue details of a current plan

that is inconsistent with a higher level goal simply because this goal is no

longer relevant due to the inference or addition of new requirements. Because

design problems have ill-defined goals and evaluation criteria, one must allow

for changes in goals and plans during design. Consequently, planning needs

to be on line as higher level goals change.

We also observed performance breakdowns that could be attributed to

working-memory limitation^.^ One performance breakdown was the failure

The idea of breakdowns presented here is more restricted than the one presented in Guindon,

DESIGNING THE DESIGN PROCESS 339

to integrate known and understood constraints in the design solution. Another

breakdown was the difficulty in performing mental simulations of solutions or

of problem-domain scenarios. For instance, designers sometimes confused or

forgot the function associated with different solution parts, or, more pre-

cisely, associated with the label given to the solution part. Moreover,

designers found it difficult to simulate the interactions between components

of the system, the behavior of a component if it extended over many steps, or

the behavior of a subsystem calling centrally embedded subsystems. To help

mental simulations, designers often resorted to diagrams. However, because

diagrams were a poor medium to represent changes in location and time, they

were not suffkient to prevent all simulation breakdowns. However, the

performance breakdowns had relatively little impact on a balanced design

process. Designer 1 experienced a total of four performance breakdowns;

Designer 2 experienced a total of three breakdowns. In all cases, the designers

rapidly recovered from the breakdowns, within two to four episodes, to

resume their design process as they wished. Hence, one cannot attribute to

performance breakdowns the majority of the observed deviations from a

balanced solution development.

It would be tempting to dismiss the selection of a psychological model as an

irrelevant issue: The two models can make behaviorally equivalent predic-

tions, and considerations such as parsimony and elegance are not clear cut.

Unfortunately, both models can be interpreted as making different sets of

claims about the features of a computational environment to support software

designers. I speculate that Anderson would insist on an environment that

supports a top-down design process with a hierarchical goal structure.

Hayes-Roth and Hayes-Roth would insist on an environment that supports

flexible and easily reorganizable goal structures and on-line planning, as

unplanned relevant information may enter the focus of attention and modify

the problem structure throughout the design process.

Ultimately, it might be very difficult to demonstrate empirically the

validity of one psychological model against another for tasks as complex as

design. Design behaviors are probably influenced by many interacting

complex factors- structuredness and types of problems, degree of expertise of

the designer, the amount and type of relevant specialized knowledge and

heuristics the designer bring to bear, basic psychological mechanisms, the

designer's goals and preferences, and so on. Finally, alternative models that

are complex enough to account for design may have enough degrees of

freedom to produce behaviorally equivalent predictions. Nevertheless, further

descriptive and experimental studies of the design process should be per-

formed to assess the impact of the structuredness of the design problem. They

Krasner, and Curtis (1987). It is restricted to difficulties in the execution of intended design
activities.

340 GUINDON

should also investigate how designers plan and control the allocation of their

time and other resources and how this interacts with basic psychological

mechanisms. Such studies should also include computer models of aspects of

the design process to establish the sufficiency of the proposed model.

A complementary strategy is to develop alternative design methods and

computational environments that embady the competing implications from

these different models. One can then evaluate which of these methods and

environments actually better supports the design process. For example, one
might provide a group of experts an environment that enforces a top-down

approach and another group an environment that enforces an opportunistic

approach. One could then compare the effectiveness of each environment and

associated method in supporting the early stages of design by examining the

number and types of errors, the time to produce an initial design, the quality

of the design, and so on. If one method or environment were to support the

design process better than the others, this finding would constitute indirect
evidence for its corresponding model. However, one must realize that by

doing so one is as much studying the design process as one is shaping what the

process is-The design process is not a natural phenomenon but a human

artifact (Simon, 19691 198 1).

Problem-solving behaviors, which have been labeled opportunistic, have

been observed in various areas of human activities. This observation suggests

their ubiquity for a large class of problems beyond software design. Oppor-

tunistic activities have been observed in a 13-week field study of a team of

programmers and designers by Visser (1987). She identified a number of

causes for deviation from hierarchical plans, including economic use of
available means, postponing a decision due to insufficient information,

handling a solution component that is similar to the current one, and

changing the decision criteria used. Unfortunately, she did not include a

description of her data in the report. UHman, Stauffer, and Dietterich (1987)

in a 10-hr verbal protocol study of design in mechanical engineering,

observed that expert designers progress from systematic to opportunistic

behaviors as the design evolves. Schoenfeld (1985) provided some evidence
for opportunistic problem solving in mathematical reasoning, whereas Flower

and Hayes (1980) did so for document composition.

4.3. Irnplicatione for Training, Methods, and Environments

The results suggest that until the proper design decomposition is discov-
ered, the design process should be opportunistic. One should immediately
take advantage of any inferred information and the additional constraints it

poses on the solution. Only after the proper decomposition is discovered can

one apply the top-down approach. This interpretation agrees with Mills

DESIGNING THE DESIGN PROCESS

(1986) and Fairley (1985), who argued that the benefit of the top-down

approach can be obtained only after some bottom-up thinking, trial design

and coding, and backtracking have been accomplished. This is a position

compatible with Parnas and Clements's (1986) view of the design process that

designers are expected to document the design process and artifacts as if they

had been produced in a systematic fashion. Parnas and Clements argued,

however, that this idealized systematic process can be achieved only in rare

circumstances.

The results of this study also remind one of the techniques used by Polya

(1957, 1962) in teaching mathematics. Of course, once one has discovered the

solution to the mathematical riddle, one has to express proof using accepted

mathematical methods and notations. But as Polya recognized, the process of

discovering the solution is rife with trial and error, garden paths, partial

solutions, and insights. Polya's methods encouraged the deliberate use of an

opportunistic approach to mathematical problem solving.

This study concerns individuals' cognitive activities during high-level

design. Although these implications are intended for supporting the early

stages of software design, the observed opportunistic character of other tasks

(e. g., mathematical problem solving, document composition, and mechanical

design) suggests that these recommendations could apply for methods and

environments for other tasks as well.

The observations of opportunistic design behaviors, the need to integrate

multiple sources of knowledge, and the frequent absence of a predetermined

solution path suggest the following implications for a computer environment:

1. The environment should not embody a method that locks designers into

a strict order of activities. A strict order of activities may hinder the

opportunistic insights critical in discovering the proper design decom-

position.

2. The environment should support rapid access and shifts between tools to

represent and manipulate different kinds of objects and the represen-

tations of these objects. Some of these objects are informal require-

ments, information about the problem domain, issues and criteria about

the system and the design process, design decisions expressed in a

formal or semiformal notation, and design process goal management.

3. It should support easy navigation between these objects, not imposing a
predetermined order of activities, and still have the ability to support an

agenda of activities by the designer.

The incompleteness and ambiguity of the problem specification and the

observation of discovery of knowledge during design suggest the following

implications:

342 GUINDON

1. The representation languages in the environment should support a

smooth progression from requirements expressed informally, to design

decisions expressed formally or semiformally, to code.

2. The environment should support easy editing and reorganization of the

requirements, design issues, and design decisions as the incompleteness

and ambiguity of the problem specification are reduced through the

design process.

3. It should support the identification of the origin of the requirements-

as explicitly given, as inferred constraints, and as added requirements.

4. It should support the representation of interim or partial design objects

in varied parts of the design decomposition.

In summary, experienced system designers deviate from a strictly top-down

approach in the early stages of design. This study provides evidence that

opportunistic design is advantageous and manifests itself through many types

of behaviors: (a) inferences of new requirements that changed the design

goals, (b) the immediate development of partial solutions to these new

requirements, (c) the immediate recognition of partial solutions in various

parts of the solution decomposition, (d) drifting, and (e) solution insights

triggered by scenarios in the Lift domain. These deviations from top-down

design appear to be consequences of intrinsic features of design problems-

incomplete specification of the problem, lack of a predetermined solution

path, and integration of multiple sources of knowledge. Competing cognitive

models based on hierarchical planning and opportunistic planning may be

equally able to account for these observations, but these competing models

have different implications for methods and environments that support the

early stages of design. In any event, efforts to support design should reconcile

themselves with the opportunistic behaviors witnessed here.

A c k n o w ~ t s . Joyce Conner performed a thorough and insightful analysis of
the protocols and has contributed immensely in the production of every aspect of this
article. Thanks to Herb Krasner for collecting the protocols. Jeff ConMi, David
Bridgeland, Mitch Lubars, and Herb Krasner participated in the preliminary analyses
of the protocols. I am grateful for excellent comments from these external reviewers.
Stuart Card, Judith Olson, Peter Polson, and an anonymous reviewer. Glenn Bruns,
Jeff Conklin, Bill Curtis, Jonathan Grudin, Frank Halasz, Clayton Lewis, Patrick
Lincoln, and Mitch Lubars provided many useful comments on an earlier version of
this article. Patrick Lincoln also provided special help in detailed reviews of the
manuscript. Noreen Garrison and Nancy Gore provided excellent editing for syntax,
style, clarity, and structure.

REFERENCES

Adelson, B., & Soloway, E. (1984). A cognitive model of software design (Tech. Rep. No.
342). New Haven, CT: Yale University, Department of Computer Science.

DESIGNING THE DESIGN PROCESS

Adelson, B., & Soloway, E. (1985). The role of domain experience in software design.
IEEE Transactions on Software Engineering, 11, 1 35 1 - 1360.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89,
369-406.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Carroll, J. M., & Rosson, M. B. (1985). Usability specifications as a tool in iterative
development. In H. R. Hartson (Ed.), Advances in human-computer interaction (Vol. 1,
pp. 1-28). Norwood, NJ: Ablex.

Carroll, J. M., Thomas, J. C., & Malhotra, A. (1979). Clinical-experimental analysis
of design problem solving. Design Studies, 1, 84-92.

Dahl, 0 . J., Dijkstra, E. W., & Hoare, C. A. R. (1972). Structuredprogramming. New
York: Academic.

Dijkstra, E. W. (1976). A discipline of programming. Englewood Cliffs, NJ: Prentice-
Hall.

Dunn, R. (1984). Software dcfect removal. New York: McGraw-Hill.

Fairley, R. E. (1985). Software engineering concepts. New York: McGraw-Hill.

Flower, L., & Hayes, J. R. (1980). The dynamics of composing: Making plans and
juggling constraints. In G. Steinberg (Ed.), Cognitiveprocesses in writing (pp. 31-51).
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Guindon, R. (in press). What knowledge is exploited by experts during software
system design. International Journal of Man-Machine Studies.

Guindon, R., & Curtis, B. (1988). Control of cognitive processes during software
design: What tools would support software designers? Proceedings of the C H I '88
Conference on Human Factors in Computing Systems, 263-286. New York: ACM.

Guindon, R., Krasner, H., &Curtis, B. (1987). Breakdowns and processes during the
early activities of software design by professionals. In G. Olson, E. Soloway, & S.
Sheppard (Eds.), Empirical studies of programmers, second workshop (pp. 65-82).
Norwood, NJ: Ablex.

Hayes-Roth, B., & Hayes-Roth, F. (1979). A cognitive model of planning. Cognitive
Science, 3, 275-3 10.

Jackson, M. (1983). Sysem development. Englewood Cliffs, NJ: Prentice-Hall.

Jeffries, R., Turner, A. A,, Polson, P., & Atwood, M. E. (1981). The processes
involved in designing software. In J. R. Anderson (Ed.), Cognitive skills and their

acquisition (pp. 255-283). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Kant, E., & Newell, A. (1984). Problem solving techniques for the design of
algorithms. Information Processing and Management, 28, 97- 1 18.

Larkin, J. H. (1981). Enriching formal knowledge: A model for learning to solve
textbook problems. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp.
31 1-334). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Lewis, C. (1990). A research agenda for the nineties in human-computer interaction.
Human-Computer Interaction, 5, 125- 143.

Malhotra, A., Thomas, J. C., Carroll, J. M., & Miller, L. A. (1980). Cognitive
processes in design. International Journal of Man-Machine Studies, 12, 1 19- 140.

Meyer, B. (1985). On formalism in specifications. IEEE Software, 2(1), 6-26.

Mills, H. D. (1986). Structured programming: Retrospect and prospect. IEEE
Sofiware, 3(6), 58-66.

GUINDON

Newell, A. (1969). Heuristic programming: Ill-stmctured problems. In J. Aronofsky
(Ed.), !%ogress in ofimations resmrch (pp. 362-414). New York: Wiley.

Newell, A., & Card, S. (1985). The prospects for psychological science in
human-computer interaction. Hmn-Computer Interaction, 1, 209-242.

Nii, H. P. (1986, August). Blackboard systems: Blackboard applications systems,
blackboard systems from a knowledge engineering perspective. AZ Mapins, pp.
82-106.

Parnas, D. L., & Clements, P. C . (1986). A rational design process: How and why to
fake it. ZEEE Transactions on SoftLvare Engineering, 12, 251-257.

Polya, G. (1957). How to solve it. New York: Doubleday.

Polya, G . (1962). MatAanrJical discovery. On undmstanding, hming, and teaching problem
solving (Vol. 1). New York: Wiley.

Reitman, W. R. (1965). Cognition and thought. New York: Wiley.

Rittel, H. (1972). On the planning crisis: Systems analysis of the first and second
generations. &pripr Kononar, NR 8, 390-396.

Royce, W. W. (1970). Managing the development of large software systems:
Concepts and techniques. Pmwdiags of the Ninth ZntmPafional Confmence on So~aare
Engincmncmqg, 332-338. New York: ACM.

Sacerdoti, E. D. (1975). A structurefor plcrns and behavior (Tech. Rep. No. 109). Menlo
Park, CA: Stanford Research Institute.

Schoenfeld, A. H. (1985). M a t h i c d psoblnn soloing. New York: Academic.

Simon, H. A. (1973). The structure of ill structured problems. Artafrcial Zntefi;Sence, 4,
145-180.

Simon, H. A. (1981). Scisws of the arttjicial(2nd ed.). Cambridge, MA: MIT Press.
(Original work published 1969)

Swartout, W., & Balzer, R. (1982). On the inevitable intertwining of specification and
implementation. CommwricatMRs of the ACM, 25, 438-440.

Ullman, D. G., Stauffer, L. A., & Dietterich, T. G. (1987, November-December).
Toward expert CAD. Computers in Mechanical Engzncming, pp. 56-70.

Visser, W. (1987, May). Abandon d'wpkin hihachlquc doros ant accioitddc conc+tion [Giving
up a hierarchical plan in a design activity]. Cognitiva 87. Paris. (For an English
version, see Tech. Rep. No. 814 from INRIA, 1988, Paris.)

Wirth, N. (1971). Program development by stepwise refinement. Communications ofthe

ACM, 14, 221-227.

HCI EdiagriPl RsEotd. First manuscript received March 31, 1989. Revision
received May 25, 1989. Final manuscript received September 6, 1989. Accepted by
Peter Polson. -Editor

