
Distributed Systems Engineering

Designing the distributed architecture DIPS for
cooperative software engineering
To cite this article: Daniel Scherer et al 1997 Distrib. Syst. Engng. 4 160

View the article online for updates and enhancements.

You may also like
Guest Editors' introduction
Rachid Guerraoui and Steve Vinoski

-

Review of the phenomenon of dips in
spectral lines emitted from plasmas and
their applications
E Oks, E Dalimier, A Faenov et al.

-

Guest Editors' introduction
Jeff Magee and Jonathan Moffett

-

This content was downloaded from IP address 106.51.226.7 on 24/08/2022 at 19:27

https://doi.org/10.1088/0967-1846/4/3/005
https://google.iopscience.iop.org/article/10.1088/0967-1846/4/3/001
https://google.iopscience.iop.org/article/10.1088/1742-6596/548/1/012030
https://google.iopscience.iop.org/article/10.1088/1742-6596/548/1/012030
https://google.iopscience.iop.org/article/10.1088/1742-6596/548/1/012030
https://google.iopscience.iop.org/article/10.1088/0967-1846/3/2/001

Distrib. Syst. Engng 4 (1997) 160–168. Printed in the UK PII: S0967-1846(97)82167-5

Designing the distributed architecture
DIPS for cooperative software
engineering

Daniel Scherer †, Tobias Murer ‡ and Andy W ürtz §

Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH), CH-8092 Zurich, Switzerland

Abstract. Cooperative software engineering typically involves many actors and
resources that cooperate in a complex distributed and heterogeneous world. In the
DIPS (Distributed Integrated Process Services) project, a three-dimensional model
is used for the definition, enactment and tracing of software development
processes, which expresses both structure and evolution of such processes. This
paper discusses how an optimal architecture was evaluated to implement the
process model in a process support framework. Process-specific and general
requirements are identified, and expected usage patterns of a DIPS-based
environment are analysed. A set of potential architecture variants is proposed, and
implications of the requirements and usage patterns on the variants are discussed
qualitatively. An evaluation of the architecture alternatives leads to the design of
the hybrid DIPS architecture based on distributed heterogeneous objects. The
prototype DIPS implementation is briefly outlined.

1. Introduction

The emergence of distributed objects and component
technologies together with decreasing communication
costs allows for increasing numbers of applications to
be run as widely distributed heterogeneous systems.
Software engineering is increasingly regarded as a widely
distributed cooperative process involving many actors and
resources. Producers weaken their enterprise boundaries
by sharing and linking their development processes,
resulting in tightly cooperating networks of enterprises,
so-called virtual enterprises. This, together with the
globalization and increasing pace of software deve-
lopment requires highly integrated software development
environments. An environment for software development
processes must run on many heterogeneous platforms and
integrate heterogeneous tools, and provide a homogeneous
perception of the process to users [3, 4, 12]. The
DIPS (Distributed Integrated Process Services) project
(subproject of GIPSY (Generating Integrated Process
support SYstems)) [8, 9] defines a formal process model
for this purpose, and implements this model in a distributed
framework for cooperative software engineering. It is based
on an architecture of distributed objects which supports
integration of heterogeneous tools on widely distributed
platforms, and this paper presents the ideas leading to the
design of the architecture.

† E-mail: scherer@tik.ee.ethz.ch
‡ E-mail: murer@tik.ee.ethz.ch
§ E-mail: wuertz@tik.ee.ethz.ch

After briefly introducing the DIPS process model, this
paper deals primarily with the issue of how to map the
model to a distributed architecture of a process framework
that is suitable for implementation. It presents architectural
requirements that are derived from the model, including
usage patterns, and discusses how different architecture
variants meet the requirements, thus leading to an optimal
architectural choice. While the usage patterns are initially
estimated, they have been confirmed by preliminary
measurements performed with small processes, and future
measurements will provide more exact data that will allow
the prototype to be improved in a bootstrapping way.

The main focus is on features that distinguish different
architecture variants, and, to a lesser degree, on features
that are common to all designs, in order to be able to
perform a meaningful comparison of variants to find the
optimal one. The emphasis is on keeping the design simple,
modular and extensible, and on finding the most necessary
properties of such an architecture through a qualitative
rather than a quantitative discussion. The analysis of
requirements and usage patterns in absolute terms would
provide a worthwhile exercise in itself but is beyond the
scope of this paper—the assumption here is that upon
implementation of the derived architecture, an adequate
technology is chosen. The implementation of the DIPS
architecture under construction based on a simple home-
made object request broker (ORB) is presented, which
may later be ported to a CORBA-compliant ORB [10] and
possibly integrated in the WWW.

0967-1846/97/030160+09$19.50 c© 1997 The British Computer Society, The Institution of Electrical Engineers and IOP Publishing Ltd

Designing the distributed architecture DIPS

2. The DIPS 3D process model

The DIPS process model represents a formal model for
software development processes [3], on which the DIPS
process support framework is based [8, 9]. The framework
can be used to create a specific environment by plugging
specific highly integrated tools (used in individual process
steps) into the framework.

2.1. Process structure

The working hypothesis for the process model is that
all data (contract, specification, implementation, code,
test case, manual, etc) produced during development and
maintenance of a software product can be represented as
a partially ordered set of objects (documents), created by
different tools. Every object carries the information of part
of the software product and typically depends on other
objects. These dependencies define the ordering of the
set. The definition of the process structure is then derived
from the product structure, leading to a two-dimensional
directed acyclic graph (DAG) whose edges represent the
dependencies (figure 1). The nodes in the DAG consist
of atomic processes representing individual objects, and of
compound processes which contain other processes (atomic
or compound). This defines a hierarchy of processes (sub-
and superprocesses), with a compound process at the top,
representing a software product’s process.

Software Product Structure Software Process Structure

induces
specification

test case

test result

source

code

product idea

Figure 1. Product structure induces process structure.

Every atomic process carries one content attribute
which represents its sole object under development. Objects
are created and edited using highly integrated tools, and
are not only simple documents but are entities in the
object-oriented sense, i.e. consist both of data and of
metadata, i.e. conceptually include the data’s code (tool).
Objects are therefore very heterogeneous. High-level
semantic integration of tools is achieved by using extensible
tool components created by using the tool generator of
the associated CHIPS (Components for Highly Integrated
Process Support) project. Every process has multiple
structural attributes used to store dependencies and (for
atomic processes) all information about the represented
object except its content (completion state, type, access
privileges, etc); structural attributes may be compared to
directory information of a filing system.

During process enactment, the resulting parts of the
emerging software product are stored in the (content

attributes of the) atomic processes, and dependencies
to neighbouring processes are validated. Processes can
assume different states, represented by colours in the DAG.
A process can attain at most four different states from
creation until it reaches a non-modifiable state: planned,
in work, confirmed and history (detailed below). The
completion of a process requires a well-defined formal
condition associated with the process to be fulfilled
(confirmed); a dependent process can only be completed
after the previous ones have been done; the colouring
of the DAG thus illustrates the workflow. Checking
these formal conditions may require the execution of
evaluation procedures involving multiple processes and is
only possible due to high-level semantic tool integration
which prevents misinterpretation of data.

2.2. Process evolution

The process structure may change either when it is edited,
i.e. when new processes and dependencies are added or
existing ones are deleted, or when a rollback operation
is performed to allow previously done process steps to
be redone. In order to record the previous results, the
process model provides a third dimension, the history
dimension (figure 2). The process to be revised and all
its dependants move down the history dimension, now
creating a history layer (not modifiable any more), and
a new part of the top (current) process layer is created.
Different versions of a process may thus be found by
navigating along the history dimension of a process. Since
full versioning and dependency information is contained
in the process structure, this enables straightforward
integration of configuration management in an architecture
that implements the process model.

Process Dependencies
Concurrent Workflow

Process History
Process Versions

Figure 2. Process dimensions.

2.3. Process linking

A software product’s development process often requires
information about existing products. This fact may
be reflected by installing links to other processes
containing completed products, so that they are referenced.
This powerful feature extends the scope of a process
while ensuring that processes remain independent during
definition and enactment. Likewise, the tools used to carry

161

D Scherer et al

out individual steps within a process may also be linked
to their respective development processes. As a vision,
the processes of many individual developers (enterprises)
together may be regarded as one large global development
process consisting of many linked processes.

3. Derived requirements

In order to implement a software engineering framework
for processes defined by the DIPS process model, an
architecture for such a framework must be defined. Features
and requirements for the architecture as well as expected
usage patterns may be derived from the process model.
These may then be used to design an optimal architecture.

3.1. General features and requirements

An architecture for a software engineering framework based
on the DIPS process model must provide support for
distributed cooperative operation on multiple processes,
allow process definition and subsequent editing, process
enactment (execution, control, tracing), and process
navigation and queries. It must provide storage and
management of all process data (structure and content)
with version and configuration management for objects and
adequate levels of security, and it should be implemented
in a modular and extensible way and be scalable to support
widely distributed processes.

It needs to support heterogeneous objects and tools
on heterogeneous platforms, and integration services for
high-level semantic integration of CHIPS-generated tools,
together with messaging among objects. Messaging allows
for independence of objects from platforms, thus enabling
heterogeneous objects; it allows for independence of objects
and tools from the process framework; and it allows
for independence of individual objects from each other.
It requires a basic set of DIPS messages to be defined
and adherence by the objects, tools and process support
framework to the defined message protocols.

These qualitative features must be met by any design
for an architecture. They are mandatory and serve to
determine which architectures may be considered at all,
but they do not provide any further distinction among the
possible architectures; therefore, they are not discussed in
greater detail here.

3.2. Specific requirements

There are a number of requirements that need to be
met only to a reasonable degree, and the design of an
optimal architecture should attempt to meet them as well as
possible. These requirements include simplicity, reliability,
availability, and, of greatest interest when comparing
designs, appropriate efficiency.

Efficiency should minimize resource usage (memory,
disk space, network bandwidth, time, etc), whereby time
is the most important factor: while no absolute real-time
limits need to be considered, the average time for an
automatic operation to complete should be kept as low
as possible; in particular, the more frequent an operation,

the smaller the response time should be. An optimal
architecture would be designed in such a way that most
operations involve only the host where the operation
originated or its local area network (whose delay is already
noticeable under typical network bandwidth assumptions),
and few involve communication over a wide area network
(whose delay is tolerable for infrequent operations).

3.3. User operation types

In order to provide for an efficient design which should
minimize the usage of resources, the operations to be
performed when using a DIPS-based environment need to
be analysed. This requires a definition of basic operation
types, after which usage patterns may be established that
characterize the number of such basic operations effected
on specific data during a given time interval.

Performing distributed cooperative software engineer-
ing, multiple participants (users) work on different parts
(subprocesses) of the process concurrently, but two cannot
work on the same part at the same time. The envisaged pro-
cess support framework provides graphical representations
of the process structure to give an overview of structure and
state of the process, and to facilitate process navigation and
browsing (which are expected to be frequent operations).
An operation executed by a participant originates on his
part of the process, called ‘source’ with respect to that op-
eration, and may involve other parts of the process, in the
same compound process as the source (called ‘near’ logical
distance) and/or any other parts of the process (called ‘far’
logical distance). All accesses to the content attribute of an
atomic process are handled by the atomic process, involv-
ing some structural attributes too. Therefore, no operation
can involve only content attributes. A message from a rep-
resented object in a content attribute to another such object
is routed via their respective atomic processes.

User operations performed during development of a
software product in a DIPS-based environment include
process definition and enactment, editing and confirmation
of individual objects, and navigation and browsing of
processes and individual objects. From these, five types
of basic user operations may be identified (which will be
abbreviated), as follows:

(i) Struc: editing of structural attributes through
process definition and enactment (including rollbacks).
Operations which modify dependencies, states and
other structural attributes of processes (except for
operations of the next two types), which may involve
multiple processes at once.

(ii) Cont: editing of content attributes of atomic
processes. Operations which modify content attributes
(representing objects) of atomic processes; these
operations only involve one represented object at a time
but may effect multiple read accesses to the content, and
some also modify structural attributes such as states.

(iii) Eval: execution of evaluation procedures on content
attributes. Operations which evaluate formal conditions
associated with atomic processes (concerning the
objects in the content attributes under development,
which may effect read accesses to other such objects).

162

Designing the distributed architecture DIPS

These may create new content information of atomic
processes, and may thereby also modify structural
attributes such as states.

(iv) Nav: navigation on process structure. Operations
which only perform read accesses and only on structural
process attributes, and may involve multiple processes
at once.

(v) Qry : queries and browsing on process structure
and content. Operations which only perform read
accesses and which may involve accesses to any process
attributes (structural and content) and to multiple
processes.

Further operations may be envisaged which may
be regarded as combinations of the basic operation
types, e.g. the definition of a configuration may involve
both navigation through processes and storage of the
configuration in the process (process editing).

Since some operations involve only the structural
process attributes and others involve both structural and
content attributes, this suggests that an analysis of
operations should distinguish between accesses to structural
and to content attributes. Whether or not the distinction
then is reflected in the architecture is an issue to be
discussed in the architectural design.

3.4. Usage patterns

After defining basic operation types, usage patterns may
be estimated by assuming a process of a specific size
and quantitatively analysing a specific assumed load of
operations performed by users on that process. The
usage patterns are then established by careful estimation.
Obviously, measurements could not have been performed
before the prototype was built, so estimates were used as a
basis for the usage patterns needed to design the architecture
of the prototype, but thereafter the estimates may be
tuned by performing measurements in order to improve the
architecture in a bootstrapping procedure. The orders of
magnitude of the usage patterns have been confirmed by
preliminary measurements performed on small processes
using a prototype environment under construction, and
more thorough measurements are envisaged for the future.

3.4.1. Process size assumptionsAs a basis for a
quantitative analysis, a large nearly-completed process
containing a hierarchy of approximately 500 subprocesses
is assumed, as follows:

• on average four history layers per process (the total
number of history layers in the whole process hierarchy
will be much larger than four, but not every process has
an older version in every history layer);

• on average four subprocesses (atomic or compound) per
compound process;

• 20 compound processes in the original process
definition (i.e. original hierarchy without history).

Resulting process size:

20× (1 compound+ 4 subprocesses)× (1 current+ 4 his-
tory) layers= 500 processes.

Further size measures:

• average size of one process (all structural attributes of
an atomic or compound process, not counting content
attributes or subprocesses): 1 kB;

• average size of one content attribute (representing one
object): 50 kB;

• average number of participants working on a process,
respectively workstations involved (one process hierar-
chy representing a software product): 10.

While larger processes are conceivable, it is more likely
that such processes will be defined in individual parts,
enacted independently and connected using the feature of
process linking. It is, however, possible that multiple
independent processes run simultaneously in one process
support environment, but since primarily the relative
numbers of operations within one process are of importance
to the design, multiple processes are not considered further
here.

3.4.2. Analysis For a quantitative analysis, an estimated
maximum load of user operations performed during one
day on one process of the size described above is assumed.
While the chosen time unit of one day should allow for
a reasonably large number of operations, the time unit
is of little relevance insofar as the focus of this analysis
is on a relative comparison of the number of reads and
writes effected by user operations, and less on absolute
numbers. The consideration of relative numbers allows for
architectures to be compared and an optimal one to be found
with respect to requirements such as efficiency.

In table 1, the estimated effects of the above-mentioned
load of user operations on the numbers of reads and
writes are presented, distinguished by structural and content
attributes of processes, and by the logical distance of the
processes involved. The numbers represent the product
of the number of operations times either the number of
processes with involved structural attributes or the number
of content attributes concerned by an individual operation.

3.4.3. Results Since the numbers only represent
estimates, they should only be used to draw qualitative
conclusions. The following five results may be gained by
studying the table, and these should be considered in the
design of an architecture (whereby the second and third
results have been derived together with the first one).

(i) Read accesses to structural attributes are much more
frequent than any other read or write accesses.

(ii) Read accesses to structural attributes are much more
frequent than to content attributes.

(iii) For structural and content attributes, reads are much
more frequent than writes.

(iv) Write accesses to content attributes only occur where
the effecting operation originates.

(v) For structural and content attributes, for reads and
writes, access frequencies to structural or content
attributes are greater for ‘near’ logical distance than
for ‘far’ logical distance.

163

D Scherer et al

Table 1. Reads and writes effected by user operations. Key: • Struc, Cont, Eval, Nav, Qry: five basic types of user
operations as detailed above; • Reads: number of effected individual read operations; • Writes: number of effected individual
write operations; • Struc Reads/Writes: involving one process’ structural attributes; • Cont Reads/Writes: involving one
content attribute; • Src: source process where operation originated; • Near: process in same compound process where
operation originated; • Far: any other process in the process hierarchy.

User operations
Total

Reads and writes Struc Cont Eval Nav Qry R & W

Src 50 100 50 500 100 800
Struc Near 100 50 5000 1000 6150

Far 20 10 2000 300 2330
Reads

Src 100 50 50 200
Cont Near 50 200 250

Far 10 50 60

Src 20 20 20 60
Struc Near 40 40

Far 10 10
Writes

Src 50 10 60
Cont Near 0

Far 0

4. Design of architecture

In order to perform cooperative software engineering in
an environment based on the DIPS process model, its
framework’s architecture needs to be a distributed one
which enables multiple participants to work concurrently
on individual workstations [3, 4, 7]. The architecture is
designed by considering the necessary requirements and
primarily by using the results gained from the analysis of
the estimated usage patterns to compare a representative
selection of potential architectures. After briefly discussing
different types of architectures in general, the focus is on
architectural variants distinguished by storage location of
data.

4.1. Architecture types

A distributed architecture may be either object-based or
not. A non-object-based solution such as a distributed filing
system signifying that code and data are stored separately
would not support integration of heterogeneous objects and
tools very well and is therefore not considered here. Object-
based solutions would provide for all process data (structure
and content) to be stored in the form of objects, which
is preferable considering the heterogeneous types of data
involved.

One object-based solution is an object database
(ODBMS) [2]. An ODBMS provides a high abstraction
level for objects, including access to objects through pro-
tected actions having ACID properties [1, 6]. However,
the protocols ensuring ACID properties demand consid-
erable resource usage (particularly communication band-
width) that prevent scalability of the architecture to world-
wide dimensions. Assuming an ODBMS client/server ar-
chitecture using a central storage server, access to objects
by clients typically involves (costly) transferral of the ob-
jects to the clients to execute them locally (which demands
a homogeneous environment). Support for heterogeneous
platforms, tools and objects is generally difficult to achieve.

An ODBMS is more suitable for millions of fine-grained
(primarily homogeneous) objects than for smaller numbers
of larger heterogeneous objects as they are typically re-
quired in a process support environment.

Another object-based solution is an object bus (object
request broker, ORB) architecture. This is the more
universal and flexible approach; it still allows access to
databases by means of object adapters where necessary
[10]. All objects are accessed via messages on the
machine where they reside, i.e. they remain on the host
where they are able to live. This enables integration of
heterogeneous tools and objects used on heterogeneous
platforms by utilizing object request brokers and object
adapters that handle the desired protocols and messages.
Transferral of messages instead of whole objects requires
less communication bandwidth, thus providing a greater
possibility of scalability to large dimensions. While the
abstraction level of objects is lower than in ODBMSs and
access to objects through protected actions would have to
be provided by additional object services, this also provides
the opportunity to utilize leaner protocols, as full ACID
properties are generally not required in a process support
environment. An ORB architecture type is therefore chosen
for its framework.

4.2. Architecture variants

The most distinctive feature of a distributed architecture
represents the storage location of data, therefore this
represents the prime feature for distinguishing architecture
variants. In order to be able to perform meaningful
comparisons, three extreme architectures are chosen: a
client/server solution with one central server, a fully
distributed (non-replicated) architecture, and a fully
replicated architecture. Advantages and disadvantages are
qualitatively compared and subsequently summarized in a
table, and a hybrid architecture is derived from this which
attempts to combine properties of different variants in an
optimal manner.

164

Designing the distributed architecture DIPS

4.2.1. Client/server architecture The simplicity
requirement suggests that all process data should reside on
one central storage server, which also provides for excellent
data consistency at no extra cost. All (other) participants’
hosts permanently assume the role of client (in contrast
to general object bus architectures, where roles alternate).
All data are accessed on the single ORB server via
messages, which may require considerable communication
bandwidth (particularly for messages involving large
contents), providing low efficiency and possibly even
leading to congestion. Heterogeneous objects are unlikely
to be supported well since they all have to live on the
same (server) platform. Redundancy and availability can
be improved at a small cost since it is relatively easy
to perform periodic backups as only one data source is
involved, and a backup server could take over as a whole
whenever the central server is down.

4.2.2. Distributed architecture The realization that
every participant in a software development process works
on a different part of the process suggests that process
data should be distributed in such a way that every
participant’s part resides on his workstation (respectively
the nearest machine that always remains on-line, if personal
workstations are shut down while not in use). The process
data are distributed among all participating hosts without
replication. In this way, support for heterogeneous objects
is easily provided, and the design remains relatively simple.
However, redundancy and availability can only be provided
at a considerable cost, as a backup would need to be
performed at every host. Even though failure of a host
would only concern a small part of the process data, the
loss of some structural process information could result in
large parts of the process hierarchy becoming inaccessible.
(Imagine losing some directory information in a hierarchical
filing system!) Data consistency is easily achieved except
when data have to be moved due to a failure. In order to
assess read and write efficiency, a fair assumption (derived
from result (v)) is that most processes will be defined in
such a way that the logical distance (source/near/far) of
processes correlates with the geographical distance (of hosts
where processes are stored)—this leads to an increasing
access efficiency with decreasing logical distance (accesses
occur via messages forwarded by ORBs).

4.2.3. Replicated architecture Result (iii) stating that in
general reads are much more frequent than writes suggests
that all process data should be replicated on all hosts, so that
every host has a complete set of all process data, resulting
in excellent redundancy and availability, but high usage
of disk space. If every object is replicated on every host
and must be able to live there, heterogeneous objects and
platforms are virtually impossible. The ORBs will handle
all read access messages locally (very efficiently), but all
writes involve costly broadcasts of update messages to all
other hosts; these may include large content messages.
Write efficiency values here include the cost of keeping
replicated data consistent, and complicated protocols are
required to ensure a tolerable level of data consistency.

4.3. Deriving the optimal architecture

In order to be able to derive an optimal design by combining
the three extreme architectural variants, assessment criteria
must be defined, i.e. the relative importance of various
features and requirements needs to be specified. Hereby,
the list of general features needs to be met by any design,
which means in particular that support for heterogeneous
objects has a high priority. Of the general requirements,
efficiency is regarded as the most important one. The
results of the usage patterns should be considered in a
design in order to provide appropriate levels of efficiency.
Of lesser importance are simplicity of design, reliability and
availability, where reasonable levels should be achieved.
The requirement of reliability is met in part by providing
appropriate degrees of consistency and redundancy. Write
operations should ensure that consistency of replicated data
is provided at a minimal delay.

4.3.1. Hybrid architecture The hybrid design attempts
to combine the three extreme architectures in such a way
that the individual advantages outweigh the disadvantages,
i.e. by utilizing the best features of every design.
Realizing that structural information is read very frequently
(result (i)) and that this is supported optimally by the
replicated architecture, this is chosen for the structural data.
Obviously, then for the structural write efficiency values
those from the replicated architecture must also be applied,
even though here the distributed architecture seems more
favourable, but result (iii) stating that reads are much more
frequent than writes confirms the better choice. To store the
content information, the distributed architecture is preferred
over the replicated one, due to the essential support for
heterogeneous objects, the large size of content information
which would result in inefficient replicated writes, result
(iv) stating that content data are (logically) only written
locally, and result (ii) implying that even reads (let alone
writes) of content information are not so frequent that the
added overhead of replication is justified.

This leads to a design where the process structure is
replicated on all hosts, and the content data are distributed
on all hosts without replication, i.e. every host carries a part
of all content data. This involves separating storage of the
content and the structural attributes of an atomic process
(since the structural data are replicated and the much larger
content data are not)—therefore, the content attributes exist
as individual (heterogeneous) objects. Objects are accessed
via DIPS messages (forwarded by ORBs) on the host where
they are stored persistently and where they are able to live,
and they merely need to fulfil the DIPS message protocols
(to be defined) in order to be able to participate in processes.

The only two features where the client/server design
is optimal can only be partly considered in the hybrid
design (signified by lighter cell shading in the table of
figure 3), as the hybrid one represents a compromise of
the three extreme designs. Following the idea of central
control in the client/server design, the concept of amaster
host is incorporated in the hybrid design: all updates of
replicated data are coordinated by and broadcast from one
so-called master host, leading to simpler protocols to ensure

165

D Scherer et al

data consistency, although the optimal levels of the other
designs are not achieved. Furthermore, considering that the
total data size of the structural process information is much
smaller than the total content data size, simpler protocols
suffice for the replication of only the structural information
than for the fully replicated design.

The crucial and frequently accessed structure informa-
tion (see result (i)) is replicated on all hosts providing ex-
cellent read efficiency, availability and redundancy for this
data. This also allows another host to take over as master
relatively easily if the previous master fails. The less essen-
tial and much larger content data are not replicated, but fol-
lowing the idea of central data location in the client/server
design, the content data are backed up on the master host
in order to provide some redundancy in case of failures.

It is conceivable that in future further optimizations
are possible, for instance on the one hand it might be
beneficial to replicate some objects, particularly those
which have attained a non-modifiable state, on some

Figure 3. Distinctive features of architectures.

hosts, while on the other hand it might not be desirable
to replicate the complete process structure on all hosts
involved. Also, more flexible solutions are envisageable
where it would be possible to adapt the replication of
data dynamically at runtime in order to optimally support
changing requirements—this would, however, increase
complexity and require measurements to be performed
and acted upon continuously, and the evaluation principles
would be similar to the static case and are therefore not
investigated further here.

4.4. Summary of architectural discussion

The table given in figure 3 summarizes the features
distinguishing different architecture variants. Shaded cells
in the three extreme variants show what features have been
incorporated (to a certain degree, as a compromise) from
the respective variant in the resulting hybrid architecture.

4.4.1. Illustration Figure 4 illustrates the hybrid
architecture by a small example of two processes, each
consisting of one compound process in the current layer
only. Process A resides only on one host; process B (which
has one history layer) is replicated on two hosts, while the
individual distributed objects of its atomic subprocesses
each reside only on one host. (Backups of distributed
objects on a master host are not shown.) Processes A and
B are linked.

Process B

Process B

Process A

Computer 1

Computer 2
Computer 3

Figure 4. Hybrid architecture.

5. Implementation

5.1. Prototype

A prototype is under construction which implements the
hybrid architecture: the process structure is replicated and

166

Designing the distributed architecture DIPS

the content data are stored as non-replicated distributed
objects. It is based on Oberon System 3 [5] (and
uses the Oberon programming language), which provides
advantages for rapid construction of a prototype system
(type-safe language, dynamic linking and loading, simple
but powerful system, Gadgets user interface, persistent
objects, portability,. . .).

A simple home-made object request broker (ORB)
architecture for distributed objects has been implemented,
using TCP/IP for communication. As all messages
among objects are routed via the process structure, the
full complexity of a CORBA-compliant general-purpose
ORB is not required. Heterogeneous objects will use
object adapters that understand a basic set of DIPS
messages (to be defined); general interoperability with
IDL-specified objects is not planned for the prototype.
A distributed process engine is available which is based
on the hybrid ORB architecture, and which provides
process navigation/browsing, definition and enactment, and
simple version and configuration management, although
not all operations are supported as distributed operations
yet. Accesses to processes and objects are planned to
be protected by simplified transactions (including long-
duration ones) having ACID-like properties, although not
to the full extent—e.g. no logging is planned to support
durability; these parts are in design or under construction;
services similar to but simpler than CORBA services are
envisaged (persistence, concurrency control, transaction,
etc).

The prototype has already been applied successfully to
support small processes at exercises of lectures at ETH,
and it also supports planning and progress of student
projects. As further parts become operational, it is
intended to be used to support larger processes including
its own development process, and more measurements of
usage patterns are to be conducted in order to further the
improvement of prototype versions in a bootstrapping way.

5.2. Evolution to a CORBA-based architecture

In order to be able to provide more of the features which are
required for large-scale or commercial operation, but which
are not well supported by the prototype (security, reliability,
etc), the transition to a CORBA-based architecture seems an
attractive option in the longer run [10]. This would enable
existing services to be utilized (persistence, concurrency
control, transaction, query, security, etc), it would facilitate
interoperability with existing IDL-specified components,
and allow the implementation efforts to concentrate on the
actual process engine. A replication service for CORBA is
however not yet available.

The currently used ORB already features execution
semantics for ORB operations inspired by those provided
by CORBA, which should facilitate the transition. The
transition would imply exchanging the underlying ORB and
services with CORBA-compliant ones, and possibly porting
the DIPS process framework to a programming language
and system where CORBA is available. Note that it is not
currently possibly to directly provide a CORBA-compliant
ORB for Oberon-implemented objects, as OMG’s CORBA

specification does not yet provide an Oberon language
mapping.

5.3. Outlook: integration in the WWW

A further possibility would be the integration of the
DIPS process framework in the WWW, in order
to facilitate widely distributed cooperative software
engineering by providing an attractive homogeneous
perception of heterogeneous process data while requiring
little administration effort for participants on heterogeneous
platforms. This could be achieved by making use of
Sun’s Java language and toolkit (supported by various
WWW browsers), in particular by using a Java-based
CORBA-compliant ORB such as Sun’s Joe, and by
porting the DIPS process framework to Java. A DIPS-
based environment could thus be downloaded automatically
from the WWW by clients in a bootstrapping manner
requiring little administration effort. A first step towards
WWW integration has already been investigated [11]
by presenting processes on the WWW, i.e. process
information can already be transferred to the WWW
automatically, but participation is not yet possible via the
WWW. The WWW could facilitate access to information
about software components required for a successful
electronic marketing of components, such as component
interoperability information extracted from processes.

6. Summary and conclusions

The DIPS project focuses on distributed cooperative
software engineering by providing distributed process
definition, enactment and tracing, and it supports high-
level tool integration. A simple three-dimensional model
to express structure (two dimensions) and evolution (third
dimension) of software processes has been introduced,
and the model has been used as the underlying concept
of the DIPS framework prototype. Implementation and
employment of a prototype will allow the DIPS process
model to be validated. The evaluation process for
the optimal system architecture for the specific process
model has been explained. An object request broker
architecture for distributed objects provides the appropriate
technology for widely distributed cooperative software
engineering. Its support for heterogeneous objects,
scalability, and modularity (components and services) is
an essential feature required by a highly integrated process
support environment, in particular heterogeneous objects
are necessary for the integration of heterogeneous tools.

Typical expected usage patterns have initially been
derived from the process model by estimation, and
the architecture is designed by considering the process
model, the analysis of the usage patterns, a representative
selection of potential architecture paradigms, and specified
requirements. The chosen hybrid approach combines the
advantages of the different architecture paradigms with
respect to the specific requirements, and it is believed that
the optimal architectural choice is achieved in this way.
It is based on distributed objects and features replication
of the frequently read process structure and distribution of

167

D Scherer et al

the heterogeneous tool-dependent objects that make up the
software product being developed in the process.

A prototype is being implemented based on a home-
made object request broker architecture and has been
applied successfully to support small processes, and the
chosen design has also been validated by performing
preliminary measurements on usage patterns which have
confirmed the estimates’ orders of magnitude. Larger
more applicative process examples may be studied upon
completion of the prototype in order to carry out more
detailed measurements and emphasize the benefits of the
proposed design. The prototype is to be applied in a
bootstrapping process to develop improved versions of
itself, and the results of the evaluation process may also
be applied to create more flexible designs for dynamic
replication of data.

Acknowledgments

The GIPSY project (which includes the projects CHIPS
and DIPS) has been funded in part by the Swiss Priority
Programme (SPP) Informatics Research of the Swiss
National Science Foundation.

References

[1] Bernstein P A, Hadzilacos V and Goodman N 1987
Concurrency Control and Recovery in Database Systems
(Reading, MA: Addison-Wesley)

[2] Cattell R G G 1994Object Data Management(Reading,

MA: Addison-Wesley)
[3] Finkelstein A, Kramer J and Nuseibeh B (ed) 1994

Software Process Modelling and Technology(New York:
Wiley, Research Studies Press)

[4] Garg P and Jazayeri M 1995Process-Centered Software
Engineering Environments(Los Alamitos, CA: IEEE
Computer Society Press)

[5] Gutknecht J 1994 Oberon System 3: vision of a future
software technologySoftware Concepts Tools15 45–54;
see alsoOberon System 3 home page
http://www-cs.inf.ethz.ch/Oberon/System3.html

[6] Gray J and Reuter A 1993Transaction Processing:
Concepts and Techniques(San Mateo, CA: Morgan
Kaufmann)

[7] Mullender S 1993Distributed Systems(New York: ACM
Press)

[8] Murer T, Würtz A and Scherer D 1996 A 3D model for a
common understanding of the software processProc.
Asia–Pacific Conf. on Computer Human Interaction
(Singapore, 1996)pp 318–23

[9] Murer T, Würtz A, Scherer D and Schweizer D 1996
GIPSY: Generating Integrated Process support SYstems
TIK-Report no 22TIK Laboratory, ETH Zurich; see also
Project GIPSY home page (with subprojects CHIPS and
DIPS) http://www.tik.ee.ethz.ch/˜gipsy/

[10] Orfali R, Harkey D and Edwards J 1996The Essential
Distributed Objects Survival Guide(New York: Wiley)

[11] Scherer D, Murer T and Ẅurtz A 1996 Towards providing
software component interoperability information on the
WWW Proc. 2nd Australian World Wide Web Conf.
(Gold Coast, 1996)pp 109–16; also at
http://www.scu.edu.au/ausweb96/tech/scherer/

[12] Sharon D and Bell R 1995 Tools that bind: creating
integrated environmentsIEEE Software12 (2) 76–85

168

