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Designing thermal radiation metamaterials is challenging especially for problems with high degrees
of freedom and complex objective. In this letter, we have developed a hybrid materials informatics
approach which combines the adversarial autoencoder and Bayesian optimization to design nar-
rowband thermal emitters at different target wavelengths. With only several hundreds of training
data sets, new structures with optimal properties can be quickly figured out in a compressed 2-
dimensional latent space. This enables the optimal design by calculating far less than 0.001% of the
total candidate structures, which greatly decreases the design period and cost. The proposed de-
sign framework can be easily extended to other thermal radiation metamaterials design with higher
dimensional features.

Thermal radiation metamaterials with excellent wave-
length selective spectrum can be realized via reasonable
design and have attracted considerable interests in ap-
plications of thermophotovoltaics [1], incandescent light
sources [2] and biosensing [3]. With the advances in nano-
fabrication technology, metamaterials such as 1D thin
film layers [4], 2D-grating [5], and 3D photonic crystals
[6] have been proposed to implement wavelength selective
spectrum. However, with the increased degrees of free-
dom for metamaterial design, the total number of candi-
date structures will grow exponentially to an enormous
space. The intuition-based or trial-and-error methods are
undesirable for optimization with high-dimensional and
complex objectives.

To overcome the above bottle-neck problem, materi-
als informatics (MI) [7–9], which combines data-oriented
algorithms and material property characterization either
by simulation or experiment, has been proposed to ac-
celerate the material design process. During the past
few years, various gradient or meta-heuristic based algo-
rithms have been proposed for non-intuitive metamate-
rials design, including topology optimization [10], adap-
tive genetic algorithm [11] and lazy ants [12]. When the
design degrees of freedom increase to high-dimensional
space, these optimization algorithms will suffer from the
falling into local optima and depending on large number
of iterative computations or experiments. The Bayesian
optimization (BO) has been proposed to improve the op-
timization efficiency and has been successfully applied
to the design of narrowband emitter [13] and radiation
cooling materials [14]. However, for the cases with large
candidate space, it is necessary to divide into subgroups
to overcome the BO’s shortage of requiring huge com-
putational memory. Compared to BO, quantum anneal-
ing (QA) can overcome computational barrier and has
been used in the design of radiative cooling metama-
terials [15]. Nevertheless, only structures that can be
encoded as binary variables are available for optimiza-

tion, and the maximum design degrees of freedom are
dependent on the quantum annealer. Multi-layer percep-
tron (MLP), as a common deep neural network (DNN),
can also achieve optimal design of continuous variables
by learning the relationship between inputs and outputs
[16]. However, when it is applied to the high-degree free-
dom design problem, there will be challenges of huge re-
quired raining data set, underfitting due to many-to-one
problems [17], and local optimal solution. Recently, the
adversarial autoencoder (AAE) network has been cou-
pled with adjoint topology optimization (TO) technique
for optimizing thermal emitters [18] by introducing the
compact design space representations, which further im-
proves the efficiency of DNN for optimization problems.
To better perform the multi-parametric global optimiza-
tion (GO), the conditional adversarial autoencoder (c-
AAE) network coupled with differential evolution (DE)
optimizer [19] was proposed to optimize the surface topol-
ogy. However, there is still no efficient design method for
multilayer structures with high degrees of freedom, and
the search efficiency in the compact design space obtained
from trained AAE models can be further improved.

In this letter, we combined the AAE network with BO
to design narrowband thermal radiation metamaterials,
which balances the exploration and exploitation for fast
global search in the compressed latent space with normal
distribution. To showcase the performance of the pro-
posed AAE-assisted BO model, we optimized the mate-
rial selection in multilayer structure that can be repre-
sented by binary pink and white pictures for narrowband
emission at three different wavelengths. The optimiza-
tion framework ensures almost ideal thermal emission
through calculating the figure of merit (FOM) of each
recommended structure, but only far less than 0.001%
of the total number of candidate structures need to be
calculated. Design problems with higher degrees of free-
dom in optics, thermal conductance and thermoelectric
are the potential applications of this study.
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The schematic of the hybrid optimization framework is
shown in Fig. 1, which combines AAE-assisted BO with
the electromagnetic solver rigorous coupled wave analy-
sis (RCWA) [20]. The narrowband thermal emitters are
composed of 36 cell layers of Ge and SiO2 materials. The
materials are chosen from commonly used semiconduc-
tors with high refractive index and dielectric materials
with low refractive index, while the substrate material
uses tungsten that can be considered opaque. To make
the input of the AAE model intuitive and generic, binary
values are used to indicate the material selected for each
layer, with “0” and “1” representing the Ge and SiO2

layers, respectively. Each unit layer of the multilayer
structure with a thickness of 0.11 µm. Following this way,
36-dimensional vectors represent different possible multi-
layer structures. According to the combinatorial theory,
the total number of candidate structures is 236, which
composes a huge candidate structure space. The goal of
the optimization is to determine the selection of the ma-
terial sequence that enables the target thermal emission
properties with a working band ranging from 4 to 7 µm.
The AAE generative network consists of an autoencoder
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FIG. 1. Schematics of the hybrid framework for thermal ra-
diation metamaterials design. (a) Schematic of training the
AAE model. (b) Schematic of the decoder combining electro-
magnetic solvers RCWA and BO for global optimization.

and a discriminator, as shown in Fig. 1(a), and its ability
of dimensionality reduction and data interpretation [21]
allows a much broader variety of structure designs. The
encoder (E) first compresses the input 36-dimensional
vector parameter (x) into low-dimensional latent space.
The decoder (G) reconstructs the real design parameters
(x̃) based on the coordinates in the latent space z̃ = E(x).
The encoder network in output layer has fewer nodes

than in the input layer, so a compressed representation
of input structural parameters can be learned. The au-
toencoder learning process uses binary cross entropy as a
loss function. In addition, the discriminator (D) assures
the latent space distributions q(z̃) to approach a prede-
fined Gaussian distribution p(z). Finally, the output of
the encoder obtains a continuous space represented by
compressed features. The loss functions to be minimized
during the training of discriminator Ldis (based on the
min max game between E and D networks) and autoen-
coder Laut are calculated by (see Supplement 1 for details
on the implementation of the AAE network),

Ldis =min
E

max
D

[log(D(E(x))) + log(1 −D(z̃))] (1)

Laut = −min
E,G

[log p(x ∣ G(E(x)))]. (2)

After obtaining the compressed continuous and compact
latent space, the brute-force approach and traditional op-
timization algorithms are still inefficient to search the op-
timal solution since it is a non-convex optimization prob-
lem. To realize high efficient global search and obtain
maximum FOM, the AAE approach was further com-
bined with BO. The BO is a statistical and probability-
based algorithm to find the global optimal of black-box
objective function which is expensive to evaluate. Dur-
ing the optimization process, BO uses the Gaussian pro-
cess to construct the posterior distribution as a surro-
gate model to describe the objective function. The po-
tential optimal solution is then suggested according to
the acquisition function, and the decoder takes the ini-
tial randomly selected or BO recommended latent vec-
tors as inputs and generates new multilayer structures
with potential higher FOM, as shown in Fig. 1(b). The
dielectric functions of Ge, SiO2 and W were obtained
from Palik [22]. The incident electric field are under
p-polarized waves, and continuous boundary conditions
were imposed to obtain the thermal emission spectra. To
guarantee the target narrowband thermal radiation prop-
erty, the thermal emission of the emitter should have a
sharp emissivity at the target wavelength and zero emis-
sivity elsewhere, here we define the FOM for each can-
didate structure to compare the differences between the
calculated spectrums and the ideal emitter spectrums,

FOM = ∫
λ2

λ1
εEbdλ

∫
λ2

λ1
Ebdλ

− ∫
λmin

λ1
εEbdλ

∫
λmin

λ1
Ebdλ

− ∫
λmax

λ2
εEbdλ

∫
λmax

λ2
Ebdλ

− P

(3)
where ε denotes the spectral emissivity of each structure,
which is the absorption α in the thermal equilibrium state
according to Kirchhoff’s law. Eb is the spectral radi-
ance density at a given wavelength λ and temperature
T . λ1 and λ2 are the minimum and maximum target
wavelength, and (λ1 − λ2)/2 was set to 4 nm. λmin and
λmax are 4 and 7 µm, representing the lower and up-
per boundaries of the working band, respectively. The
penalty term, P = 0.1× the number of peaks, is added
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to make the emission spectrum smooth. The multilayer
structure design problem finally becomes to minimize the
difference between the designed emissivity spectrum and
the target emitter property.

For narrowband thermal emitters with target wave-
length at 4.5, 5.5, and 6.5 µm, 118, 157, and 136 pairs
of multilayer structures and their corresponding emission
spectra are prepared as initial training set for AAE net-
work. The FOM distribution of the training set ranges
from 0.28 to 0.81. To save time in preparing the train-
ing set, the jitter and scaling data augmentation method
[23] is adopted to increase the training set to more than
20000 pairs (see Supplement 1 for data augmentation de-
tails). Once the AAE network is trained, it can gen-
erate numerous high quality designs within a few sec-
onds. By combining the decoder with the optimization
algorithm, a low-dimensional global optimization can be
quickly achieved instead of a high-dimensional optimiza-
tion. During the optimization, we randomly selected 300
initial candidate structures and calculated their emis-
sion spectrum by RCWA to evaluate each FOM. The
300 pairs of data were then used for the Bayesian pre-
diction model to learn the posterior distribution of the
black-box objective function. The Bayesian prediction
model will then recommend 2D latent vectors that are
more likely to achieve the target narrowband properties.
This is based on the acquisition function which was set
in the range of (-10, 10) to contain the majority of the
latent space with standard normal distribution. By feed-
ing the latent vector into the decoder of the trained au-
toencoder and combining it with the set threshold, a 36
dimensions binary matrix can be generated, which cor-
responds to the material selection order of the 36-layer
structure. After accurately calculating the FOM of sug-
gested structures by RCWA, the posterior distribution of
the objective function will be updated. The model will
then make the next round of recommendations based on
the new acquisition function. Finally, the global opti-
mal structural design can be quickly found by repeating
this process. To avoid being trapped in local optimum
during the search process, several random BO experi-
ments were carried out and each time the total number
of calculated structures was set as 2000. The Bayesian
optimization package developed by Nogueira et al. [24]
was used. Figure 2(a) shows the optimization history of
the maximum FOM with respect to the number of cal-
culated structures for thermal emitter with target wave-
length of 4.5 µm. To demonstrate the efficiency of AAE
assisted BO design framework, we also used BO with-
out the assistant of AAE network. 5 rounds stochas-
tic AAE+BO and 5 rounds stochastic BO with different
random seeds were conducted under the same parame-
ter settings for fair comparison. The result shows that
AAE+BO framework starts with a higher FOM, and all
rounds of optimizations eventually convergence to 0.87.
On the contrary, the pure BO starts with a lower FOM
and the maximum FOM obtained at the end of the opti-
mization is much smaller than the maximum FOM found
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FIG. 2. (a) Optimization history of AAE+BO (solid line)
and BO (dash dot line). Each line type contains 5 rounds
stochastic optimization. (b) Average maximum FOM history
of AAE+BO (solid line) and BO (dash dot line) for three tar-
get wavelengths. FOM distributions for 5 rounds of AAE+BO
(c) and BO (d).

by AAE+BO framework within 500 iterations. This
comparison shows that the efficiency of the hybrid op-
timization framework is significantly higher than using
pure BO. This solves one bottleneck problem of BO that
it can hardly deal with high dimensional optimization
problems due to the huge memory consumption. What’s
more, the total number of calculated candidate struc-
tures is significantly reduced to obtain the optimal re-
sult. To explore more about the optimization process,
the histogram of the explored FOM distribution for 5
rounds of AAE+BO within 2000 iterations is shown in
Fig. 2(c). Around half of the FOMs are higher than the
lowest FOM in the training data set, indicating again
that the AAE+BO approach prefers to find structures
with higher FOM during the optimization process. Fig.
2(d) depicts the statistics of the FOM obtained from the
5 rounds of pure BO. Almost all discovered FOMs during
the optimization process were below 0.2, illustrating the
low efficiency of direct searching by BO for high dimen-
sions problems. To exclude randomness, the convergence
of average maximum FOM versus the calculated number
of structures for cases with different target wavelengths
was shown in Fig. 2(b). It shows that the average maxi-
mum FOM designed by AAE+BO framework is at least
0.1 higher than that of the BO framework for the same
target optimization. Nevertheless, the final average max-
imum FOM below 0.6 for AAE+BO framework at the 6.5
µm case could be caused by the poor FOM distribution
in the training set, which means that the trained AAE
network has difficulty to learn the design principles for
higher FOM structures. Fig. 3(a) shows the emittance
of the best multilayer structures designed by AAE+BO
framework for three different target wavelengths, where
the dashed, dash dot and solid curves represent the op-
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FIG. 3. (a) Emittance of the best designs searched by
AAE+BO framework. The inset depicts the structure design
corresponding to each emissivity. (b) Violin plot of the opti-
mization process for the three target wavelengths. Light blue
and dark blue represent the BO and AAE+BO framework,
respectively.

timal designs with FOM of 0.87, 0.89 and 0.84, respec-
tively. The inset of Fig. 3(a) shows the corresponding
material selection sequence reshaped to 6 × 6 pixels. Ac-
cording to the optimization result, the high emission at
target wavelength and the rapid decay of emission at the
non-target wavelength are realized. Although there is
still room for further improving the emission spectra, the
structures found here already satisfy the design target
with less than 10,000 calculations, and the optimization
efficiency is considerable for a search problem with can-
didate space of 68.7 billion. In addition, less than 2000
iterations per round enables to prevent the exponential
increase of time for BO to store the computed structural
information. Fig. 3(b) shows the comparison of the FOM
kernel density estimation with two optimization frame-
works for different optimization cases. The thermal emit-
ter designed by the BO tend to search structures with
FOM less than 0. In contrast, the AAE+BO framework
enables the search of new structures with FOM concen-
trated within (0.2,0.9). This analysis shows that the
hybrid optimization framework can improve the search
efficiency for on-demand design with a huge candidate
space, and it is particularly important to train the AAE
network to learn the connection between thermal emitter
design and optical response. To understand the physical
mechanisms behind the designed optimal structures, we
further discuss the spectral-directional emission proper-
ties of the three optimal thermal emitters with different
target wavelengths. As shown in Fig. 4(a)-(f), the emis-
sion peak position is curved for large incident angles, es-
pecially in the case of p-polarized incident wave, which
is caused by the localized mode. To further illustrate
the mechanism of the enhanced emission at target wave-
length, the electric field distribution inside the structures
are shown in Fig. 4(g)-(i). The x-axis refers to the thick-
ness of multilayer structures, the y-axis to the electric
field intensity, and the optimal structure is excited by a
normally incident plane wave. Fig. 4(g) and (i) indi-
cates that the electric fields are strongly enhanced inside
the Ge layer. The last four layers of the 4.5 µm struc-
ture and the last two layers of the 6.5 µm structure can
be seen as cavities. Besides, both structures exhibit ex-
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FIG. 4. (a)-(c) and (d)-(f) Angle-dependence emission spectra
of optimal structures for s-polarized and p-polarized, respec-
tively. (g)-(i) The normalized electric field amplitudes excited
by a normally incident plane wave from air at the emission
peak wavelength of 4.5, 5.5 and 6.5 µm, respectively.

ponentially oscillating decay, which means the coupling
of Fabry-Perot resonance and Tamm mode, and struc-
tures will have a smaller line width. As for the target
wavelength of 5.5 µm shown in Fig. 4(h), the designed
aperiodic structure leads to an exponential decay, which
can be characterized as the Tamm mode serves to a sharp
peak emissivity.

In conclusion, we have developed a hybrid optimiza-
tion framework that combines the AAE network with
BO to design wavelength-selective narrowband thermal
emitters. With several hundreds of training data sets
that roughly satisfy the target properties, the hybrid
model enables the novel optimal structure design, which
greatly saves the global search cost. This benefit comes
from the difference of original high-dimensional degrees
of freedom and low-dimensional latent space. Compar-
ing the optimization by pure BO, it further demonstrates
the effectiveness, feasibility, and accuracy of the proposed
design framework, which greatly extends the application
of BO to high-dimensional design cases. The analysis of
the physical mechanisms make it possible to gain new
expert knowledge regarding the electrodynamics mode
components that lead to the optimal metamaterials. The
proposed hybrid optimization framework have potential
applications in thermal radiation and beyond.
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