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We introduce an approach to the design of three-dimensional transformation optical (TO) media based

on a generalized quasiconformal mapping approach. The generalized quasiconformal TO (QCTO)

approach enables the design of media that can, in principle, be broadband and low loss, while controlling

the propagation of waves with arbitrary angles of incidence and polarization. We illustrate the method in

the design of a three-dimensional carpet ground plane cloak and of a flattened Luneburg lens. Ray-trace

studies provide a confirmation of the performance of the QCTO media, while also revealing the limited

performance of index-only versions of these devices.
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Transformation optics (TO) is a unique tool for the

design of complex electromagnetic media [1]. TO makes

use of the form invariance of Maxwell’s equations to

mimic spatial transformations using distributions of inho-

mogeneous and anisotropic material constitutive parame-

ters. TO has inspired many exotic devices, one of the most

compelling of which being the electromagnetic ‘‘invisibil-

ity’’ cloak. However, the use of TO as a design methodol-

ogy typically comes at high cost; the media derived from

coordinate transformations generally involve spatial

gradients in all nine components of the permittivity and

permeability tensors. Though it is possible to find a basis

that diagonalizes these tensors, the diagonal basis will

generally be a function of position for all but the most

simplistic and symmetric designs. Moreover, the required

response is generally outside of the range of natural

materials.

Electromagnetic metamaterials (MMs) are used to ac-

cess the extreme material parameters required by TO me-

dia. MMs, for example, were used to demonstrate a

negative index of refraction [2,3] and electromagnetic

cloaking [4]. However, the performance of these initial

MM constructs was limited by a combination of narrow

bandwidth and relatively large absorption. The typical

limitation for MM designs has been the requirement of

constitutive parameters that have a large range of values for

both permittivity and permeability. The implementation of

artificial paramagnetism, in particular, requires resonant

inclusions that are inherently lossy and dispersive, leading

to absorption and reduced bandwidth. More recently, the

development of coordinate transformation methods in op-

tical design approaches has significantly advanced MM

complexity: independent magnetic and electric responses

are required in all directions for general TO designs, yet

most MM elements provide a controlled response in one or

two directions. Were one to attempt to control all of the

tensor elements of a MM simultaneously, multiple MM

elements would need to be either colocated or closely

positioned, introducing very complicated magnetoelectric

coupling difficult to control or even quantify using current

MM retrieval techniques [5].

Fortunately, the enormous degree of flexibility available

in coordinate transformations can alleviate many of the

complexities and limitations of TO media. For a given TO

device that performs some function, there is typically little

concern over the physical distribution of fields within the

device itself; rather, it is the distribution of fields external to

the TO medium that is of consequence. Therefore, the free-

dom exists to choose any of an infinite number of possible

coordinate transformations, subject to the boundary condi-

tions, to achieve the same functionality while simulta-

neously optimizing certain design criteria. In 2008, Li and

Pendry introduced the concept of the quasiconformal map

(QCM) to TO [6]. It may be shown that the QCMminimizes

anisotropy across a two-dimensional (2D) transformation.

Applying QCM optimization, Li and Pendry conjectured

that certain classes of TO media could be realized using

dielectric-only materials. The approach was applied to the

design of a medium that would mask a deformation intro-

duced into an otherwise flat, perfectly conducting (PEC)

plane. The QCM technique has subsequently been applied in

several experiments, and has also been used to demonstrate

that substantial improvements can be achieved in the rede-

sign of more conventional imaging devices [7].

While the advantages of dielectric-only QCM-derived

media are extremely important from an implementation

point of view, such media can only control waves prop-

agating in 2D. In this Letter we show that the QCM concept

can be readily generalized for the design of media that can

control wave propagation in three dimensions (3D); how-

ever, though greatly simplified, 3D QCM media are inher-

ently anisotropic, due to the requirement of magnetic

response in at least one direction. We illustrate the per-

formance of generalized 3D QCMmedia with ray traces of

a carpet cloak and of a flattened Luneburg lens, comparing

with 2D QCM media. The ray traces enable us to quantify
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the effectiveness of the methods using the standard metrics

of optical lens design. Finally, we introduce a method to

mitigate the effect of the approximations that are made

with QCM and QCM-like mappings.

Consider an arbitrary mapping in of the form xi
0

¼

xi
0
ðxiÞ. The unprimed coordinates represent the virtual

domain (subscript ‘‘v’’), and the primed coordinates rep-

resent the physical domain (subscript ‘‘p’’). The virtual

domain is the domain as perceived by electric and mag-

netic fields. For cloaks, this domain is typically vacuum.

The physical domain is the coordinate system that exists in

physical space. The TO-derived material tensors (��� ¼ ���)

for this transformation are

�i
0j0 ¼ Detð�Þ�1�i0

i �
j0

j �
ij (1)

where�i0

i ¼ @xi
0

=@xi is the Jacobian of the transformation.

Suppose that we wished to find a transformation that

required no magnetic coupling. Since �i
0j0 ¼ �i0j0 , the

magnetic response can only be eliminated by the identity

transformation. However, if a transformation could be

found such that �i
0j0 is orthogonal and �x ¼ �y ¼ 1, then

for waves polarized such that the electric field is con-

strained to lie in the ẑ direction, only �z is relevant and

the transformation could be realized with a dielectric-only

medium. A conformal transformation accomplishes ex-

actly this goal. However, a coordinate mapping between

a physical and a virtual domain can only be conformal

between two domains that share the same conformal mod-

ule, or M ¼ mv=mp ¼ 1. If M � 1, then the transforma-

tion is quasiconformal, and the in-plane tensor components

of the material parameters will no longer be equal.

Additionally, orthogonality is maintained at the boundary

of the mapping via Neumann (‘‘slipping’’) boundary con-

ditions (BCs). These BCs will generally introduce discon-

tinuities at the boundaries that manifest as refractive

aberrations and reflections.

It is important to note that QC mappings are two dimen-

sional (e.g., x and y) with the third dimension (z) invariant
under the transformation. Therefore, the QCTO prescrip-

tion is valid as long as the geometry is also invariant along

z. An example of a structure for which a QC transform

solution can be found is the carpet cloak, shown in Fig. 1(a).

For a wave polarized along the z direction and propagating

in the xy plane, a dielectric-only implementation can be

applied; however, the full TO solution requires a magnetic

response equal to the electric response in every direction.

Therefore, we require that�z ¼ �z for the full TOmedium.

The TO approach can be fruitfully applied to systems

such as waveguides [8] and transmission lines. However,

many systems of great interest are invariant azimuthally;

for such systems, it is then natural to seek an analog QCM

mapping in cylindrical coordinates. Assuming M � 1, we

calculate the QCM xpðxv; yvÞ and ypðxv; yvÞ, and then

make the substitutions xv;p ! �v;p and yv;p ! zv;p. We

then determine the material transformation in cylindrical

coordinates [1,9,10]. Figure 1(b) shows an example of such

an azimuthally invariant geometry and map. Remembering

that ��� ¼ ���, we obtain the following material parameters:

�� ¼ �=�; and �� � �z � � (2)

where � ¼ j�j�1 and � ¼ �v=�p. The factor � arises

from the fact that the differential volume element in cylin-

drical coordinates is a function of �. The transformed

material parameters must compensate for the dilation of

space between the virtual and physical coordinates; how-

ever, the transformed medium remains approximately uni-

axial. A further simplification can be made if we are mostly

interested in a structure that controls ray propagation in the

eikonal limit, where only the anisotropic refractive index is

of consequence [11]. In the eikonal limit, we can thus make

the substitutions

�0� ¼ �0z ¼ �2; �0� ¼ �;

�0
� ¼ �0

z ¼ 1; and �0
� ¼ �=�2

(3)

to achieve an equivalent medium. Since most magnetically

coupled MMs provide a magnetic response in only one

direction, the substitutions of (3) ease implementation by

requiring only one component of � to deviate from unity.

The eikonal approximation may or may not be appropriate

depending on the intended operation. Note that neither (2)

nor (3) are isotropic material specifications. Therefore, a

purely dielectric implementation of this mapping cannot

control waves with arbitrary incidence and polarization,

even in the eikonal limit.

We can understand the need for anisotropy by consider-

ing the local dispersion relation for the system, which for

our transformation is given by:

k2�=�
2 þ k2�=�þ k2z=�� 1 ¼ 0; (4)

where the wave number k has been normalized to the free-

space value k0. This form of the dispersion relation is

derivable directly from Maxwell’s equations in a homoge-

neous, index-matched (��� ¼ ���) medium with cylindrical

y

z
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φ

ρ
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FIG. 1 (color online). 3D carpet cloaks created using 2D

quasiconformal transformations. In (a) the mapping is performed

in x and y, and z is invariant. In (b), the mapping is performed in

� and z, while � is invariant.
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anisotropy. This dispersion relation can be achieved by an

isotropic dielectric � ¼ � only if k� ¼ 0. The cylindrical

symmetry of the system ensures that k� ¼ 0 along the ray’s

entire trajectory, and the ray would therefore be properly

transformed. This means that only rays in planes of constant

� are properly directed (meridional rays) for a dielectric-

onlymedium.We note that the dispersion relation is actually

fourth order in k, but we have suppressed a power of 2

because the two modes are degenerate for impedance-

matched media [12]. Our substitution in (3) is no longer

impedance matched, but it yields the same degenerate dis-

persion relation. Our prescription therefore remains singly

refracting.

We can demonstrate the limitations of dielectric-only

implementations, as well as the validity of 3D QCMmedia

via ray tracing [12]. We begin by studying the 3D carpet

cloak [6,13–19], designed to effectively flatten a perturba-

tion of the form z ¼ 0:1� cosð��Þ2 in the region � < 0:5.
Ray-tracing analyses of both the dielectric-only and aniso-

tropic implementations are shown in Fig. 2. A ray trace

from the uncloaked perturbation is shown for comparison.

In both cloaks, rays incident such that k� ¼ 0 are properly

reflected at the specular angle. However, when k� � 0 the

dielectric-only implementation does not properly redirect

the rays. Rather, the rays appear to be slightly focused

by the index distribution. Rays that do not lie on the

optical axis experience a gradient transverse to their

initial trajectories that gradually bends the rays around

the optical axis. Therefore, rays that were initially parallel

come to lie on intersecting trajectories after they exit the

device. Nevertheless, the index-only cloak clearly reduces

scattering away from the specular direction, possibly

masking the distortions caused by the cloak in an experi-

mental setting.

The anisotropic transformation described by (2) prop-

erly cloaks the bump. The reflected rays exit the cloak as if

they had reflected specularly from a flat ground plane. The

rays do refract slightly at the boundaries of the mapping

as the material parameters differ slightly from unity.

Refraction at the boundary is included in our ray-tracing

analysis, but its effect appears to be negligible.

The QCM technique holds great potential for its ability

to modify and improve conventional optical devices. The

Luneburg lens, for example, is a rotationally symmetric,

gradient-index medium that perfectly images two concen-

tric spherical surfaces on to one another [20]. If one of

these surfaces is taken to infinity, then parallel rays are

focused to the finite surface. The permittivity distribution

for the Luneburg is given by �l ¼ 2� ðr=aÞ2, where a is

the radius of the lens [20].

Despite its powerful imaging capabilities, the Luneburg

is seldom used since the spherical focal surface is incom-

patible with conventional planar detector arrays. It was

proposed that TO could be used to flatten the focal surface

and retain the same imaging performance [9]. The flattened

Luneburg was subsequently realized by using the QCM

method in 2D [7]. In the eikonal limit, a 3D version of the

lens is obtained by following the procedure above. The

nonunity parameters are given by:

�0� ¼ �0z ¼ �l�
2; �0� ¼ �l�; and �0

� ¼ �=�2 (5)

where it is understood that �l ¼ �lð�v; zvÞ. We consider a

flattened lens with a field of view (FOV) of 90�. Ray traces

of the QCM-transformed lens are shown on the left of

Fig. 3. Reduced material parameters for the QCM are

shown in the left and middle surface plots in Fig. 3. We

φ = 0

φ = 0

φ = 0

φ = 0

φ = 0

φ = 0

(A)

(B)

(C)

FIG. 2 (color online). Ray-tracing comparisons of (a) the bare

PEC scatterer, (b) the index-only and (c) the properly transformed

(anisotropic) carpet cloaks. The angle of incidence is 30�. The

plots on the left consist of incident rays in the plane containing the

optical axis. The plots on the right consist of rays off the optical

axis. The incident rays are blue and the reflected rays are red.

ρ

z

ε’φ ε’ρ,z µ’φ 4.0

0.1

FIG. 3 (color online). (Left) Ray traces of collimated rays

incident on a flattened Luneburg lens. The rays are red (medium

gray) outside of the mapped region and blue (dark gray) inside.

(Right) Material parameters for the 3D QCM flattened Luneburg

Lens. Only the tensor components that differ from unity are shown.
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also examined an index-only implementation by making

the assignment �� ! �.

Ray traces depicting the focal properties of both

lenses at off-normal incidence are shown in Fig. 4. The

index-only lens shows severe astigmatism [Fig. 4(a)],

whereas the properly transformed lenses retain their tight

foci [Figs. 4(b) and 4(c)]. Aberrations are clearly seen in

plots of the ray intercepts at the flattened focal plane (insets

to Fig. 4). For the index-only lens, meridional rays are

properly focused. However, rays parallel (but not on) the

plane containing the optical axis are oversteered such that

they cross the plane containing the optical axis before they

intersect the bottom of the lens.

Even though the anisotropic lens offers better perform-

ance than its index-only counterpart, there are still aberra-

tions present due to the uniaxial approximation in (3). This

effectively stretches the virtual domain in one direction

[18], such that the Luneburg lens is no longer spherical in

the virtual domain.

For a FOVof 180�, the QCM must be used for boundary

correspondence on three sides of the map. However, for a

restricted FOV (such as 90�), we have the freedom to

change the dimensions of the virtual domain so that

M ¼ 1 and the QCM reduces to the CM [8]. The material

parameters of the CM are nearly identical to those shown in

Fig. 3 by eye, but aberrations in 4(c) are visibly reduced.

The only remaining aberrations are caused by slight re-

fraction at the top boundary of the map. Since there is a

small gradient in the material parameters across the top

boundary, collimated rays are refracted at different angles

upon entering the transformed domain. Since these rays are

no longer parallel, they are focused to different points on

the focal plane. These aberrations are only reduced by

extending the boundaries of the map, thereby increasing

the size of the device. Changing the module also increases

the material discontinuities on the sides of the map. This

restricts the FOVof the lens.

We have shown that the QCM technique can be extended

to the design of rotationally-symmetric TO devices that can

be realized using simplified, uniaxial media. The Luneburg

mapping illustrates several important features that are

common to the 3D QCM solutions and could allow for

broadband operation. The dielectric response is mostly

positive and moderate everywhere, with �0�;z ranging

from 1 to 3.27 and �0� ranging from 0.22 to 3.35.

However, throughout most of the transformed region,

�0� > 1 and we expect that we can retain most of the

FOV of the lens while neglecting the portion with values

falling below the vacuum permittivity. Though magnetic

response is required, �0
� ranges from approximately 0.15

to one and can thus potentially be broadband. Broadband

diamagnetism has been previously suggested, with one

possible implementation consisting of stacked metal plates

oriented to provide a magnetic response in the azimuthal

direction [21]. The tremendous simplification in material

properties afforded by the 3D QCM approach increases the

viability of many potential TO devices.
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