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Recent epidemiological studies of injuries at ski resorts have found that snow park jumps pose
a significantly greater risk for certain classes of injury to resort patrons than other normal skiing
activities [1–4]. Today, most recreational jumps are built by skilled groomers without an engineering
design process, but the Snow Skiing Committee (F-27) of the American Society for Testing and
Materials is considering the inclusion of recreational jumps in their purview which may lead to a
greater role for engineering jump designs in the U.S. in the future. Similar efforts are underway in
Europe as well. The purpose of this work is to review the current state of the science of snow park
jumps, describe the jump design process, and outline the role that modelling will play in designing
tomorrow’s snow park jumps.

I. INTRODUCTION

The last two decades have witnessed a dramatic evolution in the skiing industry worldwide. The number of
participants on snowboards has increased and now approaches parity with skiers [5]. Based on data from the National
Sporting Goods Association, of 11.2 million snow-slope participants in 2008, 5.3M skied only, 4.7M snowboarded only,
and 1.2M did both. Because the snowboarding population is younger and demands more access to the acrobatic
aspects of sliding than previously, ski resorts instituted and continue to experiment with snow terrain parks which
include jumps and other airborne features. In parallel with, and probably largely due to, increases in flight maneuvers
and associated landings, a corresponding increase in the frequency and severity of head, neck and upper-extremity
injuries has been documented [2].

In a report widely publicized by the National Ski Areas Association (NSAA), Shealy, et al. noted that over a period
from 1990 to the present when overall snow terrain park use has risen, overall injury rates have actually fallen [6].
Yet, all studies that focus on actual terrain park injuries show that terrain parks do indeed present a special hazard
to riders. The Shealy finding is most likely due to improved ski equipment and an aging, and therefore more cautious,
demographic patron profile over the period covered in his study. Early research recognised that snowboard injury
patterns differed from those of skiers [7], and that snowboard injury rates could be as much as six times higher than
those of skiers [8]. The snowboard injury rate was discovered to have doubled between 1990 and 2000 from 3.37 to
6.97 per 1000 participant days [9]. In addition, jumping was found early to be the most important cause of injury [8].
An increased risk of head injury at terrain parks as compared to ski runs continued through the end of the last
decade [10]. A recent study of snowboard injury rates specifically in terrain parks found that the risk of injury on
jumps was highest of all terrain park features [3]. Another study comparing ski and snowboard injuries inside and
outside terrain parks found that the percentage of spine and head injuries inside the terrain park was double that
outside [4]. The principal hazards may be succinctly summarized as landing “hard” and/or landing upside down.

Many snow-related head, neck and back injuries are extremely serious. A succinct summary provided by Meyers [11]
states: “Spinal cord injuries (SCIs) are among the worst ski outcomes.” A broad review of SCI epidemiological trends
by Jackson et al. [12] found an increase in SCI caused by snow (as opposed to water) skiing, and that snow skiing
(presumably including snowboarding) had replaced football as the second leading cause of SCI in the U.S. Ackery, et
al. [13] published a review of 24 articles between 1990-2004 from 10 countries found evidence of an increasing incidence
of traumatic brain injury and spinal cord injury in alpine skiing and snowboarding worldwide and noted that this
increase coincided with “development and acceptance of acrobatic and high-speed activities on the mountain”.

By as early as the end of the 1990s, Tarazi, et al. had found that the incidence of SCI in snowboarders was four
times that in skiers and that jumping was the primary cause of injury (77% of snowboarder SCIs occurred from
jumping) [1]. In a review by Seino, et al. of six cases of traumatic paraplegia SCIs resulting from snowboard accidents
at a single institution over 3 years, researchers found that they occurred to young men between the ages of 23 and
25, and that the primary fracture mechanism was a backward fall from an intentional jump [14].
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Although the above published studies are compelling, today it is still difficult to get a precise snapshot of overall
terrain park injury statistics nation- or world-wide. In the U.S., although the NSAA collects skiing and snowboarding
injury data, these data are not made publicly available.

These most serious SCIs (resulting in paraplegia or quadriplegia) exact a very large cost on society. That they
happen uniformly to young people and are permanently debilitating means that there is an enormous economic and
social cost (see Devivo, et al. [15] and Dijkers, et al. [16]). One would hope that these large costs would lead to a
more careful and scientific approach to the design and fabrication of those terrain park features primarily involved,
but this has not been the case.

Although terrain parks have improved in many ways over the years, the quality of the end product varies widely
from resort to resort . There do exist creditable training programs, such as “Cutter’s Camp” [17], that are intended
to increase the knowledge and skill level of the groomers. These have helped considerably, but space in these courses
is limited so such training is by no means universal. In addition, rider education efforts such as Burton’s “Smart
Style” have also been beneficial. Yet adoption of quantifiable engineering design of terrain parks has been resisted.
At present, in the U.S. at least, terrain park jumps are typically fabricated at the individual resorts using little or no
quantitative analysis or engineering design by staff with no formal training in engineering analysis of the designs.

The reluctance of ski resorts to adopt an engineering design approach may be traced to their risk management
strategy. As gleaned from the waiver forms attached to lift pass agreements and recent presentations by ski industry
defense lawyers, one apparent component of the legal strategy in the U.S. is to assert that the responsibility for safety
resides with the patrons. Aside from minimum diligence related to roping, signage, lifts, rental shop operations, and
marking man-made obstacles, ski resorts are reluctant to acknowledge additional responsibility for the safety of their
patrons. This is not to say resorts are not concerned about safety; they are very much so, but the point is that as part
of their risk management legal strategy, resorts are reluctant to explicitly acknowledge additional responsibilities. This
strategy extends to terrain park jump designs. Specifically, the NSAA asserts that, due to rider and snow variability,
terrain park jump “standards are impossible” [18]. Thus, by this reasoning, engineering design of winter terrain park
jumps is likewise impossible, which enables resorts to argue that they are not liable should anything go wrong. In
essence, the apparent legal position of the industry is one whereby the resorts provide (possibly unsafe) terrain park
jumps for their patrons who, in deciding to use them or not, bear the full responsibility for the consequences.

While the participants must bear primary responsibility for and control over their safety while using terrain park
jumps, employing engineering design principles to improve the quality and safety of the jumps could prevent or
mitigate the potentially tragic consequences of poor patron decisions and otherwise minor accidents. Our central
premise is that, although there is significant variability due to snow conditions and rider decisions, these variations
are bounded in understandable ways that nevertheless allow engineering designs that accommodate the variability or
render it irrelevant. Indeed, based partly on this view, the Committee (F-27) on Snow Skiing of ASTM (previously the
American Society for Testing and Materials) is considering bringing recreational winter terrain park jumps within its
purview. It appears that engineering design approaches may soon be applied to winter terrain park jumps. Physical
modelling of riders using terrain park jumps will then become an important, if not essential, component of this
evolution.

Previous work on the modelling and simulation of snow park jumping include Bohm and Senner [19], Hubbard [20],
and McNeil and McNeil [21]. In this paper the earlier work is reviewed and expanded by treating the terrain park
jump as a design problem and explore the central role that modelling plays in the iterative design process. Several of
the most important concepts and design components from a jumper safety point of view are identified and suggestions
made that can improve safety and could be easily implemented.

The paper is organized around the iterative design process intended to address the principal hazards of impact and
inversion. Section II lays out the design problem of the terrain park jump system, identifies its components, and
their interaction, and examines the physical constraints and parameters involved. Section III addresses the specific
hazard associated with impact in landing, introduces the concept of the equivalent fall height (EFH) and uses it to
illustrate the potential impact hazards associated with design decisions. This is illustrated using the standard tabletop
design revealing fundamental safety issues with this nearly universal form. Section IV address the specific hazard of
inversion, identifies the potential causes of inversion including those that can be induced involuntarily by the design
of the approach and takeoff. Example calculations of potential inverting rotations are presented. Section V examines
how the previously developed material can inform novel terrain park jump designs that limit EFH. Specifically,
the concept of the constant EFH landing surface is modelled and example calculations are presented. This section
concludes with an illustration of how the calculation of jumper trajectories over each of the terrain park features can
be used iteratively to create practical designs with reduced risk of impact and inversion injury. The paper concludes
with a summary.
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FIG. 1: Geometry of the standard table top jump. Although used as an example extensively in this work, the authors do not
endorse the table top due to its safety problems discussed further in Section III.

II. DEFINING THE ENGINEERING DESIGN PROBLEM

A. General Design Criteria and Constraints

A terrain park jump is a system of interacting components which can generically be labeled as the start, the
approach, the transition, the takeoff, the maneuver area, the landing, and the run-out (see Fig. 1). Each component
has a kinematic input and output that can be modelled using Newton’s laws. For example, the input speed for the
transition is the output speed of the approach and the output speed of the transition is the input speed for the takeoff
and so forth. Terminology is still evolving however; so the same style jump can be called something different depending
on the region where it is built. (For the examples used here, the jump style will be defined graphically.) The most
commonly built jump is the standard tabletop jump which is shown schematically in Fig. 1. For the tabletop jump
the maneuver area is intended to be above the deck, however, it is quite common for jumpers to land on the deck; so
the deck should be considered part of the landing as well. In the so-called “gap” jump design, there is a deep open
gap between the takeoff and the landing. Gap jumps are common in professional competitive events, but are very
unusual at recreational resorts serving the general public and so will not be treated here.

Typically the overall performance criterion for the jump is the desired (horizontal) distance of the jump. The length
and topographical profile of the terrain park base or parent surface provides a global constraint onto which the jump
or jumps must be placed. In general the pitch (the angle of incline) of the terrain park base will not be constant and
the analysis of the performance will require numerical solution, but for the sake of illustration, the simple case of a
constant pitch for the approach, θA, will be treated. The shape of the landing surface will be the subject of a more
in-depth analysis. For treating the common tabletop case the pitch of the landing slope will be constant, θL. Given
a budget constraint of a certain volume of snow, the size of the jump(s) will be constrained. Once the location and
size of the jump are determined, one can enumerate the other performance criteria for the various jump components
such that the overall performance is met within the global constraints.

Consider the first element of the jump, the start. The start provides a generally flat staging area for the riders to
prepare themselves and their equipment and represents the start point for their descent. Design considerations not
treated here include having the area be large enough to accommodate the expected traffic flow and having limited
access to control the traffic through the jumps as it would be undesirable to have several entry points that could
present a collision hazard.

The location of the start point relative to the takeoff provides a limit on the rider’s speed that can be attained before
takeoff which is an important design parameter. Assuming the rider starts from rest, the maximum speed at takeoff is
limited by the difference in elevation between the start and the lip of the takeoff, i.e. vmax ≤

√

2g(ystart − ylip) where
g is the gravitational acceleration constant and ystart and ylip are the elevations of the start and lip, respectively. Of
course, friction and air drag will lower this value by an amount that depends on the friction coefficient between the
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TABLE I: Physical Parameters.

Parameter Symbol Units Value Range

Acceleration of gravity g m/s2 9.81

Mass of jumper m kg 75

Drag coefficient times frontal area of jumper CdA m2 0.279 - 0.836

Density of air ρ kg/m3 0.85 -1.2

Coefficient of kinetic friction µ dimensionless 0.04 - 0.12

Lift to drag ratio ρld dimensionless 0.0 - 0.1

snow and ski/snowboard surfaces, the shape of the approach, transition, and takeoff, as well as skier drag coefficient
and wind direction and speed. Example calculations for a range of example jumps and kinematic and material
parameters will be presented later.

Once leaving the start, the rider enters the approach or run-in which provides an elevation drop that accelerates
the rider to some minimum speed needed for the jump. It is common but not necessary for an approach to have a
steep ( 20-25◦) initial “drop-in” region followed by a straight slope of modest pitch (∼10-15◦) leading to the transition
before takeoff. The purpose of the transition is to provide a smooth region from the downward approach angle to
the upward takeoff angle. Therefore, the transition must be curved causing the rider to experience radial acceleration
and shifting balance points. Careful consideration must be given to the amount of curvature to avoid excessive radial
accelerations, say greater than 2 g, which could throw the rider into an uncontrolled posture [22]. The takeoff provides
the last surface of contact for the rider before jumping and therefore the greatest of care must be given to its surface
to ensure that it is well groomed and straight. As discussed in detail below, there should be no (concave) curvature in
the takeoff which can induce a potentially dangerous inverting rotation. The maneuver area is the region of the jump
where the rider is assumed to be in the air; so its properties are often assumed to be less important. This would be a
acceptable if all jumpers left the takeoff with some minimum speed, but due to the many variables in snow conditions
and rider actions, it will often be the case that riders will not maintain sufficient speed into the takeoff to clear the
maneuver area; therefore the maneuver area should actually be treated as part of the landing area and its properties
examined.

The start of the run-out marks the end of the landing area. The transition between these called the bucket.
Through continuous use, the bucket will collect snow that is dislodged from the landing area above by the jumpers.
This causes the bucket to creep up the landing area slowly decreasing the landing area’s total length. Designers should
accommodate this possibility by increasing the starting design landing length by an amount depending on their local
snow conditions and expected use as well as putting in place monitoring and maintenance procedures for the grooming
crews.

B. Terminal Speed and Design Considerations for the Landing Area

The length of the landing area is a critical parameter since overshooting the landing presents a particular impact
hazard due to the flatter angle of the run-out. Ideally, the landing area should be designed to accommodate the
greatest takeoff speed possible as well as rider “pop” effects which can increase the jump distance. To model the
performance of the approach, transition, and takeoff, one requires the dynamic equations describing the center-of-mass
motion of the rider while in contact with the snow. Let yA(x) represent the vertical elevation of the snow surface
of the approach, transition, and takeoff where x is the horizontal distance. Assume that the surface is smooth with
existing first and second derivatives up to the lip of the takeoff. Assume also that the rider starts from rest, makes
no speed-checks, and ignore any motion transverse to the downward direction. This will give a maximum value for
the takeoff speed for a given set of physical parameters. The equations of motion for the center-of-mass of the rider
while in contact with the surface are given by [21]

d2~r

dt2
= −gŷ + (n̂ − µv̂)N − ηv2v̂, (1)

where g is the gravitational acceleration constant, ~r = (x, y) is the position vector of the rider suppressing the
transverse (z) motion, v̂ is the unit velocity vector, n̂ is the unit vector normal to the surface, N is the normal force
of the surface on the rider, and η is the drag parameter defined below in Eq. 2. The range of physical parameters
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used in this work are given in Table I. To treat wind, the velocity vector in the (last) drag term is replaced by the
air-rider relative velocity, ~v − ~w, where ~w is the wind velocity vector. The drag force is given by [23],

~Fdrag = −
CdAρ

2
v2v̂ = −mηv2v̂, (2)

where A is the cross-sectional area of the rider perpendicular to the direction of travel, ρ is the density of air, ~v
is the velocity, and Cd is the drag coefficient. Hoerner [24] provides approximate values for the product CdA for
various positions, i.e. for humans standing forward (0.836 m2), standing sideways (0.557 m2), and tucked facing
forward (0.279 m2). The density of air, ρ, depends on elevation, Y , and absolute temperature, T , according to the
approximate relation [25],

ρ(Y, T ) = ρ0
T0

T
e−

T0

T

Y

Y0 , (3)

where Y is the altitude above sea level in meters, T0 is the reference temperature (298.15 K), T is the absolute
temperature (T = TC +273.15, where TC is the temperature in Celsius), ρ0 = 1.1839 kg/m3, and Y0 = 8.772× 103 m.
For example, this relation gives the air density at an elevation of 3000 m as ρ(3000 m) = 0.928 kg/m3 at TC = −10 C.

The normal force is given by [21]

N = m
(

g cos θA(x) + κ(x)v2
)

, (4)

where θA(x) = − tan−1(y′

A) is the local value of the pitch angle of the hill and κ(x) is the local surface curvature,

κ(x) =
y′′

A(x)

(1 + y′

A(x)2)
3

2

. (5)

If there were no friction or drag, the maximum speed would be determined simply by the difference in elevation
between the start and the lip of the takeoff, i.e. vmax =

√

2g(yA(0) − yA(xlip)) where xlip is the x-coordinate of the lip
of the takeoff. This provides an upper bound to the takeoff speed. Of course, there will always be some friction that
reduces the maximum speed by an amount that depends on the shape of the approach and takeoff and the coefficient
of kinetic friction which in practice varies between roughly 0.04 and 0.12 [26, 27]. (Note that this is a practical range
for the friction coefficient which can be greater than 0.12 for unusually wet circumstances.) For the special case of
a straight approach at angle θA (constant) with respect to the horizontal, the energy lost per unit length is just the
constant frictional force, µmg cos θA.

Air drag also reduces the speed at takeoff and provides the velocity dependent force that determines the terminal
speed. While the ideal is to have the length of the landing accommodate the maximum takeoff speeds, snow budgets
may not allow for very long landings and an engineering trade-off is needed. For the case of a single jump the start
point relative to the takeoff can be adjusted to limit the takeoff speed. To calculate the appropriate start point for
a given set of conditions, one must solve the equations of motion numerically. One could imagine having two (or
more) possible start points and open the one best suited for the snow conditions. For multiple jumps and for long
run-ins, one must consider the possibility of approaching the terminal speed. For such cases the US Terrain Park
Council (USTPC) has adopted a landing length design criterion based on a maximal speed of 80% of nominal terminal
speed [28]. For the special case of an approach with constant pitch, θA fixed, the terminal speed is given by:

vT =

√

2mg(sin θA − µ cos θA)

CdAρ
. (6)

For example, for a 15◦ slope using an average rider mass of 75 kg with a low coefficient of friction of µ = 0.04, an
air density of 0.928 kg/m3, and a product area drag coefficient of CdA = 0.557 m2 (appropriate to a rider facing
sideways) Eq. 6 gives a terminal speed of vT = 24.5 m/s. Front-facing skiers will have larger area-drag product factors
and thus lower terminal speeds.

Note that the terminal speed also provides an upper bound on the size of a jump depending on the shape of the
landing surface. Of course, it takes some distance before terminal speed is attained. For the purposes of designing
the approach it is necessary to calculate the approach to terminal speed by numerically solving Eq. 1. Fig. 2 shows
the approach to terminal speed for the range of friction coefficients between 0.04 < µ < 0.12. From Fig. 2 for the low
friction case, one can see that it takes approximately 150 m for a rider to reach ∼20.3 m/s (80% of the terminal speed);
so any approaches less than this will meet the USTPC design criterion for the entire range of friction coefficients.

Finally, the width of the landing area must accommodate the possibility that the rider’s takeoff is not straight
down the jump but includes a component of takeoff velocity transverse to the downhill direction. The approximate
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FIG. 2: The approach to terminal velocity as a function of distance down an approach with a constant pitch angle of θA = 15◦

for the range of kinetic friction coefficients between 0.04 < µ < 0.12 obtained by numerically solving Eq. 1. The dashed lines
represent the terminal speeds for the limiting friction coefficient values.

transverse distance the rider will land from the downhill center line of the jump will be given by the product of the
time-of-flight and this transverse velocity component. Since the time-of-flight is given by the horizontal jump distance
divided by the horizontal component of the takeoff velocity (ignoring drag), the transverse deviation will be equal to
the horizontal jump distance times the ratio of the transverse to horizontal components of the takeoff velocity. An
approximate limit on this ratio is given by the ratio of the width of the takeoff to the length of the takeoff. In practice,
this has not been shown to be a significant safety concern as most riders land with a few meters of the center line,
but more on-hill data is needed to better constrain the range of transverse takeoff velocities. A useful guideline is to
make the width of the landing area at least three times the width of the takeoff at the design landing point and taper
it outward by at least 10◦ from there to the end of the landing area.

C. Jump Approach Design Process

Like many engineering design processes, the jump design process is an iterative one that intimately employs mod-
elling to inform design decisions. A hypothetical design process might take the following steps. First, the performance
criteria are established. These may include the target jump distance, minimum radial acceleration in the transition,
minimum straight region for the takeoff, and maximum permitted equivalent fall height (defined in the next section).
Next the constraints are listed, e.g. snow budget and base area on which the jump is to be sited. On a topographical
cross sectional profile of the base hill, the snow base and preliminary sketch of the jump with each component is
prepared with estimates of all relevant scales such as the snow base depth, start area, length of approach, length and
radius of transition, length and width of takeoff, height of lip above start of maneuver area, shape, length and width
of the landing area, bucket and run-out. Next, one models the jump design with a mathematical representation of
the entire landing surface, defines a range for the physical parameters such as coefficients of friction, drag, and lift, a
range for the rider’s mass and height, and a range for rider actions such as “pop” speeds (jumping or dropping prior
to takeoff) and transverse takeoff angles (relative to straight down the jump). This represents the complete parameter
space of interest.

From the mathematical representation of the jump surface, the volume of snow required is calculated and compared
with the snow budget. If needed, adjustments to component dimensions can be made, leading, perhaps, to the
conclusion that the desired jump size is not compatible with the snow budget. For each set of physical and rider
parameters, Newton’s laws of motion are solved numerically as described below and the rider’s kinematics determined.
By repeating the calculation for the various ranges of parameters the entire space of possible rider outcomes is mapped
out and the ranges of key performance characteristics calculated such as jump distances, radial accelerations, and
equivalent fall heights. These may then be compared to the desired performance criteria. From this information
design changes can be made and the process repeated until the performance criteria are met within the constraints
or a decision is made to revise either the performance criteria (e.g. build a smaller jump), or revise the constraints
(e.g. increase the snow budget).
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III. IMPACT HAZARD

A. Equivalent Fall Height

Clearly, one of the most important factors affecting the relative safety of a jump is the total energy absorbed upon
landing. Several authors have used the concept of the equivalent fall height (EFH) to characterize this important
parameter [20, 29, 30]. Suppose an object falls vertically onto a horizontal surface from a height, h. Ignoring drag,
the speed at impact, v, is given by h = v2/2g. On a sloped landing, the impact depends only on the component of
the velocity normal to the landing surface, and the relevant energy relation then gives h = v2

⊥
/2g. The EFH can be

made arbitrarily small by making the angle of the landing surface closely match the angle of the jumper’s flight path
at landing. The component of the landing velocity normal to the landing surface is given by v⊥ = vJ sin(θJ − θL),
where vJ is the jumper’s landing speed, θJ is the jumper’s landing angle, and θL is the angle of the landing slope.
Thus, the EFH is,

h =
v2

J sin2(θJ − θL)

2g
. (7)

Due to friction and landing surface distortion, there will be some energy loss associated with the component of
landing velocity parallel to the surface. As shown by McNeil [31], if surface distortion effects are neglected, the
maximum energy change, ∆U , including the transverse component is bounded by:

∆U ≤ [2 − (1 − µ)2]mgh. (8)

This represents the maximum energy absorbed by the jumper, assuming the landing surface absorbs none. Of course,
in all realistic cases the surface will experience some distortion which will lower the amount of energy absorbed by
the jumper. This effect is carried to the extreme with landing air bags that absorb almost all of the energy. For
snow-snowboard/ski surfaces the coefficient of kinetic friction lies in the range 0.04 < µ < 0.12 [26]; so the effect of
including the tangential component of the change in landing velocity on the absorbed energy is generally small, and
the total absorbed energy is well characterized by just the EFH.

To calculate the EFH for an arbitrary jump shape, one must solve the equations of motion for the jumper. The
general equations of motion governing the center-of-mass motion including lift and drag are given in Ref. [31]:

d2~rJ(t)

dt2
= −gŷ − η|~v − ~w|

(

~v − ~w − ρld ŝ × (~v − ~w)

)

, (9)

where ρld is the lift to drag ratio. Assuming the rider maintains a fixed orientation facing forward, ŝ is the unit vector
in the “sideways” direction, and the remaining parameters are the same as in Eq. 1. In practice the lift effect is very
small (∼ 1%) and depends on the orientation and posture of the jumper in the air; so to simplify matters and get a
bound on the lift effect, the lift term in Eq. 9 assumes the jumper maintains his orientation with a constant lift to
drag ratio of ρLD ≃ 0.1 estimated from the angle of descent of sky-diving snowboarders. Better measurements of this
parameter will be necessary for high fidelity modelling. A jumper performing air maneuvers could be modelled using
a time-dependent drag/lift ratio, but the net effect should be bounded by the constant ρLD result. In general, these
equations must be solved numerically but, as shown by McNeil [31], for small to medium-sized jumps (less than ∼12
m) the drag can be ignored at about the 10% level (with lift effects at the ∼ 1% level) allowing for the closed form
analytic solution that is accurate to that level:

~vJ(t) = (vJx, vJy) = v0 cos θT x̂ + (v0 sin θT − gt) ŷ (10)

~rJ(t) = (x, y) = v0 cos θT t x̂ + (v0 sin θT t −
1

2
gt2) ŷ, (11)

where v0 is initial speed at takeoff assuming the rider adds no “pop”. As shown by Hubbard [20] and McNeil [31], one
can treat the jumper’s “pop” by adding to the “no-pop” initial velocity, ~v0, an additional velocity component normal
to the takeoff surface, ~vp = {−vp sin θT , vp cos θT , 0}. This will alter the initial velocity vector (speed and direction)
accordingly:

v0 → v0+p =
√

v2
0 + v2

p,

θT → θT+p = θT + δθp (12)

where δθp = tan−1(vp/v0) and where the (. . .+p)-subscript denotes the initial conditions appropriate to the “pop”
case. From field data taken by Shealy, et al. [32], “pop” speeds have been shown to vary between −2.6 < vp < +1.2
m/s [31].
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From Eq. 11, one obtains the classic parabolic relation for the jumper’s flight path, y(x),

y(x) = x tan θT −
g

2v2
0 cos2 θT

x2. (13)

As shown in Refs. [20, 22, 30], one can find the jumper’s landing angle from the trajectory relation which can be
used in the definition of the EFH to derive the following relation for the EFH, h(x), as a function of the landing
surface, yL(x):

h(x) =

[

x2

4 cos2 θT (x tan θT − yL(x))
− yL(x)

]

sin2

[

tan−1

(

2yL(x)

x
− tan θT

)

− tan−1 y′

L(x)

]

. (14)

where θL(x) = tan−1 y′

L(x) has been used.
This expression for EFH characterizes the severity of impact upon landing as a function of the horizontal distance

of every jump. In fact, once a rider leaves the takeoff with a given initial velocity, his flight path, landing point and
EFH are determined. When drag and lift are neglected, simple analytic expressions such as Eq. 14 for the EFH can
be obtained; however it is straightforward to solve the Eq. 9 numerically to determine h(x) including drag and lift
effects.

The most common recreational jump built is the standard tabletop, shown schematically in Fig. 1. Most experienced
tabletop jumpers quickly learn that there is ‘sweet spot’ just past the knuckle that is the ideal landing area resulting
in a light landing impact. Using Eq. 14, one can explore the EFH for a variety of hypothetical tabletop jumps. The
tabletop jump is parametrized by the takeoff angle, θT , deck length, D, takeoff lip height, H, and landing surface
angle, θL. The tabletop design is evaluated because of its current widespread use and analytic simplicity; however
as shall be shown below, this design is not optimal for limiting EFH. For the special case of the tabletop jump the
landing surface is described by the function,

yL(x) =

{

− tan θL(x − D) − H, x ≥ D

−H, x < D.
(15)

where H is the height of the takeoff above the deck, D is the deck length and θL is the landing angle as shown in
Fig. 1. As shown by Swedberg and Hubbard [29], using this form, one can obtain the EFH function specifically for
the tabletop jump:

htt(x) =

{

cos2 θL(H − D tan θL) + x2 sin2(θL+θT )
4 cos2 θT [x(tan θT +tan θL)+H−D tan θL] , x ≥ D

H + x2 tan2 θT

4(x tan θT +H) x < D.
(16)

One can examine the sensitivity of the equivalent fall height of the tabletop jump by varying each of the relevant
parameters, {θT , H, D, θL}, keeping the remaining parameters fixed. The resulting EFH function can also be compared
to some design criterion.

A natural question that arises is: How small a value for h is small enough? To answer this question it is important
to realize that good designs don’t limit themselves to best case scenarios. As the EFH rises the probability of serious
injury rises with it. Clearly, subjecting a person to an EFH of 10 m would be considered dangerous. Even if the
jumper is in complete control and lands in the best possible body configuration, serious injury is likely to occur when
the EFH is this large. Similarly, an EFH of 3 m is probably still too large, not because an athletic ski jumper under
ideal conditions could not possibly survive an impact with this EFH, but rather because if anything deviated from
the best case scenario (slipping on takeoff, getting one’s skis or board crossed in flight, etc.) then serious injury could
still occur. Another basis to inform an EFH criterion is the ability of the jumper to control his descent after landing.
Recent experiments on jumpers have shown that above about h = 1.5 m, the ability of a young athletic human to
absorb the vertical impulse and maintain control without the knees buckling is compromised. This is the basis for the
USTPC criterion of a maximum acceptable EFH of 1.5 m [28]. Landing areas meeting this criterion shall be referred
to as the “soft-landing” region of the jump.

Fig. 3(a) shows the sensitivity of the EFH to H, the height of the lip of the takeoff, while fixing the remaining
parameters at: {θT = 20◦, D = 6.1 m (20 ft), θL = 30◦}. For the case of H = 1.0 m the EFH for landing on the deck is
below 1.5 m for the entire deck length. Beyond the deck the EFH drops rapidly for landing on the sloped landing area
before increasing to 1.5 m at a distance of about 16 m. Thus, for the low deck height of H = 1.0 m, the EFH exceeds
the USTPC criterion value only after 16 m. This constitutes a landing zone with a 10 m long soft-landing region.
For the larger deck height of H = 2.0 m, the EFH exceeds 1.5 m for the entire length of the deck before dropping to
acceptable levels after the knuckle but increasing quickly again to 1.5 m at about 13 m. Thus the soft-landing region
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FIG. 3: Tabletop EFH vs. jump distance x for (a) varying the takeoff lip height, 1 ≤ H ≤ 2 m, with θT = 20◦, D = 6.1 m,
and θL = 30◦ fixed, and (b) varying the takeoff angle, 10◦ ≤ θT ≤ 30◦, with D = 6.1 m, H = 1.5 m, and θL = 30◦ fixed. The
dashed (green) line marks the USTPC criterion value for the maximum allowable EFH (1.5 m).

for the large deck height case is more narrow, about 7 m long, and in addition to the hazard of landing short of the
knuckle one would expect some jumpers to land outside this soft-landing zone.

Fig. 3(b) shows the sensitivity of the EFH to θT , the takeoff angle, while fixing the remaining parameters at:
{H = 1.5 m, D = 6.1 m, θL = 30◦}. Since the lip height in this case is 1.5 m already, in both takeoff angle cases the
EFH for landing on the deck exceeds 1.5 m the entire length of the deck. For the θT = 10◦ case, the EFH for landing
on the sloped landing area drops to a very small value before increasing to 1.5 m again at a distance of about 18 m.
Thus, the soft-landing region for this case is fairly long, ∼12 m. For the steeper takeoff angle of θT = 30◦, the EFH
rises quickly along the deck before dramatically dropping to acceptable levels after the knuckle but increasing to 1.5
m again at about 12 m. Thus the soft landing region for this jump is about 6 m long and one would expect some
jumpers to land outside this zone.

Fig. 4(a) shows the sensitivity of the EFH to θL, the angle of the landing surface (here assumed constant), while
fixing the remaining parameters at: {H = 1.5 m, D = 6.1 m, θT = 20◦}. The landing angle does not affect the EFH
for landing on the deck so for both cases the EFH for landing on the deck rises with distance to about 1.8 m at the
knuckle. For the case of θL = 10◦ the EFH for landing on the sloped landing area starts at about 1.1 m just after
the knuckle and increases quickly to 1.5 m at a distance of about 9 m. Thus, the soft-landing region for this case is
relatively short, only ∼3 m. For the steeper landing angle of θL = 30◦, the EFH starts considerably lower and rises
to 1.5 m at about 14 m. Thus, the soft-landing region for this case is fairly long, ∼8 m; so it would appear that the
greater risk of having an EFH greater than 1.5 m would arise from landing before the knuckle.

Fig. 4(b) shows the sensitivity of the EFH to D, the deck length, while fixing the remaining parameters at:
{h = 1.5 m, θT = 20◦, θL = 30◦}. The first case is for D = 3 m (10 ft). The EFH rises from 1.5 m to 1.6 m along
the deck before dropping to about 0.4 m after the deck and then rising to 1.5 m at a distance of 9 m. Thus, the soft
landing region for this case is about 6 m long. For the deck length of D = 6.1 m (20 ft), the EFH rises to about 1.8 m
at the knuckle before dropping to 0.2 m just after the knuckle and then rising to 1.5 m at a distance of 14 m. Thus,
the soft landing region for this case is about 8 m long. For the deck length of D = 9.1 m (30 ft), the EFH rises to
about 2.2 m at the knuckle before dropping to ∼0.1 m just after the knuckle and then rising to 1.5 m at a distance of
∼19 m. Thus the soft-landing region for this case is quite long, ∼10 m, but the EFH for landing before the knuckle
significantly exceeds the USTPC criterion value.

In most resorts the jumps are not engineered and new jumps are empirically tested by professional staff riders. Due
to their considerable experience test jumpers are seldom injured, yet such blind tests present a hazard to staff that
could be avoided with a relatively simple engineering analysis such as presented here.

If a snow park jump can be designed with inherently small values of EFH and large soft landing regions, then
many jump injuries can be avoided or their severity reduced since energy absorbed upon landing is reduced. An
examination of the EFH for the tabletop jump shown in Fig. 3 and studied in detail by Swedberg and Hubbard[29]
shows a disturbing trend in that the EFH increases roughly linearly as jump length increases despite adjustments to
lip height, H, deck length, D, and landing slope angle θL. As these results show, landing just before the knuckle or
well after the soft landing region can result in large EFHs and thus present a greater risk for an impact-related injury.
The straight landing used in tabletop designs will always have an increasing EFH with jump distance suggesting that
alternative landing shapes should be seriously considered.
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FIG. 4: EFH vs. jump distance x for landing on a constant downward slope landing for (a) varying the landing angle,
10◦ ≤ θL ≤ 30◦, with D = 6.1 m H = 1.5 m, and θT = 20◦ fixed, and (b) varying the deck length, D = 3.0 m, D = 6.1 m, and
D = 9.1 m with θT = 20◦, H = 1.5 m, and θL = 30◦ fixed. The dashed (green) line marks the USTPC criterion value for the
maximum allowable EFH (1.5 m).

B. Interacting Parameters: approach length, takeoff speed and landing length

As discussed above, the primary impact hazards presented by the standard tabletop jump are either landing too
short (before the knuckle) or too long, especially beyond the landing area. Indeed, overshooting the landing area
is one of the least desirable outcomes of a jump. Of course, the distance of a jump depends on the takeoff velocity
(both direction and magnitude). (As discussed above and in Refs. [20, 31], the effect of the rider adding “pop” merely
modifies the initial velocity according to Eq. 12.) As seen from Eq. 1, the (no-pop) takeoff speed depends on the
shape of the surface up to the end of the takeoff ramp and the physical parameters determining friction and drag.
This implies that there will be a coupling of the performance characteristics of the components.

For example, the length of the approach will determine the range of takeoff speeds which, in turn, will determine
the range of landing distances. In the examples below the tabletop jump parameters were fixed as follows: {θA =
15◦, LTO = 4.0 m, θT = 20◦, H = 1.5 m, D = 9.1 m, θL = 30◦}, where LTO is the length of the takeoff ramp. The

physical parameters are listed in Table I with the following specific values: {CdA = 0.557 m2, ρ = 0.90 kg/m
3
, m =

75 kg}. Fig. 5(a) shows the takeoff speed versus the length of the approach obtained by numerically solving Eq. 1
for this hypothetical tabletop jump. Fig. 5(b) shows the resulting total horizontal jump distance, xJ , for the full
range of friction coefficients. These figures can be used to inform the jump designer’s decision regarding the length
of the approach and length of the landing. For the low friction case a modest approach length of ∼40 m will provide
enough takeoff speed to reach the start of the landing; however if the snow conditions change such as to increase the
friction coefficient, then there is a strong likelihood that riders will land on the deck and be subjected to a large EFH
as discussed previously. To avoid this outcome for this set of example parameters allowing an approach length of at
least ∼75 m will provide sufficient takeoff speed to reach the landing area under the large friction conditions (without
having to add ‘pop’).

Consider next the length of the landing area. As an example suppose an approach length of 100 m. Under large
friction conditions the landing distance is about 18 m, or 9 meters (horizontal) beyond the knuckle. Thus, having a
landing length (measured along the hill) of (9.0/ cos θL) m = 10.4 m will accommodate all jumpers under the high
friction condition. However, if the snow conditions change and the coefficient of friction drops, there is a strong
likelihood that jumpers who fail to check their speed will land beyond the landing area. Since the maximum jump
distance for a 100 m approach length for this takeoff angle under low friction conditions is about 32 m, the landing
length should be a least (32.0/ cos θL) m ≃ 37 m. If the snow budget is insufficient for that length for the landing
area, the designer can try a different takeoff angle or deck length or other parameter thereby continuing the iterative
engineering design process.

Next, the dependence of the peak radial acceleration in the transition on the length of the approach, LA, is
examined. Fig. 6(a) shows the peak radial acceleration in the transition measured in unit of the acceleration constant,
g, versus the length of the approach for the full range of friction coefficients, 0.04 ≤ µ ≤ 0.12 with the remaining
parameters fixed as described previously. For the transition radius of 15 m the radial acceleration exceeds the USTPC
recommended maximum of 2gs at an approach length of about 90 m while the 20 m transition radius will allow
approach lengths up to about 150 m.

Finally, the dependence of the EFH on the length of the approach, LA, is examined. Fig. 6(b) shows the EFH versus
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FIG. 5: (a) Takeoff speed and (b) the landing distance as a function of the length of the approach, LA, for a standard tabletop
jump for the full range of friction coefficient, 0.04 ≤ µ ≤ 0.12. For both curves, the tabletop jump parameters were fixed as
follows: {θA = 15◦, LTO = 4.0 m, θT = 20◦, H = 1.5 m, D = 9.1 m, θL = 30◦}, and the remaining physical parameters were:
{CdA = 0.557 m2, ρ = 0.90 kg/m3, m = 75 kg}.(colour online)
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FIG. 6: (a) Peak radial acceleration in the transition for R = 15 m and R = 20 m as a function of the length of the approach,
LA, for a standard tabletop jump with the friction coefficient fixed at its lower limit, µ = 0.04, and (b) Equivalent fall height, h,
as a function of the length of the approach, LA with the friction coefficient varied between 0.04 ≤ µ ≤ 0.12. For both figures, the
remaining tabletop jump parameters were fixed as follows: {θA = 15◦, LTO = 4.0 m, θT = 20◦, H = 1.5 m, D = 9.1 m, θL = 30◦},
and the remaining physical parameters were: {CdA = 0.557 m2, ρ = 0.90 kg/m3, m = 75 kg}. (colour online)

the length of the approach for the full range of friction coefficients, 0.04 ≤ µ ≤ 0.12 with the remaining parameters
(given in the figure caption) fixed. One can clearly identify the approach length that provides sufficient takeoff speed
to clear the knuckle. For the low friction case this occurs at an approach distance of only 45 m while for the high
friction case an approach length of about 95 m is required. This figure clearly emphasizes the dilemma that the jump
designer faces when constrained to the simple tabletop form. For both low and high friction cases there exist regions
where the EFH is below 1.5 m; however there is no single value of the approach length for which the EFH is below 1.5
m for both friction extremes. One can manage this situation by having multiple start points depending on the snow
conditions, but this requires that resorts building such jumps be able to measure the friction coefficient and devise
plans to monitor it continuously. These considerations strongly suggest that the jump designer explore other options
for landing shapes for jumps of this size (9.1 m) or larger.

There is an insidious psychological effect that infects the tabletop design as well. The large EFH arising from
landing short of knuckle on a tabletop creates a psychological avoidance response in jumpers. To avoid hard knuckle
landings jumpers tend to take the jump faster than they might otherwise do which in turn increases the risk of
overshooting the landing with potentially even worse outcomes than landing on the knuckle. The narrower the region
of “soft” landing, the greater the risk.

While the preceding analysis was performed for the standard tabletop design, it should be emphasized that any
design shape can be similarly analysed.



12

IV. INVERSION HAZARD

One especially hazardous situation occurs when the jumper lands in an inverted position which can lead to catas-
trophic injury or death from spinal cord trauma. While jumpers can execute inverted maneuvers intentionally, concave
curvature in the takeoff can lead to involuntary inversion. Curvature in the takeoff can be intentionally built or can
be arise through heavy use. Understanding the dynamics of a jumper riding over a takeoff with concave curvature is
necessary to developing designs and maintenance procedures which mitigate, if not eliminate, this hazard.

McNeil [33] modelled the inverting effect of a curved takeoff by treating the jumper as a rigid body which ap-
proximates a stiff-legged jumper. This work is briefly reviewed here. For a simple illustrative example, consider the
inverting rotation for trajectories calculated from the standard tabletop jump which is the most widely used design,
although not built to any standard. The mathematical simplicity of this jump shape allows for similarly simple ex-
pressions for the quantities of interest. Results for more general shapes are straightforward but may require numerical
solution. In the previous section it was shown that the tabletop design is not optimal from the point of view of its po-
tential impact hazard as characterized by a large equivalent fall height as discussed above (see also Refs. [20–22, 29]).
However, the focus here is exclusively on the interaction of the jumper with the takeoff. The other components of the
jump only affect the time of flight and impact as discussed above. Ignoring drag, for a jump of horizontal distance of
xL the time of flight is given by:

tF =
xL

v0 cos θT

. (17)

The concavity of the takeoff is characterized by the radius of curvature, RTO. Assuming the rider is a rigid body
during takeoff implies that the takeoff velocity is parallel to the takeoff ramp surface. The angular speed for inversion
induced by the curved takeoff is given by the takeoff speed, v0, divided by the radius of curvature ω = v0/RTO where
the inverting rotation is about an axis normal to the plane of the jumper’s trajectory. This can be understood by
imagining a rider executing a full vertical circle at constant speed who must rotate by 2π in each revolution. Once
the jumper leaves the surface, neglecting drag and lift, no further torques can be exerted on the jumper so his/her
angular momentum is conserved. Under the rigid body assumption, the moment of inertia is fixed so the angular
velocity is also fixed. Under these conditions, the total inverting rotation is given by the angular velocity times the
time of flight,

φ =
xL

RTO cos θT

. (18)

One notes that the inverting rotation is proportional to the horizontal jump distance and inversely proportional to the
radius of curvature; so smaller jumps can tolerate a smaller radius of curvature. The magnitude of the total backward
inverting angle under the rigid body assumption is thus,

Φ = φ + θT + θL. (19)

Non-rigid body motion, arising for example by the rider executing a maneuver in the air, will change the rider’s
moment of inertia and the rotational speed will not be constant. Modelling such cases requires a detailed analysis of
the maneuver’s affect on the moment of inertia during the jump. It should be noted that the most common maneuver
is the “grab” which will tend to reduce the moment of inertia thereby increasing the inverting angle.

For jumps with relatively large takeoff and landing angles θT = θL ∼ 30◦, very little additional inverting rotation
can result in a potentially disastrous landing on the head or neck. In the example medium-sized table top (∼ 6 m)
jump treated in Ref. [33] the takeoff was found to have a radius of curvature of about 8.1 m. For an approximate
takeoff speed of 7.2 m/s, the inverting angle was estimated to be about 63◦ which resulted in the (rigid-body) rider
landing in an inverted position at the potentially dangerous angle of 126◦ with respect to the landing surface normal.

What are the design implications? Clearly, curvature should be avoided in the last few meters of the takeoff, but
how long should the straight section of the takeoff be? As can be seen from Fig.1 the takeoff immediately follows the
transition which takes the rider from a predominantly downhill direction to the upward direction of the takeoff. The
straight section of the takeoff should be long enough to allow the rider to recover from the transition. The USTPC
has proposed that the straight section of the takeoff be at least the nominal design takeoff speed times 1.5 human
reaction times, or about 0.3 s. This is close to the standard used for nordic jumps which is 0.25 s times the nominal
takeoff speed. For the medium jump treated in Ref. [33] the nominal takeoff speed was about 7.2 m/s which implies
a recommended minimum straight section of takeoff of about 2.2 m.
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V. DESIGNING TOMORROW’S TERRAIN PARK JUMP

Previously it was shown that the impact risk associated with landing is naturally quantified by the EFH, and that
a “soft” landing arising from a correspondingly small EFH is possible if the jumper path and landing surface have
nearly the same angle at the point of impact.

Although the most commonly used jump, the tabletop, was used in the previous example calculations of impact
and inversion hazards, it was emphasized that this was not intended to be an endorsement of this kind of jump. As
shown above, tabletop jumps have narrow “soft landing” regions and, even if built for such landings under one set
of snow conditions, these can change to a “hard landing” when the snow conditions change. Nevertheless, tabletops
continue to be built. This may be due their ease of construction, the vast experience builders now have with that
form, and the fact that this is what everyone else is doing, a form of safety in numbers. Tabletops are indeed relatively
simple to design and fabricate with the only design decisions being the quantities: LA, the length of the approach
with some arbitrary curved transition; LT , the length of the takeoff; θT , the angle of the takeoff; H, the height from
the lip of the takeoff to the (generally horizontal) deck surface; D, the length of the deck surface; θL, the angle of the
intended landing surface; and LL, the length of the intended landing region. Typically, the base or parent slope upon
which the jump is sited is fairly straight and inclined at some average angle θA which is used for the approach angle
to conserve snow. The tabletop is relatively easy to fabricate due to the many straight lines which can be constructed
readily with modern grooming equipment.

But, while it may be easy to build a landing region consisting only of two straight line segments, as shown above
the resulting jump is not necessarily ideal from the perspective of impact hazards. Simplicity of design (in the
sense of few choices to be made) thus carries an associated penalty: it can subject the jumper to large impacts on
landing. In Section III above, it was shown that the equivalent fall height (EFH) function associated with such a
generic tabletop jump has undesirable characteristics. Specifically, on medium to large-sized jumps, the EFH is small
only in a relatively narrow range of takeoff speeds (and even this requires the correct choice of the intended landing
region surface angle). Furthermore, the EFH can be dangerously large when landing occurs at the end of the deck
or beyond the intended landing region. Thus tabletop jumps will have acceptable EFH’s only in too narrow a region
that can change dramatically with the snow conditions. This places large demands on the jumper to manage the
takeoff velocity precisely within a narrow range and too large a penalty (severe and possibly dangerous impacts) if
the velocity is outside this range for whatever reason. Indeed, as shown in Sec. III there may be conditions where the
approach length provides an acceptable takeoff speed under one set of snow conditions, only to be unacceptable when
the snow conditions change. As shown previously, this sensitivity arises from the constraint that the deck and landing
surface be straight. The possibility of relaxing this constraint is now addressed by considering curved landing surfaces
that, by design, provide acceptable EFH independent of the takeoff speed up to the limits of space and fabrication
capabilities.

The benefits of such a surface are clear, but how might this be done? The mathematical condition for a landing
surface shape that produces an acceptable EFH begins with Eq. 7 in which EFH vanishes when the jumper path
and landing surface have the same angle at the point of impact. A more complete discussion of the theory behind
calculation of safer jump landing surface shapes is described by Hubbard [20]. In summarizing, a condition on the
surface shape. yL(x), is sought such that the EFH is limited to a specific value h at all values of x. Indeed, Eq. 14 is
such a condition, although in that form it was used to calculate the EFH.

Solving for y′

L(x) from Eq. 14, one can obtain an expression for the derivative of the landing surface which is now
interpreted as a differential equation constraining the landing surface,

y′

L(x) = tan

[

tan−1(
2yL(x)

x
− tan θT ) + sin−1

√

h
x2

4(x tan θT −yL(x)) cos2 θT

− yL(x)

]

. (20)

In Eq. 20, which has been called the “safe slope differential equation” [20], the first derivative of the landing surface
function is a function of two variables (x and yL(x)) and three constant parameters (g, θT and h ). Since no jump
can ever be definitively called “safe”, in this work such surfaces will be referred to as “constant EFH” surfaces. Any
surface yL(x) that satisfies this differential equation imparts to an impacting jumper a value of EFH equal to h no
matter what the takeoff speed v0 and consequent landing position. This surface has had its impact safety designed
into it through the specification of a specific value h of EFH that parametrizes the surface. The fact that the surface
shape is insensitive to takeoff velocity v0 is made manifest by the absence of v0 in Eq. 20. Also note that Eq. 20 is
general in that the EFH value, h, could in fact be a (smooth) function of x thereby giving the jump designer freedom
to tune the EFH everywhere.

Shealy and others [18, 32, 36, 37] have questioned the practicality of building such a jump due to “uncontrollable
factors” such as jumper discretion (e.g. “pop”) leading to variations in takeoff angle and drag variations in flight, snow
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FIG. 7: Constant EFH landing surfaces for h = 1.0 and h = 1.5 m with θT = 10◦ fixed. Also shown are sets of possible
jumper paths, the uppermost of which corresponds to a 26 m horizontal jump distance requiring a takeoff speed of 18.9 m/s.
The circles mark the location of the boundary conditions used to integrate Eq. 20 to obtain the constant EFH surface. The
θL = 30◦ point on the constant EFH surfaces is identified by a hash line beyond which fabrication is impractical with present
snow grooming equipment without use of a winch.

variability (snowfall and melt), temperature variations, etc. However, recent studies by McNeil [31] and Hubbard [30] of
these so-called ”uncontrollable factors” have shown, to the contrary, that these factors are bounded in understandable
ways that can be addressed in the design. Thus the idea that such variability precludes the use of engineering design
is not supported. Indeed, much of the present paper continues to illustrate this fact: design of jumps limiting EFH
can proceed while explicitly accounting for such factors or rendering the impact of such variability largely irrelevant.

To find specific instances of constant EFH surface shapes one must solve Eq. 20 by numerical integration. First, one
must specify the values of the parameters θ0 and h, and, since it is a first order differential equation, one must also
choose a specific boundary condition yL(xF ) at some value of xF . For technical reasons [22] related to the behaviour
of the equation at small values of x, it is necessary to integrate Eq. 20 backward, rather than forward, in x; so xF

is taken to be the terminal point for the constant EFH surface. The arbitrariness of the boundary condition means
that there is an infinite number of such solutions for fixed h parametrized by yL(xF ).

The choice of the design value of h is up to the designer, but the designer needs to make an informed and scientifically
supportable choice. This decision can be defended and communicated to the users of the jump so that they are better
informed as to the risks they undertake in using the jump. The USTPC has adopted a 1.5 m maximum EFH based
on the degree of knee flex in snowboarders landing on flat surfaces. Regardless of the choice however, it is important
to be clear; constant EFH landing surfaces will not eliminate serious injuries from jumping, but they can reduce the
likelihood of such injuries and decrease the severity of injury should something go wrong. This can be especially
important in the event the jumper becomes inverted.

One of the consistent lessons learned from the epidemiological studies is that beginners are at significantly greater
risk than the more skilled riders [13]. In part to address this problem, resorts have developed ski and snowboarding
schools including “progressive parks” with varying levels of difficulty and risk. Constant EFH landing surfaces would
be especially well-suited to progressive terrain parks which are intended to develop riders from beginner to more
advanced skill levels. Currently, such progressive parks start with simple rollers over which a rider can “catch some
air”, and then progress to a series of tabletop jumps with increasing deck lengths. The novice rider is then confronted
with the requirement of a quantum leap in skill level in progressing from one tabletop to the next larger size with
considerably greater risk for injury. The constant EFH surface, on the other hand, provides the opportunity for
continuous development of skill level from the smallest to the largest jump length attainable on a slope of fixed pitch
while mitigating impact risks through the properties of the constant EFH surface.

Figs. 7 show two samplings (as leaves from a book) of the infinite family of constant EFH landing surfaces for the
two values of h = 1.0 and 1.5 m with θT = 10◦ fixed. Similarly, Figs. 8 show two samplings of constant EFH landing
surfaces for the combinations of h = 1.0 and 1.5 m with θT = 25◦ fixed. Each set of landing surfaces extends over the
range 0 < x < 30 m, with the boundary conditions for each constant EFH surface given by values of yL at xF = 30
m evenly distributed from −6 < yL < −12 m. For each pair of design values of h and θT , the family of surfaces
asymptotically emanates from the same point, called the “singular point” [22] where the argument of the tangent
function in Eq. 20 goes through π/2. Every one of the landing surfaces in each of Figs. 7-8 produces the same EFH
(either h = 1.0 m or h = 1.5 m) independent of jumper takeoff speed.

Note that the constant EFH landing landing surfaces in Figs. 7 and 8 do not look like tabletops with cusps. Every
smooth constant EFH landing surface has a monotonically decreasing slope (becoming more and more negative and
eventually steeper and steeper). All surfaces become steeper at larger values of x. Of course, there is a practical limit
to the steepness of the landing surface determined by the capabilities of the grooming and fabricating equipment. As
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FIG. 8: Constant EFH landing surfaces for h = 1.0 and h = 1.5 m with θT = 25◦ fixed. Also shown are sets of possible
jumper paths (dotted), the uppermost of which corresponds to a 26 m horizontal jump distance at a takeoff speed of 15.35 m/s.
The circles mark the location of the boundary conditions used to integrate Eq. 20 to obtain the constant EFH surface. The
θL = 30◦ point on the constant EFH surfaces is identified by a hash line beyond which fabrication is impractical with present
snow grooming equipment without use of a winch.

discussed more completely below, most commonly used grooming machines today can function only up to an incline
angle of about 30◦.

Figs. 7-8 display the sensitivity of the families of constant EFH landing landing surfaces to the two design parameters
h and θT . Generally speaking, as the value of h increases, (e.g. Figs. 7(a) to (b)), the family of constant EFH curves
shifts downward on the left, near x = 0, and become slightly “flatter”. As the takeoff angle θT increases (e.g. Figs. 7(a)
to 8(a)), the family becomes significantly “rounder”, without shifting downward near the singular point.

The constant EFH landing surfaces in the figures were calculated by integrating Eq. 20 which assumes no drag.
It is important to emphasize that similar safe surfaces incorporating air drag can be calculated and that these differ
only marginally from the surfaces, shown in Figs. 7-8, that satisfy Eq. 20. However, it is not possible to show the
analytic differential equation for the surface analogous to Eq. 20 in the presence of drag. The essential modification
is the following: during the integration of the constant EFH surface backward, because of drag there is no analytic
expression for the takeoff velocity required to pass through the present point on the surface, nor for the impact
velocity at that point. Instead, these velocities must be calculated numerically with a shooting technique, making the
calculations more laborious but no less accurate. Later the effect of including drag on the EFH is shown to be very
small for surfaces calculated using Eq. 20.

Several practical design considerations must be kept in mind. First, the present generation of snowcats without use
of a winch are not able to fabricate and easily maintained snow surfaces steeper than roughly 30◦. Thus only those
portions of the constant EFH landing surfaces satisfying θL ≤ 30◦, can be created and maintained in practice. It is
impractical to view the segments of the surfaces shown in Fig. 8 as desirable solutions in ranges where their angles
exceed 30◦. In each surface shown in Figs. 7-8, the segments where the slope of the surface exceeds 30◦ are indicated
by dashed lines.

Secondly, although all the surfaces shown in each of the figures are equally “safe” in the sense that they all have
h = 1.0 or h = 1.5 m, not all are appropriate for the same parent slope. Unless the constant EFH landing surface
shape is pre-formed from the base slope, much of the shape of the jump surface will need to be fabricated from snow.
Certain of the surfaces will take more snow budget than others, another of the design tradeoffs mentioned above in
Section II.C. So the ultimate choice from the family of landing surfaces in Fig. 7 might be the least expensive in terms
of snow budget.

Also shown in Fig. 7 are sets of jumper paths, the uppermost of which corresponds to a 26 m horizontal jump
distance requiring a design speed of 18.9 m/s. As discussed more completely below, once a constant EFH landing
surface that fits the parent slope is chosen, it is essential that the entire portion of it, out to the point of its intersection
with the maximum design speed jumper path, be used. Otherwise, some speeds below the maximum design speed will
not be accounted for in the design and it will be possible that faster jumpers will be able to over-jump the constant
EFH landing region, landing on a portion of the snow where the EFH has not been controlled though surface shape.
The design procedure now consists of choosing one of the constant EFH landing surfaces (say from Figs. 7-8 or another
similar one) to build on the hill.

Thus far the focus has been mostly on the role of only one of the constant EFH landing surface parameters, h. The
parameter θT can also play an important role in the design in the following way. Figs. 7-8 contain only four families
of constant EFH landing surfaces, but there is a similar infinite set of constant EFH landing surfaces for every other
pair of values of takeoff angle θT and h. Thus if, after the first try, none of the constant EFH landing surfaces in
Figs. 7-8 satisfies all the design constraints, (e.g. perhaps there is not enough room in the chosen resort location to
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fit in the complete constant EFH landing surface all the way to the maximum design speed point), then the designer
can select from another figure containing constant EFH landing surfaces for the same value of h but for a different
takeoff angle, say h = 1 and θT = 13◦ as illustrated below [20].

How does the design of the other components affect the design of the constant EFH landing surface, especially in
the light of the fact that these surfaces are velocity-robust? A substantial fraction of the serious spinal cord injuries
incurred in terrain park jumps occur as a result of over-jumping the intended landing region. Thus, perhaps the most

critical factor to insure is that over-jumping cannot occur. The constant EFH landing surfaces discussed here are able
to insure that EFH is limited to the design value of h, but only if the entire surface out to the maximum design speed
point is employed.

The key connections are the ramp takeoff angle and the design velocity. If the entire constant EFH landing surface
were able to be chosen as the design solution, then all takeoff velocities would be accounted for. But often only a
finite segment of the constant EFH landing surfaces can fit in the space restrictions in a given location. This implies
that only velocities up to a certain takeoff velocity are protected against, in the sense that EFH is limited to h only
up to this speed. It is essential that this maximum“maximum design speed” be large enough to bound all reasonably
possible speeds that can be chosen by the jumper. If this is not the case, then some manner of limiting the takeoff
speed must be adopted (such as limiting the start height) so that the constant EFH region of the landing surface
cannot be out-jumped.

Terrain park jumps are supposed to be fun. Young athletic skiers and snowboarders jump because it is exhilarating.
The exhilaration stems from two main factors: flight time during which tricks and other maneuvers can be performed,
and air height, defined as the maximum vertical distance between the jumper path and the landing surface at any
point along the path. An essential tradeoff in the design is between safety and exhilaration. Finding the right balance
is the key: designing in an appropriate amount of exhilaration while maintaining the maximum amount of safety
possible. This makes jump design as much art as science.

A previous study by Hubbard [20] has shown that constant EFH landing jumps can still provide the flight time
and jump air height to be considered “fun”. To a good approximation, given a takeoff angle and EFH, both flight
time and air height increase roughly linearly as the distance jumped increases, and this is nearly independent of the
particular member of the infinite surface family chosen for that takeoff angle and EFH [20]. Considerable exhilaration
can be achieved while maintaining adequate safety since, for example, when h = 1.0 m, and θT = 30◦ , a flight time
and air height of roughly 2 s and 3 m, respectively, can be achieved on jumps about 30 m long.

Consider briefly the issue of rider variability. Perhaps the most common rider variable is the so-called “pop”, or
jump just before takeoff. This phenomenon can be treated in design by altering the initial conditions as described in
Eq. 12 and was indirectly examined experimentally by Shealy, et al. [32] who provided the raw data used by McNeil [31]
to extract “pop” speeds for over 240 jumpers. McNeil found that for the larger jump studied by Shealy, et al. [32], the
maximum positive “pop” speed added was about 1.2 m/s. Fig. 9 shows one of the constant EFH surfaces along with
several trajectories of jumpers who have “popped” the takeoff. Of course, the EFH for the constant EFH surface is
only constant if the rider leaves the takeoff at the same angle as that of the takeoff ramp. Since adding “pop” alters
the takeoff angle, the EFH for the resulting landings will be different. One sees that by using a constant EFH surface
designed for h = 1.0 m and θT = 25◦, the maximum EFH experienced by the rider adding 1.2 m/s of positive “pop”
is 1.44 m. This is still within the USTPC maximum EFH criterion of 1.5 m. In other words all trajectories on this
surface with or without “pop” over the entire range of “pop” speeds measured in the field will satisfy the USTPC
criterion of EHF below 1.5 m. Also shown in Fig. 9 is the jumper trajectory including both positive “pop” and drag
(using the same parameters used in Sec. II). Note that the two effects nearly cancel resulting in a trajectory very
close to the original (no drag and no “pop”) case.

A. Example of the Jump Design Process using Modelling

As an illustration of the iterative design process, several example designs are shown that employ some of the
concepts discussed above and illustrate some of the design tradeoffs. Any such design begins with a vertical section
of the parent slope. For simplicity and to illustrate the principles, first assume that the parent slope consists of a
constant slope equal to the approach angle, θP = θA = 15◦. Generalisation to any slope profile is straightforward.
The design question is then: Which candidate constant EFH surface to choose and where and how to place it on the
parent slope?

The first important consideration is that to turn the velocity vector, from basically “down” during the approach
to “up” at takeoff, requires space and, if the chosen surface is not pre-formed from earth, also requires a considerable
investment in snow. The approach, transition, and takeoff are the same for the standard tabletop and the constant
EFH jump. As can be seen from Fig. 1, the transition requirement pushes the takeoff, maneuver and landing areas
outward away from the parent slope. Table II lists the vertical distance from the parent slope to the lip of the takeoff,
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FIG. 9: Large jump trajectories including rider “pop” landing on a constant EFH landing surfaces for h = 1.0, θT = 25◦,
and the boundary condition set at {xF = 40 m, yL(xF ) = −10 m}. The “pop” speeds shown are vp = {−1.2, 0.0, +1.2} m/s
resulting in EFHs of {0.639, 1.00, 1.44} m, respectively. In other words all trajectories on this surface with or without “pop”
will satisfy the USTPC criterion of EHF below 1.5 m. Also shown is the vp = +1.2 m/s jumper trajectory including drag/lift
(dashed). Note that the drag effect in this case nearly cancels the effect on range from the positive “pop”.

TABLE II: Height of Takeoff Above Parent Slope

Takeoff Angle Curvature Radius of Transition Height of Takeoff

θT (◦) R (m) (ylip − yparent) (m)

10 15 3.205

25 15 6.295

10 20 3.690

25 20 7.506

(ylip - yparent), for sets of approach parameters, all assuming an approach angle θA = 15◦. In general, the larger
the transition radius and takeoff angle, the more space is required. Thus, the takeoff point needs to be positioned
significantly above the parent slope as shown in Fig. 10.

To prevent the landing surface from being over-jumped, the jumper path corresponding to the highest speed
attainable (the maximum design speed) must intersect a chosen constant EFH landing surface. Further, this surface
must be able to be built in practice. In other words, this path must intersect the chosen landing surface above the
practical buildable limit θL ≤ 30◦. Any landing surfaces lying below, and not intersecting the maximum design speed
path, do not protect the jumper at all speeds up to the maximum design speed.

If it is not possible, due either to lack of space or inadequate snow budget, to select a landing surface that protects
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FIG. 10: The parent slope (brown) and ten constant EFH landing surfaces for h = 1.0 for θT = 10◦ and θT = 25◦. Also shown
are the jumper paths (dashed) corresponding to the horizontal jump distance at the maximum design speed for an approach
length of 100 m (15 m/s). The constant EFH surface that intersects the parent slope at this point is thicker (magenta). The
buildable limit θL = 30◦ on the constant EFH surfaces is identified by transition to a dashed line beyond which fabrication is
impractical with present snow grooming equipment without use of a winch.
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at the maximum design speed, it will be essential to limit the maximum takeoff speed by limiting the length of the
approach as described in Section II. Thus this most important design consideration that the landing surface not be

able to be over-jumped should be primary.
To be specific, consider the situation shown in Figs. 10 (a) and (b) showing a parent slope with angle θP = 15◦ and

10 candidate constant EFH surfaces, all with h = 1.0 m and for θT = 10◦ and θT = 25◦, respectively. The jumper
path corresponding to the maximum design speed is based on an approach length of 100 m for the low friction case.
From Fig. 2 this gives v ≃ 15.0 m/s = 33.6 mph. In each case the maximum speed jumper path intersects five of the
ten candidate surfaces shown and therefore only these (highest) five candidates protect the jumper at all speeds up to
the maximum design speed. The lowest of these candidates is the cheapest from a snow budget point of view, since
less snow needs to be added to the parent slope to support the shape of the surface. This gives a general design rule
of thumb: The most economical constant EFH surface to build is the one that intersects the jumper maximum design

speed path at the buildability limit or at the parent slope.

Having chosen a landing surface that intersects the maximum design speed jumper path, one defines the jump

length xL as the value of x where this intersection occurs. The artificially constructed landing surface (for x < xL)
must thereafter rejoin the parent slope(for x > xL) but since, by definition, there can be no landings in this region,
there is more flexibility in its shape. Although a mathematical expression could be used to characterize the surface
this is not essential. One simply assumes that this bucket region is a smooth transition that limits surface curvature,
and thus normal acceleration, to reasonable values.

Occasionally there may be restrictions on the space available for placement of the jump. For example, these might
be expressed as 0 < x < xS and y(0) < y < y(xS), the interior of a rectangle inside which the jump landing surface
must lie. In such a case the intersection of the maximum design speed path with a constant EFH surface for the
specified value of h and chosen value of θT may not exist within the rectangle, i.e. it may not be possible to build a
landing surface that limits EFH to h over a reasonable set of takeoff speeds with the given takeoff angle.

As an example, having chosen θT = 25◦ and h = 1.0 m, suppose it is desired to restrict space to x < xS = 20 m.
It is clear from Fig. 10b that none of the constant EFH landing surfaces intersect the maximum design speed jumper
path within this region, and thus none of these will protect at the h = 1.0 m level for the value of θT = 25◦. Then,
either the maximum design speed must be changed by limiting takeoff velocity by restricting the approach length, or
another constant EFH surface must be chosen above the ten shown, or the takeoff angle must be modified. This last
choice as a design option corresponds to using, say, Fig. 10a as the design template instead, in which there is one of
the constant EFH surfaces that meets both the space and the maximum design speed constraints.

A general design rule of thumb arises from this example: It is always possible, by decreasing the takeoff angle, to

choose a constant EFH surface lying within any restricted region that limits h to a given value. This shows that all
three of the design variables, θT , h, and the particular surface chosen from the infinite family are important.

Fig. 11 (a) shows an example constant EFH surface choice replacing an example tabletop surface (parameters are
given in the caption) along with sample trajectories for a takeoff angle of θT = 13◦. In this example, at x ∼ 23 m the
constant EFH surface reaches the practical slope angle limit of 30◦. To be realistic, at this point the constant EFH
surface (solid) transitions to a constant slope (dashed) surface with constant θL = 30◦ until it intersects the parent
surface.

Fig. 11 (b) shows the resulting EFHs for the tabletop and constant EFH landing surfaces. Since this constant EFH
landing surface was calculated assuming no drag, it yields a value h = 1 m for jumper paths without drag. By design,
the constant EFH landing surface provides a constant 1.0 m EFH out to ∼ 23 m at which, as discussed previously,
the landing angle is a constant 30◦, so the EFH rises linearly as expected for a straight landing surface but still only
exceeds the USTPC criterion value of 1.5 m after x ≃ 27 m, the maximum design jump distance and an unusually
long jump of over 88 ft. The standard tabletop surface exceeds the USTPC criterion for the entire length of the deck
before dropping briefly to acceptable values between 9.1 m < x < 22 m. For x > 22 m the EFH for the tabletop rises
approximately linearly to a value of about 2.4 m at x = 30 m. Clearly the constant EFH surface provides greater
protection for the two hazardous situations of landing short (on the deck) and landing “deep”. If holding the EFH
to the USTPC criterion is deemed important enough, perhaps it would be worth using a winch to increase the angle
of the constant EFH surface in the relatively small 7 m long region 22.6 < x < 30m Also shown in Fig. 11 (b) is the
small added effect of including drag on the EFH for the constant EFH surface (dashed line). Since this constant EFH
landing surface was calculated assuming no drag, it yields a value h = 1 m for jumper paths without drag. The effect
of drag on the resulting EFH for this jump is modest.

Even though the straight tabletop landing surface enjoys a lower EFH for part of the landing surface, the constant
EFH landing surface in Fig. 11(a) obviously protects the jumper more effectively over a greater range of jump
distance. Furthermore, the cost of the added protection in terms of snow budget is quite small. The volume of snow
per unit width of the landing surface in these examples is 72.3 m2 for the tabletop and 76.2 m2 for the constant
EFH surface. Designers will need to include this economic fact in their considerations. If snow budget becomes an
unmanageable constraint, an alternative approach is to preform the hill to lower the snow required, but this option
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FIG. 11: (a) Comparison of an example standard tabletop (magenta) and constant EFH (blue) landing surfaces along with
example jumper trajectories for θT = 13◦. The landing surfaces end at the run-out when intersecting with the parent slope
(brown) at x ≃ 27 m. (b) Comparison of the EFH values for the standard tabletop and constant EFH landing surfaces. The
tabletop has a lip height of 1.5 m, a deck length of 30 ft, and a landing slope angle of 27.6◦ chosen to intersect the parent
surface at the maximum jumper path for the design speed (15.0 m/s) based on an approach length of 100 m. The constant
EFH surface has h = 1.0 m and continues until x ≃ 23 m at which point the landing angle equals 30◦. Beyond this point the
landing angle is constant at θL = 30◦ (dashed line) until it intersects the parent slope. The horizontal dashed (green) line in
(b) marks the EFH = 1.5 m USTPC criterion value.

removes some flexibility in moving or significantly altering jump shapes in mid-season and probably incurs significantly
more earthmoving expense.

For the reasons explained above, building a jump entirely above a constant slope can be expensive. Terrain park
personnel figured out long ago that taking advantage of natural undulations in the parent surface can minimize this
expense. Essentially the jump is put at a location on the parent slope that uses the natural topography rather than
snow to fill in the volume below the landing surface. This strategy is effective with constant EFH landing surfaces as
well for tabletops.

Nevertheless, it may sometimes be desired to place a jump on a constant slope. If the terrain is malleable (not
bedrock) the rough jump shape may be sculpted from the earth by excavation rather than from snow each season.
The shape of the landing surface is formed from earth rather than snow and thus needn’t require large amounts of
expensive artificial snow. An example of such topographical preforming would have the approach partially submerged
below the original parent surface, and the earth from this cut would then be pushed downhill to form the takeoff ramp
and part of the landing surface. After the snow is added, the entire jump would conform much more closely to the
parent slope, being sometimes above and sometimes below the original parent slope, saving considerably on the snow
required to fine tune the shape and provide enough base to ensure the parent slope is unlikely to ever be exposed. This
permanent fabrication of the jump shape will likely be more expensive initially, but it would require less additional
snow and shaping each snow season thereafter, and may be the most economical design option especially in a region
with limited natural snow and artificial snow budgets. Whether this is an economically feasible option will depend on
the details of the terrain park jump location, base parent slope, annual snowfall and snow making ability, grooming
equipment and maintenance resources, and crucially on the energy cost of artificial snow.

VI. SUMMARY

Winter terrain park jumps have been shown to present a special hazard to ski resort patrons for spine, neck,
and head injuries. Presently, such jumps are built without a quantitative engineering design approach based on the
assertion by the NSAA and supported by some researchers that there is too much variation in the conditions and
rider decisions. However, recent studies by the authors and others have examined these factors and determined that
while they do indeed vary, they do so in understandable and bounded fashion that can be accommodated or rendered
irrelevant by the design. The role of modelling the behaviour of a jumper executing a terrain park jump enables and
informs an intelligent design process that meets reasonable performance criteria while satisfying the constraints of
the parent terrain, snow budget, and safety considerations. The paper concluded with an illustrative example of the
design of a constant EFH jump on a hypothetical terrain park parent slope. It was shown that, unlike the tabletop
design, an appropriately designed constant EFH landing surface can satisfy the USTPC criterion for maximum EFH
for all values of the takeoff speed including rider “pop” effects. These insights were made possible by the extensive
use of computer modelling in setting up, constraining, and solving for the relevant design parameters.

There are several ways in which the present work may be extended and improved. Many of the physical parameters
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such as the range of drag and friction coefficients were estimated from older published research of a generic nature and
better values appropriate to actual snowboarders and skiers are needed. Once these physical parameters are better
determined, on-slope validation of the trajectory and rigid body models would improve general acceptance of this
approach as well as lead to further insights to improve the model. Finally, the modelling of trajectories is only part of
the story. Better modelling of the human factors related to the range of rider actions prior to the takeoff, in the air,
and upon landing would greatly improve our understanding of how riders interact with winter terrain park jumps.
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