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Good Correlations—Including an
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Abstract—A multiple-input multiple-output (MIMO) radar
system that transmits orthogonal waveforms via its antennas
can achieve a greatly increased virtual aperture compared with
its phased-array counterpart. This increased virtual aperture
enables many of the MIMO radar advantages, including enhanced
parameter identifiability and improved resolution. Practical radar
requirements such as unit peak-to-average power ratio and range
compression dictate that we use MIMO radar waveforms that
have constant modulus and good auto- and cross-correlation
properties. We present in this paper new computationally efficient
cyclic algorithms for MIMO radar waveform synthesis. These
algorithms can be used for the design of unimodular MIMO
sequences that have very low auto- and cross-correlation sidelobes
in a specified lag interval, and of very long sequences that could
hardly be handled by other algorithms previously suggested in the
literature. A number of examples are provided to demonstrate the
performances of the new waveform synthesis algorithms.

Index Terms—Autocorrelation, cross-correlation, MIMO radar,
range compression, unimodular sequences, waveform design.

I. INTRODUCTION

U
NLIKE a traditional phased-array radar system which

only transmits scaled versions of a single waveform, a

multiple-input multiple-output (MIMO) radar system transmits

via its antennas multiple probing signals that can be chosen

at will. Particularly, when transmitting orthogonal waveforms,

a MIMO radar system can achieve a greatly increased vir-

tual aperture compared to its phased-array counterpart. This

increased virtual aperture enables many of the MIMO radar

advantages, such as better detection performance [1], improved

parameter identifiability [2], refined resolution [3], and direct

applicability of adaptive array techniques [4]. Two recent
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reviews about MIMO radar systems can be found in [5] (for

colocated antennas) and [6] (for widely separated antennas);

see also the edited book [7].

Besides orthogonality, good auto- and cross-correlation

properties of the transmitted waveforms are also often required

such as in range compression applications [8]–[10]. In such a

case, good auto-correlation means that a transmitted waveform

is nearly uncorrelated with its own time-shifted versions, while

good cross-correlation indicates that any one of the transmitted

waveforms is nearly uncorrelated with other time-shifted trans-

mitted waveforms. Good correlation properties in the above

sense ensure that matched filters at the receiver end can easily

extract the signals backscattered from the range bin of interest

while attenuating signals backscattered from other range bins.

Additionally, practical hardware constraints (amplifiers and

A/D converters) require that the synthesized waveforms be

unimodular, i.e., constant modulus.

There is an extensive literature about MIMO radar waveform

design. In [11] and [12] the covariance matrix of the transmitted

waveforms is optimized to achieve a given transmit beampat-

tern, while in [13] the waveforms are designed directly to ap-

proximate a given covariance matrix. In [14]–[16], on the other

hand, some prior information is assumed known (e.g., the target

impulse response) and the waveforms are designed to optimize

a statistical criterion (e.g., the mutual information between the

target impulse response and the reflected signals). More related

to our work, [17] and [18] focus on orthogonal waveform design

with good auto- and cross-correlation properties, and [19] aims

at reducing the sidelobes of the MIMO radar ambiguity function

(i.e., both the range and Doppler resolution are considered). We

also note that in the area of multiple access wireless communi-

cations, the spreading sequence design basically addresses the

same problem of synthesizing waveforms with good auto- and

cross-correlation properties (see, e.g., [20]).

Extending the approaches in [9] and [21] and detailing the

discussions in [22], we present in this paper several new cyclic

algorithms (CA) for unimodular MIMO radar waveform design.

More specifically, we design MIMO phase codes that have good

correlation properties (from now on, we use “correlation” to

denote both auto- and cross-correlation). We first formulate

the problem in Section II. In Sections III and IV, we extend

the CA-new (CAN) and weighted-CAN (WeCAN) algorithms

proposed in [21] to the MIMO case; we will still call them CAN

and WeCAN for brevity. Both CAN and WeCAN can be used

to design good MIMO sequences; the difference is that CAN

considers the correlation for all time lags while WeCAN can

1053-587X/$26.00 © 2009 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on November 18, 2009 at 14:51 from IEEE Xplore.  Restrictions apply. 



4392 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 11, NOVEMBER 2009

TABLE I
NOTATIONS

consider selected lags by imposing weights. In Section V, we

present an algorithm named CAD (CA-direct) which is a more

direct approach to sequence design than the CA algorithm in

[9] (see also [13] and [23]). As will be shown in Section VI,

CAN can be used to design very long sequences because of

its FFT-based operation, and WeCAN and CAD can be used

to design sequences that have very low correlation at certain

desired lags.

Notation: We use boldface lowercase and uppercase letters to

denote vectors and matrices, respectively. See Table I for other

notations used throughout this paper.

II. PROBLEM FORMULATION

Consider a MIMO radar system with transmit antennas.

Each antenna transmits a phase-coded pulse which is composed

of subpulses and can be written in the baseband as (see, e.g.,

[24])

(1)

where

(2)

is the phase code to be designed (it is assumed that the phases

can be arbitrary values from ), is the

shaping subpulse, e.g., a rectangular pulse with amplitude 1

from time 0 to 1, is the time duration of one subpluse and

is the time duration of the whole pulse. The main

waveform design problem for such a system is to synthesize

the discrete waveform set with desired

correlation properties.

The (aperiodic) cross-correlation of and

at lag is defined as

(3)

When , (3) becomes the auto-correlation of

. We can design MIMO radar waveforms with

good correlation properties by minimizing the following

criterion:

(4)

To facilitate the following discussion, denote the matrix of the

transmitted waveforms by

(5)

where

(6)

is the waveform transmitted by the antenna. The waveform

covariance matrices for different time lags are given by

...
. . .

...

(7)

By using the following “shifting matrix”

. . .

(8)

the in (7) can be rewritten as

(9)

With the above notation, the criterion in (4) can be written more

compactly as

(10)

In some radar applications like synthetic aperture

radar (SAR) imaging, the transmitted pulse is relatively long

(i.e., is large) so that the signals backscattered from objects

in the near and far range bins overlap significantly (see e.g.,

[9] and the references therein). In this case, only the waveform

correlation properties in a certain lag interval around are

relevant to range resolution and a more proper minimization

criterion than (10) is given by

(11)
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where is the maximum lag that we are interested in.

More specifically, [ is as defined in (1)] should be

chosen no smaller than the maximum round trip delay of signals

backscattered from near and far range bins.

In the subsequent sections, we will first consider minimizing

correlation metrics related to the criterion in (10) and then to

the criterion in (11). We will show that cannot be made very

small whereas can be made practically zero if and are

sufficiently small relative to .

III. CAN

The CAN (CA-new) algorithm is associated with the criterion

in (10), which can be written as

(12)

The following Parseval-type equality holds true (the proof is

similar to that for the case of in [21]):

(13)

where

(14)

is the spectral density matrix of the vector sequence

and

(15)

The defined in (14) can be written in the following “peri-

odogram-like” form (see, e.g., [25]):

(16)

where

...
(17)

It follows from (13) and (16) that (12) can be rewritten as

(18)

Remark: The in (18) cannot be made very small, even

without the unit-modulus constraint on the elements of , be-

cause the rank 1 matrix cannot approximate well a full

rank matrix . Another way to understand this problem is to

examine, instead, the criterion defined in (11) where only

(which are complex-valued ma-

trices) are considered. is Hermitian with all diagonal ele-

ments equal to , so setting leads to

(real-valued) equations. do not have any spe-

cial structure; and thus setting them to zero adds equa-

tions for each of them. Thus, the total number of equations

is . Compared to this, the

number of variables that we can manipulate is (for

each of the waveforms there are free phases, as the

initial phase does not matter). Therefore, a basic requirement

for good performance is that , which can be

simplified to: . Put differently, only when

is it possible to design unimodular wave-

forms that make zero; in other cases or cannot be made

equal to zero.

Equation (18) is a quartic (i.e., fourth-order) function of the

unknowns . To get a simpler quadratic crite-

rion function of , note that

(19)

Instead of minimizing (19) with respect to , we consider

the following minimization problem: see equation (20) at the

bottom of the page, where “s.t.” stands for “subject to”, and

are auxiliary variables. Evidently, if (19) (without the

constant term ) can be made equal to zero (or

“small”) by choosing , so can (20), and vice versa. Thus, the

criterion in (19) and (20) are “almost equivalent” in the sense

that their minimization is likely to lead to signals with similar

correlation properties, provided that good such properties are

achievable (see Appendix B for a discussion on this aspect).

Note also that, while we use the original criterion in (19) to

motivate (20), the latter criterion could have been introduced

directly as a correlation metric in its own right.

Remark: It is clear from (19) that .

In general, is a loose bound. As an example, can be

(20)

Authorized licensed use limited to: University of Florida. Downloaded on November 18, 2009 at 14:51 from IEEE Xplore.  Restrictions apply. 



4394 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 11, NOVEMBER 2009

TABLE II
THE CAN ALGORITHM

made zero for only if (see the previous

Remark); this implies that cannot be made zero when ,

whereas when . Thus, indicates the

difficulty of making “small” rather than give a tight perfor-

mance bound.

To solve the minimization problem in (20), define

(21)

and

Then it is not difficult to observe that

(22)

(The second equality in (22) follows from the fact that is

unitary.) The criterion in (22) can be minimized by means of

two iterative (cyclic) steps. For given (i.e., is given), the

minimizer of (22) is given by

(23)

where

(24)

For given (i.e., are given), the minimizer

of (22) is given by

(25)

where

element of (26)

The CAN algorithm thus obtained is summarized in Table II.

Note that the in (24) is the FFT of each column of

and that the in (26) is the IFFT of each column of .

Because of these (I)FFT-based computations, the CAN algo-

rithm is quite fast. Indeed, it can be used to design very long

sequences, e.g., sequences with and , which

can hardly be handled by other algorithms suggested in the pre-

vious literature.

As explained in the Remarks in this section, the criterion

defined in (10) is lower bounded by and therefore

it cannot be made equal to a “small” value. This unveils the fact

that it is not possible to design a set of sequences which are

orthogonal to each other and for which all time-shifted correla-

tions are zero. Fortunately, in some application it is desired to

minimize the correlations only within a certain time lag interval

[e.g., to minimize the defined in (11)] and, provided that this

interval is not too large [see the Remark following (18)], it is

possible to make these correlations very small. The WeCAN al-

gorithm presented in the next section is derived to achieve such

a goal by introducing different weights for different correlation

lags.

IV. WECAN

The WeCAN (weighted-CAN) algorithm aims at minimizing

the following criterion:

(27)

where are real-valued weights. For instance, if we

choose for and otherwise,

becomes the defined in (11).

Similarly to the proof of (13), we can show that

(28)

where is given by (15) and

(29)

and where for . To facilitate later

developments, is chosen such that the matrix

. . .
...

...
. . .

. . .
(30)

is positive semi-definite (denoted as ). ( can be de-

termined in the following way. Let be the matrix with all

diagonal elements set to 0, and let denote the minimum

eigenvalue of ; then if and only if , a

condition that can always be satisfied by selecting .) The con-

dition is necessary because the matrix square root of is

needed later on [see (34)].
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Similarly to (16), it can be shown that (the proof is similar to

that in [21] for the case of ):

(31)

where

(32)

By combining (28) and (31), the criterion function becomes

(33)

Instead of minimizing (33) with respect to , we consider the

following minimization problem [see the discussion following

(20)]:

(34)

where the matrix is a square root of (i.e.,

).

The minimization problem in (34) can be solved in a cyclic

way as follows. For given (i.e., is given), (34) de-

couples into independent problems, each of which can be

written as

(35)

where “const” denotes a term that is independent of the variable

. Let

(36)

denote the singular value decomposition (SVD) of ,

where is , is and is . Then

the minimizer of (35), for fixed , is given by (see, e.g.,

[13] and [26]):

(37)

Note that the computation of can be done by means

of the FFT. To see this, let

(38)

and

(39)

where has been defined in (21). Then it is not difficult to

observe that the matrix is given by reshaping the

TABLE III
THE WECAN ALGORITHM

vector into each column (from left to right) of ,

where denotes the row of .

For given , the minimization problem in (34) also

has a closed-form solution with respect to . Let

(40)

where denotes the vector given by the columns of

stacked on top of each other. Then the criterion in

(34) can be written as equation

(41)

Equation (41) can be minimized with respect to each element of

separately. Let denote a generic element of

. Then the corresponding problem is to minimize the

following criterion with respect to :

(42)

where are given by the elements of which contain ,

and are given by the elements of whose

positions are the same as those of in . (More specif-

ically, for , is given by the element

of and is given by the element of

.) Under the unimodular constraint, the minimizer

of the criterion in (42) is given by

(43)

The WeCAN algorithm follows naturally from the above dis-

cussions and it is summarized in Table III.

Like CAN, the WeCAN algorithm also makes use of (I)FFT

operations (see the in (39) and in (41)). However,

compared to CAN, which needs computations of -point

(I)FFT’s in one iteration, WeCAN requires computations

of -point (I)FFT’s. Moreover, WeCAN requires com-

putations of the SVD of an matrix [see (36)]. Thus,

WeCAN is not so computationally efficient as CAN, but it can

still be used for relatively large values of and , up to

and .
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V. CAD

The CAD (CA-direct) algorithm aims at minimizing a partic-

ular form of the criterion in (27):

(44)

which can be obtained from (27) by choosing weights

for and otherwise. The above

choice of results from the following problem formu-

lation that is simple and direct. Consider the following matrix:

(45)

where

...
. . .

...
...

. . .
...

(46)

Then it is easy to observe that the defined in (44) can be

expressed as

(47)

Remark: The papers [9], [13], and [21] have considered the

following problem, instead of minimizing (47):

(48)

and the cyclic algorithm corresponding to (48) was named CA;

see Section VI for some examples that involve CA.

Next we show how to minimize (47) with respect to a generic

waveform element . Let denote the matrix

with all elements comprising set to 0 ( appears

times in ), and let denote an matrix

whose elements are all 0 except those elements whose positions

are the same as the positions of in , which are 1. Then

we have

(49)

TABLE IV
THE CAD ALGORITHM

Thus, the criterion in (47) can be written as (below the

dependence of , and on and is omitted for

brevity)

(50)

where and “const” denotes a term that

is independent of the variable . To write (50) more compactly,

we let

(51)

which leads to

(52)

The discussion above shows that the minimization of (47)

with respect to a single waveform element is

equivalent to the following problem:

(53)

which can be easily solved numerically (see Appendix A).

Then we propose that (47) be minimized with respect to each

in a one by one manner, and the process be

repeated iteratively. The resulting algorithm is called CAD

(CA-direct) and is summarized in Table IV. (The adjective

“direct” attached to the name of this algorithm is motivated by

the fact that the algorithm deals directly with the criterion in

(44), and not with the related one in (48).)
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Fig. 1. Correlations of the 40-by-3 CE and CAN sequences.

VI. NUMERICAL EXAMPLES

A. The Minimization of in (10)

Consider minimizing the criterion in (10), i.e., minimizing

all correlation sidelobes: for all and , and

for all and . Suppose that the number

of transmit antennas is and the number of samples is

. We compare the CAN sequence with the CE (cross

entropy) sequence in [18]. (From here on, “sequence” will be

short for “an -by- set of sequences”.) We use a randomly

generated sequence to initialize CAN (see Step 0 in Table II).

100 Monte Carlo trials are run (i.e., 100 random initializations)

and the sequence with the lowest correlation sidelobe peak is

kept. The 40-by-3 CE sequence is given in Table I of [18].

Fig. 1 shows the correlations ( , normalized

by ) of the CAN sequence and CE sequence. The CE sequence

is slightly better than the CAN sequence in terms of correlation

sidelobe peaks. However, our goal is to minimize or equiva-

lently the following normalized fitting error:

(54)

The CAN sequence gives a fitting error of 2.00, whereas the CE

sequence has a bigger fitting error equal to 2.23.

Note that although the CAN and CE sequences show com-

parable performances (also comparable to the performance of

other sequences like the ones in [17]), the CAN algorithm works

much faster than other existing algorithms, because CAN is

based on FFT computations. For the above parameter set (

and ), the CAN algorithm consumes less than one

second on an ordinary PC to complete one Monte Carlo trial.
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The overall computation time is still short if we run plenty of

Monte Carlo trials and pick up the best sequence. Moreover, the

computation time of CAN grows roughly as so

that CAN can handle very large values of , up to .

In contrast, the cross entropy [18] or simulated annealing based

methods [17] are relatively involved and become impractical for

large values of . In fact, we were unable to find in the literature

any MIMO code that is designed for good (aperiodic) correla-

tions and at the same time is sufficiently long to be comparable

with the CAN sequence.

For relatively large values of , we decided to employ the

Hadamard sequence (see, e.g., [27]), which is easy to generate

(for virtually any length that is a power of 2) and is frequently

used in wireless communications, for comparison. We also

scrambled the Hadamard sequence with a PN (pseudo-noise)

sequence to lower its correlation sidelobes. We compare the

CAN sequence (100 Monte Carlo trials are run for each

and the result with the lowest correlation sidelobe peak is

shown) and the QPSK Hadamard+PN sequence for and

. Fig. 2 compares the sequences in terms of

three criteria: the auto-correlation sidelobe peak, the cross-cor-

relation peak and the normalized fitting error [defined in (54)].

The CAN sequence outperforms the Hadamard PN sequence

with respect to each criterion. In fact, the advantage of the

CAN algorithm lies not only in the significant length and the

low correlation sidelobes of the designed sequences, but also in

the easy generation (using different initial conditions) of many

sequences which are of the same -by- dimension and all

have reasonably low correlation sidelobes. These randomly

distributed waveform sets are useful to some application areas,

like to countering the coherent repeater jamming in radar

systems (see, e.g., [8] and [17]).

Remark: In the derivation of the CAN algorithm (as well as

those of the WeCAN and CAD algorithms), we have assumed

that the phases [ , see (2)] can take on arbitrary

values from to . Interestingly, if we quantize the phases, the

performance of the designed sequences will not degrade signif-

icantly if the quantization is not too rough. See Appendix C for

an example.

B. The Minimization of in (11)

Consider minimizing the criterion in (11), i.e., minimizing

the correlation sidelobes for lags not larger than :

for all and , and for all

and . Suppose that the number of transmit

antennas is , the number of samples is and

the number of correlation lags we want to consider is .

Similarly to (54), the normalized fitting error for this scenario is

defined as

(55)
We also define the correlation level as

(56)

which measures the “total” correlation for a certain lag.

Fig. 2. Comparison between the CAN sequence and the Hadamard � PN se-
quence with � � � and � � � � � � � � � in terms of (a) the auto-correlation
sidelobe peak, (b) the cross-correlation peak, and (c) the normalized fitting error
as defined in (54).

We compare the WeCAN algorithm and the previously sug-

gested CA algorithm (see (48) and also [9] and [13]). We use

a randomly generated unimodular sequence to initialize both

WeCAN and CA. To construct the matrix in (30) that is needed

in WeCAN, we choose

(57)

and is chosen to ensure that [more exactly we choose

following the discussion right after (30)].
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Fig. 3. Correlation levels of the CA sequence and the WeCAN sequence for � � ���, � � � and � � ��. (The dotted vertical lines signify the boundary of
the time lag interval under consideration.) (a) The CA sequence and (b) the WeCAN sequence.

TABLE V
COMPARISON BETWEEN CAN, CA AND WECAN UNDER

���� � ���� � � �� � � ��	

Table V compares the CA sequence and the WeCAN se-

quence in terms of the auto-correlation sidelobe peak (in the

considered lag interval), the cross-correlation peak (in the con-

sidered lag interval) and the defined in (55). (The 256 4

CAN sequence is also added in Table V for comparison.) The

WeCAN sequence gives the lowest correlation sidelobe peak

and fitting error. Fig. 3 shows the correlation level of the

CA and WeCAN sequences. We observe from Fig. 3 that the

WeCAN sequence provides a “uniformly low” correlation level

in the required lag interval , while the correlation

level of the CA sequence increases as the lag increases from 1

to . This behavior is attributed to the fact that WeCAN

makes use of uniform weights in (57) whereas

CA implicitly assumes “uneven” weights

[see (44)], so the bigger the lag, the smaller the weight. We

also note that the correlation level at for the WeCAN

sequence is very low [around 85 dB, although in Fig. 3(b) we

limit it to 50 dB for easier comparison with Fig. 3(a)]. The

reason is that we chose , which is much larger than

the other weights (see the last paragraph) and thus the “0-lag”

correlation fitting error is emphasized the most in

the criterion of in (27).

C. The Minimization of in (27)

Consider using the WeCAN algorithm to minimize the crite-

rion in (27) with and the following weights:

(58)

[as before, is chosen to ensure the positive semi-definiteness

of in (30)]. We still use a randomly generated sequence to

initialize WeCAN. In this scenario, the normalized fitting error

is defined as .

TABLE VI
COMPARISON BETWEEN CAN AND WECAN UNDER 
��� � ���� � � �	

Table VI compares the WeCAN sequence and the 256 4

CAN sequence. The WeCAN sequence provides much lower

correlation sidelobe peaks and much smaller fitting error. Fig. 4

shows the corresponding correlation levels of the CAN and

WeCAN sequences, from which we see that WeCAN succeeds

much better in suppressing the correlations at the required lags.

Note that because for all and , the

correlation level corresponding to the maximum lag is

always equal to , which is 42.14 dB

in this case [see the end points in both Fig. 4(a) and (b)].

D. CAD Versus CA

Consider again minimizing the criterion in (11), with

, and . Note that in this case

is satisfied and therefore it is in principle

possible to make equal to zero (see the Remark following

(18) in Section III).

We use the CA and CAD algorithms (with random initial-

ization) to design the sequence. Fig. 5 shows the correlation

levels of the CA and CAD sequences. Both of them give almost

zero ( 300 dB can be considered as zero in practice) correla-

tion sidelobes in the required lag interval. The normalized fit-

ting error [defined in (55)] is for CA and

for CAD, which indicates an almost exact covari-

ance matrix match. Thus, both the CA and CAD sequences can

be considered as nearly globally-optimal in terms of minimizing

the criterion . (The WeCAN algorithm is also able to give an

almost zero in this case, but we do not show its results

here for brevity.)

In all cases that we have tested, CAD and CA always per-

formed very similarly to each other in terms of correlation level

and fitting error. (For instance, if we replaced Fig. 3(a) by the

plot of the CAD sequence with the same dimension, there would

be little visual difference.) This fact provides empirical evi-

dence that the “almost equivalence” between (47) and (48) holds
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Fig. 4. Correlation levels of the CAN sequence and the WeCAN sequence for� � ���,� � � and weights �� � as specified in (58). (The dotted vertical
lines signify the boundaries of the time lag interval under consideration.) (a) The CAN sequence and (b) the WeCAN sequence.

Fig. 5. Correlation levels of the CA and CAN sequence and the WeCAN sequence for � � ���, � � � and � � ��. (The dotted vertical lines signify the
boundary of the time lag interval under consideration.) (a) The CA sequence and (b) the CAD sequence.

true at least from the viewpoint of algorithm performance. See

Appendix B for further discussions about this aspect.

Remark: To perform well, all cyclic algorithms discussed in

this paper require a proper value for the stop criterion param-

eter (see e.g., the last step in Table III). For the above example

where the inequality is satisfied, a suf-

ficiently small (e.g., ) should be used to allow running

enough many iterations that drive the criterion to zero. In other

examples, a “moderate” (such as ) is preferred to prevent

the algorithm from running indefinitely without decreasing the

criterion any more.

E. MIMO SAR Imaging Application

Consider a MIMO radar angle-range imaging example (intra-

pulse Doppler effects are assumed to be negligible) using uni-

form linear arrays with colocated transmit and

receive antennas. The inter-element spacing of the transmit and

receive antennas is equal to 2 and 0.5 wavelengths, respectively.

Suppose that all possible targets are in a far field consisting of

range bins (which means that the maximum round trip

delay difference within the illuminated scene is not longer than

59 subpulses) and a scanning angle area of 40,40 degrees.

The length of the probing waveform for each transmit antenna

is .

Let denote the transmitted probing waveform ma-

trix [see (5)], and let

(59)

where is a matrix of zeros. Then the

received data matrix can be written as

(60)

where is an shifting matrix as

defined in (8) (with the same structure but different dimension),

is the noise matrix whose columns are independent and

identically distributed (i.i.d.) random vectors with mean zero

and covariance matrix , are complex ampli-

tudes which are proportional to the radar-cross-sections (RCS)

of the scatters, and and are the receive and transmit

steering vectors, respectively, which are given by

(61)

and

(62)
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Fig. 6. True target image {the absolute of �� � are shown).

where are the scanning angles. Our goal is to estimate

from the collected data .

First we apply the following matched filter to the data matrix

:

(63)

(note that ) to perform range compression for

the range bin, i.e.,

(64)

where

Equation (64) leads naturally to the following least squares (LS)

estimate of :

(65)

as well as to the following Capon estimate:

(66)

where denotes the covariance matrix of the “com-

pressed” received data (see [4] for more details about these es-

timates of ).

To obtain a larger synthetic aperture, we use the SAR

principle and thus repeat the process of “sending a probing

waveform and collecting data” at different positions;

the collected data matrices are denoted as

respectively. Suppose that two adjacent positions are spaced

wavelengths apart, which induces a phase shift of

for both the transmit and receive

steering vectors corresponding to the two adjacent positions.

(As long as the “targets in the far-field” assumption holds, the

distance between two adjacent positions can be chosen at will

and can be different for different adjacent positions; we only

need to change the phase shift accordingly.) In this case, we

let

(67)

and

(68)

Using this notation, the expressions for the estimates of in

(65) and (66) can be used mutatis mutandis.

In the numerical simulation, the noise covariance matrix

is chosen as , where . The targets are chosen

to form a “UF” shape (see Fig. 6) and the RCS-related param-

eters are simulated as i.i.d. complex symmetric

Gaussian random variables with mean 0 and variance 1 at the

target locations and zero elsewhere. The average (transmitted)

signal-to-noise ratio (SNR) is given by

30 dB (69)

We use two different probing sequences: the QPSK

Hadamard+PN sequence and the CAD sequence with

and . The transmitted waveform

is phase-modulated by the probing sequence (one sequence

element corresponds to one subpulse) and we assume proper

sampling so that the considered discrete models are appro-

priate. The estimated using these two waveforms

are shown in Fig. 7. The CAD waveform gives much clearer

angle-range images than the Hadamard+PN waveform. Note

from Fig. 7(c) and (d) that the CAD waveform facilitates al-

most perfect range compression via the matched filter (the false

scatterers are due to the presence of noise) and that the Capon

estimator provides a radar image with a high angle resolution.

VII. CONCLUDING REMARKS

In this paper we have presented several new cyclic algo-

rithms, namely CAN, WeCAN and CAD, for the synthesis of

unimodular sequence sets which can be used to phase-modulate

a MIMO radar waveform. We aimed at generating sequence sets

that have both good auto- and cross-correlation properties. The

CAN algorithm can be used to design very long sequences (of

length up to ), which can hardly be handled by other

algorithms previously suggested in the literature. The WeCAN
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Fig. 7. Estimated target images in terms of the RCS-related parameters ��� �� . (a) The LS estimate using the Hadamard�PN waveform, (b) The Capon
estimate using the Hadamard� PN waveform, (c) The LS estimate using the CAD waveform and (d) The Capon estimate using the CAD waveform.

algorithm is useful when only a few selected correlation lags

are of interest. The CAD algorithm minimizes a specific form

of the WeCAN criterion; unlike the other algorithms, it does

so in a direct manner without relying on an “almost equiva-

lent” criterion. The WeCAN or CAD algorithm can make the

correlation levels almost zero if the lag interval of interest

is sufficiently small. Several numerical examples have been

presented to demonstrate the good performance of the designed

sequences. The proposed sequence set design algorithms can

also be used for waveform design in multiple access wireless

communications applications.

APPENDIX A

SOLVING THE MINIMIZATION PROBLEM IN (53)

The problem is to minimize the following single-variable

function:

(70)

We take the derivative of with respect to and set it to 0:

(71)

By using trigonometric identities, (71) can be written as

(72)

where

Equation (72) is a -order polynomial equation whose roots

can be found in closed-form. (However, the closed-form root

formula is somewhat complicated and we will actually use the

companion matrix method to compute the roots, see [28]; the

latter only requires computing the eigenvalues of a 4 4 matrix

and works even faster than the algebraic closed-form formula.)

Then we select the real-valued roots (in terms of ) of (72) and

form a set of these roots together with the end points and ;

the point in this set that gives the smallest value of in (70)

determines the minimizer of (53).

APPENDIX B

ON “ALMOST EQUIVALENCE”

As mentioned in Section III, the criteria in (20) and (19) are

what we can call “almost equivalent” (and so are (34) and (33) in

Section IV, and (48) and (47) in Section V). For simplicity, let us

assume that here (in which case the designed sequence

becomes ). Then (19) can be written as

(73)
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Fig. 8. The contour surface plots of the two metrics � and � . Solid yellow, hatched green and solid black represent small, middle and large values, respectively.
(a) The � in (73) and (b) � in (78).

Let

(74)

and note that (from Parseval

equality). The goal is to determine such that (73)

is minimized. To simplify this determination we can first deter-

mine such that

(75)

That is, we over-parameterize the problem (73) via the use of

and then we will fit the right-hand-side of (74) to the

so-obtained .

The solution to (75) is obviously given by

(76)

It is clear from (74) that constrains the magnitude of

but leaves its phase free. Therefore, fitting

to leads to the following minimization problem:

(77)

which is exactly (20) for .

As evidenced in the foregoing analysis, the criterion in (77)

is itself a correlation metric in its own right; if there exists

that makes the criterion in (77) zero, the same

will also make the original criterion in (73) zero.

By continuity arguments, the that makes (77) small

will also make (73) equal to a small value.

According to the derivation in Section III [c.f. (23)],

for fixed , the minimizer is given by

. Thus, the crite-

rion in (77) can be written as

(78)

To illustrate the relationship between in (73) and in (78),

we show the contour plots of these two metrics in the case of

. Note that both and are functions of the variables

, which are the phases of and each can

take values from to . We cover the phase range by

50 points and calculate and at each grid point in the three

dimensional cube . Then we use three different colors

to draw contour surfaces with values around the minimum value

plus 1, the median value and the maximum value minus 1 of

( ), respectively. The resulted plots are shown in Fig. 8

We can first observe from Fig. 8 that both and are

“quite irregular” metrics with respect to : contour

planes with different values interleave with each other and there

is hardly any global direction of consistent functional increasing

or decreasing. On the other hand, locally there are clear gradient

structures, as seen from the sequentially repeated “yellow green

black” planes, especially in Fig. 8(a). Another interesting obser-

vation is that the shape and positions of yellow and green planes

(corresponding to small and middle values) in Fig. 8(a) are very

similar to those of yellow and green planes in Fig. 8(b). This

observation lends support to the previous claim that a sequence

resulting in a small value of also makes small.

In the above case where , we actually have

(79)

The complex sinusoidal terms in (79) imply a periodic pattern

with many local minima, which can be observed from Fig. 8.

Indeed, the smallest value of in this example is 2.0, and it ap-

pears ten times for the grid points (it will appear
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Fig. 9. Same comparisons as shown in Fig. 2(a) and (b), except that the phases of the CAN sequence used here are quantized into 32 levels.

more times if we use a finer grid). Interestingly, if we apply the

CAN algorithm described in Section III, the generated sequence

makes equal to 2.0 and thus achieves the global

minimum. Moreover, different initial conditions (c.f. Table II)

lead to different sequences, which are all global minima (i.e.,

making equal to 2.0). This again sheds some light on the va-

lidity of the “almost equivalent” metric .

APPENDIX C

ON QUANTIZATION EFFECT

We have assumed in this paper that the phases of the designed

sequences can take on any values from to . In practice

it might be required that the phases are drawn from a discrete

constellation. Thus, we briefly examine here the performance

of our designed sequences under quantization.

Let denote the sequence set that is obtained

from one of the algorithms discussed in this paper. Suppose that

the quantization level is where is an integer. Then the

quantized sequence can be expressed as

(80)

We quantize the CAN sequence used in Fig. 2 into 32 levels

(i.e., ) and do the same comparisons with the Hadamard

PN sequence. The results are shown in Fig. 9, from which we

see that the curves representing the CAN sequence move up a

little but they are still below the corresponding curves of the

Hadamard+PN sequence [except for the point of in

Fig. 9(b)]. We do not plot the fitting error here as was done in

Fig. 2(c), because the fitting error of the CAN sequence almost

does not change after this 32-level quantization.

Similar situations occur if we quantize sequences generated

from the other algorithms (WeCAN, CAD and CA) used in

Section VI. In our test, the performance degradation (i.e., the

correlation sidelobe increase) was quite limited provided that

the quantization level was not very small (e.g., ).
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