
����������
�������

Citation: Maia, B.A.; Magalhães, N.;

Cunha, E.; Braga, M.H.; Santos, R.M.;

Correia, N. Designing Versatile

Polymers for Lithium-Ion Battery

Applications: A Review. Polymers

2022, 14, 403. https://doi.org/

10.3390/polym14030403

Academic Editor: Hyung-Seok Lim

Received: 29 November 2021

Accepted: 17 January 2022

Published: 20 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Designing Versatile Polymers for Lithium-Ion Battery
Applications: A Review
Beatriz Arouca Maia 1,2,3,†, Natália Magalhães 1,† , Eunice Cunha 1,* , Maria Helena Braga 2,4 ,
Raquel M. Santos 1,2 and Nuno Correia 1,2

1 Materials and Composite Structures Unit, Institute of Science and Innovation in Mechanical and Industrial
Engineering (INEGI), 4000-014 Porto, Portugal; bmaia@inegi.up.pt (B.A.M.); nmagalhaes@inegi.up.pt (N.M.);
rmsantos@inegi.up.pt (R.M.S.); ncorreia@inegi.up.pt (N.C.)

2 LAETA—Associated Laboratory of Energy, Transports and Aeronautics, 4200-265 Porto, Portugal;
mbraga@fe.up.pt

3 Chemical Engineering Department, FEUP—Faculty of Engineering, University of Porto,
4200-265 Porto, Portugal

4 Engineering Physics Department, FEUP—Faculty of Engineering, University of Porto,
4200-265 Porto, Portugal

* Correspondence: ecunha@inegi.up.pt
† These authors contributed equally to this work.

Abstract: Solid-state electrolytes are a promising family of materials for the next generation of high-
energy rechargeable lithium batteries. Polymer electrolytes (PEs) have been widely investigated due
to their main advantages, which include easy processability, high safety, good mechanical flexibility,
and low weight. This review presents recent scientific advances in the design of versatile polymer-
based electrolytes and composite electrolytes, underlining the current limitations and remaining
challenges while highlighting their technical accomplishments. The recent advances in PEs as a
promising application in structural batteries are also emphasized.
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1. Introduction

Global development is highly dependent on energy. Considering the impact of fossil
fuels, global warming, and widespread pollution, the need for green, renewable, and
alternative energy sources and storage systems is vital [1]. The cell of an electric battery is
seemingly simple and easy to implement. It is based on the combination of two electrodes
separated by an electrolyte to generate and store electric energy through a mechanism
involving electrochemical reactions, with a spontaneous discharge and a charge requiring
external electrical work. The first is driven by the necessity to align the electrochemical
potentials of the electrodes and the latter serves the creation of the bias. Several approaches
have been developed to optimize cells for different final applications and performance
requirements [2].

At the end of the 20th century, and driven by the emerging market for wireless tech-
nologies, the demand for efficient and safe rechargeable batteries increased and lithium-
based batteries became the go-to solution to fulfil most requirements [3]. Lithium (Li), an
alkali metal, offers the best energy capacity and long-term life due to its high theoretical
capacity. However, due to market pressures, it has become increasingly scarce and features
in most critical raw materials lists. Continuous progress in Li-based batteries has been
promoted by the intensive research carried out by scientists and engineers and a globally
expanding need for better systems, where innovative battery components contribute signif-
icantly to producing and storing electrical energy. Nonetheless, it is necessary to highlight
the crucial importance of the electrolyte and its influence on the capacity, stability, and
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operating conditions of Li-ion batteries (LIBs) [4–6]. Electrolyte performance has a direct
impact on the working temperature, safety, cyclability, and cell capacity of the battery [7].

Depending on their physical state, electrolytes can be classified as liquid or solid.
Solid electrolytes are typically classified in two subtypes: (i) organic (polymer-based) and
(ii) inorganic. On the other hand, polymer electrolytes can be subdivided into solid-polymer
electrolytes (SPEs) and gel-polymer electrolytes (GPEs). In the former, the polymeric matrix
is a solid ionic conductor itself, and the latter comprises the incorporation of a common
liquid electrolyte into a polymer, aiming at improving its properties. Besides, when the
incorporation of fillers is accomplished, a new class of electrolytes arises that is titled
“composite-polymer electrolytes” (CPEs).

Aside from the obvious morphological differences, the expected performance of each
type of electrolyte is also noticeably distinct. Figure 1 summarizes the most important
electrolyte characteristics for enhanced battery operation.
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Liquid electrolytes are a mature technology that has shown to be reliable in terms of
ionic conductivity, with values ranging from 10−3 to 10−2 S·cm−1 at room temperature
(RT). Nevertheless, hazards (such as high flammability) and poor recyclability still restrict
their use in a wide range of technological applications [8]. These limitations guide the
development of novel and versatile high-performance electrolytes to significantly improve
the safety issues and electrolyte leakages, which are known to limit the overall performance
of a Li+-based battery [9–11]. This has led to a recent rise in promising alternative materials,
including solid-state electrolytes due to their intrinsic slower reactivity, resulting in a longer
device cycle life when compared to the liquid counterparts [12].

Inorganic electrolytes, although more ionically conductive, produce lower mechani-
cal properties and poorer performance in highly demanding structural applications [13].
Conversely, organic electrolytes, such as carbon-based polymers, show greater flexibility
and capacity of solvating ions, due to the presence of oxygen and nitrogen groups in
their chemical structure. Polymer electrolytes are also normally cost-efficient compared
to inorganic and liquid electrolytes. The major advantages of employing solid- or gel-
polymer electrolytes result from the conjunction of three different dimensions of analysis:
(i) mass-producibility [14], (ii) thermal conductivity and stability, and (iii) electrochemical
stability, ionic conductivity > 10−3 S·cm−1 and, consequently, energy density. [15]. Unlike
what occurs with liquid electrolytes, serial stacking of solid-state batteries becomes sim-
pler/feasible. This can also improve the efficiency, reduce design problems, and increase the
volumetric density of the overall system, Costs can also be reduced with the easier recovery
of solid electrolytes and, as such, this dimension can also be taken into consideration.
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The first attempts to produce polymer electrolytes (PEs) were done by Wright et al. [16],
who investigated the ionic conductivity of doped poly(ethylene oxide) (PEO) with alkali
metals in the mid-1970s [16–18]. In 1978, Armand et al. [19] studied the use of PEO in
electrochemical applications, showing that the conducting character of this material is
promoted through the amorphous regions by proposing a PEO-Li salt with an increased
ionic conductivity (~10−4 S·cm−1) at 40–60 ◦C. Feuillade et al. [20] showed the conception
of a quasi-solid GPE for a Li cell through the incorporation of plasticizers into a polymer-
salt system. Another turning point in this field was accomplished by Skaarup et al. [21] in
1988, who developed a composite electrolyte. The authors created mixed-phase electrolytes
based on lithium nitrile (Li3N) and lithium triflate (LICF3SO3) with PEO, resulting in an
electrolyte with higher ionic conductivity. Some signs of progress were also achieved with
special emphasis on inorganic (or ceramic) electrolytes. For example, Wieczorek et al. [22]
added aluminum oxide (Al2O3) to enhance the ionic conductivity of PEO-based electrolytes,
mainly promoted by an increase in the amorphous region.

Therefore, this review aims to show the main scientific progress in the design of
versatile polymer-based electrolytes and composite electrolytes, underlining the current
limitations and remaining challenges and highlighting their technical accomplishments.
Special emphasis will be given to the potential employment of polymer electrolytes in
structural batteries since they have been considered the most promising materials for these
highly demanding applications.

2. Overview

Li-ion batteries already dominate the market, from laptops and smartphones to electric
vehicles [23,24], because of their ability to enable high-energy- and high-power-density-
demanding applications. LIBs are normally formed by a cathode, a separator, an anode,
and an electrolyte. The latter has a crucial role in the proper operation of the supply system
since it serves as a medium for Li-ion movement between both electrodes. The electrolyte
must be a good insulator so that all electrons can be conducted exclusively by the external
circuit. If the electrolyte is damaged, insulation and safety can become compromised
and electricity production becomes impossible. Thus, the operating environment, abuse
tolerance (such as overcharging), and battery chemistry [25–27] require special attention, as
these determine the safety and performance of electrolytes, and ultimately the performance
of LIBs. Important factors that influence the electrochemistry of batteries (Li deposition in
a LIB cell) are presented in Figure 2.

Harsh conditions, high temperature, or mechanical damage [23,24,28–31] lead to
increased risks of toxicity, leakage, and flammability in LIBs. In addition, the high reactivity
between the electrodes and the electrolyte can promote the formation of an unstable solid-
electrolyte interface (SEI) film [32,33]. This film contributes to an increase in the impedance,
as the SEI layer is essentially formed by Li-based inorganic insulators, and a decrease in the
electrical contact and capacity [34,35].

Lithium dendrite formation and growth, as well as parasitic reactions, are also a com-
mon drawback, and occur during the charge/discharge process, leading to the deposition
of Li-rich compounds beyond metallic Li at the interface [7,36]. The consecutive deposition
of this Li can promote short-circuits and can lead to electrolyte decomposition during
cycling [37]. Other causes induce dendrite formation, including mechanically weak elec-
trolytes, irreversible surface reactions, and unstable ion transport [38,39]. When combined,
these promote complete failure, not only of the LIB but also of the device where the LIB
is installed.

Strategies to overcome these safety challenges have been explored to optimize the
overall performance of the electrolyte operation in a LIB cell. Alternative polymer elec-
trolytes can produce innovations in mass savings, shape flexibility, and fire retardancy [40].
The pioneering work by Fenton et al. [17] showed that the ionic conductivities of modified
polymers with inorganic salts, formed by complexation between PEO and alkali metals,
stimulated substantial research into improved SPEs, new theoretical modelling of ionic
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transport, and a better understanding of the performance and properties of SPEs, such
as the electrolyte/electrode interface [41,42]. Nonetheless, conductivities in the order of
10−8~10−7 S·cm−1, at RT, restrained the application of PEO-based SPEs.
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Different methodologies have been investigated to improve this property, including
the modification and optimization of the polymer backbone, polymer blending, and filler
incorporation (polymer compounding) [43–48]. Undoubtedly, the application of an SPE
in a LIB can produce high-energy, -density, -safety, and -power devices [49–51]. However,
the interactions on the polymer–metal ion interactions are affected by a wide possibility of
factors, including distance and composition between functional groups, the nature of the
functional groups that are attached to the polymer backbone, molecular weight distribution,
and the degree of branching [40,52].

Contrasting with this approach, in 1975, the concept of gel-polymer electrolytes was
proposed by Feuillade et al. [7]. The properties of a GPE are an intermediate compromise
between the features of an SPE and a liquid electrolyte. A GPE is obtained by incorporat-
ing liquid plasticizers and/or solvents into a polymer–salt system. The key functions of
this plasticizer/solvent incorporation are to increase the content of amorphous regions in
the electrolyte, to boost segmental motion, and to improve structural support, ultimately
increasing the safety of usage by maintaining the GPE in a quasi-solid state [53,54]. Addi-
tionally, and unlike what happens in SPEs, Li-ion transport is not subjected to the segmental
motion of the polymer; instead, the lithium ions move through both the gelled and liquid
phases. In the first case, the Li+ transport happens when the membrane is homogeneous or
when a low percentage of connected pores is formed. On the other hand, if the membrane is
mainly constituted by connected pores, the conductivity will be mostly related to the prop-
erties of the liquid electrolyte. The most popular polymers used to produce GPEs include
poly(ethylene oxide) (PEO), poly(vinylidene fluoride) (PVDF), poly(methyl methacry-
late) (PMMA), polyacrylonitrile (PAN), and poly(vinylidene fluoride-hexafluoropropylene)
(PVDF-HFP) because of their greater affinity with solvents and plasticizers that results
from the polar nature of their bonds. In terms of benefits, GPEs have enhanced mechanical
properties (in terms of flexibility, mechanical strength, etc.), high ionic conductivities, and
superior electrolyte/electrode interfacial properties compared to liquid electrolytes. The
biggest drawback of this type of electrolyte is the effect on ionic conductivity due to the
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added plasticizer. The addition of organic solvents creates unstable thermal behavior,
which leads to events such as fire and explosions. Because of this, chemical and physical
crosslinking, as well as physical support membranes, were introduced to overcome these
shortcomings and improve mechanical strength. The incorporation of inorganic fillers has
also helped improve the electrochemical and transport properties [5,7,13,55–59].

Considering what has been discussed so far, it is clear that this field requires optimiza-
tion to not only diminish the safety hazards related to SPE/GPE employment, but also
to enhance the overall performance of these types of electrolytes (and, consequently, the
overall LIB performance). From Table 1, it is possible to compare some inherent properties
of the electrolytes mentioned above.

Table 1. Overview of inherent properties of the employed electrolytes in LIBs.

Electrolyte
Type

Ionic Conductivity
(RT)

Interfacial
Properties

Thermal
Stability

Electrochemical
Stability

Mechanical
Strength Safety

Liquid >10−3 S·cm−1 Good Poor Poor Poor Poor
Solid polymer <10−4 S·cm−1 Poor Good Good Good Good
Gel polymer >10−4 S·cm−1 Medium Medium Poor Medium Medium

As Table 1 shows, GPEs and SPEs exhibit better property balance than conven-
tional liquid electrolytes. Polymeric materials, such as PEO/lithium perchlorate (LiClO4),
PEO-tetraethylene glycol dimethacrylate (TEGDMA)—tetraethylene glycol dimethyl ether
(TEDME)/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), PEO-sulfur-poly(ethylene
glycol) methacrylate) (PEGMA)/LiTFSI, and polyethylene glycol (PEG)-hexamethylene
diisocyanate trimer (HDIt)/LiTFSI were analyzed, considering the optimization strategy,
ionic conductivity, electrochemical window of stability (EWS), and transference number
(tLi+). Some recent approaches of polymers selected as promising electrolytes are outlined
in Table 2, considering what was mentioned above.

Table 2. PEO/lithium perchlorate (LiClO4), PEO-tetraethylene glycol dimethacrylate (TEGDMA)—
tetraethylene glycol dimethyl ether (TEDME)/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI),
PEO-sulfur-poly(ethylene glycol) methacrylate) (PEGMA)/LiTFSI, and polyethylene glycol (PEG)-
hexamethylene diisocyanate trimer (HDIt)/LiTFSI optimization strategies.

Polymer Optimization
Strategy

Ionic Conductivity
(S·cm−1)

EWS
(V vs. Li/Li+) tLi+ Year Ref.

PEO/LiClO4 PEO/LiX (X:ClO4
−) 1.03 × 10−5, 30 ◦C - 0.21 2005 [60]

(PEO-TEGDMA-
TEGDME)/LiTFSI Crosslinking 2.70 × 10−4, 24 ◦C 5 0.56 2019 [61]

(PEO-sulfur-
PEGMA)/LiTFSI Polymer blending 2.13 × 10−4, 50 ◦C 5.4 0.61 2020 [62]

(PEG-HDIt)/LiTFSI Copolymerization 6.51 × 10−5, 25 ◦C 4.65 0.49 2021 [63]

The following question arises: What is expected from a polymer electrolyte to be us-
able in a LIB? There are fundamental properties that must be achieved and the combination
of them in an electrolyte might be a challenge. It is expected that an ideal polymer elec-
trolyte possess high ionic conductivity, nearly to the liquid electrolytes 10−3~10−2 S·cm−1,
followed by a unity Li-ion transference number (tLi+), leading to a decrease in concen-
tration gradients and preventing dendrite formation [5,45,64]. The latter two parameters
have a direct impact on the performance of the cell, since the maximum power of the
LIB is related to the conductivity and the maximum limiting current can be associated
with tLi+. Good mechanical strength is foreseen to tolerate volume changes from the elec-
trode constituents during the intercalation–deintercalation process. A low glass transition
temperature (Tg) will provide greater flexibility to the polymer chain, allowing ions to
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flow through the amorphous regions when the temperature is higher than Tg. A wide
electrochemical stability window desirably ≥ 4.5 V vs. Li/Li+ is also required, as it enables
higher cathode material redox potentials [19]. Good contact at the electrode/electrolyte
interface and excellent chemical stability is also required, as well as a low energy barrier
for ionic conductivity between both components and high thermal stability for the safe
operation of the LIB [42,55]. Moreover, the polymer shear modulus (G) should be at least
twice the value of the Li metal to avoid penetration of Li sediments [37].

Considering the key challenges that must be overcome, it is evident that the complexity
of the LIB optimization process lies in the compromise between the various performance
metrics mentioned above. Therefore, a more intensive outlook on those parameters is
depicted below.

3. Performance Metrics

The current limitations of SPEs/GPEs encompass several aspects, which need to be
tuned during the polymer design, allowing the LIB cell to function at its finest. The core
parameters to describe SPEs and GPEs are largely similar and are portrayed as follows.

3.1. High Ionic Conductivity

The employed electrolyte must act as an electrical insulator and ionic conductor, as
highlighted before, serving as the dominating parameter for polymer electrolytes [7,65].
To have practical application, this specification should achieve the ionic conductivities of
liquid electrolytes, which typically reach values of 10−3~10−2 S·cm−1, at RT, as mentioned
previously. The internal impedance and the electrochemical behavior are severely affected
by ionic conductivity. In Figure 3, a representative scheme on the differences between ion
transportation in SPEs and GPEs is presented.
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For dry solid-polymer electrolytes, it is accepted that ion conduction does not occur in
the well-organized phase. In SPEs, and looking at Figure 3a, the ion conduction mechanisms
involve both salt dissociation and complexation with the functional groups in the polymeric
chain, as well as hopping off the Li+-ions between the coordinated sites [13,66]. For
high-molecular-weight polymers, the main form of ionic conduction is intersegmental
hopping, whereas for low molecular weights, the ionic conduction occurs mostly through
diffusion [38]. Regarding GPEs, and considering their composition, both Li salt and solvent
selection are preponderant, as well as the salt’s concentration. In this case, the contributions
of those parts are not easy to describe because the morphology and the polymer–solvent
interactions are complex.

Several models have been developed to describe ionic conductivity (σ), although the
most accepted in the scientific community for a homogeneous media (liquid electrolytes and
amorphous polymers) is Vogele–Tammane–Fulcher (VTF) [40], represented in Equation (1):

σ (T) = AT−
1
2 exp

[
− B

KB(T − T0)

]
(1)
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where T is the absolute temperature, A is the pre-exponential factor related to the number
of charge ions, KB is the Boltzmann constant, T0 (T0 = Tg − 50 K) is the critical temperature
at which configuration entropy or free volume disappears, and B is the pseudo-activation
energy related to the segmental movement [13]. The VTF model correlates the conductivity
with the segmental relaxation in polymers and indicates that the motion of the polymer
chain increases when the temperature or the free volume available increase [67]. Conse-
quently, the freer the volume available, the more interchain hopping and interchain ion
movement that happens, leading to an increase in the amorphous state of the polymer and
the ionic conductivity.

However, sometimes the preferable path for ionic motion is jumping from another site
of complexation, and, in this case, the ionic conductivity can be expressed by the Arrhenius
equation, as represented in Equation (2):

σ = σ0 exp
(
−Ea
KBT

)
(2)

where σ0 is the pre-exponential factor, Ea is the energy activation, and T is the temperature.
Equations (1) and (2) allow a better understanding of the key points to increase ionic
conductivity. Although both mechanisms are correct, their predominance depends on the
structure, temperature, and constituents of the system. Therefore, in both SPEs/GPEs,
there are several aspects and strategies in common to improve the ionic conductivity of the
employed polymer, which are briefly summarized in Figure 4.
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and GPEs [68].

3.2. Decrease Glass Transition Temperature and Crystallinity

The ionic conductivity is highly affected by the glass transition temperature and
crystallinity of the polymer matrix. Above this temperature, Li+ ions can either hop from
one chain to another segment motion or relocate from one coordination site to a new one
or even induce a shift in the free volume of the matrix [13]. Usually, polymers exhibit an
insignificant ionic conductivity below Tg, and, therefore, the desire is to decrease Tg, aiming
to obtain a rubbery polymer at RT. Based on this, the main approaches for decreasing Tg
are through the incorporation of plasticizers, solvents, ionic groups, and/or side chains.
Figure 5 shows a representative scheme of how Tg affects ionic conductivity.
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Plasticizers, with a low molecular weight, organic solvents, or ionic liquids, can in-
crease the amorphous content of a polymer and, thus, increase the ionic conductivity [11].
For example, low-molecular-weight polyethylene glycol (PEG) has been broadly applied
as a plasticizer in PEO–salt complexes [7]. Research conducted on this subject shows
that the incorporation of PEG into a PEO-LiCF3SO3 system leads to a conductivity im-
provement from 10−7 to 10−4 S·cm−1 at 40 ◦C. Moreover, Cao et al. [69] developed an
electrolyte with the composition (PEO)15/LiTFSI/10 wt.% polyethylene glycol dimethyl
ether (PEGDME), which enabled an ionic conductivity of 10−3 S·cm−1 at 50 ◦C. At 27 ◦C, a
conductivity of 1.60 × 10−4 S·cm−1 was found by Johan et al. [70] by preparing a polysilox-
ane (PSi)/15 wt.% LiCF3SO3/40 wt.% borate ester B3. The use of organic solvents helps
solvate ions and facilitates their transportation. A high dielectric constant and low-viscosity
solvents are required, although others such as dichloromethane (DCM) have also proven
to be a reliable choice. Yu et al. [7] showed that a novel system based on synthesized
poly(propylene carbonate maleate) (PPCMA)/1.0 M LiClO4/ethylene carbonate + dimethyl
carbonate (EC + DMC) (1:1, vol.%) can exhibit a similar conductivity (8.43 × 10−3 S·cm−1,
at RT). Lastly, ionic liquids are temperature molten salts with unique properties, and sev-
eral of them have been investigated as potential plasticizers, considering a combination
of cations such as pyridinium ([pyr]+), imidazolium ([EMIM]+), piperidinium ([BMPip]+),
quaternary ammonium ([NR4]+) with anions as hexafluorophosphate ([PF6]−), tetraflu-
oroborate ([BF4]−), dicyanimide ([N(CN)2]−), and bis[(trifluoro methyl)sulfonyl]imide
([CF3CONCF3SO2]−), among others.

The ionic conductivity is also greatly influenced by the polymer crystallinity of the
electrolyte, considering that the Li+ transport is typically correlated to the motion of the
polymer chain segments and mainly occurs in the amorphous phase of the SPE. Some strate-
gies have been studied and reported in the literature to decrease crystallinity. As mentioned
before, both plasticizers and inorganic fillers can increase the amorphous content. On the
other hand, the reduction of Li+ diffusion pathways allied with the enhancement of the cell
capacity makes the idea of the incorporation of the inorganic filler very attractive [33].

For example, inert oxide fillers enhance the electrochemical properties by decreasing
the crystallinity of the polymer and boosting the establishment of channels by the Lewis
acid–base interaction between the chains and fillers [71]. Silicon oxide (SiO2) has been con-
sidered the “holy grail” due to its unique characteristics. Huang et al. [72] stated that SiO2
fillers improved the stability and the chemical behavior of PPC-based electrolytes. Further-
more, SiO2 can also act simultaneously as a crosslinking agent, according to Zhu et al. [73].
Aluminum oxide (Al2O3), zirconium dioxide (ZrO2), lithium aluminum oxide (LiAlO2),
and titanium oxide (TiO2) have also been investigated as promising fillers to enhance
ionic conductivity.

Other strategies have been investigated to target the decrease in crystallinity of SPE
matrix, namely, polymer blending and crosslinking. These strategies will be discussed in
detail in topic 4, although they will briefly be presented. Blending implies the mixture
of two or more types of polymer chains without chemical bonding between them. This
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process demolishes the consistency of a single polymer chain, forming the desired amor-
phous polymer. For example, according to Tanaka et al. [11], the blending of PEO with
poly(ethylene imine) (PEI) resulted in an ionic conductivity of ~10−4 S·cm−1 at 30 ◦C. A
representative example of a blending polymer is presented in Figure 6.
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Crosslinking also induces a decrease in crystallinity by obtaining an amorphous poly-
mer without compromising its mechanical properties and improving its chemical and
electrochemical stability. The crosslinking reactions between end groups ensure that poly-
mer chains are locked up, preventing interchain crystallization [38]. The first report of this
reaction for dendrite growth suppression was based on the incorporation of polyethylene
(PE) in a PEO, resulting in an electrolyte with improved ionic conductivity (~10−5 S·cm−1

at RT) [74].

3.3. Increase Ion-Pair Dissociation

The dissociation of salts is possible with the employment of high dielectric polymers,
tethered ionic groups, and/or inorganic fillers. For instance, for PEO-based electrolytes, the
dissociation of salts is not fully accomplished due to their low dielectric constant, resulting
in ion aggregation and, consequently, lower ionic conductivities [5]. Aiming at ensuring
an adequate dissociation of Li salts, the polymer should contain polar groups and the
formation of complexes in its molecular chain [75]. However, when those functional groups
are attached to the polymer backbone, a more efficient electrolyte is attained in terms of ionic
conduction and electrochemical stability. Anion receptors are also a strategy to improve
the movement of Li ions, considering that the anion mobility can be hindered by the strong
ion–dipole interaction between anions and receptors, enhancing the conductivity [76].

3.4. Lithium Transference Number

Along with high ionic conductivity, an electrolyte with a close-to-unity Li+ transference
number (tLi+) is a desired requirement, as it can produce higher power density during the
charge and discharge process, preventing the formation of dendrites [7].

To calculate tLi+ the Bruce-Vincent equation is commonly used, along with an electro-
chemical test that involves the polarization of a cell to induce a concentration gradient and
reach the steady state [18], according to Equation (3):

tLi+ =
Is(∆V − I0R0)

I0(∆V − IsRs)
(3)

where IS and I0 are the steady-state and initial currents, respectively; ∆V is the applied po-
tential; and Rs and R0 are the steady-state and the initial interfacial resistances, respectively.

This parameter is indirectly related to the total ionic conductivity provided by Li+ [77].
The Li deposition, which is responsible for dendrite formation, is promoted by the simulta-
neous movement of Li ions and anions, but in different directions, leading to an increase in
the Li-ion gradient between the anode and the cathode. The usual low tLi+ is due to the
small volume of Li+ and, if the transference number is too small, to an accumulation of
anions at the electrode surface [75].

There are two main approaches to reducing anion mobility: (i) The first is through the
introduction of anion receptors into the electrolyte system to interact with the anion, and
(ii) the second comprises the attachment of anions to the polymer backbone, allowing the
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formation of single-ion polymer electrolytes. Those can act as SPEs or, if plasticized with a
salt-free electrolyte, as GPEs [13].

3.5. Electrochemical Window of Stability

The requested operating voltage defines the necessary electrochemical window of
stability (EWS), which can be defined as the difference between the potential of oxidation
and the potential of reduction [7]. The first requirement is that the electrolyte be inert
to both electrodes. The oxidation potential should be higher than the potential of Li+ in
the cathode and the reduction potential should be lower than that of lithium metal in the
anode in the absolute potential scale [77]. This is one of the most important parameters
to consider since it reflects not only the electrodes’ reactivity but also the stability of the
system in a certain operating voltage. Ideally, polymer electrolytes should have an EWS of
at least 4–5 vs. Li/Li+ to be compatible with traditional pairs of electrode materials with
high-voltage cycling plateaus, such as lithium nickel manganese oxide (LNMO) and nickel
manganese cobalt oxide (NMC). The EWS can be evaluated from linear sweep voltammetry
or even cyclic voltammetry.

3.6. Mechanical Stability and Shear Modulus

Mechanical performance and stability are crucial parameters for polymer electrolyte
applications. The electrolyte must not be brittle and should be flexible, elastic, and be able to
stand the stress conditions during the cell package/usage [7,77]. Moreover, the electrolyte
should be able to endure emergencies during the cell lifetime and high temperature, and
even suppress dendrite growth [78]. To increase the mechanical stability, approaches
such as adding inorganic fillers, crosslinking, blending with high-strength polymers, and
introducing rigid blocks have been reported [78]. The shear modulus (G) is another
important factor to avoid Li deposition, and according to the literature, G should assume
values twice as high as those of Li metal, suggesting a G > 6 GPa [37].

3.7. Chemical and Thermal Stability Range

During the operation of the battery, the chemical stability of the electrolyte plays
an important role and should prevent the occurrence of adverse chemical reactions, and
the thermal stability must ensure the safety of the electrolyte itself [33]. Additionally,
electrolytes must be inert and avoid damage to the remaining battery constituents, including
cathodes, anodes, current collectors, cell separators, and cell packaging materials [77].

4. Design of Solid- and Gel-Polymer Electrolytes

To modulate the desired properties and performance of polymeric electrolytes, numer-
ous studies have been carried out, namely, on the development of traditional polymeric
blends, as well as the design and synthesis of new polymers, with improved properties and
unique structures. Electrochemical properties for recent promising studies are reviewed in
this section and are summarized in Table 3.

4.1. Novel and Versatile Polymer Electrolytes with Advanced Properties

The well-known limitations of traditional commercial polymer matrices represent a
major drawback for SPE employment. The current state of the art is mainly focused on the
optimization of PEO-based electrolytes or other traditional polymeric matrices; however,
the need to develop new synthetic strategies for the discovery of innovative monomers
and polymers is crucial to achieving future energy storage applications with tuned me-
chanical and electrochemical properties. Through organic reactions, such as reversible
addition−fragmentation chain-transfer polymerization (RAFT), atom transfer radical poly-
merization (ATRP), sulfonations, thiol-ene chemistry, acid–base reactions, anionic exchange,
and amine–epoxy couplings, novel polymers can be designed by simple approaches and at
low cost. Afterwards, those can be characterized by standard analytical techniques, namely
Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), liquid
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chromatography–mass spectrometry (LC-MS), gas-phase chromatography (GPC), differ-
ential scanning calorimetry (DSC), etc. Several synthetic strategies have been proposed
to modulate the polymeric backbone of the SPE, regarding the decrease of crystallinity,
improved mechanical performance or high tLi+, and conductivity. Moreover, dendrite
suppression and higher ionic conductivity at RT are also taken into consideration. The most
promising recent works comprising the modification of the polymer chain, copolymeriza-
tion, or crosslinking, as well as the use of highly delocalized moieties, are subsequently
reviewed in terms of their synthesis, design, and assembled cell performance.

Table 3. Reported electrochemical parameters of different polymer electrolytes designed by
different approaches.

Structure σ (S·cm−1)
(◦C) tLi+ Cell Type

Initial Capacity
(mAh·g−1)

(Conditions)

Cycle Stability
(Capacity

Retention)
Ref.

PEO/PVA 1.25 × 10−4 (25 ◦C) - - - - [79]
PVDF-HFP/PETEA 5 × 10−4 (25 ◦C) - Li/LiFePO4 151 (0.5 C, 25 ◦C) 50 (98%) [80]

PVDF/TMS 3.21 × 10−3 (25 ◦C) 0.03 Li/LiFePO4 181 (0.1 C, 25 ◦C) 50 (91%) [81]
PVDF/PAN-POSS 1.91 × 10−3 (20 ◦C) - Li/LiFePO4 112 (0.1 C, 20 ◦C) 25 (~90%) [82]

P(HOEA-co-MA)-PEG 6.0 × 10−4 (25 ◦C) 0.35 Li/LiFePO4 101.4 (2.0 C, 22 ◦C) 1000 (66%) [83]
P(PEGMA-co-MMA) 3.02 × 10−5 (30 ◦C) 0.37 Li/LiFePO4 166.5 (0.2 C, 60 ◦C) 290 (93%) [84]

PCL-PPC-PCL 3 × 10−5 (30 ◦C) 0.4 Li/LiFePO4 142 (0.05 C, 30 ◦C) 200 (90%) [85]
CN/FM-PAGE 1.01 × 10−4 (30 ◦C) - Li/S 944 (0.2 C, 60 ◦C) 80 (~60%) [86]

PEGMEA-PEGDME-
XVIm-TFSI 3.16 × 10−4 (25 ◦C) - Li/LiFePO4 160 (0.2 C, 25 ◦C) 150 (93.8%) [87]

PEG-BTA 4.79 × 10−3 (30 ◦C) 0.38 Li/LiFePO4 118.2 (5 C, 30 ◦C) 125 (97.8%) [88]
VEMI-TFSI-PEI-

PEGDGA 1.03 × 10−3 (25 ◦C) 0.47 Li/LiFePO4 165.6 (0.1 C, 25 ◦C) 200 (97.3%) [89]

T5000-DER332
(epoxy resin) 3.5 × 10−4 (25 ◦C) - Li/LiFePO4 130 (0.1 C, 25 ◦C) 120 (93%) [90]

4.1.1. Polymer Matrices and Blending

PEO, poly(vinylidene fluoride) (PVDF), and poly(acrylonitrile) (PAN), are the most
common polymer matrices studied for SPE development. However, it is stated in the
literature that these single polymers cannot fulfil all the requirements for developing
advanced and structural batteries. As mentioned before, a simple and cost-effective method
for obtaining solid electrolytes can be achieved by blending two or more versatile polymers
with Li+ salt in the presence of a solvent that can properly dissolve all materials. After
solvent removal, the resultant membranes can benefit from the combined properties of
single polymers, namely, mechanical strength and thermal stability, or ionic conductivity
and other electrochemical properties.

Putri et al. [79] recently prepared a PEO/poly(vinyl alcohol) (PVA) blend with lithium
hydroxide (LiOH) as a source of Li+ cations. The addition of amorphous PVA was determi-
nant to disrupt PEO crystallinity and enhance the SPE conductivity at RT. The researchers
applied ultrasonication to improve the conventional solution casting method by enhancing
the miscibility of the components in the precursor solvent, resulting in a more homoge-
neous solution in a relatively shorter time. It was found that a concentration of 2 wt.% of
LiOH was sufficient to decrease the crystallinity phases of the blended polymers, leading
to superior conductivity (1.25 × 10−4 S·cm−1, 25 ◦C) in comparison with traditional single
PEO membranes, which only displayed RT ionic conductivities in the order of 10−6 S·cm−1.
Moreover, PEO/PVA/LiOH (2 wt.%) membrane showed wide electrochemical stability
up to 5 V (vs. Li/Li+), suggesting that it can be applied as a solid polymer electrolyte for
battery technologies.

The use of PVDF-HFP-based electrolytes is a decent alternative to the use of PEO due
to its safety and flexibility as a polymer; however, the lack of ionic conductivity and poor
mechanical integrity still represent a major drawback for practical applications. In a recent
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study, PVDF-HFP was blended with an ultraviolet (UV) curable pentaerythritol tetracry-
late (PETEA), a semi-interpenetrating polymer capable of forming a mechanically sound
network with conductive capability [80]. In fact, after swelling in proper plasticizer, the
resultant PVDF-HFP/PETEA GPE (4:1 ratio) not only showed good mechanical properties,
such as flexibility and foldability, but also presented improved thermal safety, as well as
high RT ionic conductivity (5 × 10−4 S·cm−1), which was about 2.5 times higher than the
single PVDF-HFP membranes. The addition of UV-induced polymerizable moiety resulted,
as expected, in better interface compatibility between the electrolyte and the electrodes,
crucial to enhancing the batteries’ safety and performance. Consequently, the assembled
cell exhibited a wide electrochemical window of 4.8 V (against Li/Li+), as well as an initial
discharge capacity of 151 mAh·g−1 at a 0.5 C rate and decent 98% cycling retention after
50 cycles, suggesting that blending could provide a simple, cost-effective method to develop
future polymeric batteries.

Inspired by the necessity to develop new alternatives for the construction of safer
batteries, Mocek et al. [81] developed a versatile PVDF-based GPE that used lithium diflu-
oro(oxalate)borate (LiODFB) and lithium bis(oxalate)borate (LiBOB) salt, in replacement of
the toxic and highly reactive LiFP6 salt currently used for battery production. GPE mem-
branes were prepared by the solvent-casting method, comprising PVDF with a combination
of borate-based Li salt at different ratios and ionic liquid (EtMeImNTf2 or MePrPyrNTf2)
and sulfolane (TMS) as plasticizers. Comparably with traditional Li+ sources, borate-based
Li+ salts also improve thermal stability, have a wide electrochemical window (up to 5.6 V),
and have the capacity to form a stable SEI layer that ensures good cycling stability and
safety for the battery [91].

On the other hand, ionic liquids have been appointed as a greener alternative for
traditional plasticizers due to their non-flammability, suitable ionic conductivity, and
superior thermal, chemical, and electrochemical stability, thus providing superior safety
for future batteries [92]. As a result, the developed free-standing, flexible, and highly
conductive thin films (3.21× 10−3 S·cm−1, 25 ◦C) did not release flammable products when
subject to flame tests. However, due to the low solubility of the LiODFB lithium salts in the
plasticizer, the resultant transference number was only 0.03, which is not convenient for
practical applications.

Ionic liquids serving as a plasticizer is another route where a polymer blend was
developed, which also contained grafted nanoparticles for enhanced performance. Par-
ticularly, different poly(acrylonitrile-polyhedral oligomeric silsesquioxane)/PVDF (PAN-
POSS/PVDF) GPE was prepared, with the incorporation of ionic liquid as a plasticizer
and POSS nanoparticles that were grafted to PAN chains [82]. The incorporation of PAN
favored not only the compatibility with the electrode but also the dendrite suppression,
which could not be reached by PVDF itself. This behavior can be explained considering
that PAN, containing electron-withdrawing and polar nitrile groups, exhibits good ther-
mal and mechanical properties, as well as outstanding electrochemical performance [93].
However, increasing the content of PAN-POSS in the PVDF matrix led to a higher pore
content in the membrane structure, which consequently absorbed the more ionic liquid and
limited its mechanical robustness. Nonetheless, the incorporation of POSS nanoparticles
enabled further improvement of the thermal, mechanical, and electrochemical properties
of the electrolyte membrane, as reported in previous studies [94–96]. Results showed
that 15 wt.% PAN-POSS/PVDF-based GPE exhibited superior RT ionic conductivity, as
high as 1.91 × 10−3 S·cm−1. When assembled in a Li/LiFePO4 cell, it displayed a wide
electrochemical window of 4.6 V and an initial discharge capacity of 112 mAh·g−1 at a
0.1 C rate.

4.1.2. Copolymers

The use of copolymers represents a captivating alternative to obtain a set of desired
properties. For instance, the combination of monomers that allow a high ionic conductivity
with others containing more rigid domains will allow the formation of hybrid systems
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with different optimized ionic and mechanical properties, which generally do not coexist in
traditional matrices. Another advantage of using these types of materials is the possibility
of disrupting the crystalline phase, typically present in traditional PEO electrolytes, which
allow ionic movement. Block copolymers and graft copolymers have been the most studied
copolymer type for SPE and GPE development.

The first attempts conducted by Giles et al. [97,98] in 1987 demonstrated the develop-
ment of graft copolymers of styrene–butadiene–styrene (PS-P(B-g-MPEG)-PS) with PEO
of chains of different lengths grafted to the ABA triblock copolymer. The subsequent
mixture with different LiCF3SO3 salt ratios resulted in the desired polymer electrolytes,
which exhibited an amorphous character at different temperature conditions. Decent ionic
conductivity of 10−5 S·cm−1 at RT was achieved.

He et al. [83] prepared an SPE consisting of a difunctional block copolymer (DFBCP)
prepared by sequential RAFT polymerization. Firstly, a polymer block containing acrylate
moieties P(HOEA-co-MA) was synthesized by a reaction of methyl acrylate (MA) and
2-hydroxyethyl acrylate (HOEA). Subsequently, polymerization with PEG monomers fol-
lowed by reaction with acryloyl chloride provided the desired DFBCP containing terminal
cross-linkable vinyl bonds and ion solvation groups in separated blocks of the polymer.
The final SPE was prepared by UV crosslinking with LiTFSI salt (Figure 7a) and showed im-
proved ionic conductivity compared to traditional linear PEO or another block copolymer
(BCP) SPEs (Figure 7b). This resulted from the mobile PEG chains, which allow faster ion
solvation and a lower degree of crystallization, which were not confined by the crosslink-
ing network due to being in different blocks of the copolymer. Enhanced mechanical
performance was also achieved by the presence of the crosslinking sites.
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Copolymerization proved to be efficient to combine mechanical performance without
compromising conductivity via the combination of different di-block polymer architectures.
After assembling, the Li/LiFePO4 cell exhibited an initial capacity of 101.4 mAh·g−1

(2 C rate, 22 ◦C, Figure 7c) and impressive long-term cycling stability up to 1000 cycles.
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At a higher current of a rate of 4 C, the cell also displayed a decent capacity of more than
70 mAh·g−1 for over 200 cycles.

Moreover, in-situ radical polymerization is another simple technique capable of en-
hancing the interface between electrodes and electrolyte, which is essential to improve
the battery’s final performance, safety, and stability [99–102]. Moreover, it can simplify
the use of traditional solvent-casting techniques by being a greener and faster alternative
that does not overuse volatile solvents. Yu et al. [84] successfully developed an SPE by
Li salt-induced copolymerization of poly(ethylene glycol) methacrylate (PEGMA) and
several acrylate monomers using LiI and LiTFSI salts as activators and Li-ion sources.
18-crown-6-ether (18C6) served as both copolymerization solvent and plasticizer, and ethyl
α-bromophenylacetate (EBrPA) or 2-iodo-2-methylpropionitrile (CP-I) were used as initia-
tors (Figure 8a). This study suggested that using in-situ Li salt-induced polymerization
could effectively contribute to uniform interface formation, as well as stable ion solvation,
due to the substitution of traditional catalysts capable of accumulating and reacting with
the electrodes surface for common Li salts that trigger an activation effect over typical
polymerization initiators.
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Figure 8. (a) Schematic illustration of in-situ polymerization via Li+ salt-induced radical polymer-
ization; (b) charge–discharge curves at different cycle numbers of the Li/LiFePO4 cell via (1) ex-situ
or (2) in-situ assembling with P(PEGMA-co-MMA)-based PE, initiator (CP-I), and (3) cycling per-
formance of the Li/PE/LiFePO4 cell conducted at 60 ◦C; (c) ionic conductivity of developed PEs
at different temperatures. Adapted with permission from Yu et al. [84]. Copyright 2021 American
Chemical Society.

The fabricated Li/LiFePO4 cell with P(PEGMA-co-MMA)-based electrolytes exhibited
not only good electrochemical stability of up to 5.20 V (vs. Li+/Li) but also an initial
discharge capacity of 166.5 mAh·g−1 at 0.2 C and superior cycling performance (Figure 8b)
compared to the traditional ex-situ systems, as well as subsequent dendrite suppres-
sion, even after 290 cycles. However, the lack of high ionic conductivity at RT (up to
10−6 to 10−5 S·cm−1) and low transference number (0.37) are the disadvantages of using
this type of SPE, as shown in Figure 8c.

Inspired by previous studies containing poly(ε-caprolactone) (PCL) as a polymeric ma-
trix for SPE development, Zhang et al. [85] designed a BAB triblock copolymer containing
two monomers of PCL and one monomer of poly(propylene carbonate) (PPC). This strategy
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successfully improved SPE’s ionic conductivity at RT by introducing amorphous regions,
due to PPC block, that provided higher ionic conductivity (3 × 10−5 S·cm−1) compared
to the use of single semi-crystalline PCL. The resultant Li/LiFePO4 cell, containing SPE
membrane with an optimal 20 wt.% of LiTFSI salt and triblock copolymer, displayed a wide
electrochemical window of 5 V and was able to deliver a discharge capacity of 142 mAh·g−1

(0.05 C, RT), with 90% of the retaining capacity after 200 cycles. Furthermore, no dendrite
formation was observed after long-term cycling, which demonstrates that this copolymer
can successfully provide both safety and high energy density to future cell development.

Moreover, new crosslinked structures based on poly(allyl glycidyl ether) PAGE copoly-
mers with pendant nitrile (CN) and furfuryl mercaptan (FM) groups were developed to
form an SPE with crosslinking sites via Diels–Alder reaction between the FM moieties in the
presence of bismaleimide (Figure 9a) [86]. The highest value of 1.01 × 10−4 S·cm−1 of ionic
conductivity at RT was attributed to the presence of CN groups, responsible for an effective
Li+ dissociation, as well as the existence of a polyether backbone for Li+ migration. Differ-
ent crosslinking ratios were studied to find the best compromise between ionic conductivity
and mechanical strength, as crosslinking is known to increase the stiffness of a polymer.
Results showed that the developed SPE with a 3% degree of crosslinking and a Li/O ratio
of 0.2 showed superior ionic conductivity (Figure 9b), which inevitably decreased with
the increasing number of crosslinking sites or Li–salt concentration, due to suppression of
polymer chain mobility and the formation of aggregated species, respectively.

Polymers 2022, 14, x FOR PEER REVIEW 16 of 40 
 

 

Moreover, new crosslinked structures based on poly(allyl glycidyl ether) PAGE 
copolymers with pendant nitrile (CN) and furfuryl mercaptan (FM) groups were 
developed to form an SPE with crosslinking sites via Diels–Alder reaction between the 
FM moieties in the presence of bismaleimide (Figure 9a) [86]. The highest value of 1.01 × 
10−4 S·cm−1 of ionic conductivity at RT was attributed to the presence of CN groups, 
responsible for an effective Li+ dissociation, as well as the existence of a polyether 
backbone for Li+ migration. Different crosslinking ratios were studied to find the best 
compromise between ionic conductivity and mechanical strength, as crosslinking is 
known to increase the stiffness of a polymer. Results showed that the developed SPE with 
a 3% degree of crosslinking and a Li/O ratio of 0.2 showed superior ionic conductivity 
(Figure 9b), which inevitably decreased with the increasing number of crosslinking sites 
or Li–salt concentration, due to suppression of polymer chain mobility and the formation 
of aggregated species, respectively. 

 
Figure 9. Schematic illustration of (a) structure of CN/FM-PAGE-based polymer with crosslinking 
sites for SPE formation via Diels–Alder reaction; (b) dependence of ionic conductivity with 
temperature by variation of mol% of crosslinking with Li/O = 0.2 (left) and variation of Li/O ratio 
(right). Reprinted with permission from Mallela et al. [86] Copyright 2020 Elsevier. 

4.1.3. Crosslinking 
As mentioned earlier in this review, another approach applied to SPE development 

consists of using crosslinked structures by providing enhancement of mechanical 
properties through permanent covalent bonds formed between two types of monomers. 
Moreover, crosslinking is known to reduce the crystalline domains of a polymer, resulting 
in enhanced conductivity, as the amorphous regions enable higher ionic conductivity [33]. 
The possibility of combining monomers with different structure–property relations can 
result in novel and versatile membranes with combined ionic, mechanical, or safety-
related properties. Inspired by novel research in the application of polymeric ionic liquids 
(PILs) for the development of safer polymer electrolytes [103], Tseng et al. [87] recently 
proposed a highly crosslinked membrane that incorporated a vinyl dicationic 
imidazolium ionic liquid (XVIm-TFSI) as a crosslinker, which was compared to a PIL-

Figure 9. Schematic illustration of (a) structure of CN/FM-PAGE-based polymer with crosslinking
sites for SPE formation via Diels–Alder reaction; (b) dependence of ionic conductivity with tempera-
ture by variation of mol% of crosslinking with Li/O = 0.2 (left) and variation of Li/O ratio (right).
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4.1.3. Crosslinking

As mentioned earlier in this review, another approach applied to SPE development
consists of using crosslinked structures by providing enhancement of mechanical properties
through permanent covalent bonds formed between two types of monomers. Moreover,
crosslinking is known to reduce the crystalline domains of a polymer, resulting in enhanced
conductivity, as the amorphous regions enable higher ionic conductivity [33]. The possibil-
ity of combining monomers with different structure–property relations can result in novel
and versatile membranes with combined ionic, mechanical, or safety-related properties.
Inspired by novel research in the application of polymeric ionic liquids (PILs) for the
development of safer polymer electrolytes [103], Tseng et al. [87] recently proposed a highly
crosslinked membrane that incorporated a vinyl dicationic imidazolium ionic liquid (XVIm-
TFSI) as a crosslinker, which was compared to a PIL-based copolymer without crosslinking
units. This works relied on the capacity of PILs to display good capacity for ion solvation,
due to their weak electrostatic interactions with cations, improving the safety since they
are thermally stable structures [104]. In-situ polymerization, under solvent-free conditions,
provided a highly crosslinked membrane that showed good RT ionic conductivity higher
than 10−4 S·cm−1 and a wide electrochemical window up to 5.4 V (against Li/Li+). This
optimized membrane (XP-20) contained a mixture of poly(ethylene glycol) methyl ether
methacrylate (PEGMEA), LiTFSI, and poly(ethylene glycol) dimethyl ether (PEGDME) at a
5:3:4 weight ratio and a 20 wt.% ratio of the XVIm-TFSI crosslinker without the addition
of plasticizers. As shown, the effect of the imidazolium crosslinker proved to enhance not
only the ionic conductivity of the membranes but also the compressive elastic modulus, as
well as its thermal stability, compared to the PIL-based copolymer, without crosslinking
sites (P-20).

In addition, crosslinking successfully improved the membrane cycling stability against
dendrite formation due to reduced polarization, stable SEI formation, and superior mechani-
cal strength. The Li/LiFePO4 cell naturally showed a good specific capacity of 160 mAh·g−1

at a 0.2 C rate while maintaining 93.8% capacity retention after 150 cycles, a characteristic
that was not present in the copolymer without the imidazolium crosslinker, where the
performance of the cell continuously faded over cycling.

Regarding the safety and stability of the battery, self-healing materials can provide
an effective alternative to deal with damage related to mechanical loads. Deng et al. [88]
recently proposed a self-healing polymer based on cross-linkable poly(ethylene glycol)
diamine (NH2-PEG-NH2) and benzene-1,3,5-tricarbaldehyde (BTA) dynamic imine bonds
(Figure 10a). These reversible covalent bonds proved to be capable of healing within 1 h
while retaining their stability. Interestingly, even with the addition of a plasticizer, the
healed GPE was able to bear a weight of 100 g without tearing (Figure 10b left). Moreover,
stress–strain experiments showed a recovery of almost all its mechanical properties after
healing (Figure 10b right), which demonstrates an advantage of using this type of electrolyte
in future applications. Along with these important properties, the developed GPE showed a
superior ionic conductivity of 4.79 × 10−3 S·cm−1 at 30 ◦C (Figure 10c left), which are good
mechanical properties. The assembled LPF cell displayed an excellent specific capacity of
118.2 mAh·g−1 (5 C rate) and 97.8% capacity retention after 125 cycles (Figure 10c).

Epoxy resins are interesting systems that can provide a high degree of crosslinking and
mechanical strength. Their chemical nature enables polymerization upon heating without
needing thermal radical initiators, known to produce by-products that are highly Li-metal-
reactive species, covering the surface of the Li metal and thus increasing the electrode
resistance and severely degrading the battery performance and stability. Moreover, these
systems can be used to produce polymer electrolytes by simple production methods that
promote the formation of stable electrode–electrolyte interfaces [105]. Relevant approaches
based on epoxy systems were reported, where high ionic conductivity of around 10−5 to
10−3 S·cm−1 was successfully achieved [105–108]. Liang et al. [89] recently developed a
GPE epoxy resin based on PEI and non-flammable ionic liquid monomer that also contained
vinyl groups for dual crosslinking. The strategy of synthesizing a new type of bifunctional
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ionic liquid (Figure 11a) provides superior safety regarding the non-flammability of ionic
liquids, without compromising ionic conductivity of the final system, as they replace
the need for flammable plasticizers. After thermal and UV polymerization, the resultant
flexible GPE presented excellent thermal stability (360 ◦C) (Figure 11b,c) and fair mechanical
strength, while providing excellent ionic conductivity of 1.03 × 10−3 S·cm−1 at RT and fair
tLi+ of 0.47. Inhibition of dendrites was also observed, owing to the formation of a stable
SEI layer. The assembled Li/LiFePO4 cell showed a high specific capacity of 165.6 mAh·g−1

and stability for over 200 cycles, making this an interesting approach to future flexible
device applications. This study demonstrated that ionic liquids and polymers can be
applied to batteries, creating a new class of conductive electrolyte membranes that do not
require the use of flammable plasticizers.
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Figure 10. (a) Schematic representation of the self-healing electrolyte and photograph of the self-
healing test; (b) photograph of the polymer membrane bearing a weight of 100 g and stress–strain
curves of the original and healed membranes; (c) cycle performance of the original and healed PBPE
electrolyte’s respective LFP/Li cells at a 1C rate. Reprinted with permission from Deng et al. [88]
Copyright 2022 Elsevier.

Another technique, namely, polymerization with induced phase separation, has been
applied to the development of versatile polymer electrolytes by creating two percolating
phases during polymerization in the presence of a liquid phase, typically composed of ionic
liquids with dissolved Li+ salts. The resultant material is composed of a mechanically robust
phase and an ion conductive phase, ensuring both stiffness and conductivity for improved
battery performance safety and stability [109–111]. Nanophase-separated epoxy polymers
were recently developed by Zeng et al. [90] by combining an elastic resin composed of hard
and soft segments that polymerizes into two diverse phases after curing, as represented in
Figure 12a. The latter is responsible for creating an ionic pathway and the former produces
mechanical integrity.
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After swelling in different ratios of propylene carbonate (PC) solution mixed with
LiTFSI salt, the resulting GPE containing an optimal 30 wt.% PC + 20 wt.% LiTFSI delivered
an ionic conductivity of 3.5 × 10−4 S·cm−1 at RT, as well as wide electrochemical stability
of up to 4.4 V (Figure 12(b1,b2)). Despite gradually reducing the membrane’s mechanical
properties, an acceptable stress of 1.89 MPa and a toughness of 3.4 MJ·m−3 was also
achieved with the addition of a plasticizer (Figure 12(b3)). These opposite characteristics
were achieved with a bisphenol A diglycidyl ether (DGEBA) robust matrix in combination
with flexible poly(propylene glycol) (PPG) moieties. This study demonstrated that phase
separation can be used to provide good ionic conductivity while ensuring mechanical
integrity (Figure 12c). It is worth mentioning that the combination of these properties in a
single membrane is currently the biggest impediment to the development of these types
of materials.

4.1.4. SIC (Single-Ion Conducting)

To develop new types of polymeric electrolytes exhibiting high conductivity and good
mechanical properties, dendrite suppression is a fundamental aspect to consider during
the material design to ensure good safety of the overall system. According to the current
state of the art, SPEs show dual ionic conduction, as lithium ions and their respective
counter ions migrate during charge and discharge cycles between the cathode and anode,
displaying lower tLi+. In these materials, only 20% of the ionic conductivity is due to the Li
mobility, resulting in an enhancement of the ionic concentration gradient and, consequently,
promoting an increase in cell polarization during the discharge process. This effect limits
the amount of current available and decreases the lifetime of the battery [112].
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This main drawback in traditional SPEs can be overcome by blocking the migration of
Li counter ions, typically carried out by tethering the counter ions’ moieties to the polymer
backbone, promoting the free migration of Li+ ions. The use of single-ion polymer elec-
trolytes (SIC), which have a tLi+ close to the unity, has proved to be an efficient method for
suppressing dendrites and increasing the battery’s life and safety, as the anion immobiliza-
tion allows a free migration of Li+ ions and consequent decrease in cell polarization. Owing
to the potential of SIC, a variety of reviews reported state-of-the-art developments over the
last years focusing on this thematic [46,78,113]. Some interesting examples are shown in
Figure 13, and the electrochemical behavior of SIC based on different ions is summarized
in Table 4.
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Figure 13. Chemical structures of different single-ion polymer electrolytes. SICs are typically con-
stituted by strong electron-withdrawing groups ((a) [114]) that promote delocalization of negative
charges, resulting in an increased dissociation and mobility of the Li salt. The most common examples
are sulfonate (-SO3) ((b) [115], (c) [116,117]), sulfonylimide (-N(SO2)2-) ((d) [118], (e) [119], (f) [97],
(g) [120]), and tetrahedral borate (-BO4) ((h) [121], (i) [122]) anions.

Table 4. Reported electrochemical parameters of polymeric single-ion electrolytes based on
different anions.

Anion σ (S·cm−1)
(◦C) tLi+ Cell Type

Initial Capacity
(mAh·g−1)

(Conditions)

Cycle Stability
(Capacity

Retention)
Ref.

–SO3 1.95 × 10−6 (25 ◦C) 0.83 Li/LiFePO4 - - [123]
–SO3 1.2 × 10−5 (25 ◦C) 0.37 Li/LiFePO4 144.8 (0.2 C, 25 ◦C) 100 (82%) [124]
–SO3 2.03 × 10−3 (25 ◦C) 0.64 Li/LiFePO4 125 (2.0 C, 25 ◦C) 300 (99%) [125]

–N(SO2)2 3.08 × 10−4 (25 ◦C) 0.97 Li/LiFePO4 152.3 (0.02 C, 25 ◦C) 100 (97.5%) [126]
–N(SO2)2 2.3 × 10−4 (25 ◦C) 0.9 Li/LiFePO4 165 (0.05 C, 25 ◦C) 200 (95.5%) [127]
–N(SO2)2 8.4 × 10−4 (25 ◦C) 0.93 Li/LiFePO4 133 (1.0 C, 25 ◦C) 400 (83%) [128]

–BO4 6.2 × 10−4 (25 ◦C) 0.85 Li/LiFePO4 131.8 (0.1 C, 25 ◦C) 200 (76.1%) [129]

Several polymers containing sulfonate have been developed due to their easy prepa-
ration and acceptable delocalized structure, and thus provide reasonable electrochemical
properties and improve safety. Yubin et al. [63] reported a diblock polymer based on a
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sulfonate anion that showed an RT conductivity of 1.95 × 10−6 S·cm−1 and a high tLi+
of 0.83, characteristic of a SIC polymer. The low RT conductivity of the copolymer was
mostly due to the high association of Li ions to the tethered anion moieties, which resulted
in poor ion solvation. To overcome this challenge, the authors proposed the addition of
a plasticizer.

In recent studies, self-healing and stretchable polymer electrolytes exhibiting increased
flame retardancy properties were developed by free radical polymerization of 2,2,3,4,4,4-
hexafluorobutyl methacrylate (HFBM) and sulfobetaine (SBMA) monomers with sulfonate-
containing groups [124]. Different self-healing SPEs were prepared by solution casting
method using p(HFBM-co-SBMA)s with different SBMA mol%, (poly(HFBM)), EMI–TFSI,
and LiTFSI salt with different weight ratios. Results show that at a higher mol% of sulfonate
anions (above 3 mol%), the resulting conductivity dropped, which was associated with the
strong ionic interactions of the anion with the Li cation. The electrolyte containing a 3 mol%
ratio showed an ionic conductivity of around 10−5 S·cm−1; good mechanical performance,
namely, tensile strength (>130 kPa) and stretching (>4000%); and enhanced flame retardancy.
The results also evidence that a decrease in the Tg occurred with the addition of ionic liquid
owing to the lower crystalline regions, resulting in more Li+ migration and increasing
the conductivity.

The assembled Li/LiFePO4 cell displayed a high discharge capacity of 144.8 mAh·g−1

(0.2 C rate), with 82% stability over 100 cycles. The self-healing ability was attributed to
the imidazole moieties present in the EMI-TFSI ionic liquid, which formed ion–dipole
interactions with the fluorine atoms of the polymer side chain, resulting in an impressive
total repair and full recovery of its electrochemical and mechanical properties in less than
60 min.

In addition, Li et al. [125] were able to develop a sulfonate-based polymer with
oxadiazole moieties for the improvement of charge delocalization on the sulfonate groups,
resulting in higher ion solvation. Sulfonated aromatic polyoxadiazole (SPOD) polymer
was synthesized through a simple one-pot-method-based dicarboxylic acid (DPEA) and
hydrazine sulfonate (HS) in oleum, followed by an ionic exchange with lithium hydroxide
(Figure 14a).

Subsequently, the desired GPE membrane was prepared by electrospinning, followed
by swelling in a 1 M LiTFSI-based liquid electrolyte. The obtained findings show that the
Li-SPOD membrane presented a high degree of porosity, thus being capable of a higher
liquid uptake compared to the traditional polypropylene (PP) separator (81.2% and 40.7%,
respectively). The synthesis of a highly delocalized single-ion conductive structure was
confirmed by electrochemical measurements, where the Li-SPOD GPE exhibited a superior
2.03 × 10−3 S·cm−1 ionic conductivity at RT, as well as a high tLi+ of 0.64 and good
anodic compatibility.

Moreover, the freestanding electrospun membrane displayed a decent tensile strength
of 14.2 MPa and good thermal stability up to 472 ◦C. The Li/LiFePO4 cell delivered an initial
discharge capacity of 125 mAh·g−1 (2 C rate) and was capable of significantly suppressing
the formation of dendrites on the metallic Li anode after 300 cycles, in comparison with the
cell assembled with a PP separator that did not deliver the same suppression capacity, as
can be seen in Figure 14b.

On the other hand, the sulfonylimide-based polymers have gained scientific atten-
tion due to their highly delocalized structure and weak ion pairing, which enables Li
cation migration. Several studies have shown that this type of polymer, showing a
good ionic conductivity and higher tLi+, has been achieved, making this type of mate-
rial promising for future applications. Bis(benzene sulfonyl)imide was selected in several
studies for the development of different SPEs, promoted by the higher delocalization
of the bis(sulfonylimide) bond covalently linked to a benzene ring at both ends, with
the effect of this polyanion on the conductivity and tLi+ of the SPE being notorious. Re-
cently, in 2019, Cao et al. [126] showed a novel type of solid-state electrolyte based on
lithium 4-styrenesulfonyl(phenylsulfonyl)imide (SSPSILi) and maleic anhydride (MA)
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(Figure 15a) [130]. The resulting alternating copolymer that employed both delocalized
structures, attributed to the SSPSILi monomers, and ion solvating moieties (MA groups)
was blended with PEO (Figure 15b) in different weight ratios to provide a decent ionic
conductivity of 3.08 × 10−4 S·cm−1 at RT and high tLi+ of 0.97, without the incorporation
of plasticizers (Figure 15c).
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Blending with PEO provided a decrease in the crystallinity regions of the polymer,
allowing the development of a homogeneous membrane without porosity and with in-
creased ionic conductivity. The optimal SPE membrane containing 20 wt.% of the lithiated
copolymer polymer displayed a higher electrochemical performance superior to the re-
sults attained so far using sulfonyl (trifluoromethyl-sulfonyl)imide-based SPEs, as well as
dendrite suppression capacity due to the superior tLi+ and thermal stability up to 400 ◦C.
These improved characteristics resulted in a corresponding Li/LiFePO4 cell with a charge–
discharge capacity of 152.3 mAh·g−1 at 0.02 C, with 97.5% retaining capacity after 100 cycles.
Superior stability at 0.1 C was achieved for over 300 cycles, which proves the improved
cycling stability of the assembled cell.

Additionally, the development of a SIC resin was recently developed by Pan et al. [127],
based on bis(4-amino benzene sulfonyl)imide (Li-BABSI) and poly(ethylene glycol) digly-
cidyl ether (PEGDGE) monomers. The use of a rigid aromatic precursor containing delocal-
ized -N(SO2)2 groups conferred superior mechanical performance to the membrane and
high Li migration and tLi+, whereas the aliphatic monomers containing ether groups were
responsible for an efficient Li+ conducting path. The developed polymer electrolyte was
obtained by a “structural self-assembly” and in-situ polymerization process by first blend-
ing the polymerizable monomers with PVDF-HFP dissolved in N-methyl-2-pyrrolidone
(NMP) solution, with subsequent polymerization at 100 ◦C (Figure 16).

After soaking with plasticizer, the resultant porous and flexible-yet-stiff membrane
delivered a tensile strength of 10.5 MPa and high ionic conductivity of 2.3× 10−4 S·cm−1 (at
25 ◦C). Furthermore, a tLi+ of 0.9 was obtained, even after 800 h, which was crucial to sup-
pressing dendrite formation, which was further confirmed by the Li stripping/plating cycle
test performed using an SPE-based assembled cell. An impressive discharge capacity of
165 mAh·g−1 at 0.05C was also obtained, which slightly differs from the cathode’s theoreti-
cal specific capacity value of 170 mAh·g−1. Good cycling stability after 200 cycles was also
achieved, with 95.5% retention, as well as nearly 100% coulombic efficiency. This promising
work provides a simplified process suitable for future structural industrial applications.

Another approach, based on this technique, used a Li (4-styrenesulfonyl) (trifluo-
romethanesulfonyl)imide monomer to develop highly crosslinked matrices with a superior
electrochemical capacity [128]. UV-induced thiol-ene chemistry was implemented to effi-
ciently synthesize the desired conductive polymer after soaking in plasticizer, resulting in a
gel membrane that displayed an acceptable tensile strength of 2.8 MPa and superior thermal
stability of 240 ◦C. This GPE also exhibited a high ionic conductivity of 8.4 × 10−4 S·cm−1

at 25 ◦C and superior 0.93 tLi+, which delivered an optimal initial discharge capacity of
133 mAh·g−1 (1.0 C rate) for the respective Li/LiFePO4 cell.
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Moreover, apart from good rate capacity, the cell also exhibited superior cycling
performance by keeping 83% of its retaining capacity after 400 cycles, with almost 100%
coulombic efficiency.

Borate-based polymers have also been explored as potential electrolytes, due to boron’s
low interaction with Li+ [78,131,132]. In a recent study by Zhang et al. [129], a conductive
polymer was synthesized based on an aromatic sp3 boron moiety (-B(O-)4). The developed
poly (4,4′-dihydroxydiphenyl sulfone borate) polymer (Li-PSB) was mixed with polyben-
zimidazole (PBI) binder, constituted by imidazole and aromatic groups, which enabled
Li solvation and rigidity of the membrane, respectively. The fabricated membranes were
subsequently immersed in EC/DEC electrolyte to produce a GPE, displaying enhanced
fire-retardancy properties, good ionic conductivity at RT, and a high transference number
(up to 6.2 × 10−4 and tLi+ = 0.85, respectively). The incorporation of rigid aromaticity
derived from the PBI binder resulted in a superior mechanical strength of 21.1 MPa. The
electrochemical performance of the prepared Li/LFP resulting cell was also evaluated
and a specific capacity of 131.8 mAh·g−1 (0.1 C rate) was found, as well as a 76.1% re-
taining capacity after 200 cycles, with nearly 100% coulombic efficiency. In this work, the
inventors compared the developed GPE to a commercial separator and showed that their
membrane presents superior benefits for fire retardancy, dendrite suppression, and higher
ionic conductivity.

5. Polymer Composite Electrolytes

When the design of polymer electrolytes alone is not enough to achieve the desired
ionic conductivity, different strategies can be approached, including the incorporation of
inorganic fillers into the SPE matrix. These fillers are normally divided into two categories:
active fillers and inactive (also known as inert or passive) fillers. The former are capable of
conducting ions such Li+ themselves, and the latter, despite being ionic insulators, offer a
favorable environment for ion transport in a polymer matrix. The incorporation of inactive
fillers enhances the free Li+ mobility and suppresses the polymer crystallization.

The first study focused on the incorporation of inorganic (inactive) filler into a polymer
electrolyte was in 1982, by Weston et al. [133]. The authors reinforced Li perchlorate–PEO
polymer electrolyte with alpha-alumina (α-Al2O3), achieving a significant enhancement of
the mechanical stability of the composite. However, ionic conductivity improvements by
adding Al2O3 particles into a PEO-based matrix were first proposed by Wieczorek et al. [22]
in 1989. Since then, the incorporation of a wide range of inorganic inactive fillers into
polymer electrolyte matrices have been extensively studied [134–138].
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For example, Sasikumar et al. [139] reported the fabrication of a flexible hybrid poly-
mer electrolyte based on a PVDF-HFP and poly(vinyl acetate) polymer blend reinforced
with titanium dioxide (TiO2) nanoceramic filler. The incorporation of TiO2 resulted in an
improvement of the ionic conductivity (2.69 × 10−3 S·cm−1, at 30 ◦C), thermal stability (up
to 350 ◦C), and mechanical strength (8.4 MPa). The TiO2 SPE also exhibited large tLi

+ (0.53)
as well as an extended electrochemical window of stability (5.4 V vs. Li/Li+).

Moreover, Zhan et al. [140] prepared a partial crosslinked PEO-based SPE using porous
vinyl-functionalized silicon dioxide (SiO2) as the filler and PEGDA as the crosslinker
(Figure 17).
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The combination of the mechanical rigidity of SiO2 fillers and the flexibility of the PEO
promoted an enhancement of the mechanical properties and simultaneously the inhibition
of the PEO recrystallization, promoting the dissolution of the Li+ salt. Furthermore, the
SiO2-reinforced SPE membrane showed good ionic conductivity (5.08 × 10−3 S·cm−1 at
60 ◦C), a wider electrochemical window of stability (5.2 V vs. Li/Li+), and better ability to
suppress dendrite growth.

Xu et al. [141] developed a flexible polypropylene oxide (PPO)-based SPE membrane
by combining the bis[3 -(methyldimetoxysilyl)]-terminated PPO with ZrO2 fillers, succinon-
itrile as a plasticizer, and a cellulose membrane framework. The SPE membrane exhibited
improved ionic conductivity (9.6× 10−4 S·cm−1, at RT), large tLi+ (0.8), and a high potential
window (5.0 V vs. Li/Li+).

In another recent study, a boron nitride (BN)-based SPE was developed [142]. The
crosslinked polymer electrolyte was prepared using cellulose acetate as a matrix and
PEGDA as a crosslinking agent. The resulting SPE membrane showed high ionic con-
ductivity (8.9 × 10−3 S·cm−1 at 30 ◦C), excellent electrochemical stability up to 5.5 V vs.
Li/Li+, and good thermal stability. A wide range of other inorganic inactive fillers can be
found in the literature as potential reinforcements for SPE membranes, including cerium
dioxide (CeO2) [82], molybdenum disulfide (MoS2) [143], silicon nitride (Si3N4) [144],
niobium pentoxide (Nb2O5) [145], graphitic carbon nitride (g-C3N4) [146], quantum dots
(QD) [147], nitrogen and sulfur co-doped carbon dots (NS-CD) [148], and aluminosilicate
zeolite (SSZ-13) [149], among others.

Active fillers are more effective at boosting the electrochemical performance of SPEs
since they can conduct Li+ ions. The most used are garnet-type (aluminum-doped lithium
lanthanum zirconate oxide (LLZO) and its derivatives, such as tantalum-doped lithium
lanthanum zirconate oxide (LLZTO)), NASICON-type (lithium aluminum titanium phos-
phate (LATP), among others), and perovskite-type (such as lithium lanthanum titanate
(LLTO)) [150–153]. Walle et al. [152,154] developed a co-precipitation method in a Taylor
flow reactor to synthesize separately both the cathode, the nickel-rich hydroxide Ni0.8 Co0.1
Mn0.1 (OH)2 (NCN811), and the electrolyte, an LLZO-reinforced PVDF/PAN/LiTFSI poly-
mer electrolyte matrix (Figure 18). The SPE membrane exhibited good ionic conductivity
(4.50 × 10−4 S·cm−1), high tLi+ (0.84), and a broader electrochemical window (5.04 V vs.
Li/Li+). A CR2032 coin cell containing Li/NCM811 achieved a capacity retention of 89.8%
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after 300 cycles at 1C and RT. Figure 18a shows an illustration of the cell structure and
Figure 18b represents the cycling results of the full cell at 1C, RT.
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Jin et al. [151] reported a structural design of SPE consisting of three-dimensional
(3D) interconnected LATP, PVDF, and LiTFSI. The LATP filler was coated with polymethyl
methacrylate (PMMA), which acted as a functional modification layer of LATP and im-
proved the interface with the PVDF matrix. The SPE membrane demonstrated enhanced
ionic conductivity (1.23 × 10−3 S·cm−1 at RT) and a remarkable tLi+ (0.85). Recently, a new
type of Li-ion conductor oxide with trivalent gallium metal (LLGO) was also studied as
an active filler for incorporation into SPEs. [155] Using LLGO as a conducting filler, the
PEO/LiTFSI/LLGO SPE composite exhibited good ionic conductivity (4.4 × 10−4 S·cm−1

at 60 ◦C) and a tLi+ as high as 0.69.
Although active fillers possess an ionic conductivity in the range of 10−4–10−3 S·cm−1,

a wide electrochemical window, and enhanced thermal stability, they also show some
drawbacks. For example, NASICON-type and perovskite-type reinforced electrolytes can
be easily reduced by Li metal, and garnet-type reinforced electrolytes are unstable under
air and easily react with water and carbon dioxide, generating lithium carbonate (Li2CO3)
and lithium hydroxide (LiOH) [124].

Recently, metal–organic frameworks (MOF) consisting of metal nodes and organic
ligands have attracted significant interest as fillers in SPEs. The high specific surface
area of MOFs combined with their highly ordered crystal structures and porosity make
these materials suitable for adsorbing liquid electrolytes and regulating ion flux. Fur-
thermore, the organic–inorganic hybrid nature of MOFs can improve compatibility with
SPEs [156]. Zhang et al. [157] developed an MOF-derived cobalt-doped hollow porous
carbon nanocage (Co-MOF), which was capable of absorbing Li+-containing ionic liq-
uid. The Co-MOF-reinforced PEO/LiTFSI SPE membrane showed high ionic conductivity
(1.91 × 10−4 S·cm−1, at 30 ◦C), wide electrochemical stability (5.2 V vs. Li/Li+), and high
tLi+ (0.5). In another attempt, Wu et al. [158] incorporated a 3D-structured cerium-based
MOF (Ce-MOF) nanofiller into a PEO/LiTFSI polymer electrolyte. The abundant cavi-
ties of the Ce-MOF enabled the strong Lewis acid–base interactions with both oxygen
in the PEO chain and the anion in the Li salt, leading to an improved ionic conductivity
(3.0 × 10−5 S·cm−1 at 30 ◦C) and high tLi+ (0.75). The Ce-MOF SPE exhibited superior
cycling stability, with a capacity of 120 mAh·g−1 after 3800 cycles when tested at 0.5 C,
60 ◦C, for a Li/LiFePO4 cell. Figure 19a presents the specific capacity of the Li/Ce-MOF
SPE/FFP cell, and Figure 19b,c illustrates a scheme of the anion immobilization and the
evolution of Li plating during cycling.

In addition, Zhang et al. [159] prepared a copper-based MOF (Cu-MOF)-supported
PEO polymer electrolyte by UVcuring, using benzophenone as a photoinitiator. The
Cu-MOF SPE showed high ionic conductivity (4.99 × 10−3 S·cm−1, at 30 ◦C), a wide
electrochemical window (5.25 V vs. Li/Li+), and a high tLi+ (0.61). It also exhibited good
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cycle stability in symmetric battery, with 98.6% capacity retention after 700 cycles (tested at
1 Cat RT).

Table 5 summarizes the performance parameters of the latest studies performed on
some inorganic filler-reinforced polymer-based electrolytes.

Table 5. Performance parameters of the latest studies performed on inorganic filler-reinforced
polymer-based electrolytes.

Filler SPE σ (S·cm−1)
(◦C) tLi+

EWS
(V vs.

Li/Li+)

Discharge Capacity
(mAh·g−1)

(Conditions)

Cycle
Stability
(Capacity

Retention)

Tensile
Strength
(MPa)

Ref.

TiO2 PVDF/PVA/LiTFSI 2.69 × 10−3 (30 ◦C) 0.53 5.4 154 (0.1 C; 40 ◦C) 50 (94%) 8.4 [139]
TiO2 PVDF/LiTFSI 1.51 × 10−3 (30 ◦C) 0.42 - 160 (0.1 C; 60 ◦C) 50 (80%) 0.9 [76]
TiO2

Nanowires PEO/LiTFSI 1.10 × 10−4 (30 ◦C) 0.36 5.5 151 (0.1 C; 60 ◦C) 100 (91%) - [65]

SiO2 PEO/LiTFSI 7.5 × 10−6 (25 ◦C)
4.3 × 10−4 (60 C)

- - 150 (0.1 C; 60 ◦C) 80 (88.4%) 2.3 [154]

SiO2 PEO/PEGDA/LiTFSI 5.08 × 10−3 (60 ◦C) - 5.2 155.1 (0.5 C; 60 ◦C) 300 (91%) 2.46 [140]

SiO2 PEO/PEGDA/LiTFSI 3.37 × 10−4 (25 ◦C)
1.73 × 10−4 (0 ◦C)

0.38 4.9 129.4 (0.2 C; 0 ◦C) 150 (99%) 26.9 [160]

SiO2 PVEC/LiTFSI 1.65 × 10−4 (25 ◦C) 0.63 5.3 150 (0.5 C; 25 ◦C) 200 (79.4%) - [161]
SiO2 PPC/LiTFSI 8.48 × 10−4 (60 ◦C) 0.86 4.8 171 (0.1 C; 60 ◦C) 100 (86%) 4.0 [162]
SiO2 PEO/AKP/LiTFSI 2.52 × 10−4 (40 ◦C) 0.22 5.1 154 (0.5 C; 50 ◦C) 100 (97.9%) 5.51 [163]

SiO2@BN PEO/LiTFSI 4.53 × 10−4 (60 ◦C) 0.54 4.71 150 (1.0 C; 60 ◦C) 900 (87%) 1.33 [164]
Si

Nanotubes PEO/LiTFSI 4.35 × 10−4 (30 ◦C) 0.65 5.0 151 (0.1 C; 60 ◦C) 100 (83.4%) - [25]

Al2O3 PVDF/LiPF6 8.5 × 10−4 (25 ◦C) 0.92 5.2 116 (2.0C; 25 ◦C) 2000 (88%) 27.1 [66]
ZrO2 PPO LiTFSI 9.62 × 10−4 (25 ◦C) 0.8 5.0 145 (0.5 C; 25 ◦C) 140 (63%) 47.5 [141]

ZrO2
P(S-

MMA)/PVDF/LiClO4
1.2 × 10−2 (30 ◦C) - 4.6 144 (0.1 C; 25 ◦C) 50 (74.3%) - [165]

CeO2 PEO/LiTFSI 1.1 × 10−3 (60 ◦C) 0.47 5.1 164 (0.1 C; 60 ◦C) 100 (98%) 0.6 [82]
BN PEGDA/CA/LiPF6 8.8 × 10−3 (30 ◦C) - 5.5 113.2 (0.1 C; 25 ◦C) 200 (77%) - [142]

MoS2 PVDF/LiTFSI 2.8 × 10−4 (25 ◦C) 4.57 137 (0.54 C; 25 ◦C) 200 (98%) - [143]

SSZ-13 PEO/LiTFSI 6.16 × 10−4 (30 ◦C)
5.34 × 10−2 (70 ◦C)

0.85 4.3 154 (0.1 C; 60 ◦C) 80 (94%) 5.3 [149]

Si3N4 PVDF/LiPF6 8.84 × 10−4 (25 ◦C) - 4.25 146.3 (0.5 C; 25 ◦C) 100 (97.6%) 3.13 [144]
Nb2O5 PVDF/LiTFSI 6.6 × 10−5 (25 ◦C) - 5.1 151 (0.5 C; 30 ◦C) 230 (~97%) ~9.2 [145]

g-C3N4 PEO/LiTFSI 3.18 × 10−5 (25 ◦C)
2.5 × 10−4 (60 ◦C)

0.69 5.2 168 (0.3 C; 60 ◦C) 400 (67%) 3.97 [146]

NS-CD PEO/LiClO4 2.10 × 10−4 (25 ◦C) 0.51 5.0 145.2 (0.5 C; 45 ◦C) 200 (~95%) 2.51 [148]

QD PEO/PLSS 2.02 × 10−4 (25 ◦C) 0.94 4.4 155.9 (0.2 C; 60 ◦C)
136.7 (2 C; 60 ◦C)

100 (94.3%)
1000 (83.4%) 5.1 [147]

LLZO PVDF/LiClO4 1.2 × 10−4 (25 ◦C) 0.42 4.2 160.92 (0.1 C; 25 ◦C) 100 (92.5%) - [166]
LLZO PVDF/PAN/LiTFSI 4.5 × 10−4 (25 ◦C) 0.84 5.0 103.8 (1.0 C; 25 ◦C) 300 (89.8%) - [152]
LLZO PVDF/LiTFSI 1.74 × 10−4 (25 ◦C) 0.34 4.5 151 (0.5 C; 25 ◦C) 100 (71.5%) 95 [167]

LLZTO PAN/PEO/LiTFSI 2.6 × 10−4 (30 ◦C) - 4.5 170.1 (0.1 C; 30 ◦C) 100 (72.8%) - [168]
LLZTO PEGDA/LiTFSI 3.1 × 10−4 (25 ◦C) 0.43 4.7 175 (0.2 C; 25 ◦C) 200 (85.4%) - [169]
LLZTO PEO/LiTFSI 4.61 × 10−4 (60 ◦C) - 5.1 130.3 (0.5 C; 60 ◦C) 200 (98.8%) - [170]
LLZTO PPC/LiTFSI 2.7 × 10−4 (30 ◦C) 0.54 4.4 163 (0.2 C; 25 ◦C) 140 (90.79%) 11.78 [171]
LLZTO PEO/LiTFSI 1.43 × 10−3 (25 ◦C) - 4.8 152 (1.0 C; 25 ◦C) 1000 (90%) 0.55 [142]

LLZTO PEO/LiTFSI 1.76 × 10−4 (30 ◦C) 0.53 5.2
155.3 (0.2 C; 60 ◦C)
136.1 (0.5 C; 60 ◦C)
120.7 (1.0 C; 60 ◦C)

300 (93.2%)
400 (90.6%)

1000 (86.0%)
9.47 [153]

LLTO PAN/LiClO4 3.6 × 10−4 (25 ◦C) 0.38 5.0 142.5 (0.5 C; 25 ◦C) 100 (90%) 5.61 [150]
LLGO PEO/LiTFSI 4.4 × 10−4 (60◦ C) 0.69 4.8 120 (0.2 C; 60 ◦C) 400 (80%) 1.3 [155]
LATP PVDF/LiTFSI 1.23 × 10−3 (25 ◦C) 0.85 4.8 131.8 (0.5 C; 25 ◦C) 150 (91.2%) 5.68 [151]

LATP-GF PEO/LiTFSI 6.3 × 10−5 (25 ◦C) 0.37 4.4 148 (0.5 C; 60 ◦C) 270 (68%) 33.1 [143]
LATP:LLTO PVDF/LiClO4 2.08 × 10−3 (25 ◦C) 0.88 5.3 159.7 (0.1 C; 30 ◦C) 1000 (85%) 4.5 [172]

Co-MOF PEO/LiTFSI 1.91 × 10−4 (30 ◦C) 0.5 5.2 140 (0.5 C; 60 ◦C) 150 (95.9%) 3.72 [157]
Ce-MOF PEO/LiTFSI 2.76 × 10−4 (60 ◦C) 0.47 4.8 161.3 (0.5 C; 60 ◦C) 2000 (63%) 1.0 [173]
Ce-MOF PEO/LiTFSI 3.0 × 10−5 (30 ◦C) 0.75 4.5 179 (0.5 C; 60 ◦C) 3800 (67%) 0.6 [158]

Cu-MOF PEO/LiPF6 4.99 × 10−3 (30 ◦C) 0.61 5.25 144.6 (0.2 C; 25 ◦C)
138.3 (1.0 C; 25 ◦C)

200 (92.3%)
700 (98.6%) - [159]
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PEO polymer electrolyte by UVcuring, using benzophenone as a photoinitiator. The Cu-
MOF SPE showed high ionic conductivity (4.99 × 10−3 S·cm−1, at 30 °C), a wide electrochem-
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Figure 19. (a) Specific capacity of the Li/Ce-MOF SPE/FFP cell; schematic illustration of (b) anion
immobilization on Ce-MOF fillers and (c) evolution of Li plating modulated by Ce-MOF SPE during
cycling. Reproduced with permission from Wu et al. [158]. Copyright 2021 Elsevier.

6. Application of Polymer Electrolytes for Structural Batteries

Since the application of a liquid electrolyte is detrimental from a mechanical point of
view, one of the main applications of SPEs/GPEs is their employment in structural batteries.
These multifunctional devices are classified as a class of mass-less structural composites
with high-density energy storage systems with enhanced mechanical properties [148,174].
In the development of a structural battery composite material, the challenging factor relies
on making every constituent play multiple functions [3]. This means, for example, that
carbon fibers (CFs) work as both electrodes and structural reinforcements, and polymer can
act as matrix and electrolyte simultaneously. CFs are promising materials that have been
studied as multifunctional electrodes. This is possible due to the enhanced mechanical,
electrical, and electrochemical properties of CFs. Figure 20 shows a representative scheme
of a structural battery.
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nated composite structure, and (ii) through the transformation of each component in a
multifunctional material. In the first case, the electrolyte is capable of mechanical load
transfer and is called a structural battery electrolyte (SBE). In the second case, the approach
relies on an assembly of different constituents rather than a device with multifunctional
components [174].

CFs are used as anodes due to their high tensile strength (2–4 GPa), high electrical
conductivity (4.9 S·cm−1), and great Li+ insertion capacity (280 mAh·g−1) [63,175–178].
For structural positive electrodes, CFs can also be employed as a cathode material. The
very first effort in the development of a laminated structural composite takes us back to
2007, to the U.S Army Research Laboratory, where a metal mesh with cathode material was
employed to be used as positive electrode and CFs as the negative electrode, both separated
by a glass fiber (GF) weave and a common polymer electrolyte matrix [3,148,179]. Although
the resulting device showed good mechanical properties, poor electrical insulation led to
the incapability of electrochemical storage. This pioneering work boosted many efforts in
this field. In 2009, a structural battery with short-fiber reinforced electrodes and an SPE
matrix was designed by Liu et al. [180]. However, the authors did not find a sufficiently
good SPE to conduct ions and used a GPE instead. Poor mechanical properties were also
achieved since the employed GPE had a low tensile modulus (3 MPa), and the resulting
battery showed an energy density of 35 Wh·kg−1. In 2010, Eksted et al. [181] developed
another attempt through the employment of a GPE reinforced with a CF weave anode and
a LiFePO4 fiber weave as a cathode. Unfortunately, the mechanical properties attained
were unacceptable and no electrochemical data were reported.

Therefore, the challenge relies on the development of a safe solid/gel electrolyte able to
efficiently conduct ions (up to ~1 mS·cm−1) and withstand mechanical load (shear stiffness
between 0.1 and 1 GPa) [1,182]. Another important parameter to achieve is a high Young
modulus, which means that if the electrolyte has a low modulus it will not be able to load
mechanical transfer between fibers, which is a crucial attribute of the matrix in a structural
composite [148]. Each component, from electrodes and electrolytes to separators, can be
optimized to provide higher strength to the final battery and the overall stiffness should
minimally decrease the power and energy density to justify the multifunctionality [63].

Table 6 summarizes some composite solid-state electrolytes with a wide electrochem-
ical window of stability employed to develop structural batteries. An overview of the
literature revealed that only a few reports are available on batteries with high-voltage
cathodes (NMC811 and NMC622, for example) [183].
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Table 6. Summary of structural batteries, based on [184].

Electrolyte Type Cathode Material and
Mass Loading

σ (S·cm−1)
(◦C) tLi+ EWS (V)

Discharge Capacity
(mAh·g−1)

(Conditions)
Coulombic Efficiency

Cycle Stability
(Capacity

Retention)
Ref.

Multilayer with
PAN@LAGP-LiTFSI
and PEGDA-LiTFSI

NMC811/NMC622/Super
P/PVDF/PAN
3–5 mg·cm−2

3.7 × 10−6 (25 ◦C) - 5

Li/NMC811 175
(25 ◦C, 0.5 C);

Li/NMC622 180
(25 ◦C, 0.1 C);

-Li/NMC622
(25 ◦C, 0.5 C): 99.8%

Li/NMC811 81.5%
Li/NMC622 97.7% [185]

PVDF-5 wt%
palygorskite ((Mg,
Al)2Si4O10(OH))

nanowires-LiClO4

NMC111/Super
C65/PVDF/LiClO4

1.5 mg·cm−2
1.2 × 10−4 (25 ◦C) 0.54 4.7 117.6 (25 ◦C, 0.3 C,

3–4.2 V) Close to 100% [186]

PVDF-HFP-20%
Li6.4Ga0.2La3Zr2O,-
TEP and FEC (7:3,

v/v)-LiFSI

NMC523/PVDF/Super-P
5 mg·cm−2 1.84 × 10−3 (20 ◦C) 0.563 4.75 96.3 (25 ◦C, 0.5 C,

2.8–4.3 V) 98% 200 (94.08%) [187]

PVDF-HFP-12.5 wt%
LLZTO-LiTFSI

LFP/PVDF-
HFP/acetylene black

1.5 mg·cm−2
1.2 × 10−4 (30 ◦C) 0.33 5.6 60 ◦C, 0.5 C, 2.8–3.8 V 99% 50 (92.1%) [188]

EGPEA-Nano fumed
SiO2-LiTFSI

LFP/PVDF/KB
2.5 mg·cm−2 2.16 × 10−5 (25 ◦C)

0.63
(55 ◦C) 4.8 55 ◦C, 0.1 C, 2.5–4.0 V - 100 (95%) [189]

PEO -12.5 vol%
UiO-66-LiTFSI

LFMP/LFP/LiTFSI/PEO/
Super-P

2 mg·cm−2
3.1 × 10−5 (25 ◦C) 0.72 4.97

Li/LFP (60 ◦C, 1 C,
2.8–3.8 V):

Li/LFMP (60 ◦C, 1 C,
2.8–4.4 V)

-
Li/LFP300 (85.4%)

Li/LFMP 100
(81.2%)

[190]

PEO-20%
P(SSPSILi-alt-MA)

LFP/P(SSPSILi-alt-
MA)/PEO/

carbon black
3.08 × 10−4 (25 ◦C)

0.97 (at
80◦C) 5.0 80 ◦C, 0.1 C, 2.5–4 V ~100% 100 (97.5%) [126]

PEO-g-C3N4-LiTFSI LFP/PVDF/carbon black
1.2 mg·cm−2 1.7 × 10−5 (30 ◦C) 0.56 4.7 60 ◦C, 0.2 C, 2.8–4.0 V 99.5% 100 (96.2%) [191]

Note: LAGP—lithium aluminum germanium phosphate; Li6.4Ga0.2La3Zr2O—lithium lanthanum zirconium oxide doped with gallium (LLZO-Ga); TEP—triethyl phosphate; FEC—
fluoroethylene carbonate; LLTZO—tantalum-doped lithium lanthanum zirconium oxide Li6.5La3Zr1.5Ta0.5O12; EGPEA—ethylene glycol phenyl ether acrylate; UiO-66—metal organic
framework (MOF) made up of Zr6O4(OH)4 clusters with 1,4-benzodicarboxylic acid; LFP—lithium iron phosphate LiFePO4, LFMP—LiFe0.15Mn0.85PO4 ; NMC—nickel manganese
cobalt oxide.
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Other interesting examples reported the multifunctional mechanical properties of
structural batteries. For instance, in 2009, Liu et al. [180] established a structural battery
with carbon nanofibers with tunable mechanical properties. The electrolyte was PVDF-
based, along with a graphitic anode and lithium cobalt oxide (LiCoO2) as the cathode. The
final assessment showed good mechanical properties with a 3.1 GPa tensile modulus but
low specific energy (35 Wh·kg−1, at a 0.05C discharge rate) [148,192,193]. Another tactic was
underlined by Ihrner et al. [192] and subsequently optimized by Schneider et al. [63,194]. A
porous methacrylate polymer impregnated with a liquid mixture containing Li+ salts was
used as an electrolyte with an ionic conductivity of 2× 10−4 S·cm−1 and a Young’s modulus
of 0.5 GPa [148,193]. Moyer et al. [194] successfully produced a structural pouch cell with
an energy density of 25 Wh·kg−1 at 0.1 C and mechanical strength of 213 MPa. In this case,
a graphitic anode and a CF coated LFP cathode were used to serve as current collectors.

There is still ample room available for optimizations in this field, especially concerning
the mechanical point of view of a structural battery as well as the necessary characterizations.

7. Summary

In recent years, significant research and progress in the field of solid-polymer elec-
trolytes have been made. In this review, the recent advancements and research performed
on the design of solid- and gel-polymer electrolytes were summarized, as well as composite
polymer electrolytes, focusing their application on LIBs. Compared to liquid electrolytes,
SPEs have the potential to offer more balanced overall battery performance in terms of
their nonflammability, mechanical properties, ionic conductivity, safety, and thermal sta-
bility. The current limitations to SPE design were also outlined. Although solid-polymer
electrolytes have shown great potential, challenges still need to be addressed to fulfil
the optimized performance for practical applications. Strategies such as polymer blend-
ing, copolymerization, polymer crosslinking, and the development of single-ion polymer
electrolytes, consisting of tethering the Li counter ion moieties to the polymer backbone,
have been explored, aiming at optimizing SPE. Some key factors to be considered when
designing SPE include (i) enhanced ionic conductivity at room temperature—it is still fairly
challenging to achieve solvent-free polymer electrolytes with an ionic conductivity higher
than 10−3 S·cm−1; (ii) improved tLi+, as it favors the reduction of polarization and sup-
pression Li dendrite growth; (iii) optimized interfaces between electrodes and electrolytes
and an understanding of their interfacial behavior; (iv) enhanced electrochemical and
thermal stabilities of SPEs to boost their lifespan; (v) low-cost preparation techniques for
SPE as well as the sustainability of their polymer batteries for commercial applications; and
(vi) mechanical stability for polymer electrolytes. The electrolyte must not be brittle, should
be flexible and elastic, and should also stand the stress conditions during their lifespan.
Despite the challenges outlined above, SPEs have been broadly recognized as one of the
core directions to enhance the performance and safety of LIB. Bearing in mind the intense
research and industrial interest in developing SPE and solid-state batteries, it is entirely
reasonable to expect significant advances in the field to continue to occur.
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